
Appendix E: the logical foundations of set theory

We develop logic rigorously here, ending with a precise statement of the axioms of ZFC.
Although the development is rigorous, it takes a lot of practice with logic to be comfortable
with the idea that our usual mathematical arguments, including those in the main part of
these notes, can be cast in the strict form described here. A development of logic giving
extensive practice with these notions is beyond the scope of this appendix. We hope that
our exposition will clarify the rigorous foundation of set theory, and will motivate readers
to go learn about these matters in a more thorough fashion.

The fundamental idea is to define a formal language: define explicitly what symbols
are allowed, how to combine them into meaningful expressions, and how a sequence of
expressions constitutes a mathematical proof.

Of course our formal language is specially designed for set theory. It is, however, just
one instance of more general languages in the general first-order classification of languages.

The language is built up from certain symbols. These symbols are supposed to all be
distinct from one another. We assume as given an intuitive notion of a finite sequence.
The meaningful expressions of the language will be certain finite sequences of symbols. We
also assume that no symbol is a finite sequence of symbols.

The symbols of our language are as follows.

Sentential symbols: ¬ and →. Intuitively these mean “not” and “implies” respectively.

The universal quantifier ∀, meaning intuitively “for all”.

Variables: v0, v1, . . .. We assume that we have an infinite supply of these.

The equality symbol =.

The membership symbol ∈.

Punctuation symbols ( and ).

These are all of the symbols of our language.
A string is a finite sequence of symbols. Now we define the notion of a formula.

(1) For any variables vi, vj , the string (vi = vj) is a formula.

(2) For any variables vi, vj , the string (vi ∈ vj) is a formula.

(3) If ϕ is a formula, then so is (¬ϕ).

(4) If ϕ and ψ are formulas, then so is (ϕ→ ψ).

(5) If ϕ is a formula and vi is a variable, then the string (∀viϕ) is a formula.

(6) Formulas can only be formed by finitely many applications of the rules (1)–(5).

Formulas of the types (1) and (2) are called atomic formulas.
The use of parentheses is rather strict here, in order to be precise. In practice we omit

and add parentheses or change their form, using [, ], {, and } instead, in order to increase
readability.

We define some additional logical notions in terms of the ones taken as symbols:
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(7) (ϕ ∨ ψ) abbreviates ((¬ϕ) → ψ).

(8) (ϕ ∧ ψ) abbreviates (¬(ϕ→ (¬ψ))).

(9) (ϕ↔ ψ) abbreviates ((ϕ→ ψ) ∧ (ψ → ϕ)).

(10) (∃viϕ) abbreviates (¬(∀vi(¬ψ))).

Intuitively these mean, respectively, “or”, “and”, “iff ”, and “there exist”. Note that “or”
is taken in the non-exclusive sense.

A fundamental fact, which we will not formulate precisely, is that formulas are uniquely
readable. For example, if ϕ, ψ, ϕ′, ψ′ are formulas and (ϕ → ψ) is the same formula as
(ϕ′ → ψ′), then ϕ is the formula ϕ′ and ψ is the formula ψ′.

We now describe formulas which we call logical axioms. For any formulas ϕ, ψ, χ the
following are axioms.

(A1) ϕ→ (ψ → ϕ).

(A2) [ϕ→ (ψ → χ)] → [(ϕ→ ψ) → (ϕ→ χ)].

(A3) (¬ϕ→ ¬ψ) → (ψ → ϕ).

(A4) ∀vi(ϕ→ ψ) → (∀viϕ→ ∀viψ) for any i = 0, 1, . . ..

(A5) ϕ→ ∀viϕ, if vi does not occur in ϕ.

(A6) ∃vi(vi = vj) for i 6= j.

(A7) vi = vj → (ϕ→ ψ), if i 6= j, ϕ is atomic, and ψ is obtained from ϕ by replacing one
occurrence of vi by vj .

This is a very simple set of axioms. Together with “rules of inference” which we will
describe later, they suffice to derive any purely logical fact. There are many notions in
logic which can be developed on the basis of what we have so far. For example, tautologies,
which are formulas true just on the basis of ¬ and →, can be derived. The important
notions of free and bound variables can be defined, and standard facts about them proved.

Before giving our rules of inference, we now formulate all of our set theoretic axioms
in our formal language.

(S1) (extensionality) ∀v0∀v1[∀v2(v2 ∈ v0 ↔ v2 ∈ v1) → v0 = v1].

(S2) (pairing) ∀v0∀v1∃v2∀v3(v3 ∈ v2 ↔ v3 = v0 ∨ v3 = v1).

(S3) (union) ∀v0∃v1∀v2[v2 ∈ v1 ↔ ∃v3(v2 ∈ v3 ∧ v3 ∈ v0)].

(S4) (comprehension) If ϕ is a formula with all of its variables in the list v0, . . . , vm, with
m ≥ 1, then the following formula is an instance of this axiom:

∀v1 . . .∀vm∃vm+1∀v0(v0 ∈ vm+1 ↔ v0 ∈ vm ∧ ϕ).

(Note that formulas thus are the rigorous expression of properties in the text.)

(S5) (power set) ∀v0∃v1∀v2(v2 ∈ v1 ↔ ∀v3(v3 ∈ v2 → v3 ∈ v0)).

