
7. Comparing the size of infinite sets

April 16, 2015

In this chapter we give the basic facts about comparing the size of infinite sets. We start
by a brief introduction and discussion of ordinal numbers; this discussion will be continued
in a later chapter. Then the basic notion of cardinal number is defined in terms of ordinals,
and we can then begin the real task of this chapter, to show how one computes with infinite
cardinal numbers and uses them to count various infinite collections.

For any set A we let ∈A= {(a, b) : a, b ∈ A and a ∈ b}. A set A is transitive if every
member of A is a subset of A. This may sound strange, but actually we know already
many transitive sets: all natural numbers are transitive by Proposition 6.4. An ordinal
number, or simply an ordinal, is a transitive set A such that (A,∈A) is a well-ordering.

Proposition 7.1. Every natural number is an ordinal.

Proof. Let m be a natural number. By 6.4, m is transitive. Every member of m is
a natural number, by 6.3, and so by 6.9, every nonempty subset of m has a least element
under the ordering < of natural numbers. If i, j ∈ m, then by definition i < j iff i ∈ j,
and hence i ∈m j. Thus (m,∈m) is a well-ordering.

Proposition 7.2. ω is an ordinal.

Proof. ω is transitive by 6.3. (ω,∈ω) is the same as (ω, <), and it is a well-ordering
by 6.9.

Generally we use α, β, γ, . . . to denote ordinals. If α and β are ordinals, we write α < β to
mean that α ∈ β, and α ≤ β to mean that α < β or α = β.

Now we give a few elementary facts about ordinals analogous to those about natural
numbers. Remember that < means ∈ for ordinal numbers; but be careful not to assume
this for partial orders which are not ordinals!

Proposition 7.3. For any ordinals α, β, γ, if α < β < γ, then α < γ.

Proof. This is true because γ is transitive.

Proposition 7.4. Every element of an ordinal is an ordinal.

Proof. Suppose that α is an ordinal, and x ∈ α. To show that x is transitive, suppose
that y ∈ z ∈ x. Then z ∈ x ∈ α, so z ∈ α, since α is transitive. Thus y ∈ z ∈ α, so also
y ∈ α since α is transitive. Now we have x, y, z ∈ α and y ∈α z ∈α x, so y ∈α x since
(α,∈α) is a well-ordering, and hence in particular a linear ordering. Thus y ∈ x. This
shows that x is transitive.

For any y, z ∈ x, we have y ∈x z iff y ∈ z, and y, z ∈ α by the transitivity of α, so
y ∈x z iff y ∈α z. Clearly then (x,∈x) is a linear order.

Any nonempty subset M of x is also a nonempty subset of α, since α is transitive.
Hence we can choose a y ∈ M which is the smallest member of M in the ordering ∈α. If
z ∈ M and z ∈x y, then z ∈ y and z, y ∈ α, so z ∈α y, contradiction. So y is the smallest
member of M in the ordering (x,∈x). So (x,∈x) is a well-ordering, as desired.
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Proposition 7.5. For any ordinals α, β, α ⊂ β iff α ∈ β.

Proof. For ⇐, if α ∈ β, then α ⊆ β since β is transitive. Also, α /∈ α, but α ∈ β, so
α 6= β. Thus α ⊂ β.

For ⇒, assume that α ⊂ β. Let x be the smallest member of β\α under the well-
ordering ∈β . If y ∈ x, then y ∈ β by the transitivity of β, so y ∈β x, and hence y ∈ α by
the minimality of x. This shows that x ⊆ α. We claim that x = α; this of course implies
that α ∈ β, as desired. In fact, suppose that z ∈ α\x. Then x and z are members of
β, so they are comparable under ∈β , since it is a linear order. But z /∈ x, so z = x or
x ∈ z. However, z = x contradicts the facts that z ∈ α and x /∈ α, and x ∈ z implies that
x ∈ α since α is transitive. So we get a contradiction in any case. Hence such an element
z cannot exist, and so x = α.

Proposition 7.6. If α and β are ordinals, then α ∈ β, α = β, or β ∈ α.

Proof. Suppose that α and β are ordinals, α /∈ β, and α 6= β; we want to show that
β ∈ α. If α ∩ β = α, then α ⊆ β, and since α 6= β, even α ⊂ β; then α ∈ β by 7.5,
contradicting a supposition. Thus α ∩ β 6= α. Let x be the least element of α\(α ∩ β)
under the well-ordering ∈α. If y ∈ x, then also y ∈ α since α is transitive, so y ∈α x, and
then it follows by the minimality of x that y ∈ β. This proves that x ⊆ β. Now x is an
ordinal by 7.4, so x ⊂ β would imply that x ∈ β by 7.5, contradiction. So x = β. Since
x ∈ α, this shows that β ∈ α.

Proposition 7.7. If A is a nonempty set of ordinals, then A has a least element. That
is, there is an α ∈ A such that α < β for all β ∈ A such that α 6= β.

Proof. Let γ be any element of A. If γ is the least element of A, we are through.

Otherwise, there is an ε ∈ A with ε 6= γ and γ 6< ε. By 7.6, ε < γ. Thus M
def
= {δ ∈ γ :

δ ∈ A} is a nonempty subset of γ, so from the fact that (γ,∈γ) is a well-ordering we see
that M has a least element α under ∈γ . We claim that α is the least element of A. For,
suppose that β ∈ A and α 6= β. If γ ≤ β, then α < β since α < γ and β is transitive. If
β < γ, then β ∈ M , and hence α < β by the minimality of α.

This gives us enough properties of ordinals to define and work with the notion of cardinal.
A cardinal number, or cardinal is an ordinal which is not equipotent with any smaller
ordinal. In particular, we have a relation < defined on the cardinals, and it satisfies the
formal requirements of a well-ordering. We cannot say that it really is a well-ordering,
since as will be seen later, the set of all cardinals does not exist; it is too big.

Proposition 7.8. Every natural number is a cardinal.

Proof. We observed above that every natural number is an ordinal. If m is a natural
number and m is equipotent with x < m, then x ∈ m, and so x is a natural number by
6.3; and then 6.25 is contradicted.

Proposition 7.9. ω is a cardinal; in fact, it is the smallest infinite cardinal.

Proof. By 6.31 and 6.33.
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Before defining the size of sets, we prove two results which be useful later.

Proposition 7.10. If f is a bijection from A to C, g is a bijection from B to D, and
A ∩ B = ∅ = C ∩ D, then f ∪ g is a bijection from A ∪ B to C ∪ D.

Proof. Clearly f ∪g is a relation. If (x, y), (x, z) ∈ f ∪g, then clearly x ∈ A or x ∈ B.
If x ∈ A, then (x, y), (x, z) ∈ f and so y = z. Similarly if x ∈ B. So f ∪ g is a function.
Similarly, it is a one-one function. Clearly it has domain A ∪ B and range C ∪ D.

Theorem 7.11. (Cantor, Schröder, Bernstein theorem) If there are injections of A into
B and of B into A, then A and B are equipotent.

Proof. Suppose that f : A → B and g : B → A are injections. For any X ⊆ A let
F (X) = A\g[B\f [X ]].

(1) If X, Y ⊆ A and X ⊆ Y , then F (X) ⊆ F (Y ).

