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Abstract. This expository article outlines our recent construction of
invariants of relative K-theory classes of multi-parameter dependent
pseudodifferential operators, which recover and generalize Melrose’s di-
visor flow. These are ‘higher’ divisor flows, that are obtained by pairing
relative K-theory classes with relative cyclic cocycles manufactured out
of regularized traces. They take integral values and can be interpreted
as ‘suspended’ versions of the spectral flow.

Introduction

Let M be a smooth compact Riemannian manifold without boundary,
and let E be a Hermitian vector bundle over M . We denote by CLm(M,E)
the classical (1-step polyhomogeneous) pseudodifferential operators of order
m acting between the sections of E. It is well-known that the operator trace,
which is defined on operators of order m < −dimM , cannot be extended
(regularized) to a trace on the whole algebra CL∞(M,E) =

⋃
m∈R

CLm(M,E).

In fact, for Mn connected and n > 1, up to a scalar multiple there is
only one tracial functional on CL∞(M,E), and that functional vanishes on
pseudodifferential operators of order m < −dimM , cf. Wodzicki [14].

This picture changes drastically if one passes to ‘pseudodifferential sus-
pensions’ of the algebra CL∞(M,E). It was shown by R.B. Melrose [11]
that for a ‘natural’ pseudodifferential suspension Ψ∞

sus(M,E) of CL∞(M,E)
the operator trace on Ψ∞

sus(M,E), m < −dimM − 1, can be extended by
a canonical regularization procedure to a trace on the full algebra. He
then used this regularized trace to ‘lift’ the spectrally defined η-invariant
of Atiyah-Patodi-Singer [1] to an η-homomorphism from the algebraic
K-theory group Kalg

1 (Ψ∞
sus(M,E)) to C. Furthermore, by means of the vari-

ation of his generalized η-invariant, Melrose defined the divisor flow between
two invertibles of the algebra Ψ∞

sus(M,E) that are in the same component of
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Köln–Warszawa).

The work of the second named author was partially supported by the US National
Science Foundation award no. DMS-0245481.

The third named author was partially supported by the DFG.

1



2 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM

the set of elliptic elements, and showed that it enjoys properties analogous
to the spectral flow for self-adjoint elliptic operators.

Working with a slightly modified notion of pseudodifferential suspension,
and for an arbitrary dimension p ∈ N of the parameter space, Lesch and
Pflaum [9] generalized Melrose’s trace regularization to the p-fold sus-
pended pseudodifferential algebra CL∞(M,E; Rp) of classical parameter de-
pendent pseudodifferential operators. They also generalized Melrose’s η-
invariant to odd parametric dimensions, defining for p = 2k + 1 the higher
η-invariant η2k+1(A) of an invertible A ∈ CL∞(M,E; Rp). The appella-
tive ‘eta’ is justified by their result according to which any first-order in-
vertible self-adjoint differential operator D can be canonically ‘suspended’
to an invertible parametric differential operator D ∈ CL1(M,E; R2k+1),
whose higher eta invariant η2k+1(D) coincides with the spectral η-invariant
η(D). On the negative side, in contrast with Melrose’s η-homomorphism,
the higher eta invariants are no longer additive on the multiplicative group
of invertible elements. The ‘defect of additivity’ is purely symbolic though.

The starting point for the developments that make the object of
the present exposition was the fundamental observation that the higher
η-invariants η2k+1, when assembled together with symbolic corrections
into higher divisor flows DF2k+1, can be understood as the expression
of the Connes pairing between the topological K-theory of the pair(
CL0(M,E; R2k+1),CL−∞(M,E; R2k+1)

)
and a certain canonical relative

cyclic cocycle, determined by the regularized graded trace together with its
symbolic coboundary. The first such invariant, for k = 0, recovers Melrose’s
divisor flow, whose essential properties such as homotopy invariance, ad-
ditivity and integrality, thus acquire a conceptual explanation. Of course,
the same properties are shared by the higher divisor flows DF2k+1. Fur-
thermore, this interpretation allows to uncover the formerly ‘missing’ even
dimensional higher eta invariants η2k, with k > 0 and their associated divisor
flows DF2k. Taken collectively, the higher divisor flows DF• implement the
natural Bott isomorphisms between the topological K•-groups of the pair(
CL0(M,E; R•),CL−∞(M,E; R•)

)
and Z, in a manner compatible with the

suspension isomorphisms in both K-theory and in cyclic cohomology. Fi-
nally, we clarify the relationship between the spectral flow and the higher
divisor flows, by relating the latter to ‘suspended’ versions of the former, in
all parametric dimensions.

The paper, which is of an expository nature, is written with the intent of
presenting a clear and rather comprehensive description of the results, with
precise references to the original sources for their proofs.
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1. Trace regularization and η-homomorphism

We start by recalling the definition of the p-fold suspended pseudodif-
ferential algebra CLm(M,E; Rp) of classical parameter dependent pseudo-
differential operators (cf. Lesch–Pflaum [9, Sec. 2]). It was originally
defined by R.B. Melrose [11], in the case p = 1, as a certain subalge-
bra of CL∞(M × R, E) consisting of translation invariant operators. In
our alternative set-up, Melrose’s suspended algebra becomes a subalgebra
of CL∞(M,E; R), after taking a partial Fourier transform in the R-variable.

An element A ∈ CLm(M,E; Rp) is a map Rp → CLm(M,E), µ 7→ A(µ)
which is locally given by[

Op(a(µ0))u
]
(x) :=

[
A(µ0)u

]
(x)

:=
∫

Rn

ei〈x,ξ〉 a(x, ξ, µ0) û(ξ) d̄ξ

=
∫

Rn

∫
U
ei〈x−y,ξ〉 a(x, ξ, µ0)u(y)dyd̄ξ.

