Math 3140: Homework 11

Due: Wednesday, December 5

A. 17.1. Let $G=\langle(1,2,3)(4,5),(7,8)\rangle \subseteq S_{8}$. Then G acts on the set $X=\{1,2,3,4,5,6,7,8\}$. Calculate the orbits of the G-action in X, and the stabilizer of each element.
17.7-8. The diagonal action. Suppose G acts on X and Y. Let

$$
\begin{array}{ccc}
G \times(X \times Y) & \longrightarrow & X \times Y \\
(g,(x, y)) & \mapsto & (g(x), g(y)) \tag{*}
\end{array}
$$

i. Show that $(*)$ gives an action of G on $X \times Y$.
ii. Find the stabilizer of $(x, y) \in X \times Y$.
iii. Give an example to show that this action is not necessarily transitive, even if G acts transitively on both X and Y.
iv. Find the orbits and stabilizers of $G=\langle(1,2,3,4),(2,4)\rangle \subseteq S_{4}$ acting on $X \times X$ diagonally, where $X=\{1,2,3,4\}$.
17.10. Recall that if $x \in G$, then the stabilizer of G in X is

$$
C_{G}(x)=\left\{g \in G \mid g x g^{-1}=x\right\} .
$$

(This is the stabilizer of an element under the conjugation action of G on $X=G)$. Show that if some conjugacy class of G has exactly two elements, then G is not simple.
B. 18.1 Use orbit counting methods to find the number of distinct ways to paint the edges of a cube with two colors.
18.7. How many different ways are there of coloring the vertices and edges of a regular hexagon using red, black or yellow for the edges and black or white for the vertices?