In fact, suppose that X, Y ⊆ A and X ⊆ Y . Then f [X ] ⊆ f [Y ], hence B\f [Y ] ⊆ B\f [X ],
hence g[B\f [Y ]] ⊆ g[B\f [X ]], hence

F (X) = A\g[B\f [X ]] ⊆ A\g[B\f [Y ]] = F (Y ).

Now let A = {X : X ⊆ A and X ⊆ F (X)}, and set X0 =
⋃

X∈A
X .

(2) X0 ⊆ F (X0).

In fact, if X ∈ A , then X ⊆ X0, and hence F (X) ⊆ F (X0) by (1). But also X ⊆ F (X)
by the definition of A , so X ⊆ F (X0). Since this is true for every X ∈ A , we have
X0 =

⋃

X∈A
X ⊆ F (X0), as desired in (2).

(3) X0 = F (X0).

For, F (X0) ⊆ F (F (X0)) by (2) and (1), so F (X0) ∈ A , and hence F (X0) ⊆
⋃

X∈A
X =

X0. Together with (2), this gives (3).
Now note that f is a bijection from X0 onto f [X0]. Moreover, A\X0 = A\F (X0) =

g[B\f [X0]], so g−1 is a bijection from A\X0 onto B\f [X0]. Hence by 7.10, A is equipotent
with B.

To define the notion of the size of a set, we have to use the axiom of choice. But the
version of the axiom of choice introduced in section 3 is inconvenient for this purpose, so
we give a variant of that axiom. Later we will show that these two versions are equivalent
(and are equivalent to several other widely used variants). Recall that results using the
axiom of choice are indicated with a superscript ch.

Axiom 6′ Axiom of choice, second form. For every set A there is a unique cardinal

number equipotent with A.

We denote this cardinal number by |A|, and call it the number of elements or cardinality,
or size of A. Clearly this just extends the definition of cardinality of finite sets given in
chapter 6.

The most basic fact about cardinality is as follows.
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Theorem 7.12ch. For any sets X and Y , the following conditions are equivalent:
(i) |X | = |Y |.
(ii) There is a one-one function mapping X onto Y .

Proof. (i)⇒(ii): Let κ = |X | = |Y |, and let f and g be one-one functions from κ onto
X and from κ onto Y respectively. Then g ◦ f−1 is a one-one function from X onto Y .

(ii)⇒(i). Let h be a one-one function from X onto Y , and let k be a one-one function
from |X | onto X . Then h ◦ k is a one-one function from |X | onto Y , so |Y | = |X |.

Lemma 7.13. If κ and λ are cardinals and f : κ → λ is one-one, then κ ≤ λ.

Proof. Suppose that λ < κ. Then Idλ is a one-one function from λ into κ. By
Theorem 7.11, κ = λ. But λ < κ, contradiction.

Theorem 7.14ch. If A ⊆ B, then |A| ≤ |B|.

Proof. Let κ = |A|, λ = |B|, and let f and g be one-one functions from κ onto A and
of λ onto B, respectively. Then g ◦ f−1 is a one-one function from κ into λ, so κ ≤ λ by
Lemma 7.13.

Lemma 7.15. If κ and λ are cardinals and f is a function mapping λ onto κ, then κ ≤ λ.

Proof. For any α < κ let g(α) be the least element of λ such that f(g(α)) = α. Thus
f ◦ g = Idκ, so g is a one-one function mapping κ into λ. Hence κ ≤ λ by 7.13.

Corollary 7.16ch. For any sets A and B the following conditions are equivalent:
(i) |A| ≤ |B|.
(ii) There is a one-one function mapping A into B.
(iii) A = ∅, or there is a function mapping B onto A.

Proof. (i)⇒(ii): Let f and g be such that f is a one-one function mapping |A| onto
A and g is a one-one function mapping |B| onto B. Then g ◦ f−1 is a one-one function
mapping A into B. (Recall that ≤ means ⊆ for ordinals, hence for cardinals.)

(ii)⇒(iii): by 3.14. (The function g there clearly maps B onto A.)
(iii)⇒(i): This is clear for A = ∅, so suppose that A 6= ∅, and there is a function

mapping B onto A. Clearly then there is a function mapping |B| onto |A|, so |A| ≤ |B| by
7.15.

We now have the basic notions of cardinality and size. Next we turn to the comparison
of sizes of infinite sets. The situation here is somewhat confusing. It is quite possible to
have sets A and B of the same size with A ⊂ B. Perhaps the simplest example is to take
A = ω\1, the set of positive integers, and B = ω. The function f assigning m + 1 to each
natural number m is clearly a one-one function from B onto A. Hence |A| = |B|. Another
example is to let B be the set of even natural numbers and A = ω. This time the function
assigning 2m to each m ∈ ω is a one-one function from B onto A, so that again |A| = |B|.
Here not only is A a proper subset of B, but also B\A is infinite. We explore things of
this sort in the rest of this chapter.
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We begin our discussion of the size of infinite sets by considering the simplest case. A
set A is denumerable iff |A| = ω; it is countable if |A| ≤ ω. Thus a set A is countable iff it
is either finite, or can be put in one-one correspondence with the set of natural numbers.

Proposition 7.17ch. Any infinite set has a denumerable subset.

Proof. If A is infinite, then by 7.9, ω ≤ |A|. By 7.16, there is then a one-one function
f mapping ω into A. Thus rng(f) is a denumerable subset of A.

Proposition 7.18ch. Any subset of a countable set is countable.

Proof. If A is countable and B ⊆ A, then |B| ≤ |A| ≤ ω by 7.14.

Proposition 7.19ch. For any set A the following conditions are equivalent:
(i) A is countable.
(ii) There is a one-one function mapping A into ω.
(iii) A = ∅, or there is a function mapping ω onto A.

Proof. Since |ω| = ω, this is immediate from 7.16.

An ω-sequence is a function whose domain is ω.

Proposition 7.20ch. If 〈an : n ∈ ω〉 is an ω-sequence, then {an : n ∈ ω} is countable.

Proof. By definition, 〈an : n ∈ ω〉 is just a function, naturally denoted by a, with
domain ω, and the indicated set is just rng(a). Thus its size is |rng(a)| ≤ ω by 7.16.

For the rest of this chapter, we assume an elementary knowledge of integers, rational
numbers, and real numbers; see the end of chapter 6.

Proposition 7.21ch. If Z is the collection of all integers, then |Z| = ω.

Proof. We define f(2m) = m and f(2m + 1) = −m− 1 for every natural number m.
Clearly f is the desired bijection.

If we take 7.21 just to say that there is a bijection from ω to Z, then the axiom of choice
is not required. This is true of several other results of this chapter.

Now we want to prove a similar theorem for the rational numbers. This depends on the
following purely set-theoretic fact.

Proposition 7.22ch. |ω × ω| = ω.

Proof. We give an illustration of the proof on the next page. The progression of values
of the function f is indicated by arrows. Thus f(0) = (0, 0), f(1) = (0, 1), f(2) = (1, 0),
f(3) = (0, 2), f(4) = (1, 1), etc.

