Math 3140: Homework 7

Due: Wednesday, October 24

А.

- 12.4-5 Find examples of a group G and a subgroup H such that the following sets are **not** equivalence relations:
 - (a) $\{(x, y) \mid xy \in H\},\$
 - (b) $\{(x,y) \mid xyx^{-1}y^{-1} \in H\}.$
 - 12.8 Let H be a subgroup of a group G.
 - (a) Show that if |G| = 2|H|, then gH = Hg for all $g \in G$.
 - (b) Show that gH = Hg for all $g \in G$ if and only if $ghg^{-1} \in H$ for all $h \in H$, $g \in G$.
- B. 14.2 Find the conjugacy classes for D_n for all n (be careful to distinguish between different cases).
 - 14.3 Suppose $\varphi : G \to H$ is an isomorphism of groups, and suppose C is a conjugacy class of G. Show that $\varphi(C)$ is a conjugacy class of H.
 - (3) Show that if $w \in S_n$, then both w and w^{-1} are in the same conjugacy class. Find an example of a group for which this is not true.
 - 14.10 Find the center of D_n for all n.
 - (5) Suppose G is a matrix group. Show that if $g, h \in G$ are in the same conjugacy class, then det(g) = det(h).