MATH 6230 Differential Geometry 1 Homework Set 4

Spring 2022

Course Instructor: Dr. Markus Pflaum

Contact Info: Office: Math 255, Telephone: 2-7717, e-mail: markus.pflaum@colorado.edu.

Problem 1: Let M be a (real) manifold of finite dimension and fix a point $p \in M$. Let \mathcal{U}_p be the set of open neighborhoods of p in M and denote by $\mathcal{C}^{\infty}(\mathcal{U}_p)$ the set of smooth functions $f: U \to \mathbb{R}$, where U is an element of \mathcal{U}_p . Define an equivalence relation \sim on $\mathcal{C}^{\infty}(\mathcal{U}_p)$ by calling two smooth functions $f: U \to \mathbb{R}$ and $g: V \to \mathbb{R}$ with $U, V \in \mathcal{U}_p$ equivalent if there exists an element $W \in \mathcal{U}_p$ such that $W \subset U \cap V$ and f|W = g|W. Denote by \mathcal{C}_p^{∞} the set of equivalence classes and call it the *stalk* of $\mathcal{C}^{\infty}(M)$ at p. Its elements are called *germs* of smooth functions at p. For $f \in \mathcal{C}^{\infty}(\mathcal{U}_p)$ the associated equivalence class is denoted by $[f]_p$.

- (a) Construct a natural algebra structure on the stalk C_p^{∞} reflecting addition and multiplication of smooth functions.
- (b) Call a linear map $\delta : \mathcal{C}_p^{\infty} \to \mathbb{R}$ a derivation if

 $\delta([f]_p \cdot [g_p]) = f(p)\delta([g_p]) + g(p)\delta([f]_p) \quad \text{for all } [f]_p, [g]_p \in \mathcal{C}_p^{\infty} .$

Denote the space of such derivations by $\operatorname{Der}(\mathcal{C}_p^{\infty},\mathbb{R})$. Show that $\operatorname{Der}(\mathcal{C}_p^{\infty},\mathbb{R})$ is a vector space.

(c) Show that the map

$$T_p M \to \operatorname{Der}(\mathcal{C}_p^{\infty}, \mathbb{R}), \quad \dot{\gamma}(0) \mapsto \left(\mathcal{C}_p^{\infty} \ni [f]_p \mapsto \left. \frac{d}{dt} \right|_{t=0} f(\gamma(t)) \in \mathbb{R} \right)$$

is well defined and a linear isomorphism.

Remark. (c) shows that the tangent space T_pM can be identified with the space of derivations $Der(\mathcal{C}_p^{\infty}, \mathbb{R})$. This is the *algebraists definition* of the tangent space.

Problem 2: In the wikipedia article https://en.wikipedia.org/wiki/Sheaf_(mathematics) read the sections with the definition of presheaves, sheaves, on examples and on the stalks of a sheaf. Then define the presheaf \mathcal{X}_M^{∞} of smooth vector fields on a manifold M and the presheaf of k-forms Ω_M^k on M. Show that these presheaves are sheaves.

Problem 3: Verify that the space of smooth vector fields $\mathcal{X}^{\infty}(M)$ on a manifold M coincides naturally with the space of derivations $\text{Der}(\mathcal{C}^{\infty}(M), \mathcal{C}^{\infty}(M))$.

Hint. First provide a precise definition of the space $Der(\mathcal{C}^{\infty}(M), \mathcal{C}^{\infty}(M))$ and then use Problems 1 and 2 to construct the desired isomorphism.

Problem 4: Let M be a manifold and $E \in \mathcal{C}^{\infty}(M)$ -module. Denote by $\mathcal{L}^{k}_{\mathcal{C}^{\infty}(M)}(E, \mathcal{C}^{\infty}(M))$ the space of k-fold $\mathcal{C}^{\infty}(M)$ -multilinear maps from the k-fold cartesian product $E \times \ldots \times E$ to $\mathcal{C}^{\infty}(M)$ and by $\mathcal{A}^{k}_{\mathcal{C}^{\infty}(M)}(E, \mathcal{C}^{\infty}(M))$ the subspace of alternating multilinear maps. Show that there is a natural isomorphism

$$\Omega^k(M) \to \mathcal{A}^k_{\mathcal{C}^\infty(M)}(\mathcal{X}^\infty(M), \mathcal{C}^\infty(M))$$
.