Thus we define f by recursion. f(0) = (0, 0). If f(m) has been defined, write f(m) =
(a, b). Then if b 6= 0, write b = c + 1 and let f(m + 1) = (a + 1, c). If b = 0, let
f(m + 1) = (0, a + 1). We leave the task of formally applying the recursion theorem to an
exercise.
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We show that f is onto by proving by induction on m that for all natural numbers
n, p, if m = n + p then (n, p) is in the range of f . This is clear for m = 0. Assume that it
is true for m. Now we prove by induction on n that for all n and p, if n + p = m + 1 then
(n, p) is in the range of f . For n = 0 we want to show that (0, m + 1) is in the range of f .
Choose a ∈ ω such that f(a) = (m, 0). Then f(a+1) = (0, m+1), as desired. Now suppose
that (n, p) ∈ rng(f), with n + p = m + 1. We want to show that for all p, if n + 1 + p = m
then (n + 1, p) ∈ rng(f). By the inductive assumption we have (n, p + 1) ∈ rng(f). Say
f(a) = (n, p + 1). Then f(a + 1) = (n + 1, p), as desired. This finishes the inductive
proof. Note that this proof is funny, in that the inductive statement “for all n, for all p,
if n + p = m + 1 then (n, p) ∈ rng(f)” becomes vacuously true if n is greater than m + 1.
Formally, though, the staightforward proof given is correct. Anyway, this shows that f
maps onto ω × ω.

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) . . .

(1,0) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) . . .

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) . . .

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) . . .

(4,0) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) . . .

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) . . .

(6,0) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) . . .

...
...

...
...

...
...

...

The one-one-ness follows from the following statement:

(1) If a, b ∈ ω, a < b, f(a) = (m, n), and f(b) = (p, q), then either m + n < p + q, or else
m + n = p + q and m < p.
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We prove (1) by induction on b, with a fixed, and we start with b = a + 1. If n 6= 0,
then m + n = p + q and p = m + 1 > m, as desired. If n = 0, then p = m + 1, q = 0,
and p + q = m + 1 > m = m + 0, as desired. So the case b = a + 1 is ok. Assume our
statement for b > a; we prove it for b + 1. So suppose that f(a) = (m, n), f(b) = (r, s),
and f(b + 1) = (p, q). If s = 0, then p + q = r + s + 1 > r + s ≥ m + n, the last inequality
by the inductive assumption, as desired. If s > 0, then p > r. If m+n = r+s, then r > m
by the inductive assumption, so p > m, as desired. If m + n < r + s, then m + n < p + q,
as desired. So (1) holds.

Proposition 7.23ch. The set of all rational numbers is countable.

Proof. For any m, n ∈ ω let

f(m, n) =



















m
2n

if m is even and n 6= 0,

−m+1
2n

if m is odd and n 6= 0,

0 if n = 0.

To show that f maps onto the set of all rationals, let r be any rational. If r > 0, write
r = u

v
with u, v > 0. then f(2u, v) = 2u

2v
= u

v
= r. If r = 0, then f(0, 0) = 0 = r. If r < 0,

write r = −u
v

with u, v > 0. Then

f(2u − 1, v) = −
2u

2v
= −

u

v
= r.

By 7.22, let g : ω → ω × ω be a bijection. Then f ◦ g maps ω onto the set of rationals.
Hence that set is countable by 7.19.

Proposition 7.24. If A and B are finite, then so is A ∪ B.

Proof. Let A be a fixed finite set. We show by induction on m ∈ ω that if B is a
finite set with m elements, then A∪B is finite. This is true for m = 0 since if B is a finite
set with 0 elements, then B = ∅, so A ∪ B = A, which we are assuming is finite. Suppose
that our statement is true for m, and now B is a finite set with m+1 elements. Let b ∈ B.
Then |B\{b}| = m by 6.27. Hence A∪(B\{b}) is finite by the inductive assumption. Then
A ∪ B is finite by 6.26, since either A ∪B = A ∪ (B\{b}), or b /∈ A and 6.26 applies. This
finishes the inductive proof.

Proposition 7.25ch. If A and B are countable, then A ∪ B is countable.

Proof. We may assume that A and B are nonempty. By 7.19 there are functions
f : ω → A, mapping onto A, and g : ω → B, mapping onto B. Define h : ω × ω → A ∪ B
by setting, for any m, n ∈ ω,

h(m, n) =

{

f(m) if n = 0,
g(m) otherwise.
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Clearly h maps onto A ∪ B. By 7.22 let k : ω → ω × ω be a bijection. Then h ◦ k maps ω
onto A ∪ B, so A ∪ B is countable by 7.19.

Proposition 7.26. A finite union of finite sets is finite. More formally, if 〈Ai : i ∈ I〉 is
a system of sets, I is finite, and each Ai is finite, then

⋃

i∈I Ai is finite.

Proof. We leave this to an exercise.

We can considerably generalize 7.25:

Theorem 7.27ch. A countable union of countable sets is countable.

More symbolically, Theorem 7.27 says that if 〈Ai : i ∈ I〉 is a system of sets, each Ai is
countable, and I is countable, then also

⋃

i∈I Ai is countable.

Proof. We may assume that I is nonempty, as otherwise the union is empty, and
the emptyset is certainly countable. Also, we may assume that each Ai is nonempty, since
clearly

⋃

i∈I

Ai =
⋃

i∈I

Ai 6=∅

Ai.

Let g be a function mapping ω onto I. Define M = {(f, i) : i ∈ I and f is a function
mapping ω onto Ai}. For each (f, i) ∈ M let F (f, i) = i. Then F maps onto I, since
for every i ∈ I there is a function f mapping ω onto Ai. Let G : I → M be such that
F ◦ G = IdI . Then for each i ∈ I, G(i) has the form (f, i) with f a function mapping ω
onto Ai. Now we define, for any m, n ∈ ω,

H(m, n) = (1st(G(g(m))))(n).

Let us decode what this means. Let m, n ∈ ω. Then g(m) is a member of I. Applying
G to it, we get an ordered pair of the form (f, g(m)). Then 1st(G(g(m))) picks out that
function f , and H(m, n) is defined to be f(n). From this description it follows that
H(m, n) ∈ Ag(m) ⊆

⋃

j∈I Aj. We claim that H maps onto that union. For, suppose that
a ∈

⋃

j∈I Aj. Choose j ∈ I such that a ∈ Aj. Since g maps onto I, choose m ∈ ω such

that g(m) = j. Let f = 1st(G(g(m))). Then f is a function mapping ω onto Ag(m) = Aj.
So, choose n ∈ ω such that f(n) = a. Then H(m, n) = a, as desired.

Finally, taking a bijection h from ω to ω×ω given by Theorem 7.22, we see that H ◦h
maps ω onto the union, and hence the union is countable by 7.19.

Recall that a finite sequence is just a function with domain a natural number.

Proposition 7.28ch. The collection of all finite sequences of natural numbers is countable.

Proof. First we show by induction on m that the set mω of all sequences of length
m of natural numbers is countable. This is true for m = 0 since 0ω = {∅} has just one
element, and so it is countable. If we know that mω is countable, note that m+1ω is
equipotent with mω × ω via the function f 7→ (f ↾ m, f(m)) for any f ∈ m+1ω. By the
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induction hypothesis, mω is countable, so 7.22 clearly implies that m+1ω is countable as
well.

