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Roy, Michael D. (Ph.D., Mathematics)

Coxeter Group Actions on Complementary Pairs of Very Well-Poised 9F8(1) Hypergeometric Series

Thesis directed by Prof. Eric Stade

We investigate a function J(~x) = J(a; b; c, d, e, f, g, h), which is a linear combination of two very

well-poised 9F8(1) hypergeometric series. We first show that J is invariant under the action of a certain

matrix group GJ isomorphic to the Coxeter group W (E6) of order 51840, acting on the affine hyperplane

V = {(a, b, c, d, e, f, g, h)T ∈ C8 : 2 + 3a = b + c + d + e + f + g + h}. We further develop an “algebra” of

three-term relations for J(~x) and show that for any three elements µ1, µ2, µ3 of a certain matrix group MJ

isomorphic to the Coxeter group W (E7) of order 2903040 and containing the above group GJ , there is a

relation among J(µ1~x), J(µ2~x), and J(µ3~x) in which the coefficients are rational combinations of gamma

and sine functions in ~x, provided that no two of the µj are in the same right coset of GJ in MJ .

This set of
(|MJ |/|GJ |

3

)
=
(

56
3

)
= 27720 resulting three-term relations is then divided into five families

based on the orbits of a certain group action and corresponding to the Euclidean type of the triple (µ1, µ2, µ3).

This Euclidean type is defined in terms of the Euclidean distances between vectors in a set corresponding to

the elements of GJ\MJ .

Each three-term relation of a given Euclidean type may be transformed into any other of the same

type by a change of variable. We provide an explicit example of each of the five types of three-term relations,

and show that the number of monomials of the coefficient of a given J function in a given three-term relation

is related to the Euclidean distance between the other two J functions in that relation.
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Chapter 1

Introduction

1.1 Hypergeometric Series

Let a ∈ C. We define the Pochhammer symbol (a)k by

(a)0 = 1

and

(a)k = a(a+ 1)(a+ 2) . . . (a+ k − 1) for k ∈ Z+.

From the functional equation Γ(1 + s) = sΓ(s) for the gamma function, we see that for a 6= 0,−1,−2, . . . ,

we have

(a)k =
Γ(a+ k)

Γ(a)
.

The hypergeometric series

2F1(a, b; c; z) = 1 +
ab

1!c
z +

a(a+ 1)b(b+ 1)

2!c(c+ 1)
z2 +

a(a+ 1)(a+ 2)b(b+ 1)(b+ 2)

3!c(c+ 1)(c+ 2)
z3 + . . .

=

∞∑
k=0

(a)k(b)k
k!(c)k

zk (1.1.1)

was introduced by Gauss in 1821 [12], who studied many of its properties and demonstrated its relations to

a great variety of elementary and special functions.

For positive integers p and q and e1, . . . , ep, f1, . . . fq ∈ C, we define the (generalized) hypergeometric

series of type pFq to be

pFq(e1, . . . , ep; f1, . . . , fq; z) =

∞∑
k=0

(e1)k . . . (ep)k
k!(f1)k . . . (fq)k

zk.
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We will also use

pFq

[
e1, . . . , ep
f1, . . . , fq

; z

]
as an alternate notation for pFq(e1, . . . , ep; f1, . . . , fq; z).

So that this series is well-defined, we assume that no fj is equal to zero or a negative integer. If some

ej is zero or a negative integer, then (ej)k will equal 0 for k sufficiently large, and so we say that the series

terminates.

Generalized hypergeometric functions were introduced in the late 1800’s and, from this time through

the early 1900’s, properties of and relations among generalized hypergeometric series were widely studied

(for example, see [1], [2], [3], [30], [33], and [34]). Generalized hypergeometric series—and especially those of

unit argument, meaning z = 1—became an object of renewed interest towards the end of the 20th century,

due in part to their appearance in atomic and molecular physics (for example, see [7, Sections 2.7 and 2.9]

and [15, Chapters 8, 9, and 11]) and in part to their presence in the theory of archimedean zeta integrals for

automorphic L functions (for example, see [6], [25], [26], [27] [28], and [29]). It is now conventional to drop

the adjective “generalized” and we will henceforth follow this convention.

Both “two-term” and “three-term” relations among hypergeometric series were early objects of interest

of, for example, Thomae [30] and Whipple [33] [34]. In more recent research in the theory of hypergeometric

series and of related entities such as “basic hypergeometric series,” group-theoretic notions have been in-

troduced to explain certain known relations among hypergeometric series of unit argument or among basic

hypergeometric and other analogous series (for example, see [4], [5], [17], [18], and [20]). We will develop

such a framework to describe our two- and three-term relations below.

A hypergeometric series of type pFp−1 converges absolutely if |z| < 1, or if |z| = 1 and

<
(∑

fj −
∑

ej

)
> 0

(see [1, Chapter 2]). If 1 + e1 = f1 + e2 = · · · = fp−1 + ep, then the series is said to be well-poised. If, in

addition, e2 = 1 + e1
2 , then the series is said to be very well-poised. When z = 1, the series is said to be of

type pFp−1(1). In this thesis, we will consider very well-poised 9F8(1) hypergeometric series.
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Let V be the affine hyperplane

V = {(a, b, c, d, e, f, g, h)T ∈ C8 : 2 + 3a = b+ c+ d+ e+ f + g + h}.

Given (a, b, c, d, e, f, g, h)T ∈ V , consider the transformation

(a, b, c, d, e, f, g, h)T 7→ (2b− a, b, b+ c− a, b+ d− a, b+ e− a, b+ f − a, b+ g − a, b+ h− a)T

of V , which amounts to an addition of b − a to each vector coordinate, followed by a transposition of the

first two coordinates.

We will call the two well-poised 9F8(1) hypergeometric series

9F8

[
a, 1 + a/2, b, c, . . . , h

a/2, 1 + a− b, 1 + a− c, . . . , 1 + a− h
; 1

]
and

9F8

[
2b− a, 1− a/2 + b, b, b− a+ c, b− a+ d, . . . , b− a+ h

−a/2 + b, 1 + b− a, 1 + b− c, 1 + b− d, . . . , 1 + b− h
; 1

]
obtained from this transformation complementary with respect to the parameter b.

1.2 Barnes Integrals

Consider a function of the form

f(t) =

m∏
i=1

Γεi(ai + t)

n∏
j=1

Γεj (bj − t),

where m,n ∈ Z+, εi, εj = ±1, and ai, bj , t ∈ C.

The gamma function Γ(t) is never equal to 0 and has simple poles when t = −n for n = 0, 1, 2, . . . .

Thus, the function Γεi(ai+t) has simple poles only if εi = 1, in which case the simple poles are at t = −ai−n,

for n = 0, 1, 2, . . . . In the complex plane, these poles lie on a horizontal half-line that starts at −ai and is

directed to the left (i.e., in the opposite direction to the positive real axis). Similarly, the function Γεj (bj− t)

has simple poles if εj = 1, in which case the simple poles are at t = bj +n, for n = 0, 1, 2, . . . . In the complex

plane, these poles lie on a horizontal half-line which starts at bj and is directed to the right.

For such a function f(t), a Barnes integral is an integral of the form∫
t

f(t)dt,
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where the path of integration is along the imaginary axis, indented as necessary to ensure that any poles

of

m∏
i=1

Γεi(ai + t) are to the left of the contour and any poles of
∏n
j=1 Γεj (bj − t) are to the right of the

contour. Such a path of integration always exists, provided that for 1 ≤ i ≤ m and 1 ≤ j ≤ n we have

ai + bj 6= 0,−1,−2, . . . whenever εi = εj = 1.

In this thesis, whenever we write an integral of the form
∫
t
f(t)dt, we will always intend it as a Barnes

integral with a path of integration as described above.

1.3 Notation and Conventions

Since many of our results involve the products of numerous gamma functions, the following notations

(adapted from those introduced by [24]) will prove indispensable, both for compactness and clarity of notation

and for better illustrating the symmetries that appear in the relations.

We will use the shorthand

Γ[a1, a2, . . . , am] =

m∏
i=1

Γ(ai) (1.3.1)

and will occasionally extend this to quotients by writing

Γ

[
a1, . . . , am
b1, . . . , bn

]
=

Γ[a1, . . . , am]

Γ[b1, . . . , bn]
=

∏m
i=1 Γ(ai)∏n
j=1 Γ(bj)

. (1.3.2)

To illustrate the symmetries of our relations, we will also write

Γ[x± (a1, a2, . . . , am)] =

m∏
i=1

Γ(x± ai) (1.3.3)

and

Γ[x± ((a1, a2, . . . , am))] =
∏∏

i,j∈{1,...,m}
i<j

Γ(x± ai ± aj) (1.3.4)

where the ± will either always denote + or always denote − in each of its appearances in either (1.3.3) or

(1.3.4). Note that the double product in (1.3.4) runs over the set of all
(
m
2

)
two-element subsets of {1, . . . ,m}.

For example,

Γ[a+ (b, c, d− e)] = Γ(a+ b)Γ(a+ c)Γ(a+ d− e)

and

Γ[a− ((b, c, d, e))] = Γ(a− b− c)Γ(a− b− d)Γ(a− b− e)Γ(a− c− d)Γ(a− c− e)Γ(a− d− e).
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We will also combine the notation (1.3.1) with the notations (1.3.3) and (1.3.4), so that, for example

Γ[a, b, c− (e, f, g), d+ ((e, f, g))] =

Γ(a)Γ(b)Γ(c− e)Γ(c− f)Γ(c− g)Γ(d+ e+ f)Γ(d+ e+ g)Γ(d+ f + g).

Since the gamma function can be related to the sine function by

Γ(s)Γ(1− s) =
π

sinπs
,

we will also extend the notations (1.3.1)–(1.3.4) to the sine function by replacing each instance of Γ by sinπ,

so that, for example,

sinπ[a, b+ (c, d, e)] = sinπa sinπ(b+ c) sinπ(b+ d) sinπ(b+ e).

Finally, note that the sine function has the elementary functional equations

sin(−x) = − sin(x)

sin(x± π) = − sin(x) (1.3.5)

sin(x± 2π) = sin(x)

of which we will make frequent and sometimes implicit use.

1.4 Objectives

In this thesis, we will consider the function

J(a; b; c, d, e, f, g, h) =
I(a; b; c, d, e, f, g, h)

Γ[b, c, d, e, f, g, h, b− a+ (c, d, e, f, g, h)]

where

I(a; b; c, d, e, f, g, h) =

1

2πı

∫
t

Γ[a+ t, 1 + 1
2a+ t, t+ (b, c, d, e, f, g, h), b− a− t,−t]

Γ[ 1
2a+ t, 1 + a+ t− (c, d, e, f, g, h)]

dt

and a, b, c, d, e, f, g, h ∈ C such that 2 + 3a = b+ c+ d+ e+ f + g + h.
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In Chapter 2, we will show that the J function may be expressed as a linear combination of two very

well-poised 9F8(1) hypergeometric series, which are complementary with respect to the parameter b. We

also present some invariance relations (or, two-term relations) for the J function.

In Chapter 3, we describe these two-term relations for the J function within the context of group

theory. In Chapter 4, we derive three-term relations for the J function and also describe these within the

context of group theory.

We find 51840 two-term relations satisfied by the J function, which are given by an invariance group

GJ that is a subgroup of GL(8,C) and that is isomorphic to the Coxeter group W (E6) of order 51840. The

two-term relations are characterized by a double-coset decomposition of GJ with respect to the subgroup

Σ6 consisting of all of the permutation matrices of GJ .

We then construct a larger subgroup MJ of GL(8,C), which is isomorphic to the Coxeter group W (E7)

of order 2903040 and which contains GJ as a subgroup. We show that for every µ1, µ2, µ3 ∈MJ , such that

µ1, µ2, and µ3 lie in different right cosets of GJ in MJ , there exists a three-term relation involving J(µ1~x),

J(µ2~x), and J(µ3~x) where ~x = (a, b, c, d, e, f, g, h)T and the coefficients of the J functions are rational

combinations of sine and gamma functions whose arguments are Z-affine combinations of a, b, c, d, e, f , g,

and h. Since there are
2903040

51840
= 56 right cosets of GJ in MJ , this gives us

(
56
3

)
= 27720 distinct three-term

relations satisfied by the J function.

To classify these 27720 relations, we introduce an isometry on a set of 56 vectors corresponding to

the cosets of GJ\MJ and use it to develop a notion of “Euclidean type” such that each type corresponds to

an orbit of MJ on a set (GJ\MJ)(3) introduced in Section 4.5. We show that there are five Euclidean types

(or, equivalently, five orbits) and provide one prototypical relation for each type. Additionally, we show that

every other three-term relation can be obtained from one of these five relations through a change of variables

of the form ~x 7→ µ~x for some µ ∈MJ , applied to all terms and coefficients of the original three-term relation.

We further show how to find this element µ ∈ MJ and use the notion of Euclidean type to describe the

“complexity” of the coefficients of the three-term relations.

The I function defined above (and upon which the J function is based) was also studied by Bailey [1,

Chapter 6]. Additionally, Lievens and Van der Jeugt [18] studied a basic hypergeometric analogue of the J
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function, which they call Φ(a; b; c, d, e, f, g, h). Bailey derives a two-term relation for the I function (that we

have restated as Proposition 2.2.1), but does not present this as an invariance relation because he does not

normalize the I function as we have normalized the J function. Furthermore, he does not place his results

within the context of group theory. Lievens and Van der Jeugt find 51840 two-term relations and 27720

three-term relations, place them within the context of group theory, and note that all of the three-term

relations can be obtained from five prototypical relations based on the orbits of a certain group action. For

the most part, their analysis of the group structure is based on calculation using computational group theory

software [10]. We improve upon their analysis by using group theory to prove a number of structure and

representation theorems for the groups GJ and MJ . In particular, we introduce a metric and corresponding

notion of Euclidean type to determine the orbits of GJ in MJ and to describe the complexity of the coefficients

of the three-term relations, while Lievens and Van der Jeugt rely upon a GAP computation to determine

the number of orbits and make no attempt to describe the complexity of the coefficients beyond noting that

each orbit has a different complexity.

Our strategy of classifying three-term relations based on the actions of parabolic subgroups of Coxeter

groups has previously been employed in [9] and [19] in the context of 4F3(1) hypergeometric series. As very

well-poised 9F8(1) hypergeometric series can be transformed into 4F3(1) hypergeometric series via a limiting

process, it is possible that our results here extend those of [9] and [19].



Chapter 2

The J Function

In this chapter, we define the J function, our basic object of study. We show that it can be expressed

as a linear combination of hypergeometric series and derive some of its invariance relations.

2.1 Definition and Representation as a Linear Combination of Hypergeo-

metric Series

Let a, b, c, d, e, f, g, h ∈ C be such that

2 + 3a = b+ c+ d+ e+ f + g + h. (2.1.1)

We define the function

J(a; b; c, d, e, f, g, h) =
I(a; b; c, d, e, f, g, h)

Γ[b, c, d, e, f, g, h, b− a+ (c, d, e, f, g, h)]
(2.1.2)

where

I(a; b; c, d, e, f, g, h) =
1

2πı

∫
t

Γ[a+ t, 1 + 1
2a+ t, t+ (b, c, d, e, f, g, h), b− a− t,−t]

Γ[ 1
2a+ t, 1 + a+ t− (c, d, e, f, g, h)]

dt.

