Math 2001: PHW11

Due: April 13, 2016

- 1. From the book do:
 - **11.4.** 4,
 - **12.1.** 4, 8
 - **12.2.** 4, 10, 14
- 2. Let p be a prime number.
 - (a) Show that

$$\binom{p}{j} \equiv 0 (\text{mod } p)$$

unless $j \in \{0, p\}$.

(b) Deduce

$$(x+y)^p \equiv x^p + y^p \pmod{p}$$

Hint: Think binomial theorem.

- 3. Let R_n be the set of ways to place n non-attacking rooks on an $n \times n$ chess-board.
 - (a) Let $f: R_n \to \mathbb{Z}$ be given by

f(r) = number of rooks on the diagonal squares of r, for $r \in R_n$.

For example, if n = 4,

and I've shaded the diagonal squares.

- i. What is $f(R_n)$?
- ii. Is f injective?
- iii. Is f surjective?
- iv. Find $|f^{-1}(k)|$ for all $k \in f(R_4)$.

(b) Find an injective function $g: R_n \to \mathbb{Z}$ (without changing the sets R_n and \mathbb{Z}).