Math 2002 Number Systems Homework Set 7

Fall 2020

Course Instructor: Dr. Markus Pflaum

Contact Info: Office: Math 255, Telephone: 2-7717, e-mail: markus.pflaum@colorado.edu. Problem 1: Given $p \in \mathbb{N}$ with $p \geq 2$ define the relation \sim_p of congruence mod p for integers

as follows:

 $m \sim_p n$ if and only if there exists $k \in \mathbb{Z}$ such that $p \cdot k = m - n$.

If m is congruent n mod p one also writes $m \equiv n \mod p$.

- (a) Show that congruence mod p is an equivalence relation on \mathbb{Z} . Denote for each $m \in \mathbb{Z}$ by \overline{m} its equivalence class and by $\mathbb{Z}/p\mathbb{Z}$ the set of equivalence classes. (2P)
- (b) Verify that the following maps are well-defined:

$$+: \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}, \ (\overline{m}, \overline{n}) \mapsto \overline{m+n},$$
$$\cdot: \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}, \ (\overline{m}, \overline{n}) \mapsto \overline{m \cdot n}.$$

(2P)

- (c) Prove that for p a prime number the sets $\mathbb{Z}/p\mathbb{Z}$ together with the above maps + and \cdot and the elements $\overline{0}$ and $\overline{1}$ are fields. What is the cardinality of the field $\mathbb{Z}/p\mathbb{Z}$? (5P)
- (d) Again under the assumption that p is prime show that there is no order relation on the field $\mathbb{Z}/p\mathbb{Z}$ turning it into an ordered field. (3P)

Problem 2: Let $(\mathbb{Q}^{\mathbb{N}})_{\mathbb{C}}$ denote the set of all *Cauchy sequences* in \mathbb{Q} that is the set of all sequences $(x_n)_{n\in\mathbb{N}}$, where $x_n\in\mathbb{Q}$ for $n\in\mathbb{N}$, such that for each $\varepsilon>0$ there exists an $N\in\mathbb{N}$ such that

$$|x_n - x_m| < \varepsilon$$
 for all $n, m \ge N$.

Show that componentwise addition and multiplication turn $(\mathbb{Q}^{\mathbb{N}})_{\mathcal{C}}$ into a commutative ring. (4P)

Problem 3: Define two elements $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}} \in (\mathbb{Q}^{\mathbb{N}})_{\mathbb{C}}$ as equivalent, in signs $(x_n)_{n\in\mathbb{N}} \sim (y_n)_{n\in\mathbb{N}}$ if for all $\varepsilon > 0$ there is an $N \in \mathbb{N}$ such that

$$|x_n - y_n| < \varepsilon$$
 for all $n \ge N$.

- (a) Show that \sim is an equivalence relation. Denote the equivalence class of an element $(x_n)_{n\in\mathbb{N}}\in(\mathbb{Q}^{\mathbb{N}})_{\mathbb{C}}$ by $[(x_n)_{n\in\mathbb{N}}].$ (2P)
- (b) Define an equivalence class $[(x_n)_{n\in\mathbb{N}}]$ as positive, if there exists a rational c>0 and an $N\in\mathbb{N}$ such that $x_n\geq c$ for all $n\geq N$. Prove that for an equivalence class $[(x_n)_{n\in\mathbb{N}}]$ exactly one of the following holds true:
 - (i) $[(x_n)_{n\in\mathbb{N}}]$ is positive.
 - (ii) $[(-x_n)_{n\in\mathbb{N}}]$ is positive.
 - (iii) $[(x_n)_{n\in\mathbb{N}}] = 0$, where 0 is the zero sequence.

(2P)

(5P)

(c) Define addition and multiplication on the quotient space $\mathbb{R} := (\mathbb{Q}^{\mathbb{N}})_{\mathbb{C}} / \sim$ by the following:

$$+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, ([(x_n)_{n \in \mathbb{N}}], [(y_n)_{n \in \mathbb{N}}]) \mapsto [(x_n)_{n \in \mathbb{N}} + (y_n)_{n \in \mathbb{N}}], \\ \cdot: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, ([(x_n)_{n \in \mathbb{N}}], [(y_n)_{n \in \mathbb{N}}]) \mapsto [(x_n)_{n \in \mathbb{N}} \cdot (y_n)_{n \in \mathbb{N}}].$$

Show that these operations are well-defined and turn \mathbb{R} into a field.

(d) Define an order relation on the quotient space $\mathbb{R} := (\mathbb{Q}^{\mathbb{N}})_{\mathbb{C}} / \sim \text{by}$

$$[(x_n)_{n\in\mathbb{N}}] \le [(y_n)_{n\in\mathbb{N}}]$$
 iff $[(y_n)_{n\in\mathbb{N}}] - [(x_n)_{n\in\mathbb{N}}]$ is positive or 0.

Show that that is a total order on \mathbb{R} indeed.

(2P)

(e) Prove that \mathbb{R} is a Dedekind complete ordered field. It is called the *field of real numbers*. (3P)