Worksheet 3: Symmetric groups

Recall, that a symmetry is a bijection on a set that respects some structure that we care about. The symmetric groups are the "largest" group of symmetries for sets. Specifically, for $n \in \mathbb{Z}_{\geq 1}$, let

 $S_n = \{w : \{1, 2, \dots, n\} \to \{1, 2, \dots, n\} \mid w \text{ is a bijection} \}.$

We typically refer to the elements of S_n as permutations.

- **1.** What is the order of S_n ?
- 2. Is S_n abelian?

Given an element $w \in S_n$, we can encode the information of this function into cycles, giving its cycle decomposition. For example,

1	\mapsto	3		
2	\mapsto	12	has cycle decomposition	(1,3,8)(2,12,11,4)(5)(6,10)(7,9).
3	\mapsto	8		
4	\mapsto	2		
5	\mapsto	5		
6	\mapsto	10		
7	\mapsto	9		
8	\mapsto	1		
9	\mapsto	7		
10	\mapsto	6		
11	\mapsto	4		
12	\mapsto	11		

3. Compute the product $(1, 5, 4)(2, 3) \circ (1)(2, 5)(3, 4)$.

4. What is the order of a permutation $w \in S_n$ is based on its cycle decomposition?

- 5. How do you find the inverse of a permutation in cycle decomposition?
- **6.** Find an explicit copy of D_n sitting inside S_n (i.e. what should r and s be?).

A cycle in $w \in S_n$ is a sequence (i_1, \ldots, i_ℓ) such that

$$w(i_1) = i_2, \ w(i_2) = i_3, \dots, w(i_\ell) = i_1.$$

We call the integer ℓ the *length* of the cycle. A *transposition* $w \in S_n$ is a permutation with all cycles of length 1 except one unique cycle of length 2 (we usually omit the 1-cycles from the cycle decomposition).

- 7. What is the order of a transposition?
- 8. Show that every permutation can be written as a product of transpositions.

Group assignment, due September 20, 2019

This assignment finds D_n as a subgroup of S_n . Give a description of how this works. You should include

- 1. Explicit permutations in S_n that realize $r, s \in D_n$, including their cycle decompositions.
- 2. Find a second different copy of D_n in S_n . What is the difference in terms of symmetries of a polygon implied by your choice?
- 3. Compute the intersection between the two copies you found.