## Math 2001: Homework 8

Due: October 29, 2008
Give complete justifications for all your answers.

## Problem 1

1. Describe the patterns in Pascal's triangle if you replace each number by its congruence class in $\mathbb{Z}_{2}$.
2. Describe the patterns in Pascal's triangle if you replace each number by its congruence class in $\mathbb{Z}_{3}$.

## Problem 2

In $\mathbb{Z}_{11}$ decide if the following expressions make sense. Evaluate them if they do, and explain why they do not if they do not.

1. $[10]^{36}-[1]$.
2. $\frac{[5][7]-[3]}{[2]}$.
3. $\sqrt{[3]}$.
4. $\sqrt{[7]}$.

Hint: All but one make sense.

## Problem 3

Recall that the equation

$$
x^{2}+1=0
$$

has no solutions that are real numbers (and so $x^{2}+1$ cannot be factored unless we allow complex numbers).

1. Show that there exists $x \in \mathbb{Z}$ such that

$$
x^{2}+1 \equiv 0(\bmod 5) .
$$

Thus, over $\mathbb{Z}_{5}$, find $a, b \in \mathbb{Z}$ such that $[x]^{2}+[1]=([x]-[a])([x]-[b])$.
2. Find a positive integer $n$ such that

$$
x^{2}+1 \equiv 0(\bmod n)
$$

has no solution.
3. Given $n \in \mathbb{Z}_{>1}$, give a criterion for determining whether or not $x^{2}+1 \equiv 0(\bmod n)$ has a solution.