We can represent I(a; b; c, d, e, f, g, h) (and therefore J(a; b; c, d, e, f, g, h)) as a linear combination of two 9F8

hypergeometric series, which are complementary with respect to b, as follows.
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Proposition 2.1.1. We have

I(a; b; c, d, e, f, g, h)

=
πΓ[a+ 1, b, c, d, e, f, g, h]

2 sinπ(b− a)Γ[1 + a− (b, c, d, e, f, g, h)]

· 9F8

[
a, 1 + a/2, b, c, . . . , h

a/2, 1 + a− b, 1 + a− c, . . . , 1 + a− h
; 1

]
+
πΓ[2b− a+ 1, b, b− a+ (c, d, e, f, g, h)]

2 sinπ(a− b)Γ[1 + b− (a, c, d, e, f, g, h)]

· 9F8

[
2b− a, 1− a/2 + b, b, b− a+ c, b− a+ d, . . . , b− a+ h

−a/2 + b, 1 + b− a, 1 + b− c, 1 + b− d, . . . , 1 + b− h
; 1

]
(2.1.3)

In the proof of Proposition 2.1.1, we will make use of the extension of Stirling’s Formula to the complex

numbers (see [31, Section 4.42] or [35, Section 13.6]).

Proposition 2.1.2 (Stirling’s Formula). Given any δ ∈ (0, π), if

−π + δ ≤ arg(z) ≤ π − δ,

then

Γ(a+ z) =
√

2πza+z−1/2e−z(1 +O(1/|z|)) uniformly as |z| → ∞. (2.1.4)

We also use the following lemma, which is proved in [19].

Lemma 2.1.3. For every ε > 0, there is a constant K = K(ε) such that if dist(z,Z) ≥ ε, then

| sinπz| ≥ Keπ|Im(z)|. (2.1.5)

Proof of Proposition 2.1.1. The gamma function Γ(t) has simple poles when t = −n, n = 0, 1, 2, . . . , with

Rest=−n Γ(t) =
(−1)n

n!
.

Therefore, the function Γ(−t) has simple poles when t = n and the function Γ(b − a − t) has simple poles

when t = n+ b− a, for n = 0, 1, 2, . . . .

For N ≥ 1, let CN be the semicircle of radius ρN to the right of the imaginary axis and centered at

the origin, with ρN chosen such that ρN →∞ as N →∞ and

ε := min
N∈Z+

{dist(CN ,Z ∪ (Z + b− a))} > 0.
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The equation

Γ(s)Γ(1− s) =
π

sinπs
(2.1.6)

implies that

Γ(−t) =
π

Γ(1 + t) sinπ(1 + t)
= − π

Γ(1 + t) sinπt

and

Γ(b− a− t) =
π

Γ(1− b+ a+ t) sinπ(b− a− t)
.

Therefore,

f(t) :=
Γ[a+ t, 1 + a/2 + t, t+ (b, c, d, e, f, g, h), b− a− t,−t]

Γ[a/2 + t, 1 + a+ t− (c, d, e, f, g, h)]

=
−π2Γ[a+ t, 1 + a/2 + t, t+ (b, c, d, e, f, g, h)]

Γ[a/2 + t, 1 + a+ t− (c, d, e, f, g, h), 1 + t, 1− b+ a+ t] sinπ[t, b− a− t]
.

By Stirling’s formula (Proposition 2.1.2),

Γ[a+ t, 1 + a/2 + t, t+ (b, c, d, e, f, g, h)]

Γ[a/2 + t, 1 + a+ t− (c, d, e, f, g, h), 1 + t, 1− b+ a+ t]
∼

ta+1+a/2+b+c+d+e+f+g+h−(a/2+1+a−c+1+a−d+1+a−e+1+a−f+1+a−g+1+a−h+1+1−b+a) = t−3

by the hyperplane relation (2.1.1).

By Lemma 2.1.3, there exists a constant K = K(ε) such that

1

| sinπt sinπ(b− a− t)|
≤ 1

K2
if t ∈ CN , N = 1, 2, . . . .

These estimates show that there is a constant K̃ > 0 such that

|f(t)| ≤ K̃

|t|3
if t ∈ CN , N = 1, 2, . . . .

Thus, ∣∣∣∣∫
CN

f(t)dt

∣∣∣∣ ≤ K̃

ρ3
N

· πρN → 0 as N →∞,

which implies that ∫
CN

f(t)dt→ 0 as N →∞.
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Thus, the integral given by I(a; b; c, d, e, f, g, h) is equal to the sum of the residues of f(t) at the poles

of Γ(−t) and Γ(b− a− t). Adding up the residues, and making use of the formulas

Γ(b− a− n) =
π

sinπ(b− a− n)Γ(1− (b− a− n))
=

(−1)nπ

sinπ(b− a)Γ(1 + a− b+ n)

and

Γ(−b+ a− n) =
π

sinπ(a− b− n)Γ(1− (a− b− n))
=

(−1)nπ

sinπ(a− b)Γ(1− a+ b+ n)
,

we obtain

I(a; b; c, d, e, f, gh)

=

∞∑
n=0

(−1)nΓ[a+ n, 1 + a/2 + n, n+ (b, c, d, e, f, g, h), b− a− n]

n!Γ[a/2 + n, 1 + a+ n− (c, d, e, f, g, h)]

+

∞∑
n=0

(−1)nΓ[2b+ a− n, b+ n, 1 + a/2 + b− a+ n, b− a+ n+ (c, d, e, f, g, h),−b+ a− n]

n!Γ[−a/2 + b+ n, 1 + b+ n− a, 1 + b+ n− (c, d, e, f, g, h)]

=

∞∑
n=0

πΓ[a+ n, 1 + a/2 + n, n+ (b, c, d, e, f, g, h)]

n!Γ[a/2 + n, 1 + a+ n− (b, c, d, e, f, g, h)] sinπ(b− a)

+

∞∑
n=0

πΓ[2b+ a− n, b+ n, 1 + a/2 + b− a+ n, b− a+ n+ (c, d, e, f, g, h)]

n!Γ[−a/2 + b+ n, 1 + b+ n− a, 1 + b+ n− (b, c, d, e, f, g, h)] sinπ(a− b)

=
πΓ[a, 1 + a/2, b, c, d, e, f, g, h]

sinπ(b− a)Γ[a/2, 1 + a− (b, c, d, e, f, g, h)]

·
∞∑
n=0

(a)n(1 + a/2)n(b)n . . . (h)n
n!(a/2)n(1 + a− b)n(1 + a− c)n . . . (1 + a− h)n

+
πΓ[2b− a, 1− a/2 + b, b, b− a+ (c, d, e, f, g, h)]

sinπ(a− b)Γ[−a/2 + b, 1 + b− a, 1 + b− (c, d, e, f, g, h)]

·
∞∑
n=0

(2b− a)n(1− a/2 + b)n(b)n(c+ b− a)n(d+ b− a)n . . . (h+ b− a)n
n!(−a/2 + b)n(1 + b− a)n(1 + b− c)n(1 + b− d)n . . . (1 + b− h)n

=
πΓ[a, 1 + a/2, b, c, d, e, f, g, h]

sinπ(b− a)Γ[a/2, 1 + a− (b, c, d, e, f, g, h)]

· 9F8

[
a, 1 + a/2, b, c, . . . , h

a/2, 1 + a− b, 1 + a− c, . . . , 1 + a− h
; 1

]
+

πΓ[2b− a, 1− a/2 + b, b, b− a+ (c, d, e, f, g, h)]

sinπ(a− b)Γ[−a/2 + b, 1 + b− a, 1 + b− (c, d, e, f, g, h)]

· 9F8

[
2b− a, 1− a/2 + b, b, b− a+ c, b− a+ d, . . . , b− a+ h

−a/2 + b, 1 + b− a, 1 + b− c, 1 + b− d, . . . , 1 + b− h
; 1

]
.

We obtain (2.1.3) upon noting that

Γ[a, 1 + a/2]

Γ(a/2)
=
aΓ(a)

2
=

Γ(a+ 1)

2
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and similarly

Γ[2b− a, 1− a/2 + b]

Γ(−a/2 + b)
=

Γ(2b− a+ 1)

2
.

Note that each of the hypergeometric series converges absolutely since the sum of the terms in the

denominator minus the sum of the terms in the numerator is 2 > 0 in each case.

Remark 2.1.4. Since J(a; b; c, d, e, f, g, h) is a multiple of I(a; b; c, d, e, f, g, h), this shows that we can write

J(a; b; c, d, e, f, g, h) as the sum of two 9F8 hypergeometric series, the first well-poised in 1+a and the second

well-poised in 1 + 2b− a. The parameters of the second series are obtained from those of the first series by

adding b − a to each and then transposing the first two terms, so the two series are complementary with

respect to the parameter b.

If we write

V (a; b, c, d, e, f, g, h) =

πΓ[1 + a, b, c, d, e, f, g, h]

2Γ[1 + a− (b, c, d, e, f, g, h)]
· 9F8

[
a, 1 + a/2, b, c, . . . , h

a/2, 1 + a− b, 1 + a− c, . . . , 1 + a− h
; 1

]
,

then

I(a; b; c, d, e, f, g, h) =
V (a; b, c, d, e, f, g, h)− V (2b− a; b, b− a+ (c, d, e, f, g, h))

sinπ(b− a)

and

J(a; b; c, d, e, f, g, h) =
V (a; b, c, d, e, f, g, h)− V (2b− a; b, b− a+ (c, d, e, f, g, h))

sinπ(b− a)Γ[b, c, d, e, f, g, h, b− a+ (c, d, e, f, g, h)]
.

2.2 Invariance Relations

From the definition of the J function, it is clear that J is invariant under permutations of the variables

c, d, e, f , g, and h. We derive another invariance relation from Bailey’s transformation.

Proposition 2.2.1 (Bailey’s transformation). Let a, b, c, d, e, f, g, h ∈ C be such that the hyperplane relation

(2.1.1) holds. Let k = 1 + 2a− c− d− e. Then

I(a; b; c, d, e, f, g, h) =

Γ

[
c, d, e, f + b− a, g + b− a, h+ b− a

k + c− a, k + d− a, k + e− a, 1 + a− g − h, 1 + a− f − h, 1 + a− f − g

]
· I(k, b, k + c− a, k + d− a, k + e− a, f, g, h). (2.2.1)
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Proof. See [1, Chapter 6].

If we write

Î(a; b; c, d, e, f, g, h) =
I(a; b; c, d, e, f, g, h)

Γ[c, d, e, f + b− a, g + b− a, h+ b− a]
,

then (2.2.1) can be rewritten in the form

Î(a; b; c, d, e, f, g, h) = Î(1 + 2a− c− d− e; b; 1 + a− d− e, 1 + a− c− e, 1 + a− c− d, f, g, h).

Since Γ[b, f, g, h, c+ b− a, d+ b− a, e+ b− a]
−1

is invariant under the transformation

(a, b, c, d, e, f, g, h) 7→ (1 + 2a− c− d− e, b, 1 + a− d− e, 1 + a− c− e, 1 + a− c− d, f, g, h),

this also implies that

J(a; b; c, d, e, f, g, h) = J(1 + 2a− c− d− e; b; 1 + a− d− e, 1 + a− c− e, 1 + a− c− d, f, g, h).



Chapter 3

Two-Term Relations

In this chapter, we describe the two-term relations for J found in Section 2.2 using group theory. We

characterize the transformations involved in these relations according to a notion of “type” developed below

and use this notion to determine the isomorphism type of the group of these transformations.

3.1 The Invariance Group GJ

We have shown that J(a; b; c, d, e, f, g, h) is invariant under permutations of c, d, e, f, g, and h and

under the transformation

(a, b, c, d, e, f, g, h) 7→ (1 + 2a− c− d− e, b, 1 + a− d− e, 1 + a− c− e, 1 + a− c− d, f, g, h).

Consider the affine hyperplane

V = {(a, b, c, d, e, f, g, h)T ∈ C8 : 2 + 3a = b+ c+ d+ e+ f + g + h}. (3.1.1)

If ~x = (a, b, c, d, e, f, g, h)T ∈ V , we will write

J(~x) = J(a; b; c, d, e, f, g, h).

Let GL(8,C) be the group of invertible 8×8 matrices with complex entries and S8 be the permutation

group acting on eight elements on the left. If σ ∈ S8, we write Eσ for the element of GL(8,C) obtained by
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permuting the eight rows of the identity matrix I8 ∈ GL(8,C) by σ. So, for example,

E(123) =



0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



.

Matrices of the form Eσ are called permutation matrices.

The invariance of J under permutations of c, d, e, f, g, and h implies that

J(Eσ~x) = J(~x) for any σ ∈ 〈(34), (45), (56), (67), (78)〉.

If we define

A =



1/2 1/2 −1/2 −1/2 −1/2 1/2 1/2 1/2

0 1 0 0 0 0 0 0

−1/2 1/2 1/2 −1/2 −1/2 1/2 1/2 1/2

−1/2 1/2 −1/2 1/2 −1/2 1/2 1/2 1/2

−1/2 1/2 −1/2 −1/2 1/2 1/2 1/2 1/2

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



∈ GL(8,C), (3.1.2)

the invariance of J under the transformation

(a, b, c, d, e, f, g, h) 7→ (1 + 2a− c− d− e, b, 1 + a− d− e, 1 + a− c− e, 1 + a− c− d, f, g, h)

implies (via the hyperplane relation 2 + 3a = b+ c+ d+ e+ f + g + h) that

J(A~x) = J(~x).
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Thus, if we define

GJ = 〈E(34), E(45), E(56), E(67), E(78), A〉 ≤ GL(8,C), (3.1.3)

then GJ is an invariance group for the function J(a; b; c, d, e, f, g, h) in the sense that for all M ∈ GJ we

have J(M~x) = J(~x).

3.2 Types of Invariance Relations and the Isomorphism Type of GJ

Note that not all of the invariance relations arising from GJ are essentially “different,” in the sense

that some relations can be obtained from other relations by some permutation of the last six variables (which

corresponds to permuting the rows of the associated matrix in GJ) or by some permutation of the variables

c, d, e, f, g, and h (which corresponds to permuting the columns of the associated matrix in GJ). It is useful

to construct a minimal set of relations from which all others may be obtained in this fashion.

Definition 3.2.1. Let G be a subgroup of GL(8,C). Let M1,M2 ∈ G. We will say that M1 and M2 are of

the same type in G if M2 = EσM1Eτ , for some permutation matrices Eσ, Eτ ∈ G. If M1 and M2 are not of

the same type in G, we will say that M1 and M2 are of different type in G.

Note that for M ∈ GL(8,C) and Eσ ∈ GL(8,C) a permutation matrix, the product EσM permutes

the rows of M according to σ and MEσ permutes the columns of M according to σ. Thus, according to

the above definition, matrices M1,M2 ∈ G are of the same type in G if and only if we can obtain M2 by

permuting the rows and columns of M1 using permutation matrices from G.

Definition 3.2.2. For M ∈ G, we define the type of M in G to be the set

OM = {M ′ : M ′ and M are of the same type in G}.

Clearly, the notion of same type is an equivalence relation on G, so the collection of all distinct types

OM for M ∈ G forms a partition of G corresponding to a double coset decomposition of G with respect to

the subgroup Σ consisting of all the permutation matrices of G. Thus, the type of M in G is the double

coset ΣMΣ.

By listing one matrix from each of the distinct types of matrices in GJ , we can find a representative

of each of the “different” invariant transformations of J in the above sense.
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Proposition 3.2.3. Let

Σ6 = {Eσ : σ ∈ 〈(34), (45), (56), (67), (78)〉} ≤ GJ .

Then Σ6 is isomorphic to S6 and consists of all the permutation matrices in GJ . Furthermore, there are five

distinct types of matrices in GJ and Tables 3.1–3.5 provide a representative matrix of each type, along with

the number of matrices belonging to that type and the invariance relation that arises from the representative

matrix.

