
1. (16 pts) Find all matrices that commute with

A =

[
1 1
0 1

]
.

Write B =

[
a b
c d

]
. Setting AB = BA and equating the four components of the product matrices,

we see that c = 0 and a = d, so all matrices of the form B =

[
a b
0 a

]
where a and b are any real

numbers (and only matrices of this form) will commute with A.



2. (16 pts) Let A =

2 1 −1
0 2 0
2 2 −1

 and B = {

0
1
0

 ,

1
0
1

 ,

1
1
2

} be a basis of R3.

Find the B-matrix of the linear transformation T (~x) = A~x.

The easiest method is probably to compute this by columns: [T (

0
1
0

)]B =

1
2
2


B

=

1
0
1

 and doing

the same thing with the other basis elements shows that [T (

1
0
1

)]B =

0
1
0

 and [T (

1
1
2

)]B =

1
0
1

,

so that the B-matrix of T is B =

1 0 1
0 1 0
1 0 1

.

Using the method B = S−1AS to compute this is also not too ugly in this case, since the inverse of

S is fairly nice. If you did it this way, you should have ended up with S−1 =

 1 1 −1
2 0 −1
−1 0 1

 .



3. (16 pts) Let A be an n×m matrix and V be a subspace of Rn. Define

W = {~x ∈ Rm|A~x ∈ V }.

Show that W is a subspace of Rm.

We need to check the three properties in the definition of a subspace of Rm:

(a) Note that A~0 = ~0 and ~0 ∈ V since V is a subspace of Rn and all subspaces contain ~0. Thus,
~0 ∈W .

(b) Let ~x, ~y ∈ W . That is, A~x,A~y ∈ V . Then A(~x + ~y) = A~x + A~y ∈ V since subspaces are closed
under addition. Thus, ~x + ~y ∈W .

(c) Let ~x ∈ W , k ∈ R. That is, A~x ∈ V . Then A(k~x) = kA~x ∈ V since subspaces are closed under
scalar multiplication. Thus, k~x ∈W .

The three properties hold, so W is a subspace of Rm.

Aside: We can use the above to show that the solutions to (for example)

ax + by + cz = dx + ey + fz = gx + hy + jz

form a subspace of R3. Note that the solutions to these equalities satisfy A~x = k

1
1
1

 for some k ∈ R

where A =

a b c
d e f
g h j

, so if we let V = span(

1
1
1

), then the set of solutions is precisely the set W

that we proved was a subspace above.

A few special cases of the above: 1) If im(A) ⊆ V , then W = Rm. 2) If V = {~0}, then W = ker(A).



4. Consider the matrix

A =


2 −2 −3 −3 5
4 −4 −3 −2 1
1 −1 −3 −3 7
1 −1 2 2 −8

 with rref(A) =


1 −1 0 0 −2
0 0 1 0 −3
0 0 0 1 0
0 0 0 0 0

 .

(a) (8 pts) Find a basis of im(A). What is the dimension of im(A)?

We know that the columns of A corresponding to the columns of rref(A) with leading 1’s will

form a bais of im(A), so that {


2
4
1
1

 ,


−3
−3
−3
2

 ,


−3
−2
−3
2

} is a basis of im(A), so dim(im(A)) = 3.

(b) (8 pts) Find a basis of ker(A). What is the dimension of ker(A)?

From rref(A)~x = ~0, we see that the solutions to A~x = ~0 are vectors of the form

~x =


s + 2t

s
3t
0
t

 = s


1
1
0
0
0

+ t


2
0
3
0
1

 ,

so that {


1
1
0
0
0

 ,


2
0
3
0
1

} is a basis of ker(A), so dim(ker(A)) = 2.

Note that dim(im(A)) + dim(ker(A)) = 5, as guaranteed by the Rank-Nullity Theorem.



5. (12 pts) Let A be an n×m matrix. Let ~v1, . . . , ~vk be a basis of ker(A) and ~w1, . . . , ~w` be a basis of
im(A). For i = 1, . . . , `, let ~xi ∈ Rm be a vector such that A~xi = ~wi.

Show that B = {~v1, . . . , ~vk, ~x1, . . . , ~x`} is a basis of Rm.

(Hint: It may be useful to determine what k + ` equals, in terms of n and m.)

By Rank-Nullity, k+ ` = dim(ker(A)) + dim(im(A)) = m. We know that any m linearly independent
vectors in Rm will form a basis of Rm (and similarly for m vectors that span Rm), so it is enough to
show that the vectors of B either are linearly independent or span Rm. Showing linear independence
is easier, but I’ll show how to do it either way below. Note that you only need to do one of the two
below (unless you didn’t figure out that k + ` = m, in which case you’d need to show both).

Let T (~x) = A~x. (Technically, you don’t need to do this: you can use A below everywhere that I use
T . I just want to view things in terms of linear transformations instead of matrices for a reason that
I’ll explain at the end. Note im(T ) = im(A) and ker(T ) = ker(A) by definition.)

Linear Independence: Consider the relation

c1 ~v1 + · · ·+ ck ~vk + d1 ~x1 + · · ·+ d` ~x` = ~0. (1)

We want to show that only the trivial relation exists; that is, that c1 = · · · = ck = d1 = · · · = d` = 0.

Let’s apply T to both sides of (1). Since we can split on addition and scalar multiplication (since T
is a linear transformation), we get:

c1T (~v1) + · · ·+ ckT ( ~vk) + d1T ( ~x1) + · · ·+ d`T (~x`) = T (~0).