E2



For the axiom of choice, we need several abbreviations. Our abbreviated formulas will
involve variables of two sorts: variables vi with i < 20, and variables with higher indices.
If ϕ is an abbreviation, and all the variables of the first sort which appear in ϕ are in
the list v0, . . . , vm, then by ϕ(vi0 , . . . , vim

) we mean the result of simultaneously replacing
v0, . . . , vm by vi0 , . . . , vim

, leaving the variables of the second sort alone.

Unord is ∀v20(v20 ∈ v0 ↔ v20 = v1 ∨ v20 = v2);

Intuitively, v0 = {v1, v2};

Ord is ∃v21∃v22[Unord(v21, v1, v1) ∧ Unord(v22, v1, v2) ∧ Unord(v0, v21, v22)];

Intuitively, v0 = (v1, v2);

Rel is ∀v23[v23 ∈ v0 → ∃v24∃v25Ord(v23, v24, v25)];

Intuitively, v0 is a relation;

Fcn is Rel ∧ ∀v26∀v27∀v28∀v29∀v30[v26 ∈ v0 ∧ v27 ∈ v0 ∧Ord(v26, v28, v29)

∧Ord(v27, v28, v30) → v29 = v30];

Intuitively, v0 is a function;

Map is Fcn ∧ ∀v31∀v32∀v33[Ord(v31, v32, v33) ∧ v31 ∈ v0 → v32 ∈ v1 ∧ v33 ∈ v2]

∧ ∀v31[v31 ∈ v1 → ∃v32∃v33(Ord(v33, v31, v32) ∧ v33 ∈ v1)];

Intuitively, v0 : v1 → v2;

Onto is Map ∧ ∀v34[v34 ∈ v2 → ∃v35∃v36(Ord(v36, v35, v34) ∧ v36 ∈ v0)];

Intuitively, v0 : v1 → v2 and v0 maps onto v2;

Comp is Map(v0, v2, v3) ∧Map(v1, v3, v2) ∧ ∀v37[v37 ∈ v3 →

∃v38∃v39∃v40[Ord(v39, v37, v38) ∧Ord(v40, v38, v37)

∧ v39 ∈ v1 ∧ v40 ∈ v0]];

Intuitively, v0 : v2 → v3, v1 : v3 → v2, and v0 ◦ v1 = Idv3
;

Now we can give the axiom of choice:

(S6) (choice) ∀v0∀v1∀v2[Onto→ ∃v41Comp(v0, v41, v1, v2)].

This axiom is quite long if written out in full; some equivalents of the axiom of choice are
much shorter.

(S7) (foundation) ∃v1(v1 ∈ v0) → ∃v1[v1 ∈ v0 ∧ ¬∃v2(v2 ∈ v0 ∧ v2 ∈ v1)].

(S8) (infinity)

∃v0[∃v1(v1 ∈ v0 ∧ ∀v2(¬(v2 ∈ v1))) ∧ ∀v1[v1 ∈ v0 → ∃v2(v2 ∈ v0

∧ ∀v3(v3 ∈ v2 ↔ v3 ∈ v1 ∨ v3 = v1))]].

(S9) (replacement) If ϕ is a formula with all of its variables in the list v0, . . . , vm, and i is
minimum such that vi does not occur in ϕ and i > 1, then the following is an instance of
the replacement axiom:

∀v0 . . .∀vm[∀v0∀v1∀vi[ϕ ∧ ∀v1(v1 = vi → ϕ) → v1 = vi]

→ ∃vm+1∀v1(v1 ∈ vm+1 ↔ ∃v0(v0 ∈ vm ∧ ϕ))].
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The hypothesis here is supposed to say that ϕ is a “class function” with respect to the
argument v0 and result v1. The conclusion asserts the existence of a new set vm+1 obtained
by replacing the elements of vm according to this class function.

This finishes our list of axioms of ZFC.

Now we define the crucial notion of mathematical proof. A mathematical proof is a finite
sequence ϕ0, ϕ1, . . . , ϕm such that for each i = 0, . . . , m one of the following holds:

(1) ϕi is a logical axiom.

(2) ϕi is an axiom of ZFC.

(3) There exist j, k < i such that ϕk is the formula ϕj → ϕi. (Inference rule of modus
ponens.)

(4) There exist j < i and a natural number m such that ϕi is the formula ∀vmϕj . (Inference
rule of generalization.)

This completes our sketch of the logical foundations of set theory. A thorough develope-
ment of set theory on this basis would start by proving some of the purely logical facts
mentioned above. For a small illustration of the notions introduced in this appendix, we
give a mathematical proof of the formula v0 = v1 → v0 = v1:

(1) (v0 = v1 → [(v0 = v1 → v0 = v1) → v0 = v1])
→ ([v0 = v1 → (v0 = v1 → v0 = v1)] → (v0 = v1 → v0 = v1)) (A2)

(2) v0 = v1 → [(v0 = v1 → v0 = v1) → v0 = v1] (A1)
(3) [v0 = v1 → (v0 = v1 → v0 = v1)] → (v0 = v1 → v0 = v1) (1),(2),MP
(4) v0 = v1 → (v0 = v1 → v0 = v1) (A1)
(5) v0 = v1 → v0 = v1 (3),(4),MP
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