Worksheet 3: Symmetric groups

Recall, that a symmetry is a bijection on a set that respects some structure that we care about. The symmetric groups are the "largest" group of symmetries for sets. Specifically, for $n \in \mathbb{Z}_{\geqslant 1}$, let

$$
S_{n}=\{w:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\} \mid w \text { is a bijection }\} .
$$

We typically refer to the elements of S_{n} as permutations.

1. What is the order of S_{n} ?
2. Is S_{n} abelian?

Given an element $w \in S_{n}$, we can encode the information of this function into cycles, giving its cycle decomposition. For example,

```
1 \mapsto 3
2 \mapsto 12
3 \mapsto 8
4 \mapsto 2
5 \mapsto 5
6
8 \mapsto 1
9 \mapsto 7
10\mapsto6
11 \mapsto 4
12\mapsto 11
```

3. Compute the product $(1,5,4)(2,3) \circ(1)(2,5)(3,4)$.
4. What is the order of a permutation $w \in S_{n}$ is based on its cycle decomposition?
5. How do you find the inverse of a permutation in cycle decomposition?
6. Find an explicit copy of D_{n} sitting inside S_{n} (ie. what should r and s be?).

A cycle in $w \in S_{n}$ is a sequence $\left(i_{1}, \ldots, i_{\ell}\right)$ such that

$$
w\left(i_{1}\right)=i_{2}, w\left(i_{2}\right)=i_{3}, \ldots, w\left(i_{\ell}\right)=i_{1} .
$$

We call the integer ℓ the length of the cycle. A transposition $w \in S_{n}$ is a permutation with all cycles of length 1 except one unique cycle of length 2 (we usually omit the 1-cycles from the cycle decomposition).
7. What is the order of a transposition?
8. Show that every permutation can be written as a product of transpositions.

Group assignment, due September 20, 2019

This assignment finds D_{n} as a subgroup of S_{n}. Give a description of how this works. You should include

1. Explicit permutations in S_{n} that realize $r, s \in D_{n}$, including their cycle decompositions.
2. Find a second different copy of D_{n} in S_{n}. What is the difference in terms of symmetries of a polygon implied by your choice?
3. Compute the intersection between the two copies you found.
