Math 2001: Homework 4

Due: September 24, 2008
Give complete justifications for all your answers.

Problem 1

From the book:

1. Construct the set of positive integers which give a remainder of 3 when divided by 4 using set-builder notation.
2. Let

$$
X=\{n \in \mathbb{Z} \mid 1 \leq n \leq 16\}, \quad A=\{5,9,13\}, \quad B=\{3,7,11,15\} .
$$

Find $A \times B, A \cup B, A \cap B, A-B, A^{c}$ and B^{c}.

Problem 2

Give examples of the following, or explain why they don't exist.

1. An infinite set with a finite number of subsets,
2. A finite set with an infinite number of subsets,
3. A finite set with the same number of subsets and elements.

Problem 3

1. Let A be a set, and let B be the set of subsets of A. Is $A \in B$ or $A \subseteq B$? Justify your answer.
2. What is the number of subsets of the set $\{\{1,2,3\},\{1\},\{1,4\},\{1,4,5,\{1,2\}\},\{1,2,3,4\}\}$?
3. What is the number of subsets of $\{a, b, c, d, e, f\}$ which all contain c ? Generalize by determining how many subsets of $\{1,2, \ldots, n\}$ contain 1 . Prove by induction.
4. Prove directly that for $0<k<n$,

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k},
$$

using only the fact that

$$
\binom{n}{k}=\text { the number of subsets of }\{1,2, \ldots, n\} \text { with } k \text { elements. }
$$

5. (Harder) What is the size of the set

$$
\left\{\left(m_{1}, m_{2}, \ldots, m_{k}\right) \mid m_{1}, m_{2}, \ldots, m_{k} \in\{1,2,3, \ldots, n\}, m_{1}+m_{2}+\cdots+m_{k}=n\right\} ?
$$

Your answer should depend on n and k. For example, if $n=3$, then the set is

	The set
$k=1$	$\{(3)\}$
$k=2$	$\{(2,1),(1,2)\}$
$k=3$	$\{(1,1,1)\}$

