
Appendix D: the real numbers

We repeat a definition from Chapter 6. A subset A of Q is a Dedekind cut provided the
following conditions hold:

(1) Q 6= A 6= ∅;
(2) For all r, s ∈ Q, if r < s and s ∈ A, then r ∈ A.
(3) A has no largest element.

Let R′ be the set of all Dedekind cuts.
If A and B are Dedekind cuts, then we define

A + B = {x : there are a ∈ A and b ∈ B such that x = a + b}.

Proposition D1. If A and B are Dedekind cuts, then so is A + B.

Proof. Since A and B are both nonempty, clearly A + B is nonempty. Now take
r ∈ Q\A and s ∈ Q\B. So t < r for all t ∈ A, and u < s for all u ∈ B. Then a + b < r + s
for all a ∈ A and b ∈ B, so that x < r + s for all x ∈ A + B. In particular, r + s /∈ A + B,
by the irreflexivity of <. So we have shown that (1) holds for A + B.

Now suppose that r < s ∈ A + B. Write s = a + b with a ∈ A and b ∈ B. Then
r < s = a+ b, so r−a < b, and hence r−a ∈ B by (2) for B. Hence r = a+(r−a) shows
that r ∈ A + B. So (2) holds for A + B.

Suppose that x ∈ A + B. Write x = a + b with a ∈ A and b ∈ B. Since a is not the
greatest element of A, by (3) choose a′ ∈ A such that a < a′. Then x = a + b < a′ + b ∈
A + B, proving (3) for A + B.

Proposition D2. Let A, B, C be Dedekind cuts. Then
(i) A + B = B + A.
(ii) A + (B + C) = (A + B) + C.

Proof. (i): obvious. (ii): Suppose that x ∈ A + (B + C). Then there are a ∈ A and
y ∈ (B + C) such that x = a + y; and there are b ∈ B and c ∈ C such that y = b + c.
So x = a + b + c. Now a + b ∈ (A + B), so x ∈ ((A + B) + C). This shows that
A + (B + C) ⊆ (A + B) + C. Since this is generally true for all Dedekind cuts A, B, C, we
also have (A + B) + C = C + (B + A) ⊆ (C + B) + A = A + (B + C).

Now we define, following Chapter 6,

Z = {r ∈ Q : r < 0}.

Clearly Z is a Dedekind cut.

Proposition D3. A + Z = A for every Dedekind cut A.

Proof. Let a ∈ A. Since A does not have a largest element, choose b ∈ A such that
a < b. Then a − b < 0, hence a − b ∈ Z, and so a = b + (a − b) shows that a ∈ A + Z.

Conversely, suppose that x ∈ A + Z. Then there exist a ∈ A and b ∈ Z such that
x = a + b. Since b < 0, we have x < a, and so x ∈ A, as desired.
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It is easy to check that Z is the only element of R′ such that A + Z = A for all A.
Next, for any Dedekind cut A we define

−A = {r ∈ Q : there is an s ∈ Q such that r < s and − s /∈ A}.

Proposition D4. A + −A = Z for any Dedekind cut A.

Proof. First we show that −A is itself a Dedekind cut. Since A 6= Q, choose r ∈ Q\A.
Then also r+1 /∈ A. so −(r +1) < −r and −(−r) = r /∈ A. It follows that −(r+1) ∈ −A.
Hence −A 6= ∅. Next, choose r ∈ A. Then −r /∈ −A, as otherwise there is an s such
that −r < s and −s /∈ A; but −s < r, contradiction. So −A 6= Q. Finally, suppose that
r ∈ −A; we want to find a larger element in A. Choose s such that r < s and −s /∈ A.
Take t ∈ Q such that r < t < s; for example, take t = (r + s)/2. Clearly then t ∈ −A, as
desired. This checks that −A is a Dedekind cut.

Now suppose that x ∈ A+−A. Then there are a ∈ A and b ∈ −A such that x = a+b.
Choose c ∈ Q such that b < c and −c /∈ A. Suppose that 0 ≤ x. Then x = a + b < a + c,
and so −c < a + −x ≤ a, and hence −c ∈ A, contradiction. Hence x < 0, so that x ∈ Z.

