Math 2001: Homework 6

Due: October 15, 2008

Give complete justifications for all your answers.

Problem 1

1. Prove that the product of two even numbers is always even.
2. Consider the set

$$
\begin{aligned}
A & =\{4 n+1 \in \mathbb{Z} \mid n \in \mathbb{Z}, n \geq 0\} \\
& =\{1,5,9,13, \ldots\}
\end{aligned}
$$

Show that the product of any two elements in A is another element in A.
3. Consider two pairs of integers $(1597,987)$ and $(1590,997)$.

- Find $\operatorname{gcd}(1597,987)$ and $\operatorname{gcd}(1590,997)$ using the Euclidean algorithm.
- Which pair takes more steps in the Euclidean algorithm? Give an explanation for why this might be?
- For the faster pair (m, n), find $k, l \in \mathbb{Z}$ so that $\operatorname{gcd}(m, n)=k m+l n$.

Problem 2

Let F_{0}, F_{1}, \ldots be the Fibonacci sequence. For each of the following

- Decide whether the identity is easier to prove by induction or directly using Binet's formula (and some algebra). Explain.
- Prove the identity using your preferred method.

1. $\sum_{k=0}^{n} F_{k}=F_{n+2}-1$.
2. $F_{2 n+1}=F_{n+1}^{2}+F_{n-1}^{2}$.
3. $F_{2 n}=F_{n+1}^{2}-F_{n-1}^{2}$.

Problem 3

The purpose of this problem is to prove the assertion that for positive integer m and n,

$$
m n=\operatorname{gcd}(m, n) \operatorname{lcm}(m, n) .
$$

(a) Describe the prime factorization of $\operatorname{gcd}(m, n)$ in terms of the prime factorization of m and the prime factorization of n.
(b) Describe the prime factorization of $\operatorname{lcm}(m, n)$ in terms of the prime factorization of m and the prime factorization of n.
(c) Combine (a) and (b) to prove the result.