Table 3.1: The First Type of Matrix in GJ

A1 = I8 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(3.2.1)

Number of elements = 1 · 720
Invariance relation:

J(a; b; c, d, e, f, g, h) = J(a; b; c, d, e, f, g, h)

Table 3.2: The Second Type of Matrix in GJ

A2 = A =



1/2 1/2 −1/2 −1/2 −1/2 1/2 1/2 1/2
0 1 0 0 0 0 0 0
−1/2 1/2 1/2 −1/2 −1/2 1/2 1/2 1/2
−1/2 1/2 −1/2 1/2 −1/2 1/2 1/2 1/2
−1/2 1/2 −1/2 −1/2 1/2 1/2 1/2 1/2

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(3.2.2)

Number of elements = 20 · 720
Invariance relation:

J(a; b; c, d, e, f, g, h) =

J(1 + 2a− c− d− e; b; 1 + a− d− e, 1 + a− c− e, 1 + a− c− d, f, g, h)
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Table 3.3: The Third Type of Matrix in GJ

A3 = (E(46)(57)A)2E(45)(67) =

0 1 −1 0 0 0 0 1
0 1 0 0 0 0 0 0
−1 1 0 0 0 0 0 1
−1/2 1/2 −1/2 −1/2 1/2 1/2 1/2 1/2
−1/2 1/2 −1/2 1/2 −1/2 1/2 1/2 1/2
−1/2 1/2 −1/2 1/2 1/2 −1/2 1/2 1/2
−1/2 1/2 −1/2 1/2 1/2 1/2 −1/2 1/2

0 0 0 0 0 0 0 1


(3.2.3)

Number of elements = 30 · 720
Invariance relation:

J(a; b; c, d, e, f, g, h) =

J(b− c+ h; b; b− a+ h, 1 + a− c− d, 1 + a− c− e, 1 + a− c− f,
1 + a− c− g, h)

Table 3.4: The Fourth Type of Matrix in GJ

A4 = (E(36)(47)(58)A)2 =

−1/2 3/2 −1/2 −1/2 −1/2 1/2 1/2 1/2
0 1 0 0 0 0 0 0
−1/2 1/2 1/2 −1/2 −1/2 1/2 1/2 1/2
−1/2 1/2 −1/2 1/2 −1/2 1/2 1/2 1/2
−1/2 1/2 −1/2 −1/2 1/2 1/2 1/2 1/2
−1 1 0 0 0 1 0 0
−1 1 0 0 0 0 1 0
−1 1 0 0 0 0 0 1


(3.2.4)

Number of elements = 20 · 720
Invariance relation:

J(a; b; c, d, e, f, g, h) =

J(1 + a+ b− c− d− e; b; 1 + a− d− e, 1 + a− c− e, 1 + a− c− d,
b− a+ f, b− a+ g, b− a+ h)
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Table 3.5: The Fifth Type of Matrix in GJ

A5 = (E(38)A3)2E(38) =



−1 2 0 0 0 0 0 0
0 1 0 0 0 0 0 0
−1 1 1 0 0 0 0 0
−1 1 0 1 0 0 0 0
−1 1 0 0 1 0 0 0
−1 1 0 0 0 1 0 0
−1 1 0 0 0 0 1 0
−1 1 0 0 0 0 0 1


(3.2.5)

Number of elements = 1 · 720
Invariance relation:

J(a; b; c, d, e, f, g, h) =

J(2b− a; b; b− a+ c, b− a+ d, b− a+ e, b− a+ f, b− a+ g, b− a+ h)

In the process of proving this proposition, we will also determine the isomorphism type of GJ .

Definition 3.2.4. The Dynkin diagram G(E6) of type E6 is a graph with vertex set

V (E6) = {2, 3, 4, 5, 6, 3′}.

Two vertices in the subset {2, 3, 4, 5, 6} are adjacent if and only if |i− j| = 1, and the vertex 3′ is adjacent

only to 4.

If i and j are any two vertices in V (E6), we define the integer

m(i, j) =



1 if i = j,

2 if i is not adjacent to j,

3 if i is adjacent to j.

(3.2.6)

The Coxeter group W (E6) of type E6 is the group given by the presentation

〈s2, s3, s4, s5, s6, s3′ : (sisj)
m(i,j) = 1〉.

Proposition 3.2.5. The group GJ is isomorphic to W (E6). Furthermore, the generators s2, s3, s4, s5, s6,

and s3′ of W (E6) may be identified respectively with the matrices E(34), E(45), E(56), E(67), E(78), and A.

Proof of Propositions 3.2.3 and 3.2.5. We directly compute the matrices

A3 = (E(46)(57)A)2E(45)(67), A4 = (E(36)(47)(58)A)2, A5 = (E(38)A3)2E(38) ∈ GJ
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and see that they are as given in Proposition 3.2.3. We also see that the given invariance relations arise from

multiplying the representative matrix by the vector (a, b, c, d, e, f, g, h)T ∈ C8, where 2 + 3a = b + c + d +

e+ f + g + h.

Notice that the subgroup Σ6 = {Eσ : σ ∈ 〈(34), (45), (56), (67), (78)〉} of GJ is isomorphic to S6 and

so contains 6! = 720 elements. Additionally, the action of Σ6 on GJ by matrix multiplication leaves the

upper-left entry of the matrices of GJ unaltered. Since the upper-left entries of the matrices A1, A2, A3, A4,

and A5 are all distinct, we see that they belong to different types in GJ . We will first obtain lower bounds

on the number of matrices of each of the types A1, A2, A3, A4, and A5.

Observe that the matrix A1 = I8 is the identity element of GJ , so that Σ6A1Σ6 = Σ6 and so there

are at least |Σ6| = 720 matrices of the type of A1 in GJ .

Next, consider the matrix

A2 =



1/2 1/2 −1/2 −1/2 −1/2 1/2 1/2 1/2

0 1 0 0 0 0 0 0

−1/2 1/2 1/2 −1/2 −1/2 1/2 1/2 1/2

−1/2 1/2 −1/2 1/2 −1/2 1/2 1/2 1/2

−1/2 1/2 −1/2 −1/2 1/2 1/2 1/2 1/2

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



∈ GJ .

We see that all of the rows of A2 are distinct as sequences. Therefore, multiplying A2 on the left by Eσ, for

Eσ ∈ Σ6, will give us 720 matrices in GJ that belong to the type of A2. Note that the products EσA2, for

Eσ ∈ Σ6, amount to obtaining all possible permutations of the last six rows of A2. By considering products

of the form AEσ, for Eσ ∈ Σ6, we can permute the last six columns of A2 in every possible way. If we first

permute the columns of A2 that are different as multisets and then permute the rows of the resulting matrix

in all 720 different ways, we will obtain 720 new elements of GJ that belong to the type of A2. Now, the

third, fourth, and fifth columns of A2 are equal as multisets, and the sixth, seventh, and eighth columns of

A2 are equal as a different multiset. Thus, we may permute the last six columns in 6!
3!3! = 20 different ways.
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So, if we permute the columns of A2 in 20 different ways and then permute the rows of each of the resulting

matrices in 720 different ways, we see that the number of matrices belonging to the type of A2 in GJ is at

least 20 · 720.

Next, consider

A3 =



0 1 −1 0 0 0 0 1

0 1 0 0 0 0 0 0

−1 1 0 0 0 0 0 1

−1/2 1/2 −1/2 −1/2 1/2 1/2 1/2 1/2

−1/2 1/2 −1/2 1/2 −1/2 1/2 1/2 1/2

−1/2 1/2 −1/2 1/2 1/2 −1/2 1/2 1/2

−1/2 1/2 −1/2 1/2 1/2 1/2 −1/2 1/2

0 0 0 0 0 0 0 1



∈ GJ .

We see that all of the rows of A3 are distinct as sequences and that the third and eighth columns of A3 are

distinct as multisets while the fourth, fifth, sixth, and seventh columns of A3 are equal as multisets. Thus,

we may permute the columns of A3 in 6!
4! = 30 different ways and then permute the rows of each of the

resulting matrices in 720 ways, giving at least 30 · 720 matrices belonging to the type of A3 in GJ .

Next, consider

A4 =



−1/2 3/2 −1/2 −1/2 −1/2 1/2 1/2 1/2

0 1 0 0 0 0 0 0

−1/2 1/2 1/2 −1/2 −1/2 1/2 1/2 1/2

−1/2 1/2 −1/2 1/2 −1/2 1/2 1/2 1/2

−1/2 1/2 −1/2 −1/2 1/2 1/2 1/2 1/2

−1 1 0 0 0 1 0 0

−1 1 0 0 0 0 1 0

−1 1 0 0 0 0 0 1



∈ GJ .

Again, the rows of A4 are distinct as sequences. We see that the third, fourth, and fifth columns are equal as

multisets and the sixth, seventh, and eighth columns are equal as multisets, so we may permute the columns
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of A4 in 6!
3!3! = 20 different ways and then permute the rows of each of the resulting matrices in 720 ways,

giving at least 20 · 720 matrices belonging to the type of A4 in GJ .

Finally, consider

A5 =



−1 2 0 0 0 0 0 0

0 1 0 0 0 0 0 0

−1 1 1 0 0 0 0 0

−1 1 0 1 0 0 0 0

−1 1 0 0 1 0 0 0

−1 1 0 0 0 1 0 0

−1 1 0 0 0 0 1 0

−1 1 0 0 0 0 0 1



∈ GJ .

As above, the rows of A5 are distinct as sequences. We see that the third through eighth columns are all

equal as multisets, so that we permute the columns of A5 in only one way (i.e., the identity permutation)

and then the rows of the matrix in 720 different ways, giving at least 1 · 720 matrices belonging to the type

of A5 in GJ .

Consider the elements of GJ given by a2 = E(34), a3 = E(45), a4 = E(56), a5 = E(67), a6 = E(78), and

a3′ = A. Clearly, GJ = 〈ai : i ∈ {2, 3, 4, 5, 6, 3′}〉. We verify by direct calculation that these matrices satisfy

(aiaj)
m(i,j) = 1 where m(i, j) is the integer given in Definition 3.2.4.

Therefore, if we define ϕ(si) = ai for each i ∈ {2, 3, 4, 5, 6, 3′}, then ϕ extends uniquely to a surjective

homomorphism from W (E6) onto GJ [8, Section 1.6]. It is well-known (for example, see [16, Section 2.11])

that W (E6) is a group of order 51840, so to show that ϕ is in fact an isomorphism, it will be sufficient to

show that |GJ | ≥ 51840 = 72 · 720.

But, we have seen above that GJ contains at least (1 + 20 + 30 + 20 + 1) · 720 = 51840 matrices of the

types of A1, A2, A3, A4 and A5 in GJ , so it must be that |GJ | = 51840, GJ ∼= W (E6), and that each of the

lower bounds for the number of matrices of the types of A1, A2, A3, A4 and A5 in GJ given above are in fact

the actual number of matrices of each type in GJ . It then follows that Σ6 consists of all of the permutation
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matrices in GJ and thus that we have the complete double coset decomposition Σ6MΣ6, M ∈ GJ , of GJ :

GJ =

5⋃
i=1

Σ6AiΣ6.

Remark 3.2.6. As was seen above, the upper-left entry of a matrix is an invariant property of its type in GJ

and can be used to identify the types of matrices in GJ .



Chapter 4

Three-Term Relations

Our ultimate goal in this chapter is to find three-term relations of the form

γ1(~x)J(µ1~x) + γ2(~x)J(µ2~x) + γ3(~x)J(µ3~x) = 0

for matrices µ1, µ2, and µ3 from distinct cosets of the right coset space GJ\MJ of a certain group MJ

containing GJ that will be defined in Section 4.2, where the functions γ1(~x), γ2(~x), and γ3(~x) are certain

linear combinations of quotients of sine and gamma functions. We achieve this, finding 27720 “essentially

different” three-term relations for the J function, in Theorem 4.6.6. To this end, we first find one such three-

term relation and define the group MJ as the one generated by the transformations involved in this relation

along with the generators of the group GJ . Then, by studying the action of MJ on triples {µ1, µ2, µ3} of

distinct cosets of GJ\MJ (and, in particular, the orbits of this action), we develop a method for transforming

one relation whose transformations {µ1, µ2, µ3} come from distinct cosets of GJ\MJ into a new relation

involving any other element of the same orbit. Finally, we find one example of a relation coming from each

orbit.

4.1 A Three-Term Relation

We will first find one three-term relation for the J-function.

Lemma 4.1.1. For a, b, c, t ∈ C, we have

sinπ(a− c) sinπ(b− a− t) + sinπ(b− a) sinπ(c− a− t) + sinπ(c− b) sinπ(−t) = 0. (4.1.1)
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Proof. Let C∞ be the vector-space of complex-valued smooth functions and define

W = {f(t) ∈ C∞ : f ′′ + π2f = 0}.

Note that W is a vector space of dimension 2 and that, for any fixed a ∈ C and for any b ∈ C such that b−a

is not an integer, the set

B = {sinπ(b− a− t), sinπ(−t)}

is a basis for W [32, Section 19].

We verify directly that sinπ(c− a− t) ∈W , so that

sinπ(c− a− t) = k1 sinπ(b− a− t) + k2 sinπ(−t) (4.1.2)

for some uniquely determined constants k1, k2 ∈ C. Solving the associated system of linear equations, we

find that

k1 = − sinπ(a− c)
sinπ(b− a)

and k2 = − sinπ(c− b)
sinπ(b− a)

.

(Note that these quantities are well-defined for b− a 6∈ Z.) Algebraic manipulation of (4.1.2) gives (4.1.1) in

the case that b− a 6∈ Z.

Finally, note that for fixed a ∈ C, the set of b ∈ C such that b− a ∈ Z is a set of Lebesgue measure 0,

so that, by the continuity of the sine function, (4.1.1) in fact holds for all b ∈ C.

Theorem 4.1.2. For a, b, c, d, e, f, g, h ∈ C satisfying (2.1.1), we have the three-term relation

sinπ(b− a)Γ [b, c, d, e, f, g, h, b− a+ (c, d, e, f, g, h)] J(a; b; c, d, e, f, g, h)

+ sinπ(a− c)Γ [b, c, d, e, f, g, h, c− a+ (b, d, e, f, g, h)] J(a; c; b, d, e, f, g, h)

+ sinπ(c− b)Γ [b, c, b− a+ (d, e, f, g, h), c− a+ (a, d, e, f, g, h)]

· J(2b− a; b+ c− a; b, b+ d− a, b+ e− a, b+ f − a, b+ g − a, b+ h− a) = 0.

