Worksheet 2: Dihedral groups

Given a set of points $C \subseteq \mathbb{R}^{2}$, the convex polygon induced by C is the smallest set of points $\operatorname{pol}(C) \subseteq \mathbb{R}^{2}$ such that $C \subseteq \operatorname{pol}(C)$, and for all $a, b \in \operatorname{pol}(C)$,

$$
\begin{equation*}
a+(1-t) b \in \operatorname{pol}(C), \quad \text { for all } 0 \leqslant t \leqslant 1 \tag{*}
\end{equation*}
$$

1. Draw a picture of $\operatorname{pol}(\{(0,0),(1,0),(1,1)\})$.
2. What's the deal with (*)?

The regular n-gon pol_{n} is the convex polygon induced by the set

$$
V_{n}=\{(1 ; 2 \pi j / n) \mid 0 \leqslant j \leqslant n-1\},
$$

where $(r ; \theta)$ is written in polar coordinates.
3. Draw pictures of $\mathrm{pol}_{4}, \mathrm{pol}_{5}$ and pol_{6}.
4. How many symmetries does pol $_{n}$ have? Why?

The group of symmetries of pol_{n} is called the dihedral group D_{n}.

