Math 3140: Homework 3

Due: Wednesday, September 19

A. 6.3. Show that the elements $w \in S_{9}$ such that $\{w(2), w(5) \cdot w(7)\}=\{2,5,7\}$ form a subgroup of S_{9}. What is the order of this subgroup?
6.7+. (a) Describe/characterize the elements of order 2 of S_{n}.
(b) Show that if $n \geq 4$, then every permutation can be written as a product of two permutations of order 2. Hint: Answer the question first for cyclic permutations.
(c) What goes wrong if $n<4$?
B. 7.5. Let G be a group. Show that the function

$$
\begin{array}{ccc}
\varphi: G & \longrightarrow & G \\
x & \mapsto & x^{-1}
\end{array}
$$

is an isomorphism if and only if G is abelian.
7.9. Suppose G is cyclic with generator $x \in G$. Show that if $\varphi: G \rightarrow H$ is an isomorphism, then φ is completely determined by $\varphi(x)$. Show that $H=\langle\varphi(x)\rangle$.
C. (1) Show that there are exactly two groups with four elements (up to isomorphism).
(2) The braid group B_{n} is a group generated by the diagrams of S_{n} but we keep track of where strings cross. For example,

and we keep track of these crossings when multiplying,

What is the inverse of an element in B_{n} ? Show that B_{n} has infinite order. What are the elements of finite order in B_{n} ?

