Assignment \#10 Solutions

Page 307, 35.1 Calculate:
(a) $\operatorname{gcd}(20,25)$
(c) $\operatorname{gcd}(123,-123)$
(e) $\operatorname{gcd}(54321,50)$.
(a) Use Euclid's algorithm: $\operatorname{gcd}(20,25)=\operatorname{gcd}(20,5)=5$.
(c) Clearly 123 is a common divisor and there cannot be any larger common divisor, so $\operatorname{gcd}(123,-123)=$ 123.
(e) Use Euclid's algorithm: $\operatorname{gcd}(54321,50)=\operatorname{gcd}(50,21)=\operatorname{gcd}(21,8)=\operatorname{gcd}(8,5)=\operatorname{gcd}(5,3)=$ $\operatorname{gcd}(3,2)=\operatorname{gcd}(2,1)=1$.

Page 307, 35.2 For each pair of integers a, b in the previous problem, find integers x and y such that $a x+b y=\operatorname{gcd}(a, b)$.
(a) Use the extended form of Euclid's algorithm shown on p. 306 of your text:

$$
\begin{aligned}
25 & =1 \times 20+5 \\
20 & =4 \times 5+0, \text { so } \\
5 & =1 \times 25-1 \times 20 .
\end{aligned}
$$

(c) Clearly $123=1 \times 123+0 \times(-123)$.
(e) Using the method of (a), we find

$$
\begin{aligned}
54321 & =1086 \times 50+21 \\
50 & =2 \times 21+8 \\
21 & =2 \times 8+5 \\
8 & =1 \times 5+3 \\
5 & =1 \times 3+2 \\
3 & =1 \times 2+1, \text { so } \\
1 & =3-1 \times 2 \\
& =3-1 \times(5-1 \times 3) \\
& =2 \times 3-1 \times 5 \\
& =2 \times(8-1 \times 5)-1 \times 5 \\
& =2 \times 8-3 \times 5 \\
& =2 \times 8-3 \times(21-2 \times 8) \\
& =-3 \times 21+8 \times 8 \\
& =-3 \times 21+8 \times(50-2 \times 21) \\
& =8 \times 50-19 \times 21 \\
& =8 \times 50-19 \times(54321-1086 \times 50) \\
& =-19 \times 54321+20642 \times 50 .
\end{aligned}
$$

Page 308, 35.10 Consecutive integers must be relatively prime.
Use Euclid's algorithm. For any integer $n, \operatorname{gcd}(n+1, n)=\operatorname{gcd}(n, 1)=1$, so n and $n+1$ are relatively prime.

Page 308, 35.11 Let a be an integer. Prove that $2 a+1$ and $4 a^{2}+1$ are relatively prime.
Note $(2 a+1)(2 a-1)=4 a^{2}-1,2 a+1$ is odd, and 2 is even, so Euclid's algorithm gives $\operatorname{gcd}\left(4 a^{2}+1,2 a+1\right)=\operatorname{gcd}(2 a+1,2)=\operatorname{gcd}(2,1)=1$.

Page 308, 35.14 Suppose $a, b, n \in \mathbb{Z}$ with $n>0$. Suppose that $a b \equiv 1(\bmod n)$. Prove that both a and b are relatively prime to n.

Note that we can write $a b=\ell \times n+1$ for some $\ell \in \mathbb{Z}$. This may be rewritten as $a \times b-n \times \ell=1$ and as $b \times a-n \times \ell=1$, which shows that $\operatorname{gcd}(a, n)=1$ and $\operatorname{gcd}(b, n)=1$ by Corollary 35.9.

Page 308, 35.15 Suppose $a, n \in \mathbb{Z}$ with $n>0$. Suppose that a and n are relatively prime. Prove that there is an integer b such that $a b \equiv 1(\bmod n)$.

Since a and n are relatively prime, we can find integers x and y such that $a x+n y=1$. Then $b=x$ satisfies $a b \equiv 1(\bmod n)$.

