Math 2001: Homework P3

Due: September 17, 2008

Give complete justifications for all your answers.

Problem 1

Prove the following (from the book)

1. $\frac{n}{n+1}=\sum_{k=1}^{n} \frac{1}{k(k+1)}$.
2. $2^{n}>n$ for all $n \in \mathbb{Z}_{\geq 0}$.
3. $n!>2^{n}$ for all $n \geq 4$.
4. $\binom{n}{2}^{2}=\sum_{k=0}^{n-1} k^{3}$.

Problem 2

It can be shown that

$$
(X+Y+Z)^{n}=\sum_{k=0}^{n} \sum_{j=0}^{n-k}\binom{n}{k, j, n-k-j} X^{k} Y^{j} Z^{n-k-j}
$$

(for a real challenge try proving it yourself, but this is not required for this assignment).

1. What does this say when $X=Y=Z=1$?
2. What does it say when $Z=0$?

Problem 3

Consider the following
Claim. The number $n(n+1)$ is an odd number for every n.
Proof. Assume the statement is true for n. We prove the statement for $n+1$ by induction. Note that

$$
(n+1)((n+1)+1)=n(n+1)+2(n+1) .
$$

By induction $n(n+1)$ is odd. Thus, $(n+1)((n+1)+1)$ is the sum of an odd number $n(n+1)$ and an even number $2(n+1)$. The sum of an odd number and an even number is odd. Thus, we have proved the claim by induction.

I checked the claim and it doesn't seem to work for $n=15$, since $15 \cdot 16=240$, which is even. What is wrong with the proof?