Second suppose that r ∈ Z. Fix b /∈ A.

(1) There is a positive integer p such that b + pr
2
∈ A.

In fact, to prove (1), also fix a ∈ A. Then a < b, as otherwise we would have b ∈ A. Hence
there are positive integers s, t such that b − a = s

t
. Since r

2
< 0, there are also positive

integers u, v such that r
2

= −u
v
. Then b − a = s

t
≤ s ≤ su = sv(− r

2
). Hence b + sv r

2
≤ a,

and so b + sv r
2
∈ A, proving (1).

Let p be the smallest positive integer such that b+p r
2
∈ A. Recall that b /∈ A, so that

even if p = 1 we can assert that b + (p − 1) r
2

/∈ A. Now

r = b + pr + (−b + (−p + 1)
r

2
+

r

2
),

and (−b + (−p + 1) r
2

+ r
2
) < (−b + (−p + 1) r

2
, and −(−b + (−p + 1) r

2
) = b + (p− 1) r

2
/∈ A.

This shows that r ∈ A + −A.

The element −A is unique: if A + B = Z, then B = −A. In particular, −Z = Z.
Next, we call a Dedekind cut A positive iff if has at least one positive member.

Proposition D5. For any Dedekind cut A, exactly one of the following holds:
(i) A is positive;
(ii) A = Z;
(iii) −A is positive.

Proof. Suppose that A is not positive, and A 6= Z. Since A is not positive, all its
members are negative or zero; since it has no largest element, 0 /∈ A. Thus A ⊆ Z. Since
A 6= Z, we actually have A ⊂ Z. Choose r ∈ Z\A. Now r + r < 0 + r = r < 0, and so
r < r

2
< 0. Hence 0 < − r

2
< −r. So − r

2
∈ −A, since −(−r) = r /∈ A. This shows that −A

is positive.
So we have shown that one of (i)–(iii) holds.
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Obviously (i) and (ii) do not simultaneously hold. Suppose that both A and −A are
positive. Hence there is a positive element r ∈ A, and a positive element s ∈ −A. By the
definition of −A, choose t such that s < t and −t /∈ A. Then −t < −s < 0 < r, so −t ∈ A,
contradiction. Thus (i) and (iii) do not simultaneously hold. Finally, suppose that −Z is
positive. Let r be a positive element of −Z. Then by definition there is an s such that
r < s and −s /∈ Z. So 0 ≤ −s < −r, contradicting r being positive.

On the basis of Proposition D5, the following definition makes sense. For any Dedekind
cut A,

|A| =

{

A if A = Z or A is positive,
−A if −A is positive.

Now we repeat the definition of product from Chapter 6. Let A and B be Dedekind cuts.

A · B = {r ∈ Q : there are s ∈ A and t ∈ B such that 0 < s

and 0 < t and r < s · t} if A and B are positive,(a)

A · B = Z if A = Z or B = Z,(b)

A · B = −(|A| · |B|) if A 6= Z 6= B and exactly one of A, B is positive(c)

A · B = (−A) · (−B) if −A and −B are both positive.(d)

Proposition D6. Let A, B, C be Dedekind cuts.
(i) A · B = B · A.
(ii) (−A) · B = −(A · B) = A · (−B).
(iii) A · (B · C) = (A · B) · C.
(iv) A · (B + C) = A · B + A · C.

Proof. (i): this is clear if both A and B are positive, or if one of them is Z. If both
are different from Z and exactly one of them is positive, then |A| and |B| are both positive,
and

A · B = −(|A| · |B|) = −(|B| · |A|) = B · A.

If −A and −B are both positive, then

A · B = (−A) · (−B) = (−B) · (−A) = B · A.

Thus (i) holds.
(ii): First we prove that (−A) · B = −(A · B). This is true by (b) if one of A, B is Z,

since −Z = Z. If A and B are positive, then

(−A) · B = −(A · B) by (c).
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If −A and B are positive, then

−(A · B) = −(−((−A) · B)) by (c)

= (−A) · B.

If A and −B are positive, then

(−A) · B = B · (−A) by (i)

= −(B · A) by the previous case

= −(A · B) by (i).

Finally, if −A and −B are positive, then

(−A) · B = −((−A) · (−B)) by (c)

= −(A · B) by (d).

