MATH 6230 Differential Geometry 1 Homework Set 1

Spring 2022

Course Instructor: Dr. Markus Pflaum

Contact Info: Office: Math 255, Telephone: 2-7717, e-mail: markus.pflaum@colorado.edu. Problem 1: Consider the gluing construction defined in class.

- (a) Show that if the family $(U_i, x_i)_{i \in I}$ is countable, then the resulting topology on M is second countable.
- (b) Show that M is Hausdorff, if and only if the image of the canonical diagonal embedding $U_i \cap U_j \hookrightarrow U_i \times U_j$ is closed for all $i, j \in I$. Hereby, the factors of $U_i \times U_j$ carry the unique topologies such that x_i and x_j are homeomorphisms.

Problem 2: Consider the general linear group $GL(n, \mathbb{k})$ with $\mathbb{k} = \mathbb{R}$ or $= \mathbb{C}$. Show that $GL(n, \mathbb{k})$ is an open subset of \mathbb{k}^{n^2} . Then prove that the following maps are smooth and compute their derivatives:

- (a) the inversion $\mathsf{GL}(n, \Bbbk) \to \mathsf{GL}(n, \Bbbk), g \mapsto g^{-1}$,
- (b) the product map $\mathsf{GL}(n, \Bbbk) \times \mathsf{GL}(n, \Bbbk) \to \mathsf{GL}(n, \Bbbk), (g, h) \mapsto gh$,
- (c) conjugation $\operatorname{GL}(n, \mathbb{k}) \times \operatorname{GL}(n, \mathbb{k}) \to \operatorname{GL}(n, \mathbb{k}), (g, h) \mapsto ghg^{-1}$.

Derive that $GL(n, \mathbb{k})$ is a Lie group.

Problem 3: Let M be a compact manifold of positive dimension. Show that there is a no global chart for M, but that M has a finite atlas.

Problem 4: Show that the *n*-dimensional torus $T^n = (S^1)^n$ is an *n*-dimensional smooth manifold. What is the minimum number of charts one needs to cover the *n*-torus?