Note that T (~vi) = ~0 since ~vi ∈ ker(T ) for i = 1, . . . k and we chose xi so that T (~xi) = ~wi for
i = 1, . . . , `. Also, T (~0) = ~0. So the above equation becomes

d1 ~w1 + · · ·+ d` ~w` = ~0.

But, we know that ~w1, . . . , ~w` are linearly independent, so they satisfy only the trivial relation, so
d1 = · · · = d` = 0. Plugging these values into (1), we’re left with

c1 ~v1 + · · ·+ ck ~vk = ~0.

Since we also know that ~v1, . . . , ~vk are linearly independent, they also satisfy only the trivial relation,
so c1 = · · · = ck = 0. Thus, (1) is the trivial relation, so that the vectors of B are linearly independent.

Spanning Set: Let ~x ∈ Rm. We will show that ~x ∈ span(~v1, . . . , ~vk, ~x1, . . . , ~x`) by explicitly
computing it as a linear combination of these vectors. First, note that T (~x) ∈ im(T ), so there exist
unique scalars d1, . . . , d` such that T (~x) = d1 ~w1 + · · ·+d` ~w` since the vectors ~w1, . . . , ~w` form a basis
of im(T ). Let ~u = d1 ~x1 + · · ·+ d` ~x` for the same scalars di. Then T (~u) = d1 ~w1 + · · ·+ d` ~w` = T (~x)
(again, since we can split on addition and scalar multiplication).

Then T (~x − ~u) = T (~x) − T (~u) = ~0, so ~x − ~u ∈ ker(T ). Thus, ~x − ~u = c1 ~v1 + · · · + ck ~vk for some
scalars c1, . . . , ck since ~v1, . . . , ~vk form a basis of ker(T ). Thus,

~x = c1 ~v1 + · · ·+ ck ~vk + ~u = c1 ~v1 + · · ·+ ck ~vk + d1 ~x1 + · · ·+ d` ~x`,

so that ~x ∈ span(~v1, . . . , ~vk, ~x1, . . . , ~x`). Since ~x ∈ Rm was arbitrary, this shows that the vectors of
B span Rm.



Aside: Note that this provides a second proof of the Rank-Nullity Theorem. If we didn’t know that
k + ` = m, we could prove both linear independence and spanning as above, which would show that
B is a basis of Rm. Since B contains k+` vectors and we know that every basis of Rm has m vectors,
we now would then see that dim(im(A)) + dim(ker(A)) = k + ` = m.

Why did I use T above instead of A? Because this generalizes to abstract vector spaces. In Section 4.2,
we’ll define linear transformations, images, and kernels in abstract vector spaces. Then, following the
same argument above exactly will prove that for any linear transformation T from a finite-dimensional
vector space V to a vector space W , dim(im(T )) + dim(ker(T )) = dim(V ). Cool. “But where did
that ‘finite-dimensional’ bit come from,” I hear you ask. Good question. Above, we’ve assumed that
im(T ) and ker(T ) are finite-dimensional, which will clearly be the case if V is finite-dimensional, but
may not be the case if V is infinite-dimensional.

Aside 2: Some people tried to use one linear relation for the vectors ~v1, . . . , ~vk and one linear
relation for ~x1, . . . , ~x` instead of combining them into one relation like we did above in (1). This

doesn’t work. For example, the vectors

1
0
0

 ,

1
2
1

 are linearly independent and the vectors

1
0
1

 ,

0
1
0


are linearly independent, but the vectors

1
0
0

 ,

1
2
1

 ,

1
0
1

 ,

0
1
0

 are not linearly independent (since0
1
0

 = 1
2

1
2
1

 − 1
2

1
0
1

 is redundant). Linear independence is a property of a set of vectors, not of

the individual vectors themselves, so you need to check them all together.



6. (4 pts each) Decide whether the following statements are true or false. You do not need to show
work.

Let A be an n× n matrix. If A is similar to In, then A = In.

True False

If A is similar to In, then there is an invertible matrix S such that A = S−1InS = S−1S = In.

Let A be an invertible n× n matrix such that A2 = A. Then A = In.

True False

Since A is invertible, we can multiply both sides by A−1: A−1A2 = A−1A, so A = In. Note that we saw on
the review that this is not necessarily the case if we don’t know that A is invertible.

Let A be an n× n matrix such that im(A) = ker(A). Then n must be even.

True False

By Rank-Nullity, dim(im(A)) = dim(ker(A)) = n
2 . If n is odd, this will not be an integer, which is impossible

since the dimension must be an integer.

Let A be a 2 × 2 matrix that represents a reflection across a line through the origin. Then A is similar to[
1 0
0 −1

]
.

True False

Recall that matrices will be similar if they represent the same transformation, but in different bases. Since we
know how to construct the B-matrix of a transformation column-by-column, this question is asking if we can
find a basis B = {~v, ~w} of R2 such that A~v = ~v and A~w = −~w. One way to do this is to let ~v be a unit
vector on the line and ~w be a unit vector perpendicular to the line. From the geometry, it’s clear that A~v = ~v
and A~w = −~w and since we know that perpendicular unit vectors are linearly independent, B really is a basis.

Algebraically, this tells us that if we let S =
[
~v ~w

]
, then S is invertible and

[
1 0
0 −1

]
= S−1AS.

Let A be an n × n matrix such that the columns of A are linearly independent. Then A~x = ~b has a unique
solution for all ~b ∈ Rn.

True False

This is one of the conditions in Summary 3.3.10.

Let A be an n×m matrix. Then dim(im(A)) + dim(ker(A)) = n.

True False

By the Rank-Nullity Theorem, dim(im(A)) + dim(ker(A)) = m, not n.