Thus (−A) · B = −(A · B) in general. The other part of (ii) follows from (i).
(iii):

(1) If A, B, C are all positive, then A · (B · C) ⊆ (A · B) · C.

For, assume that A, B, C are all positive. Clearly then A · B and B · C are positive. Now
let x ∈ A · (B · C). Then there exist s, t such that x < s · t, 0 < s ∈ A, and 0 < t ∈ B · C.
Since t ∈ B · C, there exist u, v such that t < u · v, 0 < u ∈ B, and 0 < v ∈ C. Choose
s′ ∈ A such that s < s′. Then s · u < s′ · u, 0 < s′ ∈ A, and 0 < u ∈ B, so s · u ∈ A · B.
Then x < s · u · v, 0 < s · u ∈ A · B, and 0 < v ∈ C, so x ∈ (A · B) · C. This proves (1).

(2) If one of A, B, C is equal to Z, then A · (B · C) = Z = (A · B) · C.

This is clear.

(3) If A, B, C are all positive, then A · (B · C) = (A · B) · C.

In fact,

A · (B · C) ⊆ (A · B) · C by (1)

= C · (B · A) by (i)

⊆ (C · B) · A by (1)

= A · (B · C) by (i).

So (3) holds.

Now we can use (ii) to finish (iii):

A, B,−C positive: A · (B · C) = A · −(B · −C)

= −(A · (B · −C)

= −((A · B) · −C)
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= (A · B) · C;

A,−B, C positive: A · (B · C) = A · −(−B · C)

= −(A · (−B · C))

= −((A · −B) · C)

= (A · B) · C;

A,−B,−C positive: A · (B · C) = A · ((−B) · (−C))

= (A · −B) · −C

= (A · B) · C;

C positive: (A · B) · C = C · (B · A)

= (C · B) · A

= A · (B · C);

−A, B,−C positive: A · (B · C) = A · −(B · −C)

= −((−A) · −(B · −C))

= (−A) · (B · −C)

= ((−A) · B) · −C

= (A · B) · C;

−A,−B,−C positive: A · (B · C) = A · ((−B) · (−C))

= −((−A) · ((−B) · (−C)))

= −(((−A) · (−B)) · −C)

= (A · B) · C.

(iv): Clearly

(4) If one of A, B, C is Z, then A · (B + C) = A · B + A · C.

(5) If A, B, C are positive, then A · (B + C) = A · B + A · C.

For, first suppose that x ∈ A · (B + C). Then we can choose s, t so that 0 < s ∈ A,
0 < t ∈ B + C, and x < s · t. Since t ∈ B + C, there are b ∈ B and c ∈ C such that
t = b + c. Now choose b′ ∈ B with b ≤ b′ and 0 < b′, and choose c′ ∈ C such that c ≤ c′

and 0 < c′. Now x = s · b′ + (x − s · b′), and clearly s · b′ ∈ A · B, while

x − s · b′ < s · (b′ + c′) − s · b′ = s · c′,

and clearly s · c′ ∈ A · C. This proves ⊆ in (5).

Now suppose that y ∈ A · B + A · C. Then we can write y = u + v with u ∈ A · B
and v ∈ A · C. Say u < s · t with 0 < s ∈ A and 0 < t ∈ B, and v < a · c with 0 < a ∈ A
and 0 < c ∈ C. Let s′ be the maximum of s and a. Then y < s′ · (t + c), 0 < s′ ∈ A, and
t + c ∈ B + C. So y ∈ A · (B + C). This proves ⊇ in (5).

(6) If A, B,−C are positive, and also B + C is positive, then A · (B + C) = A ·B + A ·C.
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For,

A · B = A · (B + C + −C)

= A · (B + C) + A · (−C) by (5)

= A · (B + C) + −(A · C), by (ii)

and (6) follows.

(7) If A, B,−C are positive, and B + C is negative, then A · (B + C) = A · B + A · C.

For,

−(A · (B + C)) = A · (−(B + C)) by (ii)

= A · (−B + −C)

= A · (−B) + A · (−C) by (6)

= −(A · B) + −(A · C), by (ii)

and (7) follows.

