Course Instructor: Dr. Markus Pflaum
Contact Info: Office: Math 204, Telephone: 2-7717, e-mail: markus.pflaum@colorado.edu.

Problem 1: Prove that the functor which associates to each presheaf \(F \) on a topological space \(X \) the sheafification \(\hat{F} \) satisfies the following universal property: For each sheaf \(G \) on \(X \) and each presheaf morphism \(\eta: F \rightarrow G \) there exists a unique sheaf morphism \(\hat{\eta}: \hat{F} \rightarrow G \) such that

\[\eta = \hat{\eta} \circ \iota \]

with \(\iota: F \rightarrow \hat{F} \).

Problem 2: Let \(X \) and \(Y \) be Hausdorff topological spaces, and \(A \subset X \) a compact subspace. Additionally, let \(f: A \rightarrow Y \) be a continuous map. Show that then \(X \amalg_f Y \) is Hausdorff.

Problem 3: Show that

\[\mathbb{C}P^n \cong e^0 \cup e^2 \cup \ldots \cup e^{2n} \]

and determine from this the homology and the Euler characteristic of the complex projective spaces.