(1.1)

Here a(x, ξ, µ) is a classical symbol on U × (Rn×Rp). More precisely, a is a
smooth (matrix valued) function on U ×Rn×Rp such that for multi-indices
α, β ∈ Zn

+, γ ∈ Zp
+ and each compact subset K ⊂ U we have an estimate∣∣∂α

x ∂
β
ξ ∂

γ
µa(x, ξ, µ)

∣∣ ≤ Cα,β,γ,K(1 + |ξ|+ |µ|)m−|β|−|γ|,

x ∈ K, ξ ∈ Rn, µ ∈ Rp.
(1.2)

Furthermore, being classical means that a has an asymptotic expansion of
the form

a ∼
∞∑

j=0

aj , (1.3)

where aj ∈ C∞(U × Rn × Rp) satisfies aj(x, λξ, λµ) = λm−jaj(x, ξ, µ) for
λ ≥ 1, |ξ|2 + |µ|2 ≥ 1.

In the case p = 0 we obtain the usual (classical) pseudodifferential oper-
ators of order m on U . Parameter dependent pseudodifferential operators
play a crucial role, e.g., in the construction of the resolvent expansion of an
elliptic operator (Gilkey [5]). The definition of the parameter dependent
calculus is not uniform in the literature. It will be crucial in the sequel that
differentiating by the parameter reduces the order of the operator. This is
the convention e.g. of [5] but differs from the one in Shubin [13].

On CLm(M,E; Rp), m < −dimM , the operator trace induces a function
valued trace

TR(A)(µ) := trL2(A(µ)). (1.4)

This function is integrable if p + m < −dimM and we obtain a trace on
CLm(M,E; Rp) by putting

TR(A) :=
∫

Rp

tr(A(µ))dµ. (1.5)
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Melrose showed in the case p = 1 that (1.5) can be regularized to give a
trace on the whole algebra CL∞(M,E; R). More generally, for any p ∈ N, it
was shown in [9, Thm. 2.2, 4.6] that there exists a linear extension of (1.4),
modulo polynomials, to operators of all orders

TR : CL∞(M,E; Rp) → PS∞(Rp)/C[µ1, . . . , µp],

which is uniquely determined by the following two properties:
(1) TR(AB) = TR(BA), i.e. TR is tracial ;
(2) TR(∂jA) = ∂j TR(A) for j = 1, ..., p.

Furthermore, this unique extension TR satisfies
(3) TR(µjA) = µj TR(A) for j = 1, ..., p.
(4) TR(CLm(M,E; Rp)) ⊂ PSm+p(Rp)/C[µ1, . . . , µp].

Here, PS∞(Rp) is the class of functions on Rp having a complete asymptotic
expansion in terms of homogeneous functions and log-powers as µ→∞.

Composing any linear functional on PS∞(Rp)/C[µ1, . . . , µp] with TR
yields a trace on CL∞(M,E; Rp). The regularized trace, that extends (1.5)
and which still will be denoted by

TR : CL∞(M,E; Rp) → C , (1.6)

is obtained by composition with the following regularization of the multiple
integral. If f ∈ PSm(Rp) then∫

|µ|≤R
f(µ)dµ ∼R→∞

∑
α→−∞

pf,α(logR)Rα, (1.7)

where pf,α is a polynomial of degree k(α). The regularized integral of f is
defined as the constant term in this asymptotic expansion:

−
∫

Rp

f(µ)dµ := pf,0(0). (1.8)

For more details concerning the properties of this regularized integral, we
refer to [7, Sec. 5] and [9].

In what follows, we shall view TR as a linear functional on the space of
differential forms on Rp with coefficients in CL∞(M,E; Rp),

TR : Ω•(Rp,CL∞(M,E; Rp)) → C , (1.9)

by just applying the extended trace to the coefficient of the volume form.
This will be explained in more detail in the next section. At this point we
would just like to emphasize that the functional thus defined is not a closed
trace. Rather, for a (p− 1)-form on Rp with coefficients in CL∞(M,E; Rp),
the formal trace is defined as

T̃R(ω) := TR(dω) .

Although T̃R is non-trivial, it was shown in [11] for p = 1, and in [9] in
general, that it is symbolic, i.e. can be calculated (similarly to Wodzicki’s
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noncommutative residue) by integrating a density which depends only on
finitely many terms in the symbol expansion (1.3).

Using this regularized trace, Melrose has defined in [11] the η-invariant
of an invertible element A ∈ GL1(CL∞(M,E; R)) as the complex number

η(A) =
−1
πi

TR(A−1dA) :=
−1
πi

−
∫

R
TR

(
A−1dA

dµ

)
dµ, (1.10)

and showed that the assignment A ∈ GL(CL∞(M,E; R)) 7→ η(A) gives rise
to a homomorphism η : Kalg

1 (CL∞(M,E; R)) → C. He also showed that if

D(µ) := ∂/+ iµ , µ ∈ R ,

where ∂/ is the Dirac operator on a Riemannian spin manifold M , then

η(D) = η(∂/),

where the right hand side stands for the usual η-invariant of the Dirac op-
erator, as defined by Atiyah-Patodi-Singer [1].

This was subsequently generalized by Lesch and Pflaum to odd dimen-
sional parameter spaces as follows: if A ∈ CL(M,E; R2k+1) is invertible
then

η2k+1(A) : =
2 k!

