Math 2001: Homework 14

Due: December 10, 2008

Give complete justifications for all your answers.

Problem 1

1. Let $n \in \mathbb{Z}_{\geq 1}$. Let

 $E_n = \{\text{binary vectors of length } n \text{ with an even number of 1's} \}$ $O_n = \{\text{binary vectors of length } n \text{ with an odd number of 1's} \}$

Show that $|O_n| = |E_n|$ using a proof by counting and a proof by bijection.

2. Let $n \in \mathbb{Z}_{\geq 1}$. Prove that

$$n^{3} + (n+1)^{3} + (n+2)^{3}$$

is divisible by 9. Hint: Use induction, and add by 0 for the induction step.

3. Let $r, n \in \mathbb{Z}_{\geq 0}$. Show that

$$\sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n}.$$

Hint: Fix r and induct on n.

Problem 2

Prove the following statements by contradiction.

1. Let $s_1, s_2, \ldots, s_n \in \mathbb{Z}$ be *n* integers, and let

$$a = \frac{s_1 + s_2 + \dots + s_n}{n}.$$

Prove that there exists at least one *i* such that $s_i \ge a$.

2. There are no integers $m, n \in \mathbb{Z}$ such that $\sqrt{6} = m/n$. Hint: Adapt the book's proof that $\sqrt{2}$ is irrational.

Problem 3

Identify whether each of the following statements is true or false. If it is true, prove it. If it is false, then find a counterexample.

1. Let A, B, C be sets. Then

$$(A \cap B) \cup C = A \cap (B \cup C).$$

2. If $a, b \in \mathbb{Z}_{\geq 1}$ and both \sqrt{a} and \sqrt{b} are irrational, then \sqrt{ab} is irrational.