Thus this proves that each set mω is countable. Since the collection of all finite
sequences is the union of all of these sets mω, our result now follows from 7.27.

Continuing to look at the size of sets encountered in normal mathematical usage, we next
consider the size of the set R of real numbers. Since ω ⊆ R, this set is infinite. It is one
of the main theorems of elementary set theory that R is uncountable. We first give the
standard proof of this using Cantor’s diagonal argument, and then we give generalizations
of it whose proofs use that argument in somewhat disguised form.

Theorem 7.29ch. R is uncountable.

Proof. Suppose to the contrary that R is countable. Then the same is true of the
interval [0, 1). Since even this interval is clearly infinite, our supposition implies that
|[0, 1)| = ω. Thus there is a bijection f from ω to [0, 1). Now we write each number in
[0, 1) in its decimal expansion, where to assure uniqueness of the expansion we do not allow
expansions which end with a string of 9’s. To illustrate the diagonal argument coming up,
we write the range of f as an infinite array using these expansions:

f(0) = .a00 a01 a02 a03 a04 a05 a06 . . . . . . . . .

f(1) = .a10 a11 a12 a13 a14 a15 a16 . . . . . . . . .

f(2) = .a20 a21 a22 a23 a24 a25 a26 . . . . . . . . .

f(3) = .a30 a31 a32 a33 a34 a35 a36 . . . . . . . . .

f(4) = .a40 a41 a42 a43 a44 a45 a46 . . . . . . . . .

f(5) = .a50 a51 a52 a53 a54 a55 a56 . . . . . . . . .

f(6) = .a60 a61 a62 a63 a64 a65 a66 . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

Here each aij is one of the digits 0, 1, . . . , 9. Now we define another real number. Let

x = .b0 b1 b2 b3 b4 b5 b6 . . . . . . . . .,

Where the digits bi are determined by this rule:

bi =

{

4 if aii > 5,
7 if aii ≤ 5.

Now clearly x ∈ [0, 1), so it is equal to f(k) for some natural number k. But bk 6= akk,
which contradicts the uniqueness of decimal expansions.

Thus |R| is a new infinite cardinal number, strictly greater than ω. The continuum hy-
pothesis is the statement that |R| is the smallest uncountable cardinal. Another way of
putting this is that it says that there is no set P of real numbers such that |ω| < |P | < |R|.
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This hypothesis is independent of our axioms of set theory: it cannot be derived from our
axioms, nor can its negation. We will expand on this point later.

Using the binary expansion of real numbers, it should be clear that R has the same
number of elements as the collection ω2 of all infinite sequences of 0’s and 1’s. We use the
fact as motivation for a result that generalizes 7.29, but otherwise this fact will not play a
role in what follows.

Proposition 7.30. For any set A, the sets A2 and P(A) are equipotent.

Proof. For any X ⊆ A, the characteristic function of X is the function χX ∈ A2
defined by setting, for each a ∈ A,

χX(a) =
{

1 if a ∈ X ,
0 otherwise.

We claim that χ is a bijection from P(A) to A2. It is one-one, since if X and Y are
different subsets of A, then if we take an element a ∈ A which is in one of them but not
the other, then clearly χX(a) 6= χY (a), and hence χX 6= χY . And χ maps onto A2, since
if f ∈ A2, let X = {a ∈ A : f(a) = 1}. Then for any a ∈ A,

χX (a) =

{

1 if a ∈ X ,
0 if a /∈ X ,

=

{

1 if f(a) = 1,
0 if f(a) = 0,

= f(a).

Thus χX = f , as desired.

In view of this proposition and the remarks preceding it, the following theorem is a gener-
alization of Theorem 7.29.

Theorem 7.31ch. For any set A we have |A| < |P(A)|.

Proof. The function given by a 7→ {a} is a one-one function from A into P(A), and
so |A| ≤ |P(A)|. [Saying that a 7→ {a} is giving the value of the function at the argument
a; this notation was introduced earlier.] Suppose equality holds. Then there is a one-one
function f mapping A onto P(A). Let X = {a ∈ A : a /∈ f(a)}. Since f maps onto P(A),
choose a0 ∈ A such that f(a0) = X . Then a0 ∈ X iff a0 /∈ X , contradiction.

This theorem gives us even bigger sets than R; for example, P(R). The generalized
continuum hypothesis is the statement that for any infinite set A, |P(A)| is the smallest
cardinal greater than |A|. Obviously the generalized continuum hypothesis implies the
continuum hypothesis itself. Whether the generalized continuum hypothesis holds is again
independent of our axioms.

Exercises, chapter 7

1. Show that |α| ≤ α for every ordinal α.
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2. Show that for any set A, |A| is the smallest ordinal which is equipotent with A.

3. Show that for any ordinal α, |α| = α iff α is a cardinal.

4. Prove that if L is a linearly ordered set, then every finite nonempty subset of L has a
greatest element.

5. Justify the recursive definition in the proof of 7.22.

6. Prove that an equivalence relation on a countable set has a countable number of equiv-
alence classes.

7. Show that if A is countable, then {X ⊆ A : X is finite} is countable.

8. Show that the set of all finite sequences of rationals is countable.

9. Prove Proposition 7.26.

10. Show that the collection of all polynomials with rational coefficients is countable.

11. A real number a is algebraic iff there is a polynomial f(x) with rational coefficients
such that f(a) = 0; otherwise a is transcendental. Show that the collection of algebraic
real numbers is countable. Deduce from this that there are transcendental real numbers.

12. Show that the following sets are all equipotent with each other: R, [0, 1], (0, 1), [0,∞).

13. Let F be the set of all functions mapping R into R. Show that |R| < |F |.

14. Show that if |A| ≤ |B| then |P(A)| ≤ |P(B)|.

15. Show that if F is a finite subset of an infinite set A, then A and A\F are equipotent.

16. Prove that if f : A → B, B is countable, and f−1[{b}] is countable for all b ∈ B, then
A is countable.

17. For each f ∈ ω2 let Af = {f ↾ m : m ∈ ω}. Prove that if f and g are different members
of ω2 then Af ∩ Ag is finite.

18. Let m ∈ ω, and suppose that A is a system of subsets of ω such that any two members
of A intersect in a set of size at most m. Show that A is countable. (Cf. exercises 17,
20.)

19. Let S be the collection of all finite sequences of 0’s and 1’s. Prove that there is an
uncountable system A of infinite subsets of S such that any two members of A have finite
intersection.

20. Prove that there is an uncountable system A of infinite subsets of ω such that any
two members of A have finite intersection.

21. Assume that A is countable. An infinite sequence a ∈ ωA is eventually constant iff
there is some m ∈ ω such that an = am for all n ≥ m. Prove that the collection of all
eventually constant infinite sequences of members of A is countable.

8. Simple cardinal arithmetic
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In this chapter we define and give the simplest properties of the addition, multplication,
and exponentiation operations on cardinal numbers. These generalize the operations on
natural numbers.

There is one main theorem about these operations: κ ·κ = κ for every infinite cardinal
κ. This generalizes the fact from the last chapter that ω×ω is equipotent with ω. In order
to prove this main theorem, we need an important result about ordinals, and we begin this
chapter with lemmas leading up to it.

