Worksheet 2: Dihedral groups

Given a set of points $C \subseteq \mathbb{R}^2$, the *convex polygon* induced by C is the smallest set of points $\text{pol}(C) \subseteq \mathbb{R}^2$ such that $C \subseteq \text{pol}(C)$, and for all $a, b \in \text{pol}(C)$,

$$a + (1 - t)b \in \text{pol}(C)$$
, for all $0 \le t \le 1$. (*)

- 1. Draw a picture of $pol(\{(0,0),(1,0),(1,1)\})$.
- 2. What's the deal with (*)?

The regular n-gon pol_n is the convex polygon induced by the set

$$V_n = \{ (1; 2\pi j/n) \mid 0 \le j \le n - 1 \},\$$

where $(r; \theta)$ is written in polar coordinates.

- 3. Draw pictures of pol₄, pol₅ and pol₆.
- 4. How many symmetries does pol_n have? Why?

The group of symmetries of pol_n is called the *dihedral group* D_n .