(8) If A, B,−C are positive, and B + C = Z, then A · (B + C) = A · B + A · C.

For, under these hypotheses, C = −B, and so

A · (B + C) = A · Z = Z = A · B + −(A · B) = A · B + A · (−B) = A · B + A · C.

(9) If A,−B, C are positive, then A · (B + C) = A · B + A · C.

This follows from (6)–(8) since + is commutative.

(10) If A,−B,−C are positive, then A · (B + C) = A · B + A · C.

For,

A · (B + C) = −(A · (−B + −C)) by (ii)

= −(A · (−B) + A · (−C)) by (5)

= −(−(A · B) + −(A · C)) by (ii)

= A · B + A · C.

(11) If A is positive, then A · (B + C) = A · B + A · C.

This is true by (6)–(10).

(12) If −A is positive, then A · (B + C) = A · B + A · C.

In fact, (−A) · (B + C) = (−A) · B + (−A) · C by (11), and (12) follows, using (ii).

Now we define
I = {r ∈ Q : r < 1}.

Clearly I is a Dedekind cut.
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Proposition D7. A · I = A for any Dedekind cut A.

Proof. This is clear if A = Z. Now suppose that A is positive. Suppose that r ∈ A ·I.
Then there are s, t ∈ Q such that 0 < s ∈ A, 0 < t ∈ I, and r < s · t. Clearly then r < s,
so r ∈ A by the definition of Dedekind cut.

Conversely, suppose that r ∈ A. Choose r′, r′′ ∈ A such that r < r′ < r′′ and 0 < r′.
Let s = r′

r′′
. Then 0 < s < 1, so s ∈ I. Since r < r′ = r′′ · s, it follows that r ∈ A · I. Thus

we have shown that A · I = A for A positive.
If −A is positive, then A · I = −((−A) · I) = −(−A) = A, using D6(ii).

Proposition D8. If A is a Dedekind cut and A 6= Z, then there is a Dedekind cut B such
that A · B = I.

Proof. First suppose that A is positive. Let

B = {r ∈ Q : r < 0, or 0 ≤ r and r · s < 1 for every s ∈ A for which 0 < s}.

Then B 6= ∅, since clearly 0 ∈ B. Clearly if r′ < r ∈ B, then also r′ ∈ B. If 0 < s ∈ A,
then 1

s
/∈ B. So B is a Dedekind cut.

We claim that A · B = I. Suppose that r ∈ A · B. Choose s, t so that 0 < s ∈ A,
0 < t ∈ B, and r < s · t. Then by the definition of B, s · t < 1, so r < 1. Hence r ∈ I.

Conversely, suppose that r ∈ I, so that r < 1. Choose r′, r′′, r′′′ so that 0, r < r′ <
r′′ < r′′′ < 1. Let C = {s ∈ Q : s < r′′′}. Clearly C is a Dedekind cut.

(1) (A · C) ⊂ A.

In fact, clearly (A · C) ⊆ A. Suppose that A · C = A. Now

A = A · I = (A · C) + (A · (I − C)) = A + (A · (I − C)),

so A · (I − C) = Z. Choose s, t so that r′′′ < s < t < 1. Then −s < −r′′′ and r′′′ /∈ C,
so −s ∈ −C. Hence 0 < t − s ∈ (I − C). So I − C is positive. Since A is also positive, it
follows that A · (I − C) is positive, contradiction. Hence (1) holds.

By (1), choose s ∈ A\(A · C). We may assume that 0 < s. Thus

(2) For all a, c, if 0 < a ∈ A and 0 < c ∈ C, then a · c ≤ s.

Now let v = r′

s
. Thus s · v = r′ > r. Hence we will get r ∈ A · B as soon as we show that

v ∈ B. Suppose that 0 < a ∈ A. Now 0 < r′′ ∈ C, so by (2) we have a · r′′ ≤ s. Hence

a · v = a ·
r′

s
< a ·

r′′

s
≤ 1,

so that a · v < 1, as desired.
Thus we have finished the proof in the case that A is positive. If −A is positive, then

choose B so that (−A) · B = I. Then (A · (−B)) = (−A) · B = I, using D7(ii).

