Math 2001: Homework 7

Due: October 22, 2008
Give complete justifications for all your answers.

Problem 1

1. Note that

$$
20332=2 \cdot 299 \cdot 2 \cdot 17=391 \cdot 2 \cdot 13 \cdot 2 .
$$

Why does this not contradict the unique factorization of numbers into primes?
2. Write addition and multiplication tables for \mathbb{Z}_{3} and \mathbb{Z}_{4}.
3. Suppose we wanted to "extend" the concept of divisibility to all integers, including 0 . Let us say that an integer n is divisible by a number m if there exists an integer k such that $n=k m$.
(a) What numbers are divisible by 0 ?
(b) What does \mathbb{Z}_{0} look like? How many elements does it have, and what do the congruence classes look like?
(c) What does \mathbb{Z}_{-n} look like for negative integers $-n$?

Problem 2

1. Which of the following "rules" are true? Either prove or provide a counter-example.
(a) If $a \equiv b(\bmod c)$, then $a+x \equiv b+x(\bmod c+x)$.
(b) If $a \equiv b(\bmod c)$, then $a x \equiv b x(\bmod c x)$.
2. Prove that if p is prime, and $0<k<p$, then p divides $\binom{p}{k}$. Why is p prime important for this to be true?
Hint: Use the factorial description of $\binom{p}{k}$.
3. Use the Binomial Theorem and the previous problem to show that if p is prime, then

$$
(X+Y)^{p} \equiv X^{p}+Y^{p}(\bmod p)
$$