(−2πi)k+1(2k + 1)!
TR((A−1dA)2k+1) (1.11)

(up to a sign) was called the (parametric) η-invariant of A. The terminology
is justified by the fact that if D is an invertible first order self-adjoint elliptic
differential operator and if c : R2k+1 → M2k(C) is the standard Clifford
representation then its (2k + 1)-fold suspension

D(µ) := D + c(µ) , µ ∈ R2k+1 , (1.12)

is an invertible element of CL∞(M,E; R2k+1) and the parametric η-invariant
of D equals the spectral η-invariant of the operator D (cf. [11, Prop. 5] for
Dirac operators and k = 0, [9, Prop. 6.6] in general).

It should be noted though that, unlike η1, the higher η2k+1, k > 0, are no
longer additive on the multiplicative group of invertibles.

We now pause to clarify this important issue. To this end, assume that
A,B ∈ GL1(CL∞(M,E; R2k+1)) and consider the expression

TR
(
(A−1dA)2k+1

)
(1.13)

occurring in the definition of the divisor flow. First of all, when k = 0, we
infer from

(AB)−1d(AB) = B−1
(
A−1dA+ dBB−1

)
B (1.14)

and the trace property of TR the equality

TR
(
(AB)−1d(AB)

)
= TR(A−1dA) + TR(B−1dB), (1.15)

showing that η1 defines a homomorphism GL1(CL∞(M,E; R2k+1)) → C.
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To understand the case k ≥ 1 we need to recall the variation formula for
the parametric η-invariant, cf. [11, Prop. 7] and [9, Prop. 6.3] . Let As ∈
CLm(M,E; R2k+1) be invertible and smoothly depending on a parameter s.
Then

d

ds
η2k+1(As) =

2 k!
(−2πi)k+1(2k)!

T̃R
(
(A−1

s ∂sAs)(A−1
s dAs)2k

)
. (1.16)

Consider now two invertible elements a, b ∈ CL0(M,E; R2k+1), for simplicity
of order 0. Put

A :=
(
a 0
0 1

)
, B :=

(
b 0
0 1

)
∈ M2

(
CL0(M,E; R2k+1)

)
(1.17)

and

As :=
(

cos(π
2 s) sin(π

2 s)
− sin(π

2 s) cos(π
2 s)

) (
1 0
0 a

) (
cos(π

2 s) − sin(π
2 s)

sin(π
2 s) cos(π

2 s)

)
. (1.18)

As is a path of invertible elements of M2

(
CL0(M,E; R2k+1)

)
with

A1 =
(
a 0
0 1

)
, A0 =

(
1 0
0 a

)
(1.19)

and A0 satisfies

A0B = BA0, A0dB = (dB)A0, dA0 ∧ dB = 0. (1.20)

Consequently,(
(A0B)−1d(A0B)

)p
= (A−1

0 dA0)p + (B−1dB)p, p ∈ Z+, (1.21)

and the variation formula (1.16) yields

η2k+1(AB)− η2k+1(A)− η2k+1(B)

= η2k+1(AB)− η2k+1(A)− η2k+1(A0B) + η2k+1(A0)

=
2 k!

(−2πi)k+1(2k)!
T̃R

(∫ 1

0
A−1

s ∂sAs

(
(A−1

s dAs + dBB−1)2k− (A−1
s dAs)2k

)
ds

)
.

(1.22)

Hence the defect of the additivity of η2k+1 is symbolic. Eq. (1.22) shows in
fact that there is a noncommutative polynomial P2k+1(A,B, dA, dB) such
that

η2k+1(AB)− η2k+1(A)− η2k+1(B) = T̃R(P2k+1(A,B, dA, dB)). (1.23)

Thus, (1.22) holds for arbitrary invertible elements A,B ∈
GL1(CL∞(M,E; R2k+1)), regardless of their orders.

As a concrete illustration, let us explicitly calculate the above polynomial
in the case k = 1. Denoting ω1 = B−1A−1dAB and ω2 := B−1dB, one has

dω1 = −ω2
1 − ω1 ∧ ω2 − ω2 ∧ ω1, dω2 = −ω2

2,

d(ω1 + ω2) = −(ω1 + ω2)2, d(ω1 ∧ ω2) = −(ω1 + ω2) ∧ ω1 ∧ ω2.
(1.24)
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These identities imply

TR
((

(AB)−1d(AB)
)3

)
− TR

(
(A−1dA)3

)
− TR

(
(B−1dB)3

)
= TR

(
(ω1 + ω2)3

)
− TR

(
ω3

1

)
− TR

(
ω3

2

)
= −3 TR

(
d(ω1 ∧ ω2)

)
= −3T̃R(B−1A−1dA ∧ dB),

(1.25)

and hence

η3(AB) = η3(A) + η3(B)− 1
4π2

T̃R(B−1A−1dA ∧ dB). (1.26)

Returning to the variation formula for the η-invariant we note that the
right hand side of (1.16) still makes sense if As is only elliptic and A−1

s is
replaced by a smooth family of parametrices Qs. Thus, one can define the
divisor flow DF2k+1

(
(As)0≤s≤1

)
by the equation

DF
(
(As)0≤s≤1

)
=

=
k!

(−2πi)k+1(2k + 1)!

(
TR

(
(A−1

1 dA1)2k+1
)
− TR

(
(A−1

0 dA0)2k+1
))

− k!
(−2πi)k+1(2k)!

∫ 1

0
T̃R

(
Qs ∂sAs

(
Qs dAs

)2k
)
ds.

(1.27)

For k = 0 this is precisely the divisor flow originally defined by Melrose [11,
Eq. (5)], while for k > 0 it gives its generalization by Lesch-Pflaum [9,
Eq. (6.51)].

