Math 6220 Introduction to Topology 2 Homework Set 1

Spring 2020

Course Instructor: Dr. Markus Pflaum

Contact Info: Office: Math 255, Telephone: 2-7717, e-mail: markus.pflaum@colorado.edu.

Problem 1. For a given topological space X let \check{X} denote the Stone-Čech compactification of X, i.e. the closure of the image of the canonical map

$$\iota: X \to [0,1]^{\mathcal{C}(X,[0,1])}, \quad x \to (f(x))_{f \in \mathcal{C}(X,[0,1])},$$

where $[0,1]^{\mathcal{C}(X,[0,1])}$ carries the product topology. Show that the Stone-Čech compactification is a functor from the category of completely regular topological spaces to the category of compact topological spaces.

Problem 2. Let $F: C \to D$ be a functor between two categories. Show that F is an equivalence of categories, if and only if the following holds true:

- F is full, i.e. for any two objects X and Y of C, the map $\mathrm{Mor}_{C}(X,Y) \to \mathrm{Mor}_{D}(FX,FY)$ induced by F is surjective;
- F is faithful, i.e. for any two objects X and Y of C, the map $Mor_{C}(X,Y) \to Mor_{D}(FX,FY)$ induced by F injective; and
- F is essentially surjective, i.e. each object Z in D is isomorphic to an object of the form FX for some object X in C.

Problem 3. Show that

$$\mathbb{Z}/2 \longrightarrow \mathbb{Z}/4$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{Z}/6 \longrightarrow \mathbb{Z}/12$$

is cocartesian in the category of abelian groups and that

$$\mathbb{Z}/2 \longrightarrow \mathbb{Z}/4$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{Z}/6 \longrightarrow \mathrm{SL}_2(\mathbb{Z})$$

is cocartesian in the category of groups.

Problem 4. Recall that the *simplicial category* Simp consists of objects $\langle n \rangle$, where $n \in \mathbb{N}$ and $\langle n \rangle$ denotes the ordered set of integers $0 < 1 < \ldots < n$, and of morphisms given by non-decreasing maps $f : \langle n \rangle \to \langle m \rangle$. Define the *face* and *degeneracy maps* $\delta_{n,i} : \langle n-1 \rangle \to \langle n \rangle$ resp. $\sigma_{n,i} : \langle n+1 \rangle \to \langle n \rangle$ as follows, with $0 \le i \le n$:

$$\delta_{n,i}(l) = \begin{cases} l & \text{for } 0 \le l < i, \\ l+1 & \text{for } i \le l \le n-1, \end{cases}$$
$$\sigma_{n,i}(l) = \begin{cases} l & \text{for } 0 \le l \le i, \\ l-1 & \text{for } i < l \le n+1, \end{cases}$$

If by the context it is clear which maps are meant, we will often write δ_i for $\delta_{n,i}$ and σ_i for $\sigma_{n,i}$. Prove that the category Simp has the following properties:

- (i) The only isomorphisms are the identity morphisms $id_{\langle n \rangle}$.
- (ii) The face and degeneracy maps satisfy the following commutation relations:

$$\delta_{n+1,j} \, \delta_{n,i} = \delta_{n+1,i} \, \delta_{n,j-1} \quad \text{for } 0 \le i < j \le n+1,$$

$$\sigma_{n-1,j} \, \sigma_{n,i} = \sigma_{n-1,i} \, \sigma_{n,j+1} \quad \text{for } 0 \le i \le j \le n-1,$$

$$\sigma_{n,j} \, \delta_{n+1,i} = \begin{cases} \delta_{n,i} \, \sigma_{n-1,j-1} & \text{for } 0 \le i < j \le n, \\ \mathrm{id}_{\langle n \rangle} & \text{for } i = j \text{ and } i = j+1, \\ \delta_{n,i-1} \, \sigma_{n-1,j} & \text{for } 1 \le j+1 < i \le n+1 \ . \end{cases}$$

(iii) Every morphism $f:\langle n\rangle \to \langle m\rangle$ has a unique decomposition of the form

$$f = \delta_{i_r} \cdot \ldots \cdot \delta_{i_1} \cdot \sigma_{i_1} \cdot \ldots \cdot \sigma_{i_s} ,$$

where $i_1 < ... < i_r, j_1 < ... < j_s \text{ and } m = n - s + r$