Math 3140: Homework 6

Due: Wednesday, October 17

- A. 9.1 Do either of the following sets of $n \times n$ matrices form a group?
 - (a) Diagonal matrices, $\{a \in M_n(\mathbb{R}) \mid a_{ij} = 0, i \neq j, a_{ii} \neq 0\}.$
 - (b) Symmetric matrices, $\{a \in M_n(\mathbb{R}) \mid a_{ij} = a_{ji}, 1 \le i, j \le n\}$.
 - (2) Let $C_r = \langle x \rangle$ be the cyclic group with r elements (but written with multiplication, rather than addition). Let

$$W_{r,n} = \left\{ a \in M_n(C_r \cup \{0\}) \mid \begin{array}{c} a \text{ has exactly one nonzero entry} \\ \text{in every row and every column} \end{array} \right\}$$

- (a) Show that $W_{r,n}$ is a group. What groups are $W_{1,n}$ and $W_{2,n}$ isomorphic to?
- (b) What is the order of $W_{r,n}$? Show that $W_{2,2} \cong D_4$.
- B. 11.4 Suppose |G| is the product of two distinct primes. Show that any proper subgroup of G must be cyclic.
 - 11.7 Suppose $n \in \mathbb{Z}_{\geq 1}$ and *m* divides 2*n*. Show that D_n contains a group of order *m*.
 - 11.8 Does A_5 contain a subgroup of order *m* for every *m* that divides $|A_5| = 60$?