First we need to explicitly define the notion of isomorphism between ordered sets that
was briefly mentioned in chapter 5. If (A, <) and (B,≺) are partially ordered sets, then
an isomorphism from (A, <) to (B,≺) is a bijection f from A to B such that for any
a0, a1 ∈ A, a0 < a1 iff f(a0) ≺ f(a1). Sometimes we simply say that f is an isomorphism
from A to B if the orderings are understood. A function f : A → B is strictly increasing
iff for all a0, a1 ∈ A, if a0 < a1 then f(a0) ≺ f(a1). Thus the converse direction is not
assumed, and f is not assumed to be one-one or to map onto B.

Lemma 8.1. If (A, <) and (B,≺) are linearly ordered sets and f : A → B is strictly
increasing, then for all a0, a1 ∈ A, a0 < a1 iff f(a0) ≺ f(a1).

Proof. The direction ⇒ is given by the definition. Now suppose that it is not true
that a0 < a1. Then a1 ≤ a0, so f(a1) ≤ f(a0). So f(a0) < f(a1) is not true.

Lemma 8.2. If (A, <) is a well-ordered set and f : A → A is strictly increasing, then
x ≤ f(x) for all x ∈ A.

Proof. Suppose not. Then then set B
def
= {x ∈ A : f(x) < x} is nonempty. Let b be

the least element of B. Thus f(b) < b. Hence by the choice of b, we have f(b) ≤ f(f(b)).
Hence by 8.1, b ≤ f(b), contradiction.

Lemma 8.3. If α and β are order-isomorphic ordinals, then α = β.

Proof. Suppose that α and β are order-isomorphic and different; say α < β. Let
f be an order isomorphism of β onto α. [Notice that the relation of being isomorphic is
symmetric, so we can assume that such an f exists.] Now α ⊆ β by 7.5, so f is a strictly
increasing function from β into β. Hence by 8.2, x ≤ f(x) for all x ∈ β. In particular,
α ≤ f(α) < α, contradiction.

Lemma 8.4. If (A, <) is a well-ordered set, then the only isomorphism of (A, <) onto
(A, <) is the identity mapping.

Proof. Clearly the identity mapping IdA is an isomorphism from (A, <) onto (A, <).
Now suppose that f is any isomorphism from (A, <) onto (A, <). Then x ≤ f(x) for all
x ∈ A, by 8.2. Also, f−1 is an isomorphism from (A, <) onto (A, <), so x ≤ f−1(x) for all
x ∈ A. Since f is strictly increasing, it follows that f(x) ≤ f(f−1(x)) = x for all x ∈ A.
So f(x) = x for all x ∈ A, and thus f = IdA.

Lemma 8.5. If (A, <) and (B,≺) are isomorphic well-ordered sets, then there is exactly
one isomorphism between them.
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Proof. Suppose that f and g are isomorphisms from A to B. Then g−1 ◦ f is an
isomorphism from A to A, so g−1 ◦ f is the identity on A. It follows that f = g.

One more thing is needed for the indicated result about ordinals: our last axiom. This
axiom depends on the intuitive notion of a function, which we put in a set-theoretical
framework in Chapter 3. Now we go back to the intuition. A class function is such an
intuitive function: a rule which assigns to every element of its domain some uniquely
determined object. This is not a precise definition (although it could be made precise by
developing some logical notions). Some examples of class functions are as follows. For any
set x we can consider the identity function which assigns x to x; or the function which
assigns x ∪ {x} to x; or the function which assigns P(x) to x. These cannot really be
considered as functions in the sense of Chapter 3 because they are too big; each of them
has domain the collection of all sets, which we saw at the beginning of the notes is too big
to be itself considered as a set. There are even class functions which turn out to be small
enough to fit in the official definition which are not immediately seen to be small. This
applies to the class function which we will use in our theorem about ordinals. The last
axiom deals with all kinds of class functions, big and small.

Axiom 9. (Replacement) If F is a class function and A is a set, then the collection

of all sets F (a) with a ∈ A and a in the domain of F is a set.

To help the intuition, let us apply this axiom to the three examples of class functions
above. The first one yields, for any set A, the set A itself; not very exciting. The second
one gives for any set A the set {a ∪ {a} : a ∈ A}, and the third one, {P(x) : x ∈ A}. It is
not immediately clear how to prove that these exist without using the replacement axiom.

Now we can prove the theorem needed for our treatment of cardinal arithmetic. This
theorem says that the ordinals represent all well-ordered sets.

Theorem 8.6. (Ordinal representation theorem) Every well-ordered set is isomorphic to
a unique ordinal.

Proof. Let (A, <) be a well-ordered set. For each a ∈ A let pred(a, A) = {x ∈ A :
x < a}. Clearly pred(a, A) is a well-ordered set under the order induced by <. That is,
under the ordering x ≺ y iff x, y ∈ pred(a, A) and x < y; of course we still denote ≺ by <
although we are really considering its intersection with pred(a, A) × pred(a, A). Let

B = {a ∈ A : pred(a, A) is isomorphic to an ordinal}.

(1) If a ∈ B and b < a, then b ∈ B. In fact, if g is an isomorphism from pred(a, A) onto
an ordinal β, then g ↾ pred(b, A) is an isomorphism from pred(b, A) onto the ordinal g(b).

For, assume that a ∈ B, b < a, and g is as indicated. Let h
def
= g ↾ pred(b, A). Let g(b) = α.

If c ∈ pred(b, A) then c < b, and hence h(c) = g(c) < g(b) = α, so h maps into α. For
any c, d ∈ pred(b, A) we have c < d iff g(c) < g(d) iff h(c) < h(d). Given δ < α, we
have δ < β by the transitivity of β, so there is a c ∈ pred(a, A) such that g(c) = δ. Then
g(c) = δ < α = g(b), so c < b; hence h(c) = δ. This shows that h maps onto α, and finishes
the proof that h is an order-isomorphism from pred(b, A) onto α. Thus (1) holds.
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If a ∈ B, and pred(a, A) is isomorphic to ordinals α and β, then clearly α is isomorphic
to β since isomorphism satisfies the formal conditions of an equivalence relation (although
we do not need to worry about whether there is a set equal to this relation). Then α = β
by 8.3. Thus we can define F (a) to be the unique ordinal isomorphic to pred(a, A), for each
a ∈ B. Note that F is a class function; we do not claim (yet) that it is a set. By the axiom
of replacement, let C = {F (a) : a ∈ B}, a set. Then F = {(a, c) : a ∈ B, c ∈ C, F (a) = c},
so F really is a set.

(2) C is an ordinal.

In fact, to see that it is transitive, suppose that α ∈ β ∈ C. Then we can choose a ∈ B
such that F (a) = β. Let g be an isomorphism of pred(a, A) onto β. Choose b < a such
that g(b) = α. Then by (1), g ↾ pred(b, a) is an isomorphism from pred(b, a) onto α, so
α ∈ C. This proves that C is transitive. Since C is a set of ordinals, it is hence an ordinal
by 7.7. So (2) holds.

(3) If a, b ∈ B, then a < b iff F (a) < F (b).

In fact, assume that a, b ∈ B and b < a. Let g be an isomorphism from pred(a, A) onto
F (a). Then by (1) we get F (b) < F (a). Thus F is strictly increasing. So (3) follows from
8.1.

