Worksheet 4: Cayley's Theorem

For $g \in G$, let

$$L_g: G \longrightarrow G$$

 $h \mapsto gh.$

- 1. Show that $L_g \in S_G$.
- 2. Write down the functions $L_2 \in S_{\mathbb{Z}_3}$ and $L_s \in S_{D_4}$.

$$L_s: D_4 \longrightarrow D_4$$

$$1 \mapsto \\
L_2: \mathbb{Z}_3 \longrightarrow \mathbb{Z}_3 \qquad r^2 \mapsto \\
0 \mapsto \\
1 \mapsto \\
2 \mapsto \\
r^s \mapsto \\
r^2s \mapsto \\
r^3s \mapsto \\
r^$$

Consider the function

$$\begin{array}{cccc} L: & G & \longrightarrow & S_G \\ & g & \mapsto & L_g. \end{array} \tag{*}$$

and let

$$L(G) = \{ L_g \mid g \in G \}.$$

- 3. Show that L(G) is a subgroup of G.
- 4. Show that $L:G\to L(G)$ is an isomorphism.

You have shown that G is isomorphic to a subgroup of S_G . Since $S_G \cong S_{|G|}$ we also have that G is isomorphic to a subgroup of $S_{|G|}$.

5. Find the copy cycle decompositions of the permutations of D_4 sitting inside of S_8 using (*) and an isomorphism from Monday.