This finishes the purely arithmetic part of the construction of the real numbers. Now we
discuss ordering. We define A < B iff B − A is positive. Elementary properties of < are
given in the following proposition.
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Proposition D9. Let A, B, C ∈ R′. Then
(i) A 6< A.
(ii) If A < B < C, then A < C.
(iii) A < B, A = B, or B < A.
(iv) A < B iff A + C < B + C.
(v) Z < I.
(vi) If Z < A and Z < B, then Z < A · B.
(vii) If Z < C, then A < B implies that A · C < B · C.
(viii) A < B iff A ⊂ B.

Proof. (i): A − A = Z, so A 6< A by D5.
(ii) Suppose that A < B < C. Thus B − A and C − B are positive. Hence clearly

also C − A = C − B + B − A is positive.
(iii): Given A, B, by D5 we have A − B positive, A − B = Z, or −(A − B) = B − A

is positive. By definition this gives A < B, A = B, or B < A.
(iv): First suppose that A < B. Thus B−A is positive. Since B+C−(A+C) = B−A,

it follows that A + C < B + C.
Second, suppose that A + C < B + C. Thus B −A = B + C − (A + C) is positive, so

A < B.
(v): Obviously I is positive.
(vi): Assume that Z < A and Z < B. Thus A and B are positive. Clearly then A ·B

is positive. So Z < A · B.
(vii): Assume that Z < C and A < B. Then C and B − A are positive, so also

C · (B − A) = C · B − (A · C) is positive, and so A · C < B · C.
(viii): Suppose that A < B. Thus B−A is positive. Choose x so that 0 < x ∈ B−A.

Then we can write x = b + a with b ∈ B and a ∈ −A. By the definition of −A, choose
s ∈ Q so that a < s and −s /∈ A. Then −s < −a, so also −a /∈ A. Also b + a > 0, so
b > −a, and it follows that b /∈ A. Now if y ∈ A, then y < b, as otherwise b ≤ y would
imply that b ∈ A. But then y ∈ B. So A ⊆ B, and since b ∈ B\A, even A ⊂ B.

Conversely, suppose that A ⊂ B. Choose b ∈ B\A. Choose c, d such that b < c <
d ∈ B. Now −c < −b and b /∈ A, so −c ∈ −A. Thus d − c is a positive element of B − A,
hence B − A is positive and A < B.

The following theorem expresses the essential new property of the reals as opposed to the
rationals.

Theorem D10. Every nonempty subset of R′ which is bounded above has a least upper
bound. That is, if ∅ 6= X ⊆ R′, and there is a Dedekind cut D such that A ≤ D for all
A ∈ R′, then there is a Dedekind cut B such that the following two conditions hold:

(i) A ≤ B for every A ∈ X .
(ii) For any Dedekind cut C, if A ≤ C for every A ∈ X , then B ≤ C.

Proof. Let B =
⋃

A∈X
A. Since X is nonempty, and each Dedekind cut is nonempty,

it follows that B is nonempty. To show that B does not consist of all rationals, we use the
assumption that X has an upper bound. Let D be an upper bound for X . Thus A ≤ D
for all A ∈ X . By D9(viii), A ⊆ D for all A ∈ X , and hence B ⊆ D. Since D 6= Q, also
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B 6= Q. If x < y ∈ B, then y ∈ A for some A ∈ X , hence x ∈ A, hence x ∈ B. Thus B is
a Dedekind cut.

For any A ∈ X we have A ⊆ B, and hence A ≤ B by D9(viii).
Now suppose that A ⊆ C for all A ∈ X , where C is a Dedekind cut. Then B ⊆ C,

hence B ≤ C by D9(viii).

Next we want to embed the rationals into R′. For every rational r we define f(r) = {q ∈
Q : q < r}. Clearly f(r) is a Dedekind cut.

Proposition D11. (i) f is one-one.
(ii) f(r + s) = f(r) + f(s) for any r, s ∈ Q.
(iii) f(r · s) = f(r) · f(s) for any r, s ∈ Q.

