Math 2001: PHW9

1. From the book do

11.0. 4, 14

2. Consider the sequences given by

$$a_n = 3a_{n-1} - 2a_{n-2},$$

with $a_1 = 3, a_2 = 7$. Show that $a_n = 2^{n+1} - 1$.

3. For $n \in \mathbb{Z}_{\geq 1}$, consider the sets

 $E_n = \{ \text{binary sequences of length } n \text{ with an even number of 1's} \}$

 $O_n = \{$ binary sequences of length n with an odd number of 1's $\}$

- (a) Show that $|E_n| = |O_n|$ by matching up elements of E_n with elements of O_n .
- (b) Show that $|E_1|, |E_2|, \ldots$ is a recursive sequence, and give a counting argument for the recursion.
- 4. Let h_n be the number of ways to color the squares of an $1 \times n$ chessboard with red and blue so that no two red squares are adjacent. Find a recurrence relation for h_n .