Math 2001: Homework P12

Due: December 11, 2013

1. From the book, do problems:
(a) 6.2: 1, $3(\mathrm{a}-\mathrm{e}), 6(\mathrm{a}-\mathrm{d})$
2. For each of the following sequences,

- Give a formula for the nth term in the sequence,
- Give a recursive definition for the sequence (ie. initial values and a recursive equation).
(a) $\{1,2,3,4,5, \ldots\}$
(b) $\{1,2,4,8,16,25, \ldots\}$
(c) $\{1,2,6,24,120, \ldots\}$

3. Let f_{0}, f_{1}, \ldots be the Fibonacci sequence. For each of the following

- Decide whether the identity is easier to prove by induction or directly using Binet's formula (and some algebra). Explain.
- Prove the identity using your preferred method.
(a) $\sum_{k=0}^{n} f_{k}=f_{n+2}-1$.
(b) $f_{2 n+1}=f_{n+1}^{2}+f_{n}^{2}$.
(c) $f_{2 n}=f_{n+1}^{2}-f_{n-1}^{2}$.

4. The Lucas sequence is given by

$$
L_{1}=1, \quad L_{2}=3, \quad L_{n}=L_{n-1}+L_{n-2}, n \geq 3 .
$$

(a) Find the first 6 values of the Lucas sequence.
(b) What should L_{0} be defined to be to not mess up the recursion?
(c) Use induction to prove that

$$
L_{n}=f_{n-1}+f_{n+1}, \quad \text { for } n \geq 1,
$$

where f_{n} is the nth Fibonacci number.
(d) Prove that

$$
L_{n}=\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left(\frac{1-\sqrt{5}}{2}\right)^{n} .
$$