Page 319, 36.2 Solve the following equations for x in the \mathbb{Z}_{n} specified.
(a) $3 \otimes x=4$ in \mathbb{Z}_{11}.
(b) $4 \otimes x \ominus 8=9$ in \mathbb{Z}_{11}.
(c) $3 \otimes x \oplus 8=1$ in \mathbb{Z}_{10}.
(d) $342 \otimes x \oplus 448=73$ in \mathbb{Z}_{1003}.
(a) The extended Euclid's algorithm (or guess-and-check) gives $3^{-1}=4$, since $3 \times 4-11 \times 1=1$, so $x=4 \otimes 4=5$.
(b) Add 8 to both sides: $4 \otimes x=6$. From (a), $4^{-1}=3$, so $x=6 \otimes 3=7$.
(c) Subtract 8 from both sides: $3 \otimes x=3$. The extended Euclid's algorithm (or guess-and-check) gives $3^{-1}=7$, since $3 \times 7-10 \times 2=1$, so $x=1$. (Or, guess-and-check immediately suggests $x=1$.)
(d) Subtract 448 from both sides: $342 \otimes x=628$. The extended Euclid's algorithm gives $342^{-1}=$ 349 , since $342 \times 349-1003 \times 119=1$, so $x=628 \otimes 349=518$.

Page 319, 36.8 Prove Proposition 36.4. Why is this proposition restricted to $n \geq 2$?

Let $a, b, c \in \mathbb{Z}_{n}$. Then:
(i) $a \oplus b=(a+b) \bmod n=(b+a) \bmod n=b \oplus a$ and $a \otimes b=(a b) \bmod n=(b a) \bmod n=b \otimes a$.
(ii) $a \oplus(b \oplus c)=(a+(b+c)) \bmod n=((a+b)+c) \bmod n=(a \oplus b) \oplus c$ and $a \otimes(b \otimes c)=$ $(a(b c)) \bmod n=((a b) c) \bmod n=(a \otimes b) \otimes c$.
(iii) $a \oplus 0=(a+0) \bmod n=a \bmod n=a, a \otimes 1=(a \times 1) \bmod n=a \bmod n=a$, and $a \otimes 0=(a \times 0) \bmod n=0 \bmod n=0$.
(iv) $a \otimes(b \oplus c)=(a(b+c)) \bmod n=(a b+a c) \bmod n=a \otimes b \oplus a \otimes c$.

We require $n \geq 2$ so that $1 \in \mathbb{Z}_{n}$.

Page 320, 36.12 Let n be a positive integer and suppose $a, b \in \mathbb{Z}_{n}$ are both invertible. prove or disprove each of the following statements:
(a) $a \oplus b$ is invertible.
(b) $a \ominus b$ is invertible.
(c) $a \otimes b$ is invertible.
(d) $a \oslash b$ is invertible.
(a) Counterexample: 1 and $n-1$ are invertible (we know $n-1$ is invertible since consecutive integers are relatively prime, or see the next problem), but $1 \oplus(n-1)=0$ is not invertible.
(b) Counterexample: 1 is invertible, but $1 \ominus 1=0$ is not invertible.
(c) Proof: $(a \otimes b) \otimes\left(b^{-1} \otimes a^{-1}\right)=1$, so $a \otimes b$ is invertible (and, in fact, its inverse is $\left.b^{-1} \otimes a^{-1}\right)$.
(d) Proof: Rewrite $a \oslash b=a \otimes b^{-1}$. Since a and b^{-1} are both invertible, the result follows from (c).

Page 320, 36.13 Let n be an integer with $n \geq 2$. Prove that in \mathbb{Z}_{n}, the element $n-1$ is its own inverse.

Note $(n-1) \otimes(n-1)=(n-1)(n-1) \bmod n=n^{2}-2 n+1 \bmod n=n(n-2)+1 \bmod n=1$.