Proof. Let ~x = (a, b, c, d, e, f, g, h)T and

f(~x, t) =
Γ[a+ t, 1 + 1

2a+ t, t+ (b, c, d, e, f, g, h), b− a− t,−t, c− a− t]
Γ[ 1

2a+ t, 1 + a+ t− (d, e, f, g, h)]
.
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By Lemma 4.1.1,

1

2πı

∫
t

[
f(~x, t)(sinπ(a− c) sinπ(b− a− t)

+ sinπ(b− a) sinπ(c− a− t) + sinπ(c− b) sinπ(−t))
]
dt = 0. (4.1.3)

Note that

Γ(b− a− t) sinπ(b− a− t) =
π

Γ(1 + a− b+ t)
,

Γ(c− a− t) sinπ(c− a− t) =
π

Γ(1 + a− c+ t)
, and

Γ(−t) sinπ(−t) =
π

Γ(1 + t)
,

so

1

2πı

∫
t

f(~x, t) sinπ(a− c) sinπ(b− a− t)dt

=
π sinπ(a− c)

2πı

∫
t

Γ[a+ t, 1 + 1
2a+ t, t+ (b, c, d, e, f, g, h),−t, c− a− t]

Γ[ 1
2a+ t, 1 + a+ t− (b, d, e, f, g, h)]

dt

=π sinπ(a− c)I(a; c; b, d, e, f, g, h),

1

2πı

∫
t

f(~x, t) sinπ(b− a) sinπ(c− a− t)dt

=
π sinπ(b− a)

2πı

∫
t

Γ[a+ t, 1 + 1
2a+ t, t+ (b, c, d, e, f, g, h),−t, b− a− t]

Γ[ 1
2a+ t, 1 + a+ t− (c, d, e, f, g, h)]

dt

=π sinπ(b− a)I(a; b; c, d, e, f, g, h), and

1

2πı

∫
t

f(~x, t) sinπ(c− b) sinπ(−t)dt

=
π sinπ(c− b)

2πı

∫
t

Γ[a+ t, 1 + 1
2a+ t, t+ (b, c, d, e, f, g, h), b− a− t, c− a− t]

Γ[ 1
2a+ t, 1 + a+ t− (d, e, f, g, h), 1 + t]

dt

=
π sinπ(c− b)

2πı

∫
s

Γ[b+ s, 1 + b− a/2 + s, b− a+ s+ (b, c, d, e, f, g, h),−s, c− b− s]
Γ[b− a/2 + s, 1 + b+ s− (d, e, f, g, h, a)]

ds

=π sinπ(c− b)I(2b− a; b+ c− a; b, b+ d− a, b+ e− a, b+ f − a, b+ g − a, b+ h− a),

where we have let t  b − a + s in the third integral and reordered the terms in the final step. Splitting

(4.1.3) into the three integrals above and recalling the definition of J(a; b; c, d, e, f, g, h) in (2.1.2) gives the

desired result.
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4.2 The Group MJ

Define

B =



−1 2 0 0 0 0 0 0

−1 1 1 0 0 0 0 0

0 1 0 0 0 0 0 0

−1 1 0 1 0 0 0 0

−1 1 0 0 1 0 0 0

−1 1 0 0 0 1 0 0

−1 1 0 0 0 0 1 0

−1 1 0 0 0 0 0 1



∈ GL(8,C) (4.2.1)

to be the matrix associated with the transformation

(a, b, c, d, e, f, g, h) 7→ (2b− a, b+ c− a, b, b+ d− a, b+ e− a, b+ f − a, b+ g − a, b+ h− a).

Then, the three-term relation in Theorem 4.1.2 can be expressed in the form

γ1(~x)J(~x) + γ2(~x)J(E(23)~x) + γ3(~x)J(B~x) = 0.

Define

MJ = 〈E(23), B,E(34), E(45), E(56), E(67), E(78), A〉 ≤ GL(8,C),

where A is the matrix defined by (3.1.2). Note that GJ ≤ MJ , so that all of the matrices involved in the

two-term and three-term relations that we have found are elements of MJ .

We calculate that B = A5 ·
(
BE(23)

)
and E(23) = B2 ·

(
BE(23)

)
where A5 is the matrix defined by

(3.2.5). Thus,

MJ = 〈BE(23), E(34), E(45), E(56), E(67), E(78), A〉.
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Proposition 4.2.1. The matrix

C = (E(34)(56)(78)BE(23)(45)(67)A)9 =

−5/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

−3/2 −1/2 1/2 1/2 1/2 1/2 1/2 1/2

−3/2 1/2 −1/2 1/2 1/2 1/2 1/2 1/2

−3/2 1/2 1/2 −1/2 1/2 1/2 1/2 1/2

−3/2 1/2 1/2 1/2 −1/2 1/2 1/2 1/2

−3/2 1/2 1/2 1/2 1/2 −1/2 1/2 1/2

−3/2 1/2 1/2 1/2 1/2 1/2 −1/2 1/2

−3/2 1/2 1/2 1/2 1/2 1/2 1/2 −1/2



∈ GL(8,C)

is in the center of MJ .

Proof. We directly compute the matrix (E(34)(56)(78)BE(23)(45)(67)A)9 and see that it is as given in the

statement of the proposition. For i ∈ {2, 3, 4, 5, 6, 7}, permuting the ith and (i + 1)st rows of C and the ith

and (i+1)st columns of C yields the same matrix. Furthermore, we calculate that AC = CA and BC = CB.

Thus, C commutes with all of the generators of MJ and thus with all elements of MJ .

Via the hyperplane relation 2 + 3a = b + c + d + e + f + g + h, we see that multiplication by C

corresponds to the transformation

(a, b, c, d, e, f, g, h) 7→ (1− a, 1− b, 1− c, 1− d, 1− e, 1− f, 1− g, 1− h).

Remark 4.2.2. For reference, we compute CAi for i = 1, . . . , 5 in Table 4.1 below.

Definition 4.2.3. The Dynkin diagram G(E7) of type E7 is a graph with vertex set

V (E7) = {1, 2, 3, 4, 5, 6, 3′}.

Two vertices in the subset {1, 2, 3, 4, 5, 6} are adjacent if and only if |i− j| = 1, and the vertex 3′ is adjacent

only to 4.
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Table 4.1: The Matrices CAi for i = 1, . . . , 5

CA1 =



−5/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
−3/2 −1/2 1/2 1/2 1/2 1/2 1/2 1/2
−3/2 1/2 −1/2 1/2 1/2 1/2 1/2 1/2
−3/2 1/2 1/2 −1/2 1/2 1/2 1/2 1/2
−3/2 1/2 1/2 1/2 −1/2 1/2 1/2 1/2
−3/2 1/2 1/2 1/2 1/2 −1/2 1/2 1/2
−3/2 1/2 1/2 1/2 1/2 1/2 −1/2 1/2
−3/2 1/2 1/2 1/2 1/2 1/2 1/2 −1/2



CA2 =



−2 0 1 1 1 0 0 0
−3/2 −1/2 1/2 1/2 1/2 1/2 1/2 1/2
−1 0 0 1 1 0 0 0
−1 0 1 0 1 0 0 0
−1 0 1 1 0 0 0 0
−3/2 1/2 1/2 1/2 1/2 −1/2 1/2 1/2
−3/2 1/2 1/2 1/2 1/2 1/2 −1/2 1/2
−3/2 1/2 1/2 1/2 1/2 1/2 1/2 −1/2



CA3 =



−3/2 −1/2 3/2 1/2 1/2 1/2 1/2 −1/2
−3/2 −1/2 1/2 1/2 1/2 1/2 1/2 1/2
−1/2 −1/2 1/2 1/2 1/2 1/2 1/2 −1/2
−1 0 1 1 0 0 0 0
−1 0 1 0 1 0 0 0
−1 0 1 0 0 1 0 0
−1 0 1 0 0 0 1 0
−3/2 1/2 1/2 1/2 1/2 1/2 1/2 −1/2



CA4 =



−1 −1 1 1 1 0 0 0
−3/2 −1/2 1/2 1/2 1/2 1/2 1/2 1/2
−1 0 0 1 1 0 0 0
−1 0 1 0 1 0 0 0
−1 0 1 1 0 0 0 0
−1/2 −1/2 1/2 1/2 1/2 −1/2 1/2 1/2
−1/2 −1/2 1/2 1/2 1/2 1/2 −1/2 1/2
−1/2 −1/2 1/2 1/2 1/2 1/2 1/2 −1/2



CA5 =



−1/2 −3/2 1/2 1/2 1/2 1/2 1/2 1/2
−3/2 −1/2 1/2 1/2 1/2 1/2 1/2 1/2
−1/2 −1/2 −1/2 1/2 1/2 1/2 1/2 1/2
−1/2 −1/2 1/2 −1/2 1/2 1/2 1/2 1/2
−1/2 −1/2 1/2 1/2 −1/2 1/2 1/2 1/2
−1/2 −1/2 1/2 1/2 1/2 −1/2 1/2 1/2
−1/2 −1/2 1/2 1/2 1/2 1/2 −1/2 1/2
−1/2 −1/2 1/2 1/2 1/2 1/2 1/2 −1/2


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If i and j are any two vertices in V (E7), we define the integer

m(i, j) =



1 if i = j,

2 if i is not adjacent to j,

3 if i is adjacent to j.

(4.2.2)

The Coxeter group W (E7) of type E7 is the group given by the presentation

〈s1, s2, s3, s4, s5, s6, s3′ : (sisj)
m(i,j) = 1〉.

Note that the definition of m(i, j) for E7 given in (4.2.2) is compatible with and extends the definition

of m(i, j) for E6 given in (3.2.6).

Proposition 4.2.4. The group MJ is isomorphic to W (E7). Furthermore, the generators s1, s2, s3, s4,

s5, s6, and s3′ of W (E7) may be identified respectively with the matrices BE(23), E(34), E(45), E(56), E(67),

E(78), and A.

We will prove this proposition and the following proposition simultaneously.

Proposition 4.2.5. Let

Σ7 = {Eσ : σ ∈ 〈(23), (34), (45), (56), (67), (78)〉} ≤MJ .

Then Σ7 is isomorphic to S7 and consists of all the permutation matrices in MJ . Furthermore, there are

ten distinct types of matrices in MJ with representative matrices given by

{Ai : i = 1, . . . , 5} and {CAi : i = 1, . . . , 5}. (4.2.3)

There are 1 · 5040 matrices of each of the types A1 and CA1, 35 · 5040 matrices of each of the types A2 and

CA2, 105 · 5040 matrices of each of the types A3 and CA3, 140 · 5040 matrices of each of the types A4 and

CA4, and 7 · 5040 matrices of each of the types A5 and CA5.

Proof of Propositions 4.2.4 and 4.2.5. Notice that the subgroup

Σ7 = {Eσ : σ ∈ 〈(23), (34), (45), (56), (67), (78)〉}
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of MJ is isomorphic to S7 and so contains 7! = 5040 elements and that Σ7 leaves the upper-left entry

of matrices of MJ unaltered. We saw in Proposition 3.2.3 that the upper-left entries of the matrices Ai,

i = 1, . . . 5, are 1, 1
2 , 0, − 1

2 , and −1 respectively and we calculated in Table 4.1 that the upper-left entries of

the matrices CAi, i = 1, . . . , 5, are − 5
2 , −2, − 3

2 , −1, and − 1
2 respectively. From this consideration, it is clear

that all of the matrices Ai and CAi, i = 1, . . . , 5 are of distinct type in MJ with the exception of the pairs

A4 and CA5 (which both have upper-left entry − 1
2 ) and A5 and CA4 (which both have upper-left entry

−1). However, since the second row of each matrix Ai is the row vector ~e T2 while no row of any CAi is a

row vector of the form ~e Tj for j = 1, . . . 8, it follows that all matrices M of type Ai in MJ satisfy ~e Tj M = ~e Tk

for some 2 ≤ j, k ≤ 8, while no M matrices of type CAi in MJ satisfy ~e Tj M = ~e Tk for any 2 ≤ j, k ≤ 8, so

that A4 and CA5 are of different type in MJ and A5 and CA4 are of different type in MJ . Thus, the ten

matrices given in (4.2.3) are all of different type in MJ .

Using the same technique as in the proof of Proposition 3.2.3, we obtain a lower bound of 1 · 5040

matrices of types A1 and CA1 in MJ , 7!
3!4! · 5040 matrices of types A2 and CA2, 7!

2!4! · 5040 matrices of types

A3 and CA3, 7!
3!3! · 5040 matrices of types A4 and CA4, and 7!

6! · 5040 matrices of types A5 and CA5. Thus,

there are at least 2 · (1 + 35 + 105 + 140 + 7) · 5040 = 2903040 matrices of these types in MJ .

Now, consider the elements of MJ given by a1 = BE(23), a2 = E(34), a3 = E(45), a4 = E(56), a5 =

E(67), a6 = E(78), and a3′ = A. Then MJ = 〈ai : i ∈ {1, 2, 3, 4, 5, 6, 3′}〉. We verify by direct calculation that

these matrices satisfy (aiaj)
m(i,j) = 1 where m(i, j) is the integer given in Definition 4.2.3.

Therefore, if we define ϕ(si) = ai for each i ∈ {1, 2, 3, 4, 5, 6, 3′}, then ϕ extends uniquely to a surjective

homomorphism from W (E7) onto MJ as in the proof of Proposition 3.2.3. It is well known (for example,

see [16, Section 2.11]) that W (E7) is a group of order 2903040, so it follows that ϕ is in fact an isomorphism,

as we saw above that |MJ | ≥ 2903040. Thus, it must be that |MJ | = 2903040, MJ
∼= W (E7) and that each

of the lower bounds for the number of matrices of the types of A1, A2, A3, A4, A5, CA1, CA2, CA3, CA4,

and CA5 in MJ given above are in fact the actual number of matrices of each type in MJ . It then follows

that Σ7 consists of all of the permutation matrices in MJ and thus that we have the complete double coset



32

decomposition Σ7MΣ7, M ∈MJ , of MJ :

MJ =

(
5⋃
i=1

Σ7AiΣ7

)
∪

(
5⋃
i=1

Σ7CAiΣ7

)
.

It is known that the group W (E7) has a center consisting of two elements [16, Sections 3.20 and 6.4],

so the center of MJ is given by the set {I8, C}.

4.3 The Coset Space GJ\MJ

The group GJ given in Section 3.1 is a subgroup of MJ of index 2903040
51840 = 56. GJ is not a normal

subgroup of MJ , as, for example, E(34) ∈ GJ and E(23) ∈ MJ , but E(23)E(34)E
−1
(23) = E(23)E(34)E(23) =

E(24) 6∈ GJ (as E(24) 6∈ Σ6 and Σ6 contains all permutation matrices of GJ , according to Proposition 3.2.3).

Nonetheless, we may consider the (right) coset space GJ\MJ , which consists of 56 cosets.

Consider the following set of 56 matrices:

CJ = {CkE(2i)E(23)BE(2j) ∈MJ : k ∈ {0, 1}, 2 ≤ i ≤ j ≤ 8},

where we adopt the convention that E(22) = I8.

Lemma 4.3.1. For 2 ≤ i ≤ j ≤ 8, we have

~e T2 E(2i)E(23)BE(2j) =



~e Tj = ~e Tj + ~e T1 − ~e T1 if i = 2,

~e Ti + ~e Tj − ~e T1 if i 6= 2, i 6= j,

~e T2 + ~e Ti − ~e T1 if i 6= 2, i = j.

Proof. This may be checked by direct calculation.

Theorem 4.3.2. The 56 matrices in CJ lie in different cosets of GJ\MJ . Thus,

MJ =
⋃
µ∈CJ

GJµ.

Proof. Note that all of the generators of GJ as presented in (3.1.3) have the same second row, ~e T2 , and so all

matrices M ∈ GJ satisfy ~e T2 M = ~e T2 . Thus, in particular, for any matrices M ∈ GJ and N ∈MJ , we have

~e T2 MN = ~e T2 N and so any two matrices of MJ with different second rows must lie in different cosets of GJ
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in MJ . By Lemma 4.3.1, we see that the second rows of the 28 matrices E(2i)E(23)BE(2j), 2 ≤ i ≤ j ≤ 8 are

distinct and we explicitly calculate that the second rows of the 28 matrices CE(2i)E(23)BE(2j) are distinct

both from these rows and from each other. Thus, the 56 matrices of CJ lie in different cosets of GJ\MJ ,

which completes the proof, as we have seen |MJ |
|GJ | = 56.

We have seen that each of the 28 matrices E(2i)E(23)BE(2j), 2 ≤ i ≤ j ≤ 8, has a second row of the

form ~e Tk + ~e T` − ~e T1 for some 1 ≤ k < ` ≤ 8. Conversely, as there are
(

8
2

)
= 28 different rows of this form

and each of the matrices E(2i)E(23)BE(2j), 2 ≤ i ≤ j ≤ 8, has a distinct second row, it follows that for each

1 ≤ k < ` ≤ 8 there exist 2 ≤ i ≤ j ≤ 8 such that ~e T2 E(2i)E(23)BE(2j) = ~e Tk + ~e T` − ~e T1 .