Proof. (i): Suppose that r, s ∈ Q; say r < s. Then r ∈ f(s)\f(r), so f(r) 6= f(s).
(ii): First suppose that x ∈ f(r+s). Thus x < r+s, so x−s < r. Let r′ be a rational

number such that x−s < r′ < r. Then x = r′ +(x−r′), and x−r′ < s, so x ∈ f(r)+f(s).
Conversely, suppose that x ∈ f(r) + f(s). Choose a ∈ f(r) and b ∈ f(s) so that

x = a + b. Then a < r and b < s, so x < r + s, and so x ∈ f(r + s).
(iii): Note that f(0) = Z; hence (iii) is clear if r = 0 or s = 0. Suppose that r, s > 0.

Suppose that x ∈ f(r · s). So x < r · s. Hence x
s

< r. Choose r′ ∈ Q such that x
s

< r′ < r
and 0 < r′. Hence x

r′
< s. Choose s′ ∈ Q such that x

r′
< s′ < s and 0 < s′. Then x < r′ ·s′,

0 < r′ ∈ f(r), and 0 < s′ ∈ f(s), so x ∈ f(r) · f(s).
Conversely, suppose that x ∈ f(r) · f(s). Then there are r′ ∈ f(r) and s′ ∈ f(s) such

that 0 < r′, 0 < s′, and x < r′ · s′. Hence x < r · s, so x ∈ f(r · s), as desired. This finishes
the case in which r, s > 0.

To continue we need the following little fact:

(1) −f(r) = {q ∈ Q : q < −r} for any rational number r.

In fact, suppose that q ∈ −f(r). Then there is a rational t such that q < t and −t /∈ f(r).
thus −t 6< r, so r ≤ −t. Hence t ≤ −r, so q < −r. Conversely, suppose that q < −r. Now
r /∈ f(r), so q ∈ −f(r). Thus (1) holds.

Now suppose that r < 0 < s. Then, using (1),

f(r) · f(s) = −((−f(r)) · f(s)) = −(f(−r) · f(s)) = −f((−r) · s) = f(r · s).

Similarly if s < 0 < r. If r, s < 0, then

(f(r) · f(s) = (−f(r)) · (−f(s)) = f(−r) · f(−s) = f((−r) · (−s)) = f(r · s).

Proposition D12. Q ∩ R′ = ∅.

Proof. First, ω ∩ R′ = ∅, since the members of ω are all finite, while the members of
R′ are all infinite.

Now suppose that a ∈ Z∩R′. Then a /∈ ω by the preceding paragraph, so a = [(m, n)]
for some m, n ∈ ω. But also a ∈ R′, so a is a set of rationals. In particular, (m, n) is a
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rational. Now (m, n) has either one or two elements; the only rationals with only one or
two elements are 1 and 2. Since ∅ ∈ 1 and ∅ ∈ 2, we get ∅ ∈ (m, n), contradiction.

A similar argument shows that a ∈ Q ∩ R′ leads to a contradiction.

We can now proceed very much like in previous appendices. We define R = (R′\rng(f))∪Q.
There is a one-one function g : R → R′, defined by g(A) = A if A ∈ R′\rng(f), and
g(A) = f(A) for A ∈ Q. Clearly g is a bijection. Now the operations +′ and ·′ are defined
on R as follows. For any a, b ∈ R,

a +′ b = g−1(g(a) + g(b));

a ·′ b = g−1(g(a) · g(b)).

moreover, we define a <′ b iff g(a) < g(b). With these definitions, g becomes an isomor-
phism of R onto R′. Namely, if a, b ∈ R, then

g(a +′ b) = g(g−1(g(a) + g(b))) = g(a) + g(b);

g(a ·′ b) = g(g−1(g(a) · g(b))) = g(a) · g(b);

a <′ b iff g(a) < g(b).

Moreover, the operations +′ and ·′ on Q coincide with the ones defined in appendix C,
since if a, b ∈ Q, then

a +′ b = g−1(g(a) + g(b)) = g−1(f(a) + f(b)) = g−1(f(a + b)) = a + b;

a ·′ b = g−1(g(a) · g(b)) = g−1(f(a) · f(b)) = g−1(f(a · b)) = a · b;

a <′ b iff g(a) < g(b)

iff f(a) < f(b)

iff a < b.

All of the properties above, like the associative, commutative, and distributive laws, hold
for R since g is an isomorphism. Of course we use +, ·, < now rather than +′, ·′, <′.
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