We note that, at this stage, the divisor flow is defined on paths of elliptic
elements of CLm(M,E; Rp) with invertible endpoints. The fact that it actu-
ally depends only on the homotopy classes of such paths, as well as its other
key properties, such as additivity and integrality, were fully established in
[8], along the lines which we proceed now to explain.

2. Divisor flow as relative cyclic pairing

As a first step towards a better understanding of the divisor flow, we shall
recast its definition – and at the same time generalize it – in the framework
of noncommutative geometry.

2.1. Relative cyclic pairing. We start by formulating the definition of
the natural pairing between relative cyclic homology and cohomology in the
‘mapping cone’ setup, that is best suited to the purposes of this paper.

First, recall (cf. [2], [10]) that to every unital C-algebra A (possibly en-
dowed with a locally convex topology) one can associate the mixed complex
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(C•(A), b, B), where Ck(A) =
(
A⊗A⊗k

)∗,
bφ(a0, . . . , ak+1) =

k∑
j=0

(−1)j φ(a0, . . . , ajaj+1, . . . , ak+1)

+ (−1)k+1φ(ak+1a0, a1, . . . , ak),

and

Bφ(a0, . . . , ak−1) =
k−1∑
j=0

(−1)(k−1)j φ(1, aj , . . . , ak−1, a0, . . . , aj−1)

−
k−1∑
j=0

(−1)(k−1)j φ(aj , 1, aj+1, . . . , ak, a0, . . . , aj−1).

One can then form the double complexes BC•,•(A) and BC•,•per(A). Their
(nonvanishing) components are defined as BCp,q(A) = Cq−p(A) for q ≥ p ≥
0 resp. BCp,q

per(A) = Cq−p(A) for q ≥ p, and have B as horizontal, resp. b as
vertical differential. The cyclic resp. periodic cyclic cohomology groups of A
are obtained as follows:

HC•(A) = H•(Tot•L BC•,•(A)) resp. HP •(A) = H•(Tot•L BC•,•per(A));

in both cases the total differential is b+B.

Let now
0 −→ J −→ A σ−→ B −→ 0. (2.1)

be a short exact sequence of unital (Fréchet) algebras and (continuous) ho-
momorphisms. Consider the associated morphism of mixed complexes

σ∗ : C•(B) → C•(A) ,

and form the corresponding mapping cone of total complexes(
Tot•⊕ BC•,•(A)⊕ Tot•+1

⊕ BC•,•(B), b̃+B
)
,

with the differential

b̃+B =
(
b+B −σ∗

0 −(b+B)

)
.

Explicitly, Totk
⊕ BC•,•(A)⊕ Totk+1

⊕ BC•,•(B) ∼=

∼=
⊕

p+q=k

BCp,q(A)⊕ BCp,q+1(B) = Totk
⊕ BC•,•(A,B),

where BC•,•(A,B) is the double complex associated to the relative mixed
complex (C•(A,B), b̃, B̃), which is given by Ck(A,B) = Ck(A)⊕ Ck+1(B),

b̃ =
(
b −σ∗
0 −b

)
, and B̃ =

(
B 0
0 −B

)
.
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Hence the relative cyclic cohomology HC•(A,B), resp. the relative periodic
cyclic cohomology HP •(A,B) can be realized as the cohomology of(

Tot•⊕ BC•,•(A,B), b̃+ B̃
)

resp.
(
Tot•⊕ BC•,•per(A,B), b̃+ B̃

)
.

The preceding constructions can be dualized in an obvious fashion.
Thus, HC•(A,B) is the homology of

(
Tot⊕• BC•,•(A,B), b̃ + B̃

)
, where

BCp,q(A,B) = BCp,q(A)⊕ BCp,q+1(B),

b̃ =
(

b 0
−σ∗ −b

)
, and B̃ =

(
B 0
0 −B

)
.

Likewise, the periodic cyclic homology HP•(A,B) is the homology of(
Tot

Q
• BCper

•,• (A,B), b̃ + B̃
)
, where BCper

p,q (A,B) = BCper
p,q (A) ⊕ BCper

p,q+1(B)
and where b̃, B̃ are as above.

The pairs of dual complexes thus obtained inherit a natural pairing:

〈(ϕ•, ψ•+1), (a•, b•+1))〉 7→ 〈ϕ•, a•〉 + 〈ψ•+1, b•+1〉 (2.2)

Next, we recall that the notion of a cycle, introduced by Connes in [2],
has a natural extension to the relative situation.

Definition 2.1 (cf. [6, Sec. 2],[8, Def. 1.9]). A relative cycle of degree k over
the pair of algebras (A,B) consists of the following data:

(1) differential graded unital algebras (Ω•, d) and (∂Ω•, d) over A
resp. B, together with a surjective unital homomorphism r : Ω• →
∂Ω• of degree 0;

(2) unital homomorphisms %A : A → Ω0 and %B : B → ∂Ω0 such that
r ◦ %A = %B ◦ σ;

(3) a graded trace
∫

on Ω• of degree k such that∫
dω = 0 , whenever r(ω) = 0. (2.3)

Given a relative cycle C =
(
Ω•, ∂Ω•, r,

∫
,
∫ ′ ) of degree p over (A,B), we

define the cochain (ϕp, ψp−1) ∈ Cp(A)⊕ Cp−1(B) by

ϕp(a0, . . . , ap) :=
1
p!

∫
%(a0)d%(a1) . . . d%(ap), (2.4)

ψp−1(b0, . . . , bp−1) :=
1

(p− 1)!