Now we will be through if we show that A = B, since then by (2) and (3) F is an
isomorphism from A to C. Suppose that A 6= B, and let a be the least element of A\B.
If b < a, then b ∈ B, and if b ∈ B, then b < a by (1). (b 6= a by the choice of a, and
a < b would contradict (1).) Thus pred(a, A) = B, and F is an isomorphism of B onto an
ordinal, so B ∈ B, contradiction.

Now we turn to the main topic of this chapter: simple cardinal arithmetic. First we define
the sum of cardinals κ and λ:

κ + λ = |(κ × {0}) ∪ (λ × {1})|.

The idea here is that we “disjoint” κ and λ and take the number of elements in the result.
Note that κ and κ × {0} are equipotent, and so have the same number of elements. In
fact, the function given by α 7→ (α, 0) is clearly a bijection from κ to κ × {0}. Similar
comments apply to λ and λ×{1}. The sets κ×{0} and λ×{1} are disjoint since elements
of κ × {0} have the form (α, 0) for some α < κ, while elements of λ × {1} have the form
(β, 1) for some β < λ. We cannot have (α, 0) = (β, 1), as that would imply that 0 = 1.

The particular way of “disjointing” κ and λ is not really important, as the following
proposition indicates.

Proposition 8.7ch. If A, B, C, D are sets, |A| = |C|, |B| = |D|, A∩B = ∅, and C∩D = ∅,
then |A ∪ B| = |C ∪ D|.

Proof. Assume the hypotheses. Then there is a bijection f from A to C, and a
bijection g from B to D. Define h : A ∪ B → C ∪ D by setting, for any x ∈ A ∪ B,

h(x) =

{

f(x) if x ∈ A,
g(x) if x ∈ B.

60



This definition is unambigous because A ∩ B = ∅. Clearly h really does map A ∪ B into
C ∪D. To show that h is one-one, suppose that x, y ∈ A∪B and h(x) = h(y). If x, y ∈ A,
then f(x) = h(x) = h(y) = f(y), so x = y because f is one-one. If x, y ∈ B, then
g(x) = h(x) = h(y) = g(y), so x = y because g is one-one. If x ∈ A and y ∈ B, then
f(x) = h(x) = h(y) = g(y), so this set is in both C and D, contradicting our assumption
that C ∩ D = ∅. Similarly if x ∈ B and y ∈ A. So h is one-one.

h maps onto C ∪ D: suppose that z ∈ C ∪ D. If z ∈ C, choose x ∈ A such that
f(x) = z; then h(x) = f(x) = z. If z ∈ D, choose x ∈ B such that g(x) = z; then
h(x) = g(x) = z.

One of our first tasks with the definition of addition is to prove that this definition extends
the definition of addition for natural numbers. Thus we are justified in using the same
notation + for the general notion.

Proposition 8.8ch. If m and n are natural numbers, then addition in the sense of chapter
6 and in the cardinal number sense are the same.

Proof. For clarity, let the addition in section 6 be denoted by +′, and the new cardinal
addition by +. Fix m. By induction on n we show that m +′ n = m + n for every natural
number n. For n = 0, we have m +′ 0 = m by definition, and m + 0 = m since the second
set in the definition of m + 0 is empty, and so the definition reduces to m + 0 = |m×{0}|;
we observed above that m is equipotent with m×{0}, so |m× {0}| = m, as desired. Now
assume that m+′n = m+n. Now by the definitions involved, m+′ (n+′1) = (m+′n)+′1 =
(m +′ n) ∪ {m +′ n}, while

m + (n +′ 1) = m + (n ∪ {n})

= |(m × {0}) ∪ ((n ∪ {n}) × {1})|

= |(m × {0}) ∪ (n × {1}) ∪ {(n, 1)}|.

Now by the inductive hypothesis we have m +′ n = m + n, so there is a one-one function
f mapping m +′ n onto (m × {0}) ∪ (n × {1}). Let g = f ∪ {(m +′ n, (n, 1))}. Then g is
a one-one function from (m +′ n) +′ 1 onto (m × {0}) ∪ ((n ∪ {n}) × {1}) from which it
follows that m +′ (n +′ 1) = m + (n +′ 1), completing the inductive proof.

Proposition 8.9ch. For any sets A, B, |A ∪ B| ≤ |A| + |B|.

Proof. Let f be a bijection from A to |A|, and let g be a bijection from B to |B|.
Define h : A ∪ B → (|A| × {0}) ∪ (|B| × {1}) by setting, for any x ∈ A ∪ B,

h(x) =

{

(f(x), 0) if x ∈ A,
(g(x), 1) if x /∈ A (and hence x ∈ B).

Clearly h : A∪B → (|A|×{0})∪(|B|×{1}). We claim that it is one-one. For, suppose that
x, y ∈ A ∪ B and h(x) = h(y). If x, y ∈ A, then f(x) = 1st(h(x)) = 1st(h(y)) = f(y), so
x = y since f is one-one. If both x and y are not in A, then g(x) = 1st(h(x)) = 1st(h(y)) =
g(y), so x = y since g is one-one. If x ∈ A and y /∈ A, then 0 = 2nd(h(a)) = 2nd(h(y)) = 1,
contradiction. Similarly if x /∈ A and y ∈ A. Hence h is one-one.

61



Hence

|A ∪ B| ≤ |(|A| × {0}) ∪ (|B| × {1}) by 7.16

= |A| + |B| by definition

Proposition 8.10ch. If κ, λ, µ, ν are cardinals, κ ≤ µ, and λ ≤ ν, then κ + λ ≤ µ + ν.

Proof. By the definition of sum,

κ + λ = |(κ × {0}) ∪ (λ × {1})| and(1)

µ + ν = |(µ × {0}) ∪ (ν × {1})|.(2)

Now κ ≤ µ implies that κ ⊆ µ, and hence clearly κ × {0} ⊆ µ × {0}. Similarly, λ × {1} ⊆
ν × {1}. Thus the set on the right side of (1) is a subset of that on the right side of (2).
Hence our desired result follows from 7.14.

Now we give some elementary properties of addition.

Proposition 8.11ch. Suppose that κ, λ, µ are cardinals. Then
(i) κ + 0 = κ.
(ii) κ + λ = λ + κ.
(iii) κ + (λ + µ) = (κ + λ) + µ.

Proof. (i): Since 0 = ∅, we also have 0 × {1} = ∅, so

κ + 0 = |(κ × {0}) ∪ (0 × {1})| = |{κ × {0}| = κ,

using again the fact that {κ × {0} is equipotent with κ, and hence |{κ × {0}| = κ.
(ii): We have

κ + λ =|(κ × {0}) ∪ (λ × {1})| and

λ + κ = |(λ × {0})∪)κ × {1}|,

so it suffices to show that (κ × {0}) ∪ (λ × {1}) and (λ × {0})∪)κ × {1} are equipotent.
For each α < κ let f(α, 0) = (α, 1). Clearly f is a bijection from κ × {0} onto κ × {1}.
Similarly, there is a bijection from λ×{1} onto λ×{0}. So our desired result follows from
8.7.