Furthermore, we have seen that ~e T2 M = ~e T2 for all M ∈ GJ , so that the second row is an invariant

property of each coset.

Definition 4.3.3. We will use the notation (k, `) to denote the coset whose matrices have second row

~e Tk +~e T` −~e T1 and (k, `)∗ to denote the coset containing the matrix CE(2i)E(23)BE(2j), where 2 ≤ i ≤ j ≤ 8

are chosen so that

~e T2 E(2i)E(23)BE(2j) = ~e Tk + ~e T` − ~e T1 .

So, for example, I8 ∈ (1, 2) and CE(23)E(23)BE(24) ∈ (3, 4)∗ (by Lemma 4.3.1).

Define the subgroup

Σ8 = 〈E(23)B,E(23), E(34), E(45), E(56), E(67), E(78)〉

of MJ . Note that Σ6 ≤ Σ7 ≤ Σ8. Unlike Σ6 and Σ7, the group Σ8 does not consist entirely of permutation

matrices, but the following theorem makes the choice of notation clear.

Theorem 4.3.4. There is a unique isomorphism of groups

Φ: S8 → Σ8

such that Φ((12)) = E(23)B and Φ(σ) = Eσ for σ ∈ {(23), (34), (45), (56), (67), (78)}.

Proof. We will need the following definition.
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Definition 4.3.5. The Dynkin diagram G(A7) of type A7 is a graph with vertex set

V (A7) = {1, 2, 3, 4, 5, 6, 7}.

Two vertices in the set {1, 2, 3, 4, 5, 6, 7} are adjacent if and only if |i− j| = 1.

If i and j are any two vertices in V (A7), we define the integer

s(i, j) =



1 if i = j,

2 if i is not adjacent to j,

3 if i is adjacent to j.

(4.3.1)

The Coxeter group W (A7) of type A7 is the group given by the presentation

〈b1, b2, b3, b4, b5, b6, b7 : (bibj)
s(i,j) = 1〉.

It is well-known that S8
∼= W (A7) and that an isomorphism is given by identifying b1, b2, b3, b4, b5,

b6, b7 with (12), (23), (34), (45), (56), (67), and (78) respectively [16, Section 1.1].

Consider the elements c1 = E(23)B, c2 = E(23), c3 = E(34), c4 = E(45), c5 = E(56), c6 = E(67) and

c7 = E(78) of Σ8. Note Σ8 = 〈ci : i = 1, . . . , 7〉. We verify by direct calculation that these matrices satisfy

(cicj)
s(i,j) = 1 where s(i, j) is the integer given in Definition 4.3.5.

Therefore, if we define Φ(bi) = ci for i = 1, . . . , 7, then Φ extends uniquely to a homomorphism from

S8 onto Σ8 as in the proof of Proposition 3.2.3. But the only normal subgroups of S8 are S8, the alternating

group A8, and the trivial group. Since c1, . . . , c7 are in the image of Φ, the kernel of Φ must be trivial (as

A8 has index 2 in S8 and the image contains more than 2 elements) and so Φ is an isomorphism from S8 to

Σ8.

Remark 4.3.6. For reference, we compute that

Φ((132)) = Φ((23)(12)) = E(23)E(23)B = B

and

Φ((13)) = Φ((12)(23)(12)) = E(23)B
2 = BE(23).
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4.4 The Action of MJ on GJ\MJ

We will see that the action of MJ on GJ\MJ is easier to describe through the use of an isomorphic

group φ(MJ) that we will now define. As in [13, Section 4], we define the vectors ~vi, j = 4(~ei+~ej)−
∑8
k=1 ~ek for

1 ≤ i < j ≤ 8, so that, for instance, ~v1,2 = (3, 3,−1,−1,−1,−1,−1,−1)T . Let Ω = {±~vi, j : 1 ≤ i < j ≤ 8}.

We define a map φ : GJ\MJ → Ω by φ((i, j)) = ~vi,j and φ((i, j)∗) = −~vi,j for 1 ≤ i < j ≤ 8.

We also define φ(s1) = E(13), φ(s2) = E(34), φ(s3) = E(45), φ(s4) = E(56), φ(s5) = E(67), φ(s6) =

E(78), and

φ(s3′) =



3/4 1/4 −1/4 −1/4 −1/4 1/4 1/4 1/4

1/4 3/4 1/4 1/4 1/4 −1/4 −1/4 −1/4

−1/4 1/4 3/4 −1/4 −1/4 1/4 1/4 1/4

−1/4 1/4 −1/4 3/4 −1/4 1/4 1/4 1/4

−1/4 1/4 −1/4 −1/4 3/4 1/4 1/4 1/4

1/4 −1/4 1/4 1/4 1/4 3/4 −1/4 −1/4

1/4 −1/4 1/4 1/4 1/4 −1/4 3/4 −1/4

1/4 −1/4 1/4 1/4 1/4 −1/4 −1/4 3/4



,

where si, i = 1, . . . , 6, 3′ are the generators of W (E7). We verify by direct calculation that these matrices

satisfy (φ(si)φ(sj))
m(i,j) = 1 where m(i, j) is the integer given in Definition 4.2.3. Thus, φ extends uniquely

to a homomorphism from W (E7) into GL(8,C). As MJ is isomorphic to W (E7), we may also think of φ as a

map MJ → GL(8,C) via the identifications in the statement of Proposition 4.2.4. That is, φ(BE(23)) = E(13),

φ(Eσ) = Eσ for σ ∈ {(34), (45), (56), (67), (78)}, and φ(A) = φ(s3′). Throughout the remainder of this thesis,

we will use φ to refer to the maps GJ\MJ → Ω, W (E7) → GL(8,C), and MJ → GL(8,C), with the map

intended in any given situation clear from the context.

Lemma 4.4.1. (i) The group φ(Σ8) consists of all the permutation matrices of φ(MJ) and, in fact, of

all the permutation matrices of GL(8,C) and φ(Σ8) ∼= S8. Furthermore, there are four distinct types

in φ(MJ) with representative matrices I8, φ(A), φ(C), and φ(C)φ(A) (where C is the matrix given

in Proposition 4.2.1). There are 1 ·40320 matrices of each of the types of I8 and φ(C) in φ(MJ) and
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35 · 40320 matrices of each of the types of φ(A) and φ(C)φ(A).

(ii) The type of I8 in φ(MJ) consists of all matrices in GL(8,C) for which each row and each column

is the multiset {1, 0, 0, 0, 0, 0, 0, 0}. The type of φ(A) in φ(MJ) consists of all matrices for which

each row and column is the multiset { 3
4 ,−

1
4 ,−

1
4 ,−

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4}. The type of φ(C) in φ(MJ)

consists of all matrices for which each row and column is the multiset {− 3
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4}. The

type of φ(C)φ(A) in φ(MJ) consists of all matrices for which each row and column is the multiset

{ 1
2 ,

1
2 ,

1
2 ,−

1
2 , 0, 0, 0, 0}. The group φ(MJ) consists of all matrices in GL(8,C) for which each row

and column is (the same) one of these multisets.

(iii) The map φ : MJ → GL(8,C) is injective. That is, φ(MJ) ∼= MJ .

(iv) The map φ : GJ → GL(8,C) is injective. That is, φ(GJ) ∼= GJ .

Proof. We compute that

φ(C) =



−3/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4

1/4 −3/4 1/4 1/4 1/4 1/4 1/4 1/4

1/4 1/4 −3/4 1/4 1/4 1/4 1/4 1/4

1/4 1/4 1/4 −3/4 1/4 1/4 1/4 1/4

1/4 1/4 1/4 1/4 −3/4 1/4 1/4 1/4

1/4 1/4 1/4 1/4 1/4 −3/4 1/4 1/4

1/4 1/4 1/4 1/4 1/4 1/4 −3/4 1/4

1/4 1/4 1/4 1/4 1/4 1/4 1/4 −3/4


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and

φ(C)φ(A) =



−1/2 0 1/2 1/2 1/2 0 0 0

0 −1/2 0 0 0 1/2 1/2 1/2

1/2 0 −1/2 1/2 1/2 0 0 0

1/2 0 1/2 −1/2 1/2 0 0 0

1/2 0 1/2 1/2 −1/2 0 0 0

0 1/2 0 0 0 −1/2 1/2 1/2

0 1/2 0 0 0 1/2 −1/2 1/2

0 1/2 0 0 0 1/2 1/2 −1/2



.

Note that each row and column of the matrix I8 is the multiset {1, 0, 0, 0, 0, 0, 0, 0}, each row and

column of the matrix φ(A) is the multiset { 3
4 ,−

1
4 ,−

1
4 ,−

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4}, each row and column of the matrix

φ(C) is the multiset {− 3
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4}, and each row and column of the matrix φ(C)φ(A) is the multiset

{ 1
2 ,

1
2 ,

1
2 ,−

1
2 , 0, 0, 0, 0}. Thus, I8, φ(A), φ(C), and φ(C)φ(A) belong to different types in φ(MJ).

We verify that φ(M) = EΦ−1(M) for M ∈ Σ8, where Φ is the isomorphism S8 → Σ8 defined in the

previous section, by checking this relation on the generators of Σ8 and noting that φ and Φ are homomor-

phisms. Thus, φ(Σ8) = {Eσ : σ ∈ S8}, so that φ(MJ) contains all permutation matrices of GL(8,C). Thus,

|φ(Σ8)| = 8! = 40320. Using the method of Proposition 3.2.3, we obtain the lower bound of 1 ·40320 matrices

in each of the types I8 and φ(C) in φ(MJ). Unfortunately, this method does not give an adequate bound

for the types of φ(A) and φ(C)φ(A) in φ(MJ) (since the columns in each matrix are equal as multisets).

For φ(A), note that we may, by permuting the columns using matrices from φ(Σ8), obtain elements

of the type of φ(A) in φ(MJ) for which the 3
4 and the three − 1

4 entries occur in any positions in any given

row, giving 8 ·
(

7
3

)
distinct elements. For each of these, we may permute the second through eighth rows in

7! ways, showing that there are at least
(

7
3

)
· 8! = 35 · 40320 elements of the type of φ(A) in φ(MJ).

For φ(C)φ(A), a parallel argument with the entry − 1
2 in the place of 3

4 and the entries 1
2 in the place

of − 1
4 likewise gives 35 · 40320 elements of the type of φ(C)φ(A) in φ(MJ).

This shows that |φ(MJ)| ≥ (1 + 35 + 35 + 1) · 40320 = 2903040. But since (by definition) φ maps

surjectively onto φ(MJ), it must be that |φ(MJ)| ≤ |MJ | = 2903040, so that |φ(MJ)| = 2903040, each of
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the lower bounds for the number of elements of each type in MJ is in fact the number of elements of that

type, and we have found the complete double coset decomposition. This completes the proof of part (i), and

parts (ii) and (iii) follow immediately. Part (iv) follows from part (iii) by considering the restriction of the

map φ to GJ .

Lemma 4.4.2. (i) Let M ∈MJ and µ ∈ GJ\MJ be a right coset. Then φ(µ ·M) = φ(M)−1 · φ(µ).

(ii) For all ~v ∈ Ω, φ(C)~v = −~v.

Proof. (i) We verify this directly for the generators of MJ . Then, by Lemma 4.4.1(iii), this holds for all of

MJ .

(ii) This is a restatement of part (i) for the special case M = C.

The action of the generators of φ(MJ) on Ω is described in the following propositions.

Definition 4.4.3. Let σ ∈ S8. Given a right coset (i, j) or (i, j)∗ in GJ\MJ , we will define

σ · (i, j) = (σ(i), σ(j)) and σ · (i, j)∗ = (σ(i), σ(j))∗.

We also extend this to an action of S8 on Ω via the identification φ : GJ\MJ → Ω.

Proposition 4.4.4. (i) Let µ ∈ GJ\MJ be a right coset and let σ ∈ S8. Then

µ · Φ(σ) = σ−1 · µ

where Φ: S8 → Σ8 is the isomorphism from Theorem 4.3.4.

(ii) Let ~v ∈ Ω and let Eσ ∈ φ(Σ8) for some σ ∈ S8. Then

Eσ · ~v = σ · ~v.

Proof. (i) We verify directly that

µ · Φ(σ) = σ−1 · µ for σ ∈ {(12), (23), (34), (45), (56), (67), (78)}.

Then, since these permutations generate S8 and Φ is an isomorphism, this holds for all σ ∈ S8.
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(ii) Apply the map φ to the equation in (i). The result follows by Lemma 4.4.2(i) and recalling that

φ(M) = EΦ−1(M) for M ∈ Σ8.

Proposition 4.4.5. The matrix φ(A) acts on Ω as a bifid transformation. More specifically, if we let

C1 = {1, 3, 4, 5} and C2 = {2, 6, 7, 8}, then:

(i) if i, j ∈ Cm for m = 1, 2 and k, ` are chosen so that Cm = {i, j, k, `}, then φ(A) ·±~vi,j = ∓~vk,` where

∓ denotes the opposite sign of ±, and

(ii) if one of i, j lies in C1 and the other lies in C2, then φ(A) · ±~vi,j = ±~vi,j.

Proof. This can be verified by explicitly computing each of the 28 products φ(A) · ~vi,j and then using

Lemma 4.4.2(ii) to compute φ(A) · −~vi,j .

Lemma 4.4.6. The group φ(MJ) acts faithfully and transitively on the set Ω.

Proof. We will first use the double coset decomposition found in Lemma 4.4.1 to verify that φ(MJ) acts

faithfully. Suppose that M ∈ φ(MJ). We will show that M · ~v = ~v can hold for all ~v ∈ Ω only if M = I8.

Note that M must have one of the forms Eσ, φ(C)Eσ, Eσφ(A)Eτ , or φ(C)Eσφ(A)Eτ for some σ, τ ∈ S8,

by Lemma 4.4.1 and noting that φ(C) is central. We use Propositions 4.4.4(ii) and 4.4.5 to perform the

following calculations.

If M = Eσ where σ is not the identity permutation, then we may pick i, j ∈ {1, . . . , 8} such that

σ(i) 6= i and σ(j) 6∈ {i, φ(i)}. Let ~v = ~vi, j . Then

M~v = ~vσ(i),σ(j) 6= ~v.

If M = φ(C)Eσ, then φ(C)Eσ~v1,2 = −~vσ(1),σ(2) 6= ~v1,2.

If M = Eσφ(A)Eτ , let ~v = ~vτ−1(1),τ−1(3) so that Eτ~v = ~v1,3. Then,

Eσφ(A)Eτ~v = Eσφ(A)~v1,3 = Eσ(−~v4,5) = −~vσ(4),σ(5) 6= ~vτ−1(1),τ−1(3).
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If M = φ(C)Eσφ(A)Eτ , let ~v = ~vτ−1(1),τ−1(2) so that Eτ~v = ~v1,2. Then,

φ(C)Eσφ(A)Eτ~v = φ(C)Eσφ(A)~v1,2 = φ(C)Eσ~v1,2 = φ(C)~vσ(1),σ(2) = −~vσ(1),σ(2)

6= ~vτ−1(1),τ−1(2).

Thus, in all cases, if M 6= I8, then there is some ~v ∈ Ω such that M~v 6= ~v and so the action of φ(MJ)

on Ω is faithful.

Finally, we note that the action of φ(MJ) on Ω is transitive since φ(MJ) contains all of the permutation

matrices of GL(8,C) and since the central element φ(C) maps ~v to −~v for all ~v ∈ Ω.