∫ ′
%(b0)d%(b1) . . . d%(bp−1). (2.5)

It is straightforward to check (cf. [6, Sec. 2], [8, Prop. 1.10]) that the pair

charC := (ϕp, ψp−1) ∈ Totp
⊕ BC•,•(A,B)

is a relative cyclic cocycle, called the character of the relative cycle C.
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We are now in a position to define the notion of divisor flow in the gen-
eral framework of noncommutative geometry. Let (as)0≤s≤1 be a smooth
admissible elliptic path (as)0≤s≤1 of elements in MN (A) for some N ∈ N;
elliptic means here that σ(as) is invertible in MN (B) for each s ∈ [0, 1],
while admissible means that a0, a1 are both in GLN (A). Such a path gives
rise to a relative cyclic homology class, namely

ch•
(
(as)0≤s≤1

)
:=

(
ch•(a1)− ch•(a0),−

∫ 1

0
/ch•

(
σ(as), σ(ȧs)

)
ds

)
.

(2.6)

Here, ch•(g) stands for the odd Chern character of an invertible g ∈
GL∞(A),

ch•(g) =
∞∑

k=0

(−1)k k! tr2k+1

(
(g−1 ⊗ g)⊗k

)
, (2.7)

while /ch•(h, ḣ), with hs ∈ GL∞(B), s ∈ [0, 1], denotes its secondary Chern
character (see [4]):

/ch•(h, ḣ) = tr0(h−1ḣ)+

+
∞∑

k=0

(−1)k+1k!
k∑

j=0

tr2k+2

(
(h−1 ⊗ h)⊗(j+1) ⊗ h−1ḣ⊗ (h−1 ⊗ h)⊗(k−j)

)
.

The known transgression formula for the odd Chern character,

d

ds
ch•(h) = (b+B) /ch•(h, ḣ),

ensures that Eq. (2.6) does define a relative cyclic cycle. When properly
interpreted (cf. Theorem 3.1 below), it will turn out to be the Chern char-
acter in relative cyclic homology of the relative K-theory class defined by
the (as)0≤s≤1.

Given a short exact sequence of Fréchet algebras of the form (2.1), let C be
an odd relative cycle with character (ϕ2k+1, ψ2k). The (odd) divisor flow with
respect to C of a smooth admissible elliptic path (as)0≤s≤1 is the relative
pairing between ch•

(
(as)0≤s≤1

)
and the character charC = (ϕ2k+1, ψ2k):

DFC

(
(as)0≤s≤1

)
:= DF

(
(as)0≤s≤1

)
:=

:=
1

(−2πi)k+1
〈charC, ch•((as)0≤s≤1)〉

=
1

(−2πi)k+1

(
〈ϕ2k+1, ch•(a1)〉 − 〈ϕ2k+1, ch•(a0)〉

)
− 1

(−2πi)k+1
〈ψ2k,

∫ 1

0
/ch•(σ(as), σ(ȧs))ds〉.

(2.8)
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Simple calculations show that the partial pairings involved in the above
formula can be expressed as follows:

〈ϕ2k+1, ch•(as)〉 =
k!

(2k + 1)!

∫ (
a−1

s das

)2k+1
, (2.9)

〈ψ2k, /ch•(σ(as), σ(ȧs))〉

=
k!

(2k)!

∫ ′
(σ(as)−1σ(ȧs))

(
(σ(as))−1d(σ(as))

)2k
.

(2.10)

Turning to the even case, we recall that the Chern character of an idem-
potent e ∈ P∞(A) is given by the formula

ch•(e) := 1 +
∞∑

k=1

(−1)k (2k)!
k!

tr2k

((
e− 1

2
)
⊗ e⊗(2k)

)
. (2.11)

If (es)0≤s≤1 is a smooth path of idempotents, the corresponding transgres-
sion formula reads

d

ds
ch•(es) = (b+B) /ch•(es, (2es − 1)ės);

here the secondary Chern character /ch• is given by

/ch•(e, h) := ι(h) ch•(e),

where

ι(h)(a0 ⊗ a1 ⊗ . . .⊗ al) =
l∑

i=0

(−1)i(a0 ⊗ . . .⊗ ai ⊗ h⊗ ai+1 ⊗ . . .⊗ al).

We now consider a smooth path of almost idempotents (fs)0≤s≤1 in
MN (A), i.e. such that σ(fs) are idempotents in MN (B), which is admissible
in the sense that the endpoints are idempotents. By analogy with Eq. (2.6),
we define its Chern character by

ch•
(
(fs)0≤s≤1

)
:=

(
ch•(f1)− ch•(f0),−

∫ 1

0
/ch•

(
σ(fs), σ((2fs − 1)ḟs)

)
ds

)
.

(2.12)

In view of the above transgression formula, this expression gives a relative
cyclic cycle. The relative pairing between ch•

(
(fs)0≤s≤1

)
and the character

charC = (ϕ2k, ψ2k−1) of an even relative cycle C defines the corresponding
even divisor flow

DFC

(
(fs)0≤s≤1

)
:= DF

(
(fs)0≤s≤1

)
:=

:=
(−1)k+1

(2πi)k

〈
charC, ch•((fs)0≤s≤1)

〉
=

(−1)k+1

(2πi)k

(〈
ϕ2k, ch•(f1)

〉
−

〈
ϕ2k, ch•(f0)

〉)
+

(−1)k

(2πi)k

〈
ψ2k−1,

∫ 1

0
/ch•(σ(fs), σ((2fs − 1)ḟs))ds

〉
.

(2.13)
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Explicitly, the partial pairings entering in the above formula are given by

〈ϕ2k, ch•(fs)〉 =
(−1)k

k!

∫ (
fs −

1
2
)
(dfs)2k, (2.14)

〈ψ2k−1, /ch•(σ(fs), σ((2fs − 1)ḟs))〉 =

=
(−1)k

(k − 1)!

