Worksheet 10: Group actions and orbits

A *left action* of a group G on a set A is a function

$$\begin{array}{cccc} G \times A & \longrightarrow & A \\ (g,a) & \mapsto & g(a) \end{array}$$

such that

- (A1) 1(a) = a for all $a \in A$,
- (A2) g(h(a)) = (gh)(a) for all $g, h \in G, a \in A$.

In this case, we say G acts on A.

- 1. Define a left action of S_n on the power set $\mathcal{P}(\{1, 2, \ldots, n\})$.
- 2. Let A be a set. If $\varphi: G \to S_A$ is a homomorphism, define an action of G on A.
- 3. Prove that if G acts on A, then

is a homomorphism (don't forget to check that w_g is a bijection).

If G acts on A, then the orbit G(a) containing $a \in A$ is the set

$$G(a) = \{g(a) \mid g \in G\}.$$

Note that the orbits of an action partition A.

- 4. What are the orbits in $\mathcal{P}(\{1, 2, ..., n\})$ of the action defined in 1.
- 5. Note that $D_n \subseteq S_n$ also acts on $\mathcal{P}(\{1, 2, \dots, n\})$. What is the orbit $D_n(\{1, 2\})$? What are the other orbits of subsets of size 2?

Individual write-up (due 11.15.19). Give a description of the actions of S_n and D_n on $\mathcal{P}(\{1, 2, \ldots, n\})$ (be sure to explicitly say which copy of D_n you are using in S_n). Describe the orbits of the S_n -action in general, and the D_n -orbits of sets of size 2.