Introduction to $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$:
 Fundamentals of counting

Math 2001
September 29, 2017

1 Introduction

This is an introduction to both $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ and the fundamentals of counting. So we can see how to write nicely formatted mathematics, and have lecture notes for this lecture.

To start a new paragraph, just hit enter twice. No matter how many spaces I use, the program will normalize the spacing, and justify the margins.

For counting, we want to break down the process of counting into predictable steps, because counting is hard.

2 Preliminaries

There are different ways to write math. In line mathematics gets surrounded by dollar signs. For example, $x=3^{3}$. Alternatively, we could display some mathematics with double-dollar signs, as in

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n} .
$$

For a rational function,

$$
\frac{x^{2}-2 x-3}{\sqrt{4 \pi-7}} \text { vs } \frac{x^{2}-2 x-3}{\sqrt{4 p i-7}} .
$$

Try κ. For example, Θ vs. θ vs. ϑ.
The goal in counting is to carefully keep track of the choices made in constructing a generic element of the set. I use two different crutches to help keep track:
(OYC) "Or You Could" corresponds to addition.
(ATY) "And Then You" corresponds to multiplication.
For example,
Question 2.1. How many 5 card flushes are there in a standard 52 card deck?

2.1 Approach 1

We construct a generic 5 card flush by
Option 1. We could pick $5 \odot\left(\binom{13}{5}\right.$ choices $)$.

Option 2. Or we could pick $5 \boldsymbol{\$}\binom{13}{5}$ choices).
Option 3. Or we could pick $5 \diamond\left(\binom{13}{5}\right.$ choices $)$.
Option 4. Or we could pick $5 \boldsymbol{\&}\left(\binom{13}{5}\right.$ choices).
Thus, in total, to construct a generic element we have

$$
\binom{13}{5}+\binom{13}{5}+\binom{13}{5}+\binom{13}{5}
$$

many choices, so there are $4\binom{13}{5} 5$-card flushes in a deck of 52 cards.

2.2 Approach 2

We construct a generic 5 -card flush by
Step 1. Pick a suit ($\binom{4}{1}$ choices $)$.
Step 2. And then you choose a 5 -card flush in that suit ($\binom{13}{5}$ options).
Thus, in total, we have

$$
\binom{4}{1} \cdot\binom{13}{5}
$$

choices and there are $\binom{4}{1}\binom{13}{5}$ different 5 -card flushes.
Question 2.2. How many sets of two 5-card flushes are there in a standard 52 card deck?
Option 1. We choose two flushes from one suit. ($\binom{4}{1}$ choices).
Step 1.1. We choose 10 cards ($\binom{13}{10}$ choices).
Step 1.2. And then we separate into two sets of $5\binom{9}{4}$ choices $)$.
Option 2. We choose flushes from two different suits. ($\binom{4}{2}$ choices).
Step 2.1. Pick one of the two ($\binom{2}{1}$ choices).
Step 2.2. Pick a flush in that suit ($\binom{13}{5}$ choices).
In total we get

$$
\binom{4}{1}\binom{13}{10}\binom{9}{4}+\binom{4}{2}\binom{2}{1}\binom{13}{5}
$$

3 Main results

This section examines some of the math behind (OYC) and (ATY).
A set partition of a set B is a set of nonempty subsets $\left\{A_{1}, \ldots, A_{\ell}\right\} \subseteq P(B)$, such that

1. $B=A_{1} \cup A_{2} \cup \cdots \cup A_{\ell}$,
2. for $1 \leq i<j \leq \ell$, we have $A_{i} \cap A_{j}=\emptyset$.

Theorem 3.1 (OYC theorem). Let $\left\{A_{1}, A_{2}, \ldots, A_{\ell}\right\}$ be a partition of B. Then

$$
|B|=\left|A_{1}\right|+\left|A_{2}\right|+\cdots+\left|A_{\ell}\right| .
$$

Proof. Unfortunately, we will need induction to prove this theorem.

$$
\forall, \exists \in
$$

4 Appendix

