Math 3140: Homework 4

A.
6.3. Show that the elements $w \in S_{9}$ such that $\{w(2), w(5) . w(7)\}=\{2,5,7\}$ form a subgroup of S_{9}. What is the order of this subgroup?
$6.7+$. (a) Describe/characterize the elements of order 2 of S_{n}.
(b) Show that if $n \geq 4$, then every permutation can be written as a product of two permutations of order 2. Hint: Answer the question first for cycles.
(c) What goes wrong in (b) if $n<4$?
B. Recall the definitions of in and out shuffles from Homework 3. We may view them as elements of S_{52}.
(a) Explain how to determine whether a permutation $w \in S_{n}$ is even based on the lengths of the cycles in its cycle decomposition.
(b) Are the in and out shuffles in A_{52} ?
C. $6.6,6.9$

