Math 2002 Number Systems Homework Set 4

Spring 2020

Course Instructor: Dr. Markus Pflaum

Contact Info: Office: Math 255, Telephone: 2-7717, e-mail: markus.pflaum@colorado.edu.

Problem 1: Let $f: X \to Y$ and $g: Y \to Z$ be functions. Prove the following claims:

- a) If f and g are injective, then $g \circ f$ is injective as well.
- b) If f and g are surjective, then $g \circ f$ is surjective, too.

(4P)

Problem 2: Let $f: X \to Y$ be a function for which there exist functions $g_1: Y \to X$ and $g_2: Y \to X$ such that $g_1 \circ f = \mathrm{id}_X$ and $f \circ g_2 = \mathrm{id}_Y$. Show that then f is invertible and that $g_1 = g_2$.

Problem 3:

a) Let $f: X \to Y$ be a mapping, and $A, B \subset Y$. Show that then

$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$
$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B).$$

b) Determine, whether the following equalities are true for subsets $C, D \subset X$:

$$f(C \cap D) = f(C) \cap f(D)$$

$$f(C \cup D) = f(C) \cup f(D).$$

(6P)

(3P)

Problem 4: Show that for all $x, y \in \mathbb{R}$

$$\max\{x,y\} = \frac{1}{2}(x+y+|x-y|) \quad \text{and} \quad \min\{x,y\} = \frac{1}{2}(x+y-|x-y|)$$
(4P)

Problem 5: Consider the triple $F = (\mathbb{R}, \mathbb{R}, \Gamma)$ with

a)
$$\Gamma = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^2 + y^2 = 1\},\$$

b)
$$\Gamma = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x = y^2 + 1\},\$$

c)
$$\Gamma = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = x^2 + 1\}.$$

In which of these cases is F a function? Explain!