Math 2001: Homework P3

Due: September 17, 2008

Give complete justifications for all your answers.

Problem 1

Prove the following (from the book)

1. $\frac{n}{n+1} = \sum_{k=1}^{n} \frac{1}{k(k+1)}$. 2. $2^{n} > n$ for all $n \in \mathbb{Z}_{\geq 0}$. 3. $n! > 2^{n}$ for all $n \geq 4$. 4. $\binom{n}{2}^{2} = \sum_{k=0}^{n-1} k^{3}$.

Problem 2

It can be shown that

$$(X+Y+Z)^{n} = \sum_{k=0}^{n} \sum_{j=0}^{n-k} \binom{n}{k, j, n-k-j} X^{k} Y^{j} Z^{n-k-j}$$

(for a real challenge try proving it yourself, but this is not required for this assignment).

- 1. What does this say when X = Y = Z = 1?
- 2. What does it say when Z = 0?

Problem 3

Consider the following

Claim. The number n(n+1) is an odd number for every n.

Proof. Assume the statement is true for n. We prove the statement for n+1 by induction. Note that

$$(n+1)((n+1)+1) = n(n+1) + 2(n+1).$$

By induction n(n+1) is odd. Thus, (n+1)((n+1)+1) is the sum of an odd number n(n+1) and an even number 2(n+1). The sum of an odd number and an even number is odd. Thus, we have proved the claim by induction.

I checked the claim and it doesn't seem to work for n = 15, since $15 \cdot 16 = 240$, which is even. What is wrong with the proof?