Definition 4.4.7. Let ~v = (v1, . . . , v8)T , ~w = (w1, . . . , w8)T ∈ Ω. We define the Euclidean distance between

~v and ~w to be the number d(~v, ~w) =
√∑8

i=1(vi − wi)2.

Remark 4.4.8. Note that the distance between any two elements of Ω is one of 0,
√

32,
√

64, and
√

96.

Specifically, for distinct i, j, k, ` ∈ {1, . . . 8}, we have d(~vi, j , ~vi, j) = 0, d(~vi, j , ~vi, k) =
√

32, d(~vi, j , ~vk, `) =
√

64,

d(~vi, j ,−~vi, j) =
√

96, d(~vi, j ,−~vi, k) =
√

64, and d(~vi, j ,−~vk, `) =
√

32.

Lemma 4.4.9. (i) The set Ω is a metric space with respect to Euclidean distance.

(ii) For any ~v, ~w ∈ Ω, we have ~v · ~w = 24− 1
2d(~v, ~w)2.

(iii) The action of φ(MJ) on Ω is by isometries with respect to Euclidean distance.

Proof. Part (i) is a routine exercise using the definitions. Part (ii) may be checked case by case using Remark

4.4.8.

To prove part (iii), we note that the group φ(MJ) consists of orthogonal matrices, so the action of

φ(MJ) on Ω respects scalar product. By part (ii), this action also respects Euclidean distance. That is to

say, for M ∈ φ(MJ) and ~v, ~w ∈ Ω, we have

d(M~v,M ~w)2 = 48− 2(M~v) · (M ~w) = 48− 2~v · ~w = d(~v, ~w)2.

Since d(~v1, ~v2) ≥ 0 for all ~v1, ~v2 ∈ Ω, we have

d(M~v,M ~w) = d(~v, ~w).
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4.5 The Orbits of the Action of MJ on (GJ\MJ)
(3)

Definition 4.5.1. Let (GJ\MJ)(3) be the subset of the power set of GJ\MJ consisting of all unordered

triples {a, b, c} of distinct elements of GJ\MJ (i.e., a 6= b 6= c 6= a). Let Ω(3) be the subset of the power set

of Ω consisting of all unordered triples {a, b, c} of distinct elements of Ω (i.e., a 6= b 6= c 6= a).

Although the tuples of (GJ\MJ)(3) and Ω(3) are unordered, we will always keep the same ordering

when writing the elements of a tuple, so that, in particular, {a1, a2, a3} = {b1, b2, b3} will always mean that

ai = bi for i = 1, 2, 3. We extend the action of MJ on GJ\MJ to an action on (GJ\MJ)(3), as follows.

Proposition 4.5.2. The group MJ acts on (GJ\MJ)(3) diagonally via

{a, b, c} ·M = {a ·M, b ·M, c ·M}.

Proof. This is a routine exercise using the definitions.

Analogously to Proposition 4.5.2, we extend the action of φ(MJ) to Ω(3) diagonally via g · {a, b, c} =

{g ·a, g ·b, g ·c} and we likewise extend the action of S8 on GJ\MJ and Ω from Definition 4.4.3 to (GJ\MJ)(3)

and Ω(3) diagonally.

By Lemma 4.4.1, the Euclidean distance defined in Definition 4.4.7 also provides a notion of distance

for GJ\MJ . Namely, if a, b ∈ GJ\MJ , the distance between a and b is given by d(a, b) = d(φ(a), φ(b)). For

example, d((1, 2), (3, 4)∗) = d(~v1,2,−~v3,4) =
√

32. By Remark 4.4.8, the distance between any two cosets

is one of 0,
√

32,
√

64, and
√

96. Given a triple {a, b, c} in (GJ\MJ)(3) or Ω(3), we are also interested in

the unordered multiset of distances {d(a, b), d(a, c), d(b, c)}, which we will always write in increasing order.

To simplify notation, we will in this context write A for
√

32, B for
√

64, and C for
√

96. So, for example,

the distance triple {
√

32,
√

32,
√

32} will be denoted AAA, and the distance triple {
√

32,
√

64,
√

96} will be

denoted ABC. If a triple {a, b, c} has distance triple xyz (where x, y, and z all come from {A,B,C}), we

will say that the triple is of Euclidean type xyz. We will now classify the elements of (GJ\MJ)(3) according

to their Euclidean types.

Note that Proposition 4.4.4(i) tells us that any two elements of (GJ\MJ)(3) that lie in the same

orbit of the action of S8 also have the same Euclidean type. So, for example, {(1, 2), (3, 4), (5, 6)∗} and
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{(1, 2), (3, 5), (4, 6)∗} have the same Euclidean type since

(45) · {(1, 2), (3, 4), (5, 6)∗} = {(1, 2), (3, 5), (4, 6)∗}.

By replacing the numbers with variables i, j, k, . . . , we obtain a “prototype” of an element of (GJ\MJ)(3)

(or, more precisely, an orbit representative for the action of S8 on (GJ\MJ)(3)). Such a prototype is

not unique, since for example the triple {(1, 2), (1, 3), (1, 4)} can be described as being of either prototype

{(i, j), (i, k), (i, `)} or prototype {(i, j), (j, k), (j, `)}. Nonetheless, we can obtain a list of prototypes such

that all elements of (GJ\MJ)(3) can be described as having exactly one prototype from the list. We provide

such a list in Table 4.2, along with the number of elements of each Euclidean type. The triples {a, b, c}

are ordered such that d(a, b) ≤ d(a, c) ≤ d(b, c). For example, Table 4.2 shows that there are 840 triples

{(i, j), (i, k), (j, `)} and 840 triples {(i, j)∗, (i, k)∗, (j, `)∗} belonging to the Euclidean type AAB of size 7560

(corresponding to the distance multiset {
√

32,
√

32,
√

64}) and that d((i, j), (i, k)) = d((i, j), (j, `)) =
√

32

and d((i, k), (j, `)) =
√

64, and d((i, j)∗, (i, k)∗) = d((i, j)∗, (j, `)∗) =
√

32 and d((i, k)∗, (j, `)∗) =
√

64.

The number of elements of each prototype given in Table 4.2 are computed using standard combi-

natorial techniques. For example, in prototype {(i, j), (i, k), (i, `)}, there are 8 choices for i and
(

7
3

)
choices

for j, k, and `, since the triple is unordered. We obtain the number of triples in each orbit by adding up

the number of triples of each type in that orbit. Since these add to 27720 =
(

56
3

)
= |(GJ\MJ)(3)| triples,

we have described all triples of (GJ\MJ)(3) and so have found prototypes for every element of (GJ\MJ)(3).

In particular, note that this implies that every element of (GJ\MJ)(3) has one of the five Euclidean types

AAA, AAB, ABB, BBB, or ABC.

Lemma 4.5.3. If two elements a, b ∈ Ω(3) both have Euclidean type AAA, then there exists a transformation

w ∈ φ(MJ) such that w · a = b.

Proof. From Table 4.2 translated to Ω(3) via the map φ, we see that every element of Euclidean type AAA has

one of the following six prototypes: {~vi,j , ~vi,k, ~vi,`}, {~vi,j , ~vi,k, ~vj,k}, {~vi,j , ~vi,k,−~v`,m}, {−~vi,j ,−~vi,k,−~vi,`},

{−~vi,j ,−~vi,k,−~vj,k}, {−~vi,j ,−~vi,k, ~v`,m}. As the latter three are obtained by negating the first three, it is

sufficiently to consider only the first three prototypes in light of Lemma 4.4.2(ii). Also, in light of Proposi-
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Table 4.2: Characterizations of the Euclidean types of (GJ\MJ)(3)

Type AAA 4032

{(i, j), (i, k), (i, `)} {(i, j)∗, (i, k)∗, (i, `)∗} 8 ·
(

7
3

)
= 280

{(i, j), (i, k), (j, k)} {(i, j)∗, (i, k)∗, (j, k)∗}
(

8
3

)
= 56

{(i, j), (i, k), (`,m)∗} {(i, j)∗, (i, k)∗, (`,m)} 8 ·
(

7
2

)(
5
2

)
= 1680

Type AAB 7560

{(i, j), (i, k), (j, `)} {(i, j)∗, (i, k)∗, (j, `)∗}
(

8
2

)
· 6 · 5 = 840

{(i, j), (i, k), (k, `)∗} {(i, j)∗, (i, k)∗, (k, `)} 8 · 7 · 6 · 5 = 1680

{(i, j)∗, (k, `), (m,n)} {(i, j), (k, `)∗, (m,n)∗} (8
2)(

6
2)(

4
2)

2 = 1260

Type ABB 12096

{(i, j), (i, k), (`,m)} {(i, j)∗, (i, k)∗, (`,m)∗} 8 ·
(

7
2

)(
5
2

)
= 1680

{(i, j), (i, k), (j, k)∗} {(i, j)∗, (i, k)∗, (j, k)} 8 ·
(

7
2

)
= 168

{(i, j), (i, k), (i, `)∗} {(i, j)∗, (i, k)∗, (i, `)} 8 ·
(

7
2

)
· 5 = 840

{(i, j), (k, `)∗, (k,m)} {(i, j)∗, (k, `), (k,m)∗} 8 · 7 ·
(

6
2

)
· 4 = 3360

Type BBB 2520

{(i, j), (k, `), (m,n)} {(i, j)∗, (k, `)∗, (m,n)∗} (8
2)(

6
2)(

4
2)

3! = 420

{(i, j), (k, `), (i, k)∗} {(i, j)∗, (k, `)∗, (i, k)}
(

8
2

)
· 6 · 5 = 840

Type ABC 1512
{(i, j), (i, k), (i, k)∗} {(i, j)∗, (i, k)∗, (i, k)} 8 · 7 · 6 = 336

{(i, j), (k, `), (k, `)∗} {(i, j)∗, (k, `)∗, (k, `)}
(

8
2

)(
6
2

)
= 420
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tion 4.4.4(ii), it is sufficient to check this for a specific representative of each prototype. These simplification

steps will also be used in the four propositions that follow. The computations that follow come from Propo-

sition 4.4.5.

Note that

φ(C)φ(A) · {~v3,4, ~v3,5, ~v3,6} = {~v1,4, ~v1,5,−~v3,6}

transforms the first prototype into the third and

φ(A) · {~v1,2, ~v1,6,−~v7,8} = {~v1,2, ~v1,6, ~v2,6}

transforms the third prototype into the second.

Lemma 4.5.4. If two elements a, b ∈ Ω(3) both have Euclidean type AAB, then there exists a transformation

w ∈ φ(MJ) such that w · a = b.

Proof. After simplifying as in Lemma 4.5.3, it remains to show that we can transform elements between the

prototypes {~vi,j , ~vi,k, ~vj,`}, {~vi,j , ~vi,k,−~vk,`}, and {−~vi,j , ~vk,`, ~vm,n}.

Note that

φ(A) · {~v1,2, ~v1,6, ~v2,7} = {~v1,2, ~v1,6,−~v6,8}

transforms the first prototype into the second and

φ(C)φ(A) · {~v1,2, ~v1,3, ~v2,6} = {−~v1,2, ~v4,5, ~v7,8}

transforms the first prototype into the third.

Lemma 4.5.5. If two elements a, b ∈ Ω(3) both have Euclidean type ABB, then there exists a transformation

w ∈ φ(MJ) such that w · a = b.

Proof. After simplifying as in Lemma 4.5.3, it remains to show that we can transform elements between the

prototypes {~vi,j , ~vi,k, ~v`,m}, {~vi,j , ~vi,k,−~vj,k}, {~vi,j , ~vi,k,−~vi,`} and {~vi,j ,−~vk,`, ~vk,m}.

Note that

φ(A) · {~v1,2, ~v1,6, ~v7,8} = {~v1,2, ~v1,6,−~v2,6}



45

transforms the first prototype into the second,

φ(A) · {~v1,2, ~v1,6, ~v4,5} = {~v1,2, ~v1,6,−~v1,3}

transforms the first prototype into the third, and

φ(A) · {~v1,2, ~v1,3, ~v4,6} = {~v1,2,−~v4,5, ~v4,6}

transforms the first prototype into the fourth.

Lemma 4.5.6. If two elements a, b ∈ Ω(3) both have Euclidean type BBB, then there exists a transformation

w ∈ φ(MJ) such that w · a = b.

Proof. After simplifying as in Lemma 4.5.3, it remains to show that we can transform elements from the

prototype {~vi,j , ~vk,`, ~vm,n} to the prototype {~vi,j , ~vk,`,−~vi,k}.

Note that

φ(A) · {~v1,2, ~v3,6, ~v4,5} = {~v1,2, ~v3,6,−~v1,3}

accomplishes this.

Lemma 4.5.7. If two elements a, b ∈ Ω(3) both have Euclidean type ABC, then there exists a transformation

w ∈ φ(MJ) such that w · a = b.

Proof. After simplifying as in Lemma 4.5.3, it remains to show that we can transform elements from the

prototype {~vi,j , ~vi,k,−~vi,k} to the prototype {~vi,j , ~vk,`,−~vk,`}.

Note that

φ(A) · {~v1,2, ~v1,3,−~v1,3} = {~v1,2, ~v4,5,−~v4,5}

accomplishes this.

Theorem 4.5.8. (i) If {a1, a2, a3} and {b1, b2, b3} are two elements of Ω(3) for which d(ai, aj) =

d(bi, bj) for all i, j ∈ {1, 2, 3}, then there exists w ∈ φ(MJ) such that w(ai) = bi for all i ∈ {1, 2, 3}.

(ii) Two elements of Ω(3) are in the same φ(MJ)-orbit if and only if they have the same Euclidean type.
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(iii) The group φ(MJ) has precisely 5 orbits in its action on Ω(3). These correspond to the Euclidean

types AAA, AAB, ABB, BBB, and ABC.

Proof. (i) This follows from Lemmas 4.5.3–4.5.7 since every element of Ω(3) has one of the five prototypes

AAA, AAB, ABB, BBB, ABC.

(ii) The “if” direction follows from (i). The “only if” direction follows from the fact, proven in Lemma

4.4.9(iii), that φ(MJ) acts on Ω by isometries.

(iii) The result follows from (ii) since we have shown that these are the only five Euclidean types and

that there are elements of Ω(3) with each of these five types.

4.6 Types of Three-Term Relations

The notions of Euclidean distance on GJ\MJ and the classification of unordered triples (µ1, µ2, µ3)

of distinct elements of GJ\MJ into Euclidean types, defined in the previous section, will be used below in

our study of the three-term relations of J(a; b; c, d, e, f, g, h).

For µ ∈ GJ\MJ and V the affine hyperplane of 3.1.1, we define the functions Jµ(~x) : V → C by

Jµ(~x) = J(µ~x). We call a relation among Jµ1
, Jµ2

, and Jµ3
an “xyz relation” if the triple (µ1, µ2, µ3) is of

Euclidean type xyz.

We are now ready to state and prove our main results concerning three-term relations for J(~x). In

deriving the three-term relations, we will make frequent use of the following trigonometric identities to

simplify the coefficients:

sinπ[2a, 2b, 2c, 2d] =

sinπ[a+ b+ c+ d− (2a, 2b, 2c, 2d)]− sinπ[b+ c+ d− a− (−2a, 2b, 2c, 2d)] (4.6.1)
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and

sinπ[3a, 3b, 3c, 3d, 3e, 3f, 3f − 3e] =

sinπ[3e, a+ b+ c+ d− e+ 2f − (3a, 3b, 3c, 3d, 3f, 3f − 3e)]

− sinπ[3f, a+ b+ c+ d− f + 2e− (3a, 3b, 3c, 3d, 3e, 3e− 3f)]

+ sinπ[3f − 3e, a+ b+ c+ d− e− f − (3a, 3b, 3c, 3d,−3e,−3f)]. (4.6.2)

These identities appear in [11, Exercises 2.16 and 5.22] and appeared originally in [21], [22], and [23] in

slightly different form. The forms above can be derived by taking the limit q → 1 in [11] or by repeated

application of the addition formula for sine. We will also make frequent use of (2.1.1) and (1.3.5).

