Math 2001: PHW11

Due: April 13, 2016

1. From the book do:
11.4. 4,
12.1. 4,8
12.2. $4,10,14$
2. Let p be a prime number.
(a) Show that

$$
\binom{p}{j} \equiv 0(\bmod p)
$$

unless $j \in\{0, p\}$.
(b) Deduce

$$
(x+y)^{p} \equiv x^{p}+y^{p}(\bmod p) .
$$

Hint: Think binomial theorem.
3. Let R_{n} be the set of ways to place n non-attacking rooks on an $n \times n$ chess-board.
(a) Let $f: R_{n} \rightarrow \mathbb{Z}$ be given by

$$
f(r)=\text { number of rooks on the diagonal squares of } r, \quad \text { for } r \in R_{n} .
$$

For example, if $n=4$,

where

and I've shaded the diagonal squares.
i. What is $f\left(R_{n}\right)$?
ii. Is f injective?
iii. Is f surjective?
iv. Find $\left|f^{-1}(k)\right|$ for all $k \in f\left(R_{4}\right)$.
(b) Find an injective function $g: R_{n} \rightarrow \mathbb{Z}$ (without changing the sets R_{n} and \mathbb{Z}).

