Math 3140: Homework 3

Due: Wednesday, September 19

- A. 6.3. Show that the elements $w \in S_9$ such that $\{w(2), w(5).w(7)\} = \{2, 5, 7\}$ form a subgroup of S_9 . What is the order of this subgroup?
 - 6.7+. (a) Describe/characterize the elements of order 2 of S_n .
 - (b) Show that if $n \ge 4$, then every permutation can be written as a product of two permutations of order 2. Hint: Answer the question first for cyclic permutations.
 - (c) What goes wrong if n < 4?
- B. 7.5. Let G be a group. Show that the function

$$\begin{array}{cccc} \varphi:G & \longrightarrow & G \\ x & \mapsto & x^{-1} \end{array}$$

is an isomorphism if and only if G is abelian.

- 7.9. Suppose G is cyclic with generator $x \in G$. Show that if $\varphi : G \to H$ is an isomorphism, then φ is completely determined by $\varphi(x)$. Show that $H = \langle \varphi(x) \rangle$.
- C. (1) Show that there are exactly two groups with four elements (up to isomorphism).
 - (2) The braid group B_n is a group generated by the diagrams of S_n but we keep track of where strings cross. For example,

and we keep track of these crossings when multiplying,

What is the inverse of an element in B_n ? Show that B_n has infinite order. What are the elements of finite order in B_n ?