Worksheet 5: The coin-stack group

Consider a stack of $n 2$-sided coins. A symmetry of the stack will be a shuffle of the stack, where one can also flip over the coins. Let

$$
W B_{n}=\{\text { symmetries of a stack of } n \text { coins }\}
$$

be the corresponding group of symmetries.

1. What is the order of $W B_{n}$?
2. Make the case that $W B_{n}$ is isomorphic to a subgroup of $S_{2 n}$ (not Cayley's Theorem).
3. Show that S_{n} is isomorphic to a subgroup of $W B_{n}$.
4. Find another subgroup $H \subseteq W B_{n}$ such that

- $S_{n} \cap H=\{1\}$
- $W B_{n}=H \cdot S_{n}$.

5. What is H isomorphic to?
6. Why is $W B_{n} \not \not \equiv H \times S_{n}$?
7. Find an element $h \in H$ such that $W B_{n}=\langle h,(1,2),(2,3), \ldots,(n-1, n)\rangle$.

Individual write-up (due October 11, 2019): Write up a narrative that answers 3-6 (should not be just a list of answers). State results where appropriate and give their proofs.