(iii): We have

λ + µ = |(λ × {0}) ∪ (µ × {1})| by definition

= |(λ × {1}) ∪ (µ × {2})| using 8.7(1)

We also clearly have

(2) λ + µ = |(λ + µ) × {1}|.
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Moreover,

(3) (κ × {0}) ∩ [(λ × {1}) ∪ (µ × {2})] = ∅.

It follows that

(4) κ + (λ + µ) = |(κ × {0}) ∪ (λ × {1}) ∪ (µ × {2})|.

similarly,

(5) (κ + λ) + µ = |(κ × {0}) ∪ (λ × {1}) ∪ (µ × {2})|.

So (iii) follows.

There are other very important properties of addition; for example, κ + κ = κ whenever κ
is infinite. This and analogous facts follow from a similar fact about multiplication, so we
turn to it now.

For any cardinals κ, λ we define
κ · λ = |κ × λ|.

Before showing that multiplication, so defined, coincides with our old definition when
restricted to natural numbers, it is convenient to establish some simple arithmetical laws.

Proposition 8.12ch. If A is equipotent with C and B is equipotent with D, then A × B
is equipotent with C × D.

Proof. Let f : A → C be one-one and onto, and let g : B → D be one-one and
onto. Define h(a, b) = (f(a), g(b)) for any a ∈ A and b ∈ B. Then h : A × B → C × D is
one-one and onto. In fact, to show that h is one-one, suppose that h(a, b) = h(a′, b′). Then
(f(a), g(b)) = (f(a′), g(b′)), so f(a) = f(a′) and g(b) = g(b′). Hence a = a′ and b = b′

since f and g are one-one. So (a, b) = (a′, b′), proving that h is one-one. To show that h
maps onto C × D, suppose that (c, d) ∈ C × D. Since f maps onto C, choose a ∈ A such
that f(a) = c. Similarly we get b ∈ B such that g(b) = d. So h(a, b) = (f(a), g(b)) = (c, d),
showing that h maps onto C × D.

Proposition 8.13ch. A × (B × C) is equipotent with (A × B) × C.

Proof. Left to an exercise.

Now we give the most common properties of multiplication.

Proposition 8.14ch. Assume that κ, λ, µ are cardinals.
(i) κ · λ = λ · κ;
(ii) κ · (λ · µ) = (κ · λ) · µ;
(iii) κ · (λ + µ) = κ · λ + κ · µ;
(iv) κ · 0 = 0;
(v) κ · 1 = κ;
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(vi) κ · 2 = κ + κ;
(vii) If κ ≤ µ and λ ≤ ν, then κ · λ ≤ µ · ν.

Proof. We leave many details here to the reader; they are too easy even for exercises.
For (i), the mapping (α, β) 7→ (β, α) is a bijection from κ×λ to λ×κ, and (i) follows.
(ii): Use 8.13.
(iii):

κ · (λ + µ) = |κ × (λ + µ)|

= |κ × [(λ × {0}) ∪ (µ × {1})]| using 8.12

= |(κ × (λ × {0})) ∪ (κ × (µ × {1}))|

= |((κ× λ) × {0}) ∪ ((κ × µ) × {1})| by 8.13

= |((κ · λ) × {0}) ∪ ((κ · µ) × {1})| by 8.12

= κ · λ + κ · µ.

(iv): The set κ × 0 = κ × ∅ is empty, and (iv) follows.
(v): Note that κ · 1 = |κ × 1| = |κ × {0}|; (v) follows.
(vi):

κ · 2 = |κ · 2|

= |κ · {0, 1}|

= |(κ · {0}) ∪ (κ · {1})|;

the last two sets here are disjoint and each of size κ, so 8.7 can be used.
(vii): Note that, under the indicated hypotheses, κ × λ ⊆ µ × ν.

Now we check that for natural numbers multiplication has the same meaning as before:

Proposition 8.15ch. Multiplication of natural numbers means the same in the cardinal
number sense as in the sense of section 4.

Proof. Let multiplication in the sense of section 3 be denoted by ·′, and in the general
cardinal number sense by ·. Fix m ∈ ω. We prove by induction on n that m ·′ n = m · n
for every n ∈ ω. It is obvious for n = 0, since both sides are then 0. Now assume true for
n. Then

m ·′ (n +′ 1) = m ·′ n + m by definition of ·′ and 8.8

= m · n + m by the inductive hypothesis

= m · n + m · 1

= m · (n + 1)

= m · (n +′ 1),

as desired.

The basic theorem about multiplication of infinite cardinals is as follows.
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Theorem 8.16ch. κ · κ = κ for every infinite cardinal κ.

Proof. Suppose not, and let κ be the least infinite cardinal such that κ ·κ 6= κ. Then
κ = κ ·1 ≤ κ ·κ, and so κ < κ ·κ. We now define a relation ≺ on κ×κ. For all α, β, γ, δ ∈ κ,

(α, β) ≺ (γ, δ) iff max(α, β) < max(γ, δ)

or max(α, β) = max(γ, δ) and α < γ

or max(α, β) = max(γ, δ) and α = γ and β < δ.

In words, one pair comes before another iff the maximum of the two terms of the first pair
is less than the maximum for the second pair, or else those maximums are the same and
the first pair is less, in the dictionary order, than the second. This relation ≺ is clearly a
simple order of κ×κ. It is, in fact, a well-order. For suppose that Γ is a non-empty subset
of κ. Let γ be the least ordinal such that max(α, β) = γ for some (α, β) ∈ Γ. Then let α
be the least ordinal such that max(α, β) = γ for some β with (α, β) ∈ Γ. And finally, let
β be the least ordinal such that (α, β) ∈ Γ. Clearly (α, β) is the least member of Γ in the
sense ≺.

It follows that (κ×κ,≺) is isomorphic to an ordinal α; let f be the isomorphism. We
have |α| = |κ × κ| = κ · κ > κ by the remark at the beginning of this proof. So κ < α.
Therefore there exist β, γ ∈ κ such that f(β, γ) = κ. Now

f [{(δ, ε) ∈ κ × κ : (δ, ε) ≺ (β, γ)}] = κ,

so, with ϕ = max(β, γ)+1,

κ = |{(δ, ε) ∈ κ × κ : (δ, ε) ≺ (β, γ)}|

≤ |ϕ × ϕ| = |ϕ| · |ϕ|.

But ϕ < κ, so either ϕ is finite, and |ϕ| · |ϕ| is then also finite, or else ϕ is infinite, and
|ϕ| · |ϕ| = |ϕ| by the minimality of κ. In any case, |ϕ| · |ϕ| < κ, contradiction.

With the aid of this theorem we can completely describe how addition and multiplication
of cardinals work, when one of them is infinite.

Corollary 8.17ch. Let κ and λ be cardinals.
(i) If κ is infinite, then κ + κ = κ.
(ii) If at least one of κ, λ is infinite, then κ + λ = max(κ, λ).
(iii) κ · 0 = 0.
(iv) κ · 1 = κ.
(v) If both κ, λ are at least 2 and one of them is infinite, then κ · λ = max(κ, λ).

