Math 3140: Homework 9

Due: Wednesday, November 7

А.

- 15.13. Suppose H is a cyclic normal subgroup of G. Show that any subgroup of H is also normal in G.
 - (2) A group G is meta-abelian if there exists and abelian normal subgroup $A \triangleleft G$ such that G/A is also abelian. Show that G is meta-abelian if and only if (G')' = 1 (the commutator subgroup of the commutator subgroup).
 - (3) Find the commutator subgroup of $U_n(\mathbb{F}_p)$ for p prime. For which n is $U_n(\mathbb{F}_p)$ meta-abelian?
 - (4) Find the commutator subgroup of B_n .

В.

16.4. Show that if $A \triangleleft G$ and $B \triangleleft H$, then $(A \times B) \triangleleft (G \times H)$ and

$$(G \times H)/(A \times B) \cong (G/A) \times (G/B)$$

- 16.11 Let $\varphi: G \to H$ be a surjective homomorphism with kernel K.
 - (a) For every subgroup $B \subseteq H$, show that the set

$$\varphi^{-1}(B) = \{ g \in G \mid \varphi(g) \in B \}$$

is a subgroup of G that contains K.

(b) Show that there is a bijection between

$$\left\{\begin{array}{l} \text{Subgroups } A \subseteq G \\ \text{such that } K \subseteq A \end{array}\right\} \longleftrightarrow \left\{\begin{array}{l} \text{Subgroups } B \subseteq H \end{array}\right\}.$$