MATH 8174: Assignment 3

1. Let G be a finite p-group and let V be a representation of G over a field of characteristic p. Let v be a nonzero element of V. By considering the action of G on the finite additive abelian p-group inside V generated by the elements g(v) for $g \in G$, show that there is a nonzero vector in V that is fixed by all elements $g \in G$. Deduce that the only irreducible representation of a finite p-group in characteristic p is the trivial representation.

From now on, all questions are about representations of finite groups over the field of complex numbers, except where otherwise stated.

- 2. Write down the conjugacy classes of the alternating group A_5 . What is the character of the 3-dimensional irreducible representation of A_5 acting by rotations on the regular dodecahedron?
- 3. Let Z be the center of the group G, and let V be an irreducible representation of G. Show that each element of Z acts as a scalar multiple of the identity. Deduce that the character value of each $z \in Z$ is a complex number whose absolute value is equal to the dimension of V.
- 4. Suppose that V and W are two representations of G, and denote by $\operatorname{Hom}_{\mathbb{C}}(V, W)$ the \mathbb{C} -vector space of all \mathbb{C} -linear maps from V to W. Show that $\operatorname{Hom}_{\mathbb{C}}(V, W)$ may be made into a representation of G as follows. If $g \in G$, $v \in V$ and $f: V \to W$, define $g(f): V \to W$ by $(g(f))(v) = g(f(g^{-1}(v)))$. Show that there is an equivalence of representations $V^* \otimes W \xrightarrow{\theta} \operatorname{Hom}_{\mathbb{C}}(V, W)$ given as follows. If $\alpha: V \to \mathbb{C}, v \in V$ and $w \in W$, then $\theta(\alpha \otimes w)(v) = \alpha(v).w$.
- 5. Let G be the symmetric group S_4 . Find a complete set of inequivalent irreducible representations of G. Show that your list is complete by adding up the squares of the dimensions. Write down the character table of G.