Math 2001: Homework 4

Due: September 24, 2008

Give complete justifications for all your answers.

Problem 1

From the book:

- 1. Construct the set of positive integers which give a remainder of 3 when divided by 4 using set-builder notation.
- 2. Let

 $X = \{n \in \mathbb{Z} \mid 1 \le n \le 16\}, \quad A = \{5, 9, 13\}, \quad B = \{3, 7, 11, 15\}.$ Find $A \times B, A \cup B, A \cap B, A - B, A^c$ and B^c .

Problem 2

Give examples of the following, or explain why they don't exist.

- 1. An infinite set with a finite number of subsets,
- 2. A finite set with an infinite number of subsets,
- 3. A finite set with the same number of subsets and elements.

Problem 3

- 1. Let A be a set, and let B be the set of subsets of A. Is $A \in B$ or $A \subseteq B$? Justify your answer.
- 2. What is the number of subsets of the set $\{\{1, 2, 3\}, \{1\}, \{1, 4\}, \{1, 4, 5, \{1, 2\}\}, \{1, 2, 3, 4\}\}$?
- 3. What is the number of subsets of $\{a, b, c, d, e, f\}$ which all contain c? Generalize by determining how many subsets of $\{1, 2, ..., n\}$ contain 1. Prove by induction.
- 4. Prove directly that for 0 < k < n,

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

using only the fact that

 $\binom{n}{k}$ = the number of subsets of $\{1, 2, \dots, n\}$ with k elements.

5. (Harder) What is the size of the set

 $\{(m_1, m_2, \dots, m_k) \mid m_1, m_2, \dots, m_k \in \{1, 2, 3, \dots, n\}, m_1 + m_2 + \dots + m_k = n\}$?

Your answer should depend on n and k. For example, if n = 3, then the set is

	The set
k = 1	$\{(3)\}$
k = 2	$\{(2,1),(1,2)\}$
k = 3	$\{(1,1,1)\}$