4.6.1 AAA Relations

If we divide both sides of the equation in Theorem 4.1.2 by Γ[b, c, d, e, f, g, h, b+ c−a, d+ c−a, e+ c−

a, f + c−a, g+ c−a, h+ c−a, d+ b−a, e+ b−a, f + b−a, g+ b−a, h+ b−a], we may restate Theorem 4.1.2

in the following form:

Proposition 4.6.1. We have the AAA relation

sinπ(b− a)

Γ[c− a+ (d, e, f, g, h)]
J(1,2)(~x) +

sinπ(a− c)
Γ[b− a+ (d, e, f, g, h)]

J(1,3)(~x) +
sinπ(c− b)

Γ[d, e, f, g, h]
J(2,3)(~x) = 0. (4.6.3)

If we define

α(~x) =
sinπ(b− a)

Γ[d+ c− a, e+ c− a, f + c− a, g + c− a, h+ c− a]

where ~x = (a, b, c, d, e, f, g, h)T ∈ V and recall that Φ((123)) = E(23)BE(23) and Φ((132)) = B, then this

relation may be written in the more symmetric form

α(~x)J(1,2)(~x) + α(Φ((123))~x)J(1,3)(~x) + α(Φ((132))~x)J(2,3)(~x) = 0,

or in other words,
2∑
j=0

α(Φ((123)j)~x)J(Φ((123)j)~x) = 0.
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Note that the transformation

~x 7→ E(38)A3E(48)~x =



0 1 −1 1 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

−1/2 1/2 −1/2 1/2 1/2 1/2 1/2 −1/2

−1/2 1/2 −1/2 1/2 −1/2 1/2 1/2 1/2

−1/2 1/2 −1/2 1/2 1/2 −1/2 1/2 1/2

−1/2 1/2 −1/2 1/2 1/2 1/2 −1/2 1/2

−1 1 0 1 0 0 0 0



~x

takes (1, 2) to itself, (1, 3) to (1, 4), and (2, 3) to (1, 3), so that making this substitution in (4.6.3) yields the

AAA relation

sinπ(c− d)J(1,2)(~x)

Γ[c+ d− a, a− b− e+ 1, a− b− f + 1, a− b− g + 1, a− b− h+ 1]

+
sinπ(b− c)J(1,4)(~x)

Γ[b+ c− a, a− d− e+ 1, a− d− f + 1, a− d− g + 1, a− d− h+ 1]

+
sinπ(d− b)J(1,3)(~x)

Γ[b+ d− a, a− c− e+ 1, a− c− f + 1, a− c− g + 1, a− c− h+ 1]
= 0 (4.6.4)

upon application of the hyperplane relation (2.1.1).

4.6.2 AAB Relations

Proposition 4.6.2. We have the AAB relation

sinπ[b− a, d− a, a− c− (e, f, g, h)]− sinπ[b− c, d− c, e, f, g, h]

Γ[c+ d− a]
J(1,2)(~x)

+
π4 sinπ[a− c, d− a]

Γ[b+ d− a, b− a+ (e, f, g, h), 1 + a− c− (e, f, g, h)]
J(1,3)(~x)

+
π4 sinπ[a− c, b− c]

Γ[c, e, f, g, h, 1 + a− d− (e, f, g, h)]
J(2,4)(~x) = 0. (4.6.5)

Proof. Into (4.6.3), we substitute

~x 7→ E(34)~x = (a, b, d, c, e, f, g, h)T .
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We check that this transformation takes (1, 2) to itself, (1, 3) to (1, 4), and (2, 3) to (2, 4). Thus, (4.6.3)

yields

sinπ(b− a)J(1,2)(~x)

Γ[c+ d− a, e+ d− a, f + d− a, g + d− a, h+ d− a]

+
sinπ(a− d)J(1,4)(~x)

Γ[b+ c− a, e+ b− a, f + b− a, g + b− a, h+ b− a]

+
sinπ(d− b)J(2,4)(~x)

Γ[c, e, f, g, h]
= 0. (4.6.6)

We multiply (4.6.6) by

π4 sinπ(b− c)
sinπ(d− b)Γ[1 + a− d− (e, f, g, h)]

,

multiply (4.6.4) by

π4 sinπ(a− d)

sinπ(d− b)Γ[b− a+ (e, f, g, h)]
,

and subtract. Simplifying by applying (1.3.5), (2.1.1), and (2.1.6) to each of the resulting coefficients, we

obtain the relation

sinπ[b− a, b− c, d− a+ (e, f, g, h)]− sinπ[d− a, d− c, b− a+ (e, f, g, h)]

sinπ(d− b)Γ[c+ d− a]
J(1,2)(~x)

+
π4 sinπ(d− a)

Γ[b+ d− a, b− a+ (e, f, g, h), 1 + a− c− (e, f, g, h)]
J(1,3)(~x)

+
π4 sinπ(b− c)

Γ[c, e, f, g, h, 1 + a− d− (e, f, g, h)]
J(2,4)(~x) = 0. (4.6.7)

By (4.6.2),

sinπ[d− a+ (e, f, g, h), b− a, b− c, a− c]

= sinπ[b− a, a− c− (e, f, g, h), d− b, d− a]

− sinπ[b− c, e, f, g, h, d− b, d− c]

+ sinπ[a− c, b− a+ (e, f, g, h), d− a, d− c],

and so, by multiplying (4.6.7) by sinπ(a− c), we obtain the desired relation

sinπ[b− a, d− a, a− c− (e, f, g, h)]− sinπ[b− c, d− c, e, f, g, h]

Γ[c+ d− a]
J(1,2)(~x)

+
π4 sinπ[a− c, d− a]

Γ[b+ d− a, b− a+ (e, f, g, h), 1 + a− c− (e, f, g, h)]
J(1,3)(~x)

+
π4 sinπ[a− c, b− c]

Γ[c, e, f, g, h, 1 + a− d− (e, f, g, h)]
J(2,4)(~x) = 0.
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4.6.3 ABB Relations

Proposition 4.6.3. We have the ABB relation

sinπ(2b− a)

Γ[1 + a− b− (d, e, f, g, h)]

· (sinπ[b, c− (d, e, f, g, h)] + sinπ[a− b− 2c, a− c− (d, e, f, g, h)]) J(1,2)(~x)

− sinπ(2c− a)

Γ[1 + a− c− (d, e, f, g, h)]

· (sinπ[c, b− (d, e, f, g, h)] + sinπ[a− 2b− c, a− b− (d, e, f, g, h)]) J(1,3)(~x)

− π4 sinπ[b− c, 2b− a, 2c− a]

Γ[b, c, b+ c− a, 1 + a− ((d, e, f, g, h))]
J(2,3)∗(~x) = 0. (4.6.8)

Proof. Into (4.6.7), we substitute

~x 7→ E(345)A4E(234)~x =



−1/2 −1/2 −1/2 3/2 −1/2 1/2 1/2 1/2

0 0 0 1 0 0 0 0

−1/2 −1/2 −1/2 1/2 1/2 1/2 1/2 1/2

−1/2 1/2 −1/2 1/2 −1/2 1/2 1/2 1/2

−1/2 −1/2 1/2 1/2 −1/2 1/2 1/2 1/2

−1 0 0 1 0 1 0 0

−1 0 0 1 0 0 1 0

−1 0 0 1 0 0 0 1



~x.

We check that this transformation takes (1, 2) to (1, 4), (1, 3) to (2, 3)∗, and (2, 4) to (1, 2). Thus,

(4.6.7) yields

1

Γ[1 + a− c− d] sinπ(a− c− d− e)

· (sinπ[a− b− c− d, a− b− c− e, d− a+ e, b− a+ (f, g, h)]

+ sinπ[c, b− d, b− e, a− ((f, g, h))])J(1,4)(~x)

−
π4 sinπ(b− d)J(2,3)∗(~x)

Γ[b, c, b+ d− a, 1 + a− e− (f, g, h), 1 + a− ((f, g, h))]

−
π4 sinπ(a− b− c− d)J(1,2)(~x)

Γ[1 + a− b− c, 1 + a− b− (e, f, g, h), d− a+ (e, f, g, h)]
= 0. (4.6.9)
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We multiply (4.6.4) by

− 1

Γ[1 + a− c− d]

· (sinπ[a− b− c− d, a− b− c− e, d− a+ e, b− a+ (f, g, h)]

+ sinπ[c, b− d, b− e, a− ((f, g, h))]),

multiply (4.6.9) by

sinπ[b− c, a− c− d− e]
Γ[b+ c− a, 1 + a− d− (e, f, g, h)]

,

and subtract. Simplifying as in Theorem 4.6.2, we obtain the relation

1

πΓ[1 + a− b− (e, f, g, h)]

· (sinπ[b− c, a− b− c, a− b− c− d, a− c− d− e, a− d− (e, f, g, h)]

+ sinπ[c, b− d, b− e, c− d, a− c− d, a− ((f, g, h))]

+ sinπ[c− d, a− c− d, a− d− e, a− b− (c+ d, c+ e, f, g, h)]) J(1,2)(~x)

− sinπ(d− b)
Γ[b+ d− a, 1 + a− c− (d, e, f, g, h)]

· (sinπ[a− d− e, a− b− c− d, a− b− c− e, a− b− (f, g, h)]

+ sinπ[c, b− d, b− e, a− ((f, g, h))]) J(1,3)(~x)

+
π4 sinπ[b− c, b− d, a− c− d− e]

Γ[b, c, b+ c− a, b+ d− a, 1 + a− ((d, e, f, g, h))]
J(2,3)∗(~x) = 0. (4.6.10)

By (4.6.1), we have

sinπ[c, b− d, b− e, f + g + h− a− b] =

sinπ[a− c− d− e, a− b− e, a− b− d, 2b+ c− a]

− sinπ[a− d− e, a− b− c− e, a− b− c− d, 2b− a]
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and so applying (4.6.1) to sinπ[a− f − g, a− f − h, a− g − h, a− 2b], we have

sinπ[a− 2b, c, b− d, b− e, a− ((f, g, h))]

=− sinπ[c, b− d, b− e, f + g + h− a− b, a− b− f, a− b− g, a− b− h]

− sinπ[c, b− d, b− e, b− f, b− g, b− h, c+ d+ e− a]

= sinπ[c+ d+ e− a, 2b+ c− a, a− b− (d, e, f, g, h)]

− sinπ[a− 2b, a− d− e, a− b− c− d, a− b− c− e, a− b− (f, g, h)]

− sinπ[c, c+ d+ e− a, b− (d, e, f, g, h)]. (4.6.11)

So, if we multiply (4.6.10) by sinπ(a − 2b), apply (4.6.11) in both the coefficient of J(1,2)(~x) and J(1,3)(~x),

and then divide by sinπ(c+ d+ e− a), the coefficient of J(1,2)(~x) becomes

1

πΓ[1 + a− b− (e, f, g, h)]

· (sinπ[b− c, a− b− c, a− b− c− d, 2b− a, a− d− (e, f, g, h)]

+ sinπ[c− d, a− c− d, 2b+ c− a, a− b− (d, e, f, g, h)]

− sinπ[c, c− d, a− c− d, b− (d, e, f, g, h)])

and the coefficient of J(1,3)(~x) becomes

− sinπ(d− b)
Γ[b+ d− a, 1 + a− c− (d, e, f, g, h)]

· (sinπ[2b+ c− a, a− b− (d, e, f, g, h)]− sinπ[c, b− (d, e, f, g, h)]) .

Now, by (4.6.2),

sinπ[b− (e, f, g, h), d− b, c, b+ c− d]

=− sinπ[b− (e+ 1, f, g, h), d− b, c, b+ c− d]

= sinπ[d− b, b+ c− a+ (e, f, g, h), 2b− a, b+ d− a]

− sinπ[c, d− a+ (e, f, g, h), 2b− a, 2b+ c− a]

+ sinπ[b+ c− d, b− a+ (e, f, g, h), b− a+ d, 2b+ c− a], (4.6.12)
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so when we multiply (4.6.10) by sinπ(b+ c− d) and apply (4.6.12), the coefficient of J(1,2)(~x) becomes

sinπ(2b− a)

πΓ[1 + a− b− (e, f, g, h)]
·
(

sinπ[d− a+ (e, f, g, h)] (sinπ[b− c, a− b− c, a− b− c− d, b+ c− d]

− sinπ[c, 2b+ c− a, c− d, a− c− d]) + sinπ[b− d, c− d, a− b− d, a− c− d, b+ c− a+ (e, f, g, h)]

)
.

We apply (4.6.1) once more:

sinπ[a− b− c− d, b− c, a− b− c, b+ c− d] =

sinπ[b, a− b− d, b− d, a− b− 2c]

+ sinπ[a− c− d, c, 2b+ c− a, c− d]

and so the coefficient of J(1,2)(~x) becomes

sinπ[2b− a, b− d, a− b− d]

πΓ[1 + a− b− (e, f, g, h)]

·
(
sinπ[b, a− b− 2c, d− a+ (e, f, g, h)] + sinπ[c− d, a− c− d, b+ c− a+ (e, f, g, h)]

)
.

To make the symmetry in the variables d, e, f , g, and h clear, we apply (4.6.2) once again:

sinπ[d− a+ (e, f, g, h), b, b+ 2c− a, 2c− a]

= sinπ[b, c− (e, f, g, h), d− b− c, d− c]

− sinπ[b+ 2c− a, a− c− (e, f, g, h), d− b− c, c+ d− a]

+ sinπ[2c− a, a− b− c− (e, f, g, h), d− c, c+ d− a],

so that, upon multiplication by
sinπ(2c− a)Γ(b+ d− a)

sinπ[b− d, b+ c− d]
, the relation becomes

sinπ(2b− a)

Γ[1 + a− b− (d, e, f, g, h)]

· (sinπ[b, c− (d, e, f, g, h)] + sinπ[a− b− 2c, a− c− (d, e, f, g, h)]) J(1,2)(~x)

− sinπ(2c− a)

Γ[1 + a− c− (d, e, f, g, h)]

· (sinπ[c, b− (d, e, f, g, h)] + sinπ[a− 2b− c, a− b− (d, e, f, g, h)]) J(1,3)(~x)

− π4 sinπ[b− c, 2b− a, 2c− a]

Γ[b, c, b+ c− a, 1 + a− ((d, e, f, g, h))]
J(2,3)∗(~x) = 0

as required.
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4.6.4 BBB Relations

Proposition 4.6.4. We have the BBB relation

sinπ[a, b− a]

Γ[1− (b, e, f, g, h), d− a+ (e, f, g, h)]
·

(sinπ[d, 2c+ d− a, b− a+ (e, f, g, h)]

− sinπ[c− b, a− b− c, c+ d− a+ (e, f, g, h)]) J(1,2)(~x)

+
sinπ[b− a, c+ d− b]

Γ[1 + a− c− (d, e, f, g, h), b− a+ (e, f, g, h)]

· (sinπ[a− b− c, a− (d, e, f, g, h)]− sinπ[b+ c, d, e, f, g, h]) J(3,4)(~x)

+
sinπ[a, c+ d− b]

Γ[c, d, b+ c− a, 1 + a− ((e, f, g, h))]

· (sinπ[a− c, a− d, b− a+ (e, f, g, h)]− sinπ[b− c, b− d, e, f, g, h]) J(1,3)∗(~x) = 0. (4.6.13)

Proof. Into (4.6.5), we substitute

~x 7→ E(234)A5~x =



−1 2 0 0 0 0 0 0

−1 1 0 1 0 0 0 0

0 1 0 0 0 0 0 0

−1 1 1 0 0 0 0 0

−1 1 0 0 1 0 0 0

−1 1 0 0 0 1 0 0

−1 1 0 0 0 0 1 0

−1 1 0 0 0 0 0 1



~x.

