Worksheet 6: Rings

A $\operatorname{ring}(R,+, \cdot)$ is a set R with two functions
such that
(R1) $(R,+)$ is an abelian group,
(R2) for $r, s, t \in R$,

$$
(r+s) t=r t+s t, \quad r(s+t)=r s+r t, \quad r(s t)=(r s) t .
$$

(R3) there exists $1 \in R$ such that $r \cdot 1=r=1 \cdot r$ for all $r \in R$.

Questions:

1. Show that $(\mathbb{R},+, \cdot),(\mathbb{Z},+, \cdot)$ and $\left(\mathbb{Z}_{n},+_{n},{ }_{n}\right)$ are rings.
2. Show that $\left(M_{n}(R),+\right.$, matrix multiplication) is a non-commutative ring.
3. If R is a ring, let

$$
R^{\times}=\left\{r \in R \mid \text { there exists } r^{-1} \in R \text { such that } r^{-1} \cdot r=1=r \cdot r^{-1}\right\} .
$$

Find R^{\times}for the rings in Problem 1.
4. Show that R^{\times}is a group.
5. What is a precise definition for subring and for ring isomorphism?