∫ ′
σ((2fs − 1)ḟs)

(
d(σ(fs))

)2k−1
.

(2.15)

2.2. Relative pairing for de Rham classes. To give a quick illustration
of the preceding concepts in a familiar setting, we digress to consider the
case of the Poincaré pairing on a compact n-dimensional manifold M with
boundary ∂M .

Let i : ∂M ↪→ M denote the inclusion and let ω ∈ Ωn−p(M) be a fixed
closed differential form. Set

Ω := Ω•(M), ∂Ω := Ω•(∂M), r := i∗,

% : C∞(M) ↪→ Ω0(M), C∞(∂M) ↪→ Ω0(∂M),∫
: Ωn−p → C,

∫
η :=

∫
M

η ∧ ω,

∫ ′
: ∂Ωn−p−1 → C,

∫ ′
η :=

∫
∂M

η ∧ i∗ω.

(2.16)

Then C := Cω :=
(
Ω•, ∂Ω•, r, %,

∫
,
∫ ′ ) is a relative cycle of degree k over

(A,B) := (C∞(M), C∞(∂M)) ,

with character is (ϕp, ψp−1) given by

ϕp(a0, . . . , ap) =
1
p!

∫
M

a0 da1 ∧ . . . ∧ dap ∧ ω ,

ψp−1(b0, . . . , bp−1) =
1

(p− 1)!

∫
∂M

b0 db1 ∧ . . . ∧ dbp−1 ∧ i∗ω ;

this is a relative cyclic cycle, whose periodic cyclic cohomology class in
HP •(C∞(M), C∞(∂M)) corresponds, via the Connes-type isomorphism

HP •(C∞(M), C∞(∂M)) ' H•(M,∂M) ,

to the class of the current defined by ω.
To fix the ideas, we shall assume that the cycle has degree p = 2k + 1

or, equivalently, that ω has degree n − 2k − 1. If g ∈ GLN (A), i.e. if g
is a smooth map from M into GLN (C), then g represents an element of
K1(M) = K1(A). Denote by ChDG(g) ∈ Ωodd(M) the form representing
the classical Chern character (in differential geometry) of this element in
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K1(M); explicitly, cf. e.g. [4, Prop. 1.4],

ChDG(g) =
∞∑

k=0

k!
(−2πi)k+1(2k + 1)!

tr(g−1dg)2k+1. (2.17)

Then

〈ϕ2k+1, ch•(g)〉 =
k!

(2k + 1)!

∫
M

tr(g−1dg)2k+1 ∧ ω

= (−2πi)k+1

∫
M

ChDG(g) ∧ ω .
(2.18)

Apparently, the right hand side is not well-defined at the cohomological level,
as both ChDG(g) and ω represent absolute cohomology classes. However,
let us consider a smooth admissible elliptic path (gs)0≤s≤1 in MN (A) with
g0 = I. Admissibility means here that g1 is invertible and that gs|∂M is
invertible for all s. Thus, (gs)0≤s≤1 represents an element in the relative
K1-group

K1(M,∂M) ' K1(C∞(M), C∞(∂M))

and its divisor flow with respect to the relative cycle C = Cω is given by

DFC

(
(gs)0≤s≤1

)
=

k!
(−2πi)k+1(2k + 1)!

∫
M

tr(g−1
1 dg1)2k+1 ∧ ω −

− k!
(−2πi)k+1(2k)!

∫ 1

0

∫
∂M

g−1
s ġs(g−1

s dgs)2k ∧ i∗ωds,
(2.19)

which is a well-defined invariant of the K-theory class [(gs)0≤s≤1] ∈
K1(M,∂M). Moreover, this invariant can be identified with the result of
the Poincaré pairing between the classical Chern character of the above
K1-theory class, which belongs to Hodd(M,∂M), and the absolute coho-
mology class [ω] ∈ H•(M). Indeed, by a standard argument in K-theory,
one can lift gs|∂M to an invertible element in MN (A) and represent the
class of (gs)0≤s≤1 in K1(M,∂M) by an admissible path (hs)0≤s≤1 with
h0 = I, hs|∂M = I. Then (2.19) reduces to

DF
(
(hs)0≤s≤1

)
=

k!
(−2πi)k+1(2k + 1)!

∫
M

tr(h−1
1 dh1)2k+1 ∧ ω

=
∫

M
ChDG(h1) ∧ ω ,

(2.20)

which is precisely the usual Poincaré pairing between the relative de Rham
cohomology class of ChDG(h1) and the absolute cohomology class of ω.

2.3. Divisor flows of parametric pseudodifferential operators. In or-
der to interpret Melrose’s divisor flow and its higher analogues within the
above setup, we need to specify a relative cycle for the short exact sequence



14 MATTHIAS LESCH, HENRI MOSCOVICI, AND MARKUS J. PFLAUM

of parametric pseudodifferential operators and symbols introduced in the
first section,

0 −→ CL−∞(M,E; Rp) −→ CL∞(M,E; Rp) σ−→ CS∞(M,E; Rp) −→ 0 .
(2.21)

Let Λ• := Λ•(Rp)∗ = C[dµ1, . . . , dµp] be the exterior algebra of the vector
space (Rp)∗. Put

Ωp := CL∞(M,E; Rp)⊗ Λ• and

∂Ωp := CL∞(M,E; Rp)/CL−∞(M,E; Rp)⊗ Λ•.
(2.22)

Recall that the regularized trace of a k-form A(µ)dµ1 ∧ . . . ∧ dµk is, by
definition, equal to 0 if k 6= p, while

TRp(A(µ)dµ1 ∧ . . . ∧ dµp) := −
∫

Rp

TR(A)(µ)dµ1 ∧ . . . ∧ dµp. (2.23)

