Math 3140: Homework 5

Due: Wednesday, October 10

A. 8.7 Using Cayley's Theorem, explicitly find an isomorphic copy of D_{3} inside S_{6}.
8.10 For each $w \in S_{n}$, let $\tilde{w} \in S_{2 n}$ be the permutation given by

$$
\tilde{w}(j)= \begin{cases}w(j), & \text { if } 1 \leq j \leq n, \\ w(j-n)+n, & \text { if } n+1 \leq j \leq 2 n\end{cases}
$$

(a) Describe the relationship between the diagram of w and the diagram of \tilde{w}.
(b) Show that the function that sends $w \mapsto \tilde{w}$ is an isomorphism between S_{n} and a subgroup of $A_{2 n}$.
B. 10.1 Show that if $G \times H$ is cyclic, then both G and H are cyclic.
10.2 Show that $\mathbb{Z} \times \mathbb{Z}$ and \mathbb{Z} are not isomorphic.
10.7 Which of the following groups are isomorphic to one-another?

$$
\mathbb{Z}_{24}, \quad D_{4} \times \mathbb{Z}_{3}, \quad D_{12}, \quad A_{4} \times \mathbb{Z}_{2}, \quad \mathbb{Z}_{2} \times D_{6}, \quad S_{4}, \quad \mathbb{Z}_{12} \times \mathbb{Z}_{2}
$$

C. For p prime, let \mathbb{F}_{p} denote the set $\{0,1, \ldots, p-1\}$ where we add and multiply modulo p (as opposed to \mathbb{Z}_{p} where we just add). Define

$$
U_{n}\left(\mathbb{F}_{p}\right)=\left\{a \in M_{n}\left(\mathbb{F}_{p}\right) \mid a_{j j}=1,1 \leq j \leq n, a_{j i}=0,1 \leq i<j \leq n\right\} .
$$

This group is called the group of unipotent, uppertriangular matrices with entries in \mathbb{F}_{p}.
(a) What is the order of $U_{3}\left(\mathbb{F}_{2}\right)$? Show that $U_{3}\left(\mathbb{F}_{2}\right)$ is isomorphic to an already familiar group.
Remark. The group $U_{3}\left(\mathbb{F}_{p}\right)$ is often called the Heisenberg group and is useful in mathematical physics.
(b) Show that $U_{2}\left(\mathbb{F}_{p}\right) \cong \mathbb{Z}_{p}$, and that if $n \geq 2$, then $U_{2}\left(\mathbb{F}_{p}\right)$ is isomorphic to a subgroup of $U_{n}\left(\mathbb{F}_{p}\right)$.

