Math 2001: PHW9

1. From the book do
11.0. 4, 14
2. Consider the sequences given by

$$
a_{n}=3 a_{n-1}-2 a_{n-2},
$$

with $a_{1}=3, a_{2}=7$. Show that $a_{n}=2^{n+1}-1$.
3. For $n \in \mathbb{Z}_{\geq 1}$, consider the sets

$$
\begin{aligned}
& E_{n}=\{\text { binary sequences of length } n \text { with an even number of } 1 \text { 's }\} \\
& O_{n}=\{\text { binary sequences of length } n \text { with an odd number of } 1 \text { 's }\}
\end{aligned}
$$

(a) Use a counting argument to show that $\left|E_{n}\right|=\left|O_{n}\right|$.
(b) Show that $\left|E_{1}\right|,\left|E_{2}\right|, \ldots$ is a recursive sequence, and give a counting argument for the recursion.
4. Let h_{n} be the number of ways to color the squares of an $1 \times n$ chessboard with red and blue so that no two red squares are adjacent. Find a recurrence relation for h_{n}.