By construction, TRp is a graded trace on the differential algebra (Ωp, d),
but in general is not closed. However, its boundary,

T̃Rp := d ◦ TRp = TRp ◦ d ,
called the formal trace, is a closed graded trace of degree p−1. It was shown
in [9, Prop. 5.8], [11, Prop. 6] that T̃Rp is symbolic, meaning that it descends
to a well-defined closed graded trace of degree p− 1 on ∂Ω•

p. Together with
the natural quotient map r : Ω•

p → ∂Ω•
p we have thus constructed a relative

cycle in the sense of Definition 2.1:

Cp
reg := (Ωp, ∂Ωp, r, %, TRp, T̃Rp) . (2.24)

Note that for p = 2k + 1, and with As ∈ CL∞(M,E; R2k+1) a smooth
family of elliptic operators of some fixed order m such that A0 and A1 are
invertible, the pairing of ch•

(
(As)0≤s≤1

)
with the character (ϕ2k+1, ψ2k)

of the relative cycle C2k+1
reg gives precisely the expression Eq. (1.27) of the

higher divisor flows introduced in [9]. In particular, when p = 1 one recovers
the original divisor flow of Melrose.

3. K-theoretical interpretation of the divisor flow

As already mentioned, the divisor flow can be best understood in the
framework of relative K-theory and its pairing with cyclic cohomology. In
order to be able to formulate it in this manner, we first need to establish
the homotopy invariance of the divisor flow.

To this end, under the same general assumptions as in the previous sec-
tion, let us consider a smooth family of matrices (as,t)0≤s,t≤1 over the algebra
A, such that for each fixed t the family (as,t)0≤s≤1 is a smooth admissible
path. For every smooth two-parameter family of invertibles gs,t ∈ GL∞(A),
s, t ∈ [0, 1], there is a secondary transgression formula, which has the form

∂

∂s
/ch•(g, ∂tg)−

∂

∂t
/ch•(g, ∂sg) = (b+B) //ch•(g, ∂sg, ∂tg), (3.1)
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where //ch• stands for the ‘tertiary’ Chern character (see [8, Eq. (1.15)]).
By applying it, one obtains that ch•

(
(as,1)0≤s≤1

)
and ch•

(
(as,0)0≤s≤1

)
are

homologous relative cyclic cycles:

ch•
(
(as,1)0≤s≤1

)
− ch•

(
(as,0)0≤s≤1

)
=

(
b̃+ B̃

)(
/ch

(
as,1, ∂tas,1

)
− /ch

(
as,0, ∂tas,0

)
,

−
∫ 1

0
//ch

(
σ(as,t), σ(∂sas,t), σ(∂tas,t)

)
ds

)
.

This guarantees that the (Chern) character ch• descends to a map

ch• : π1

(
Ell∞(A),GL∞(A)

)
→ HCodd(A,B) , (3.2)

where π1

(
Ell∞(A),GL∞(A)

)
is the groupoid (with respect to concate-

nation) of all homotopy classes of smooth admissible elliptic paths.
There is also a related monoid structure on π1

(
Ell∞(A),GL∞(A)

)
in-

duced by pointwise multiplication, which becomes a group structure mod-
ulo the submonoid of null-homotopic paths. The corresponding quo-
tient π̃1

(
Ell∞(A),GL∞(A)

)
can be naturally identified with the subset

π1

(
Ell∞(A),GL∞(A); I

)
⊂ π1

(
Ell∞(A),GL∞(A)

)
of all homotopy classes

of smooth admissible elliptic paths starting at the identity. The latter gives
an alternate description of the relative K1-group. Furthermore, the ‘de-
scended’ character map (3.2) can be naturally identified with the standard
Chern character.

Theorem 3.1 ([8, Thms. 1.6, 1.7]). Assume that A and B = A/J are local
Banach algebras. Then the relative K-theory group K1(A,B) can be canoni-
cally identified with the group π1

(
Ell∞(A),GL∞(A); I

)
and the (periodized)

inherited character map

ch• : K1(A,B) → HPodd(A,B)

coincides, via the canonical identification K1(J ) ∼= K1(A,B) with the stan-
dard Chern character in cyclic homology.

There is a parallel alternative description of the relative K0-group
of a pair of algebras (A,B) as above. Let Ω(AP∞(A),P∞(A)) be
the set of continuous paths of almost idempotents, i.e. matrices over
A which are idempotent modulo J , with endpoints in P∞(A). The
direct sum of matrices turns Ω(AP∞(A),P∞(A)), and also the set of
homotopy classes π1(AP∞(A),P∞(A)), into a monoid. A path γ ∈
Ω(AP∞(A),P∞(A)) is called degenerate, if γ maps into P∞(A). The quo-
tient of π1(AP∞(A),P∞(A)) by the submonoid of homotopy classes of de-
generate paths is a group, which will be denoted π̃1(AP∞(A),P∞(A)).

By means of a secondary transgression formula analogous to Eq. (3.1),
(cf. [12, Lemma 1.11]), one shows that the even (Chern) character descends
to

ch• : π̃1(AP∞(A),P∞(A)) → HCev(A,B) . (3.3)
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On the other hand, the obvious homomorphism

π̃1(AP∞(A),P∞(A)) −→ K0(A,B), γ 7→ (γ(0), γ(1), σ ◦ γ), (3.4)

is easily seen to be an isomorphism.

Theorem 3.2 (cf. [8, Sec. 1.6]). Via the canonical isomorphism (3.4) and
excision in K-theory, the (periodized) character map

ch• : K0(A,B) → HPev(A,B)

coincides with the standard Chern character in cyclic homology.

