Math 3140: Homework 1

Due: Wednesday, September 5

A. Figure 1.4 essentially describes two symmetries of the tetrahedron:

1.3 Adopt the notation of Figure 1.4. Show that the axis of the composite rotation srs passes through the vertex 4, and that the axis of $r s r r$ is determined by the midpoints of edges 12 and 34 .
1.4 Having completed 1.3, Express each of the twelve rotational symmetries of the tetrahedron in terms of r and s.
1.5 Again with the notation of Figure 1.4, check that $r^{-1}=r r, s^{-1}=s,(r s)^{-1}=$ $s r r$, and $(s r)^{-1}=r r s$.
B. 2.5 A function from the plane to itself which preserves the distance between any two points is called and isometry. Prove that an isometry must be a bijection and check that the collection of all isometries of the plane forms a group under composition of functions.
2.7 Let x and y be elements of a groups G. Prove that G contains elements w, z which satisfy $w x=y$ and $x z=y$, and show that these elements are unique.
2.8 If x and y are elements of a group, prove that $(x y)^{-1}=y^{-1} x^{-1}$.
C. 3.1 Show that each of the following collections of numbers forms a group under addition.
(i) The even integers.
(ii) All real numbers of the form $a+b \sqrt{2}$, where $a, b \in \mathbb{Z}$.
(iii) All real numbers of the form $a+b \sqrt{2}$, where $a, b \in \mathbb{Q}$.
(iv) All complex numbers of the form $a+b i$, where $a, b \in \mathbb{Z}$.
3.5 Let n be a positive integer. Prove that

$$
\left(x \cdot{ }_{n} y\right) \cdot{ }_{n} z=x \cdot{ }_{n}\left(y \cdot{ }_{n} z\right),
$$

for all $x, y, z \in \mathbb{Z}$.
3.9 Let p be a prime number and let x be an integer which satisfies $1 \leq x \leq p-1$. Show that none of $x, 2 x, \ldots,(p-1) x$ is a multiple of p. Deduce the existence of an integer z such that $1 \leq z \leq p-1$ and $x z(\bmod p)=1$.
3.10 Use the results of 3.5 and 3.9 to verify that multiplication modulo n makes $\{1,2, \ldots, n-1\}$ a group if n is prime. What goes wrong if n is not a prime number?
D. What are all the groups with 4 elements? 5 elements?

