Math 3140: Homework 7

Due: Wednesday, October 24

A.
12.4-5 Find examples of a group G and a subgroup H such that the following sets are not equivalence relations:
(a) $\{(x, y) \mid x y \in H\}$,
(b) $\left\{(x, y) \mid x y x^{-1} y^{-1} \in H\right\}$.
12.8 Let H be a subgroup of a group G.
(a) Show that if $|G|=2|H|$, then $g H=H g$ for all $g \in G$.
(b) Show that $g H=H g$ for all $g \in G$ if and only if $g h g^{-1} \in H$ for all $h \in H$, $g \in G$.
B. 14.2 Find the conjugacy classes for D_{n} for all n (be careful to distinguish between different cases).
14.3 Suppose $\varphi: G \rightarrow H$ is an isomorphism of groups, and suppose C is a conjugacy class of G. Show that $\varphi(C)$ is a conjugacy class of H.
(3) Show that if $w \in S_{n}$, then both w and w^{-1} are in the same conjugacy class. Find an example of a group for which this is not true.
14.10 Find the center of D_{n} for all n.
(5) Suppose G is a matrix group. Show that if $g, h \in G$ are in the same conjugacy class, then $\operatorname{det}(g)=\operatorname{det}(h)$.

