Math 6220 Introduction to Topology 2 Homework Set 2

Spring 2020

Course Instructor: Dr. Markus Pflaum

Contact Info: Office: Math 255, Telephone: 2-7717, e-mail: markus.pflaum@colorado.edu. By a semi-cosimplicial module (over a given ring R) one understands a sequence of R-modules M^k , $k \in \mathbb{N}$ together with R-module maps $d^i : M^k \to M^{k+1}$, $(0 \le i \le k+1)$ such that

$$d^j d^i = d^i d^{j-1}$$
 for $i < j$.

Show that then (M^{\bullet}, d) with $d = \sum_{i=0}^{k+1} (-1)^i d^i$ is a cochain complex. Its cohomology groups will be denoted by $H^k(M)$.

Singular cohomology. Let X be a topological space, and k a unital commutative ring. Put $S^k(X) := \operatorname{Hom}_{\mathbb{Z}}(S_k(X), \mathbb{k})$, and let d^i be dual to the face map $\delta_i : S_k(X) \to S_{k-1}(X)$. Prove that one thus obtains a semi-cosimplicial module. The corresponding cohomology is called singular cohomology of X with coefficients on k.

Čech cohomology. Let X be a topological space, and \mathcal{U} an open covering of X. Denote for each k by $\mathcal{U}^{(k)}$ the set of all (k+1)-tupels (U_0, \ldots, U_k) of elements of \mathcal{U} such that $U_0 \cap \ldots \cap U_k \neq \emptyset$. For each $k \in \mathbb{N}$ let

$$\check{C}^k(X) := \prod_{(U_0,\dots,U_k)\in\mathcal{U}^{(k)}} \underline{\mathbb{R}}(U_0\cap\dots\cap U_k),$$

where for an open set $U \subset X$ one denotes by $\underline{\mathbb{R}}(U)$ the space of locally constant functions from U to \mathbb{R} . Define now $\check{\partial}_i : \check{C}^k(X) \to \check{C}^{k+1}(X)$ by

$$(f_{(U_0,\dots,U_k)})_{(U_0,\dots,U_k)\in\mathcal{U}^{(k)}} \mapsto (f_{(U_0,\dots,U_{i-1},U_{i+1},\dots,U_{k+1})})_{(U_0,\dots,U_{k+1})\in\mathcal{U}^{(k+1)}}.$$

Check that one thus obtains a semi-cosimplicial space; its cohomology is called the Cech cohomology of X with respect to the covering \mathcal{U} and is denoted by $\check{H}^{\bullet}(X)$.

Alexander–Spanier cohomology. Let X be a topological space. For $k \in \mathbb{N}$ denote by $C^k(X)$ the space of all continuous functions f from X^{k+1} to \mathbb{R} . Define face maps $\delta^i : C^k(X) \to C^{k+1}(X)$ by the formula

$$\delta^{i} f(x_0, \dots, x_{k+1}) = f(x_0, \dots, x_{i-1}, x_{i+1}, \dots, x_{k+1}), \quad f \in C^{k}(X).$$

Show that one thus obtains a semi-cosimplicial space. The resulting cochain complex $(C^{\bullet}(X), \delta)$ is acyclic. By passing to an appropriate quotient complex one obtains a complex which has nontrivial cohomology and contains the information one wants. To define that quotient complex consider the subcomplex $C_0^{\bullet}(X)$ of *locally vanishing* cochains. In degree k, this complex consists of all $f \in C^k(X)$ for which there exists an open covering \mathcal{U} of X such that f vanishes on the neighborhood $\mathcal{U}^{(k+1)} = \bigcup_{U \in \mathcal{U}} U^{k+1}$. Show that δf is locally vanishing, if f is. The quotient complex $(C_{AS}^k(X), \delta) := (C^{\bullet}(X)/C_0^{\bullet}(X), \delta)$ is called the Alexander–Spanier complex of X (with coefficients in \mathbb{R}), and its cohomology the Alexander–Spanier cohomology of X. One denotes the Alexander–Spanier cohomology of X by $H_{AS}^{\bullet}(X)$.