Proof. We have already proved (iii) and (iv): see 8.14(iv),(v). Next we prove (v).
By symmetry, let λ = max(κ, λ). Then

κ · λ ≤ λ · λ by 8.14(vii)

= λ by 8.16

= 1 · λ by 8.14(v)

≤ κ · λ by 8.14(vii).
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Thus (v) holds.
Now we prove (ii); by symmetry say λ = max(κ, λ).

κ + λ ≤ λ + λ by 8.10

= λ · 2 by 8.14(vi)

= λ by (v)

= 0 + λ

≤ κ + λ by 8.10.

Thus (ii) holds. Clearly (i) is a special case of (ii).

Next we consider exponentiation. For any cardinals κ, λ we define

κλ = |λκ|.

This is a reasonable definition, since in considering the number of functions f from λ to κ
one can select each of the λ values of f in κ many ways, all independently of one another.
Thus κλ should be the result of multiplying κ by itself λ many times. In a later chapter
we will introduce infinite products, and this will be formally stated and proved.

Proposition 8.18ch. For any sets A, B, C, D, if |A| = |C| and |B| = |D|, then |AB| =
|CD|.

Proof. Let f be a bijection from A to C, and g a bijection from B to D. For each
h ∈ AB define F (h) = g ◦h◦f−1. Since f−1 : C → A, h : A → B, and g : B → D, we have
F (h) : C → D, and so F (h) ∈ CD. To show that F is one-one, suppose that h, k ∈ AB
and F (h) = F (k). Thus g ◦ h ◦ f−1 = g ◦ k ◦ f−1, so

g ◦ h = g ◦ h ◦ IdA

= g ◦ h ◦ f−1 ◦ f

= g ◦ k ◦ f−1 ◦ f

= g ◦ k ◦ IdA

= g ◦ k.

Hence h = IdB ◦h = g−1 ◦ g ◦h = g−1 ◦ g ◦ k = IdB ◦ k = k. This proves that F is one-one.
To show that F maps onto CD, let l ∈ CD. Define h = g−1 ◦ l ◦ f . Since f : A →,

l : C → D, and g−1 : D → B, we have h : A → B. Hence

F (h) = g ◦ h ◦ f−1 = g ◦ g−1 ◦ l ◦ f ◦ f−1 = IdD ◦ l ◦ IdC = l.

The elementary arithmetic of exponentiation is summarized in the following proposition:

Proposition 8.19ch. Let κ, λ, µ be cardinals.
(i) κ0 = 1.
(ii) If κ 6= 0, then 0κ = 0.

66



(iii) κ1 = κ.
(iv) 1κ = 1.
(v) κ2 = κ · κ.
(vi) κλ · κµ = κλ+µ.
(vii) (κ · λ)µ = κµ · λµ.
(viii) (κλ)µ = κλ·µ.
(ix) If κ ≤ λ 6= 0 and µ ≤ ν, then κµ ≤ λν.

Proof. (i) is true since there is exactly one function mapping 0 into κ, namely 0 itself.
(ii): If κ 6= 0, then there are no functions mapping κ into the empty set.
(iii): The mapping α 7→ {(0, α)} is a bijection from κ to 1κ. Note that the members

of 1κ are tiny functions with domain 1, which is {0}.
(iv): There is only one function mapping κ into 1, namely the function that assigns 0

to each α < κ.
(v): the function (α, β) 7→ {(0, α), (1, β)} for α, β < κ is a bijection from κ × κ to 2κ.
(vi): This is more complicated that the preceding facts. First note that

κλ · κµ = |(κλ) × (κµ)| by definition

= |(λκ) × (µκ)| by 8.12, and

κλ+µ = |λ+µκ| by definition

= |(λ×{0})∪(µ×{1})κ| by 8.18.

Hence it suffices to show that the two sets

A
def
= (λκ) × (µκ) and

B
def
= (λ×{0})∪(µ×{1})κ

are equipotent. We define a function F with domain (λκ)× (µκ) as follows. If f ∈ λκ and
g ∈ µκ, then F (f, g) is itself a function with domain (λ × {0}) ∪ (µ × {1}), and for any
x ∈ (λ × {0}) ∪ (µ × {1}),

(F (f, g))(x) =

{

f(α) if x = (α, 0) for some α < λ,
g(β) if x = (β, 1) for some β < µ.

(Note that we really should write F ((f, g)) rather than F (f, g).) Thus F clearly maps A
into B. To show that F is one-one, suppose that f, f ′ ∈ λκ, g, g′ ∈ µκ, and F (f, g) =
F (f ′, g′). Then for any α < λ we have f(α) = (F (f, g))((α, 0)) = (F (f ′, g′))((α, 0)) =
f ′(α). Hence f = f ′. Similarly g = g′. So (f, g) = (f ′, g′), proving that F is one-one.

To show that F maps onto B, suppose that y ∈ B. Then we define x ∈ A as follows.
Let x = (u, v), where u ∈ λκ and v ∈ µκ are defined by setting, for any α < λ and β < µ,
u(α) = y(α, 0) and v(β) = y(β, 1). Then for any α < λ and β < µ we have

((F (x))(α, 0) = ((F (u, v))(α, 0) = u(α) = y(α, 0) and

(F (x))(β, 1) = ((F (u, v))(β, 1) = v(β) = y(β, 1);
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hence F (x) = y, as desired.
(vii): We have (κ · λ)µ = |µ(κ · λ)| by definition, so by 8.18, (κ · λ)µ = |µ(κ × λ)|.

Similarly, κµ · κµ = |(µκ) × (µλ)|. Thus it suffices to show that µ(κ × λ) and (µκ) × (µλ)
are equipotent. This can be done as follows. Given a function f mapping µ into κ× λ, let
F (f) = (g, h), where g : µ → κ and h → λ are defined as follows: for any α < µ, define
g(α) = 1st(f(α)) and h(α) = 2nd(f(α)).

To show that F is one-one, suppose that f, k ∈ µ(κ × λ) and F (f) = F (k). Let
F (f) = (g, h). Then for any α ∈ µ,

f(α) = (1st(f(α)), 2nd(f(α))) = (g(α), h(α)) = (1st(k(α)), 2nd(k(α))) = k(α).

So f = k.
To show that F maps onto (µκ) × (µλ), take any (g, h) ∈ (µκ) × (µλ). Define f ∈

µ(κ × λ) by setting, for each α < µ, f(α) = (g(α), h(α)). Clearly F (f) = (g, h).
(viii): By the usual arguments, we need to see that there is a one-one correspondence

between µ(λκ) and λ×µκ. Given f ∈ µ(λκ), define F (f) ∈ λ×µκ by setting, for any α ∈ λ
and β ∈ µ,

F (f)(α, β) = (f(α))(β).

We leave to an exercise the task of showing that F is the desired bijection.
(ix): Assume the hypotheses. For each f ∈ µκ we define f+ ∈ νλ by setting, for any

α ∈ ν,

f+(α) =
{

f(α) if α < µ,
0 otherwise.

Clearly + is a one-one function, and (ix) follows.

Proposition 8.20. For any natural numbers m, n, mn in the sense of this chapter coin-
cides with its meaning in the sense of Chapter 6. In particular, mn ∈ ω for all m, n ∈ ω.

Proof. This is easily seen for a fixed m by ordinary induction on n.

We recall the following result (7.28):

Proposition 8.21ch. |PA| = 2|A|.