In conjunction with Eqs. (2.8) and (2.13), one finally obtains the desired
homotopy invariance of the divisor flow.

Corollary 3.3. The divisor flow associated to a relative cycle C of degree
p over a pair (A,B), B = A/J , of local Banach algebras, can be regarded
as the pairing of the character of C with the Chern character in relative
K-theory. In particular, it defines an additive map

DFC : Ki(A,B) → C, i ≡ p (mod 2), i = 0, 1.

This, of course, applies to the particular situation of parametric pseudo-
differential operators. In that case, however, one can prove even more. First
of all, since the product AsBs of two smooth admissible elliptic paths of
(matrices of) parametric pseudodifferential operators is homotopic to BsAs,
the above results together with some additional analytic arguments give the
following ‘log-additivity’ result.

Theorem 3.4 (cf. [8, Thm. 2.6]). Let As ∈ CLm(M,E; R2k+1) and Bs ∈
CLn(M,E; R2k+1) with s ∈ [0, 1] and m,n ∈ Z be admissible paths of elliptic
elements. Then one has the additivity relation

DF
(
(AsBs)0≤s≤1

)
= DF

(
(As)0≤s≤1

)
+ DF

(
(Bs)0≤s≤1

)
. (3.5)

Secondly, because the algebra of smoothing operators CL−∞(M,E; Rp)
has the same K-theory as C, the divisor flows assume integral values. More
precisely, in view of the preceding results, and using compatibility of the Bott
suspension isomorphisms in K-theory and cyclic cohomology as proved by
Elliott–Natsume–Nest [3], the divisor flow pairings acquire the following
remarkable topological interpretation.

Theorem 3.5 (cf. [8, Thm. 2.12]). The divisor flow pairing with the char-
acter Cp

reg of the relative cycle (Ωp, ∂Ωp, r, %, TRp, T̃Rp), p = 2k + i > 0,
implements the Bott isomorphism at the relative K-theory level,

Ki(CL0(M,E; R2k+i), CS0(M,E; R2k+i)) '−→ Z , i = 0, 1 ,

in a manner compatible with the Bott suspension.
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4. The spectral flow and the divisor flow

In this section we describe the relationship between the spectral flow
and the divisor flows, which goes beyond the mere analogy between their
properties.

In order to treat both the even and the odd case simultaneously, we make
the following notational conventions. Let p = 2k or p = 2k + 1 and denote
by c : C`p → M2k(C) the standard representation of the Clifford algebra
C`p. If p is odd then c is irreducible and the image of the volume element
is characterized by

c(ik+1 e1 · · · e2k+1) = Id =: γ,

while if p is even, we have

c(ik e1 · · · e2k) =: γ , with γ2 = Id and γ∗ = γ .

So in the even case γ is a (non-trivial) grading operator while in the odd
case γ is just the identity.

We now fix an invertible first order self-adjoint elliptic differential oper-
ator D and define its p-fold suspension as

Dp(µ) := γ
(
D ⊗ IC2k + c(µ)

)
.

By construction, Dp is an element of CL1(M,E ⊗C2k
; Rp). Since Dp(µ)2 =

D2 + |µ|2 it follows from the invertibility of D that Dp is invertible, too.
Recall that the odd parametric η2k+1-invariant was defined by applying

(up to a factor) the degree (2k + 1)-term of the Chern character to the
invertible A, cf. Eqs. (1.11), (2.7).

To define the parametric η-invariant in the even case p = 2k we first
observe that

P :=
1
2

(
I −

((
D2 + | IdR2k |2

)−1/2 ⊗ IC2k

)
D2k

)
(4.1)

is an idempotent in CL0(M,E ⊗ C2k
; R2k). Hence to any invertible first

order self-adjoint elliptic differential operator we can naturally associate an
idempotent in CL0(M,E⊗C2k

; R2k). Then, analogously to the odd case the
higher even η-invariant η2k is defined by applying the degree 2k-term of the
even Chern character to the idempotent P, cf. Eq. (2.11):

η2k(D2k) := − 2
(2πi)kk!

TR2k

((
P − 1

2
)
(dP)2k

)
. (4.2)

With this understood, Proposition 6.6 in [9] can now be generalized to all
dimensions.

Proposition 4.1 (cf. [8, Thm. 3.2]). Let D be an invertible first order self-
adjoint elliptic differential operator. Let Dp(µ) := γ

(
D ⊗ IC2k + c(µ)

)
, µ ∈

Rp, be the p-fold suspension. Then the spectral η-invariant of D equals the
parametric η-invariant of Dp :

η(D) = ηp(Dp) , for all p ∈ N.
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In turn, this ‘suspension property’ of the η-invariants plays a key role in
establishing the following relation between the divisor flow and the spectral
flow.

Theorem 4.2 (cf. [8, Sec. 3]). Let Ds : C∞(E) → C∞(E) be a smooth family
of elliptic first order self-adjoint differential operators on the vector bundle
E such that D0 and D1 are invertible. Let Dp,s := γ

(
Ds ⊗ IC2k + c(µ)

)
,

µ ∈ R2k, be the corresponding family of the p-fold suspensions.

(i) If p = 2k + 1 is odd, then the divisor flow of (Ds)0≤s≤1 equals the
spectral flow of (Ds)0≤s≤1.

(ii) If p = 2k is even, then let Ps ∈ CL1(M,E ⊗ C2k
; R2k) be a

smooth family of almost idempotents whose endpoints coincide with
the idempotents associated to Dj , j = 0, 1 in Eq. (4.1). The even
divisor flow of the family of almost idempotents (Ps)0≤s≤1 coincides
with the spectral flow of (Ds)0≤s≤1.
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