Math 2001: Homework 9

Due: November 5, 2008

Give complete justifications for all your answers.

Problem 1

- 1. The book proves that the period of the last digit in the Fibonacci sequence is 60 (Theorem 2.3.4). Use this theorem to find the period of the last two digits.
- 2. Give two ways to partition the set of subsets of $\{1, 2, 3, 4, 5\}$ into 3 parts.

Problem 2

- 1. Suppose my public key is (4087,7). Suppose you want encrypt the number 100. What number would you send me (you may wish to use a calculator)?
- 2. Suppose you have two primes 29 and 71 and you have chosen your public key to be (2059, 53). Suppose I send you the encrypted number 1216. What number did I send you? (You may wish to use a calculator). Hint: I picked 53, so that the first guess for an inverse in Z₁₉₆₀ should be correct.

Problem 3

Let R_n be the set of ways to place n non-attacking rooks on an $n \times n$ chess-board.

- 1. Prove that $|R_n| = n!$ using induction.
- 2. Let $f: R_n \to \mathbb{Z}$ be given by

$$f(r) =$$
 number of rooks on the diagonal squares of r , for $r \in R_n$

For example, if n = 4,

$$f\left(\begin{array}{c|c} \underline{\underline{\mathbb{M}}} \\ \hline & \ast \\ \hline & \underline{\underline{\mathbb{M}}} \\ \hline & \underline{\underline{\mathbb{M}}} \\ \hline & \underline{\underline{\mathbb{M}}} \\ \hline & \underline{\underline{\mathbb{M}}} \end{array}\right) = 2,$$

where I've marked the diagonal squares with *.

- (a) What is $f(R_n)$?
- (b) Is f injective?
- (c) Is f surjective?
- (d) Is there a partition of R_n described by f?
- 3. Find an injective function $g: R_n \to \mathbb{Z}$.