We check that this transformation takes (1, 2) to (1, 4), (1, 3) to (1, 2), and (2, 4) to (3, 4), so that

(4.6.5) yields

1

Γ(c)
(sinπ[d− a, d− b, a− c− (e, f, g, h)]− sinπ[c− a, c− b, a− d− (e, f, g, h)]) J(1,4)(~x)

+
π4 sinπ[c− b, c− d]

Γ[d− a+ c, d− a+ (e, f, g, h), 1− (e, f, g, h)]
J(1,2)(~x)

+
π4 sinπ[c− d, d− a]

Γ[b, b− a+ (e, f, g, h), 1 + a− c− (e, f, g, h)]
J(3,4)(~x) = 0. (4.6.14)
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Likewise, we also substitute into (4.6.5)

~x 7→ E(234)(5678)CA3E(243)(5876)~x =

−3/2 1/2 −1/2 3/2 −1/2 1/2 1/2 1/2

−1 1 0 1 0 0 0 0

−3/2 1/2 −1/2 1/2 1/2 1/2 1/2 1/2

−1/2 1/2 −1/2 1/2 −1/2 1/2 1/2 1/2

−3/2 1/2 1/2 1/2 −1/2 1/2 1/2 1/2

−1 0 0 1 0 1 0 0

−1 0 0 1 0 0 1 0

−1 0 0 1 0 0 0 1



~x.

We check that this transformation takes (1, 2) to (1, 4), (1, 3) to (1, 3)∗, and (2, 4) to (1, 2), so that

(4.6.5) yields

1

Γ(1 + a− c− d)
(sinπ[f, g, h, a− d− e, a− b− c− d, a− b− c− e]

+ sinπ[a− d, a− e, a− b− c, a− ((f, g, h))]) J(1,4)(~x)

+
π4 sinπ[a− d, 2a− b− c− d− e]

Γ[b, d, b− a+ c, 1 + a− ((e, f, g, h))]
J(1,3)∗(~x)

+
π4 sinπ[a− b− c− d, 2a− b− c− d− e]
Γ[1− c, 1− (e, f, g, h), d− a+ (e, f, g, h)]

J(1,2)(~x) = 0. (4.6.15)

Then, if we multiply (4.6.14) by

1

Γ(1 + a− c− d)
(sinπ[f, g, h, a− d− e, a− b− c− d, a− b− c− e]

+ sinπ[a− d, a− e, a− b− c, a− ((f, g, h))]) ,

multiply (4.6.15) by

sinπ[d− a, d− b, a− c− (e, f, g, h)]− sinπ[c− a, c− b, a− d− (e, f, g, h)]

Γ(c)
,
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and subtract, then we obtain the relation

1

Γ[1− (e, f, g, h), d− a+ (e, f, g, h)]
·

(sinπ[c− b, c− d, a− c− d, a− d− e, a− b− c− d, a− b− c− e, f, g, h]

+ sinπ[c− b, c− d, a− d, a− e, a− b− c, a− c− d, a− ((f, g, h))]

+ sinπ[c, d− a, d− b, a− b− c− d, 2a− b− c− d− e, a− c− (e, f, g, h)]

− sinπ[c, c− a, c− b, a− b− c− d, 2a− b− c− d− e, a− d− (e, f, g, h)]) J(1,2)(~x)

− π sinπ[c− d, d− a]

Γ[b, 1 + a− c− (d, e, f, g, h), b− a+ (e, f, g, h)]

· (sinπ[a− d− e, a− b− c− d, a− b− c− e, f, g, h]

+ sinπ[a− d, a− e, a− b− c, a− ((f, g, h))]) J(3,4)(~x)

+
π sinπ[a− d, 2a− b− c− d− e]

Γ[b, c, d, b+ c− a, 1 + a− ((e, f, g, h))]

· (sinπ[d− a, d− b, a− c− (e, f, g, h)]

− sinπ[c− a, c− b, a− d− (e, f, g, h)]) J(1,3)∗(~x) = 0. (4.6.16)

Now, by (4.6.1),

sinπ[a− d, a− e, a− b− c, 2a− f − g − h] =

sinπ[d, e, b+ c, f + g + h− a]

− sinπ[a, d+ e− a, b+ c+ d− a, a− b− c− e]

and so applying (4.6.1) to sinπ[a− f − g, a− f − h, a− g − h, a], we see that

sinπ[a− d, a− e, a− b− c, a− ((f, g, h)), a]

= sinπ[a− b− c, a− f − g − h, a− (d, e, f, g, h)]

− sinπ[a− d, a− e, a− b− c, 2a− f − g − h, f, g, h]

= sinπ[a− b− c, b+ c+ d+ e− 2a, a− (d, e, f, g, h)]

+ sinπ[b+ c, 2a− b− c− d− e, d, e, f, g, h]

− sinπ[a− d− e, a− b− c− d, a− b− c− e, f, g, h, a]. (4.6.17)
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Also, by (4.6.2),

sinπ[a− c− (e, f, g, h), a− d, b− d, b− a]

=− sinπ[a− c− (e+ 1, f, g, h), a− d, b− d, b− a]

= sinπ[a− d, b− a+ (e, f, g, h), d− c, a− c]

− sinπ[b− d, e, f, g, h, d− c, b− c]

+ sinπ[b− a, d− a+ (e, f, g, h), a− c, b− c]. (4.6.18)

Multiplying (4.6.16) by sinπ[a,b−a]
Γ(1−b) sinπ[2a−b−c−d−e,d−c] , substituting (4.6.17) into the coefficients of J(1,2)(~x) and

J(3,4)(~x), and substituting (4.6.18) into the coefficients of J(1,2)(~x) and J(1,3)∗(~x), the relation becomes

1

Γ[1− (b, e, f, g, h), d− a+ (e, f, g, h)]
·

(sinπ[b− a, c− b, a− b− c, a− c− d, a− (d, e, f, g, h)]

− sinπ[b− a, b+ c, c− b, a− c− d, d, e, f, g, h]

+ sinπ[a, c, a− c, a− d, a− b− c− d, b− a+ (e, f, g, h)]

− sinπ[a, c, b− c, b− d, a− b− c− d, e, f, g, h]) J(1,2)(~x)

+
sinπ[b, a− d, b− a]

Γ[1 + a− c− (d, e, f, g, h), b− a+ (e, f, g, h)]

·
(

sinπ[a− b− c, a− (d, e, f, g, h)]− sinπ[b+ c, d, e, f, g, h]
)
J(3,4)(~x)

+
sinπ[a, b, a− d]

Γ[c, d, b+ c− a, 1 + a− ((e, f, g, h))]

·
(

sinπ[a− c, a− d, b− a+ (e, f, g, h)]− sinπ[b− c, b− d, e, f, g, h]
)
J(1,3)∗(~x) = 0. (4.6.19)

Now, by (4.6.1),

sinπ[d, b− a, b+ c, a− c− d] =

sinπ[b− d, a, c, a− b− c− d] + sinπ[b, a− d, c+ d, b+ c− a],
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and substituting this into the coefficient of J(1,2)(~x) in (4.6.19) simplifies the coefficient to

sinπ(a− d)

Γ[1− (b, e, f, g, h), d− a+ (e, f, g, h)]
·

(sinπ[b− a, c− b, a− b− c, a− c− d, a− (e, f, g, h)]

+ sinπ[b, b− c, c+ d, b+ c− a, e, f, g, h]

+ sinπ[a, c, a− c, a− b− c− d, b− a+ (e, f, g, h)]) . (4.6.20)

Now, by (4.6.2),

sinπ[a− (e, f, g, h), b− a, a− c− d, c+ d− b]

= sinπ[a− (e+ 1, f, g, h), b− a, c+ d− a, c+ d− b]

= − sinπ[b− a, c+ d− a+ (e, f, g, h), a, b]

+ sinπ[c+ d− a, b− a+ (e, f, g, h), a, c+ d]

− sinπ[c+ d− b, e, f, g, h, b, c+ d],

and if we multiply (4.6.19) by sinπ(c+d−b)
sinπ(a−d) and substitute this into the coefficient of J(1,2)(~x), then the

coefficient becomes

sinπ(a)

Γ[1− (b, e, f, g, h), d− a+ (e, f, g, h)]
·

(sinπ[c− b, c+ d, a− b− c, c+ d− a, b− a+ (e, f, g, h)]

− sinπ[b, b− a, c− b, a− b− c, c+ d− a+ (e, f, g, h)]

+ sinπ[c, a− c, c+ d− b, a− b− c− d, b− a+ (e, f, g, h)]) .

Finally, by (4.6.1),

sinπ[c− b, c+ d, a− b− c, c+ d− a]

= sinπ[d, b, 2c+ d− a, b− a]− sinπ[c+ d− b, c, a− b− c− d, a− c]
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and substituting this into the coefficient of J(1,2)(~x) and dividing by sinπb gives the relation

sinπ[a, b− a]

Γ[1− (b, e, f, g, h), d− a+ (e, f, g, h)]
·

(sinπ[d, 2c+ d− a, b− a+ (e, f, g, h)]

− sinπ[c− b, a− b− c, c+ d− a+ (e, f, g, h)]) J(1,2)(~x)

+
sinπ[b− a, c+ d− b]

Γ[1 + a− c− (d, e, f, g, h), b− a+ (e, f, g, h)]

· (sinπ[a− b− c, a− (d, e, f, g, h)]− sinπ[b+ c, d, e, f, g, h]) J(3,4)(~x)

+
sinπ[a, c+ d− b]

Γ[c, d, b+ c− a, 1 + a− ((e, f, g, h))]

· (sinπ[a− c, a− d, b− a+ (e, f, g, h)]− sinπ[b− c, b− d, e, f, g, h]) J(1,3)∗(~x) = 0,

as required.

4.6.5 ABC Relations

Proposition 4.6.5. We have the ABC relation

(sinπ[b, a− c, a− b− c, 2b− a, c− (d, e, f, g, h), a− b− (d, e, f, g, h)]

− sinπ[c, a− b, a− b− c, 2c− a, b− (d, e, f, g, h), a− c− (d, e, f, g, h)]

− sinπ[b, c, b− c, 2a− 2b− 2c, a− b− (d, e, f, g, h), a− c− (d, e, f, g, h)]) J(1,2)(~x)

+
π5 sinπ[b− c, 2c− a, a− b− c]

Γ[d, e, f, g, h, 1 + a− c− (d, e, f, g, h)]

· (sinπ[a− 2b− c, a− b− (d, e, f, g, h)] + sinπ[c, b− (d, e, f, g, h)]) J(2,3)(~x)

+
π9 sinπ[2b− a, 2c− a, a− c, b− c, a− b− c]

Γ[b, c, b+ c− a, b− a+ (d, e, f, g, h), 1 + a− ((d, e, f, g, h))]
J(2,3)∗(~x) = 0. (4.6.21)

Proof. Multiplying (4.6.3) by

− sinπ(2c− a)

Γ[1 + a− c− (d, e, f, g, h)]

· (sinπ[c, b− (d, e, f, g, h)] + sinπ[a− 2b− c, a− b− (d, e, f, g, h)])

and (4.6.8) by

sinπ(a− c)
Γ[b− a+ (d, e, f, g, h)]
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and subtracting, we have after some trivial simplifications similar to the above that

(sinπ[a− b, 2c− a, 2b+ c− a, a− b− (d, e, f, g, h), a− c− (d, e, f, g, h)]

− sinπ[a− b, 2c− a, c, b− (d, e, f, g, h), a− c− (d, e, f, g, h)]

+ sinπ[a− c, 2b− a, a− b− 2c, a− b− (d, e, f, g, h), a− c− (d, e, f, g, h)]

+ sinπ[a− c, 2b− a, b, c− (d, e, f, g, h), a− b− (d, e, f, g, h)]) J(1,2)(~x)

+
π5 sinπ[b− c, 2c− a]

Γ[d, e, f, g, h, 1 + a− c− (d, e, f, g, h)]

· (sinπ[a− 2b− c, a− b− (d, e, f, g, h)] + sinπ[c, b− (d, e, f, g, h)]) J(2,3)(~x)

+
π9 sinπ[2b− a, 2c− a, a− c, b− c]

Γ[b, c, b+ c− a, b− a+ (d, e, f, g, h), 1 + a− ((d, e, f, g, h))]
J(2,3)∗(~x) = 0. (4.6.22)

Now, by (4.6.1),

sinπ[2c− a, a− b, 2b+ c− a, a− b− c]

= sinπ[a− c, b+ c− a, a− 2b, b+ 2c− a]− sinπ[c, b− c, 2a− 2b− 2c, b], (4.6.23)

so if we multiply (4.6.22) by sinπ(a− b− c) and apply (4.6.23) in the first term of the coefficient of J(1,2)(~x),

the relation (4.6.22) simplifies to

(sinπ[b, a− c, a− b− c, 2b− a, c− (d, e, f, g, h), a− b− (d, e, f, g, h)]

− sinπ[c, a− b, a− b− c, 2c− a, b− (d, e, f, g, h), a− c− (d, e, f, g, h)]

− sinπ[b, c, b− c, 2a− 2b− 2c, a− b− (d, e, f, g, h), a− c− (d, e, f, g, h)]) J(1,2)(~x)

+
π5 sinπ[b− c, 2c− a, a− b− c]

Γ[d, e, f, g, h, 1 + a− c− (d, e, f, g, h)]

· (sinπ[a− 2b− c, a− b− (d, e, f, g, h)] + sinπ[c, b− (d, e, f, g, h)]) J(2,3)(~x)

+
π9 sinπ[2b− a, 2c− a, a− c, b− c, a− b− c]

Γ[b, c, b+ c− a, b− a+ (d, e, f, g, h), 1 + a− ((d, e, f, g, h))]
J(2,3)∗(~x) = 0

as required.

4.6.6 Conclusion

Combining the above subsections, we obtain our main result of this section.
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Theorem 4.6.6. (i) Let µ1, µ2, and µ3 be elements of MJ such that no two of the µj’s are in the same

right coset of GJ in MJ . Then there is a relation of the form

γ1Jµ1
(~x) + γ2Jµ2

(~x) + γ3Jµ3
(~x) = 0, (4.6.24)

where γ1, γ2, and γ3 are entire, rational combinations of gamma and sine functions, whose arguments

are Z-affine combinations of a,b,c,d,e,f ,g, and h.

(ii) For any ` ∈ {1, 2, 3}, pick j and k so that {j, k} = {1, 2, 3} \ {`}. Then, in a relation of the form

(4.6.24), each coefficient γ` may be written as a sum of n monomials in gamma and sine functions,

where
√

32n is the Euclidean distance between µj and µk.

(iii) If (µ1, µ2, µ3) and (ν1, ν2, ν3) are triples of the same Euclidean type, then a three-term relation among

Jµ1 , Jµ2 , and Jµ3 can be transformed into one involving Jν1 , Jν2 , and Jν3 by the application of a

single change of variable

~x 7→ ρ~x (ρ ∈MJ)

to all elements (including the coefficients) of the first relation.

Proof. The assertions follow by combining Theorem 4.5.8 with Propositions 4.6.1–4.6.5.
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