Math 2001: Homework P2

Due: September 10, 2008

Problem 1

Color all the odd numbers in Pascal's triangle red and all the even numbers blue. What pattern do you get? Describe it as precisely as you can.

Problem 2

Let $k, l, m, n \in \mathbb{Z}_{\geq 0}$ be such that $n=k+l+m$. The trinomial coefficient $\binom{n}{k, l, m}$ is given by the rules
(1) for $k+l=n,\binom{n}{k, l, 0}=\binom{n}{k, 0, l}=\binom{n}{0, k, l}=\binom{n}{k}$,
(2) $\binom{n}{k, l, m}=\binom{n-1}{k-1, l, m}+\binom{n-1}{k, l-1, m}+\binom{n-1}{k, l, m-1}$.

The following four questions use this definition.
(a) Describe the "triangle" of trinomial coefficients.
(b) Find, state, and prove a trinomial analogue to

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

(c) Find, state, and prove a trinomial analogue to

$$
\binom{n}{k}=\begin{gathered}
\# \text { of walks on a rooted binary tree starting } \\
\text { at the root with } n \text { total steps using } k \text { right steps. }
\end{gathered}
$$

(d) Define a multinomial coefficient $\binom{n}{k_{1}, k_{2}, \ldots, k_{\ell}}$, and state the analogues to (b) and (c) for multinomial coefficients (without proof).

