1. Let V be a 5-dimensional vector space over a field F. Prove (quoting any standard results that you need) that the exterior algebra $\wedge(V)$ has dimension 32 as an F-vector space.

2. Let
\[
A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}
\]
be elements of $M_2(\mathbb{Q})$. Prove that there is no 2×2 invertible matrix P with entries from \mathbb{Q} such that $P^{-1}AP = B$. Is there a 2×2 invertible matrix with entries from \mathbb{C} such that $P^{-1}AP = B$?

3. Let $F = \mathbb{Q}$ and $K = \mathbb{Q}(\sqrt{5}, i)$ be subfields of \mathbb{C}. Find the degree of K over F, and write down a basis for K as an F-vector space. Is K algebraic over F?