Math 3140: Homework 6

Due: Wednesday, October 17

A. 9.1 Do either of the following sets of $n \times n$ matrices form a group?
(a) Diagonal matrices, $\left\{a \in M_{n}(\mathbb{R}) \mid a_{i j}=0, i \neq j, a_{i i} \neq 0\right\}$.
(b) Symmetric matrices, $\left\{a \in M_{n}(\mathbb{R}) \mid a_{i j}=a_{j i}, 1 \leq i, j \leq n\right\}$.
(2) Let $C_{r}=\langle x\rangle$ be the cyclic group with r elements (but written with multiplication, rather than addition). Let

$$
W_{r, n}=\left\{\begin{array}{l|l}
a \in M_{n}\left(C_{r} \cup\{0\}\right) & \begin{array}{l}
a \text { has exactly one nonzero entry } \\
\text { in every row and every column }
\end{array}
\end{array}\right\} .
$$

(a) Show that $W_{r, n}$ is a group. What groups are $W_{1, n}$ and $W_{2, n}$ isomorphic to?
(b) What is the order of $W_{r, n}$? Show that $W_{2,2} \cong D_{4}$.
B. 11.4 Suppose $|G|$ is the product of two distinct primes. Show that any proper subgroup of G must be cyclic.
11.7 Suppose $n \in \mathbb{Z}_{\geq 1}$ and m divides $2 n$. Show that D_{n} contains a group of order m.
11.8 Does A_{5} contain a subgroup of order m for every m that divides $\left|A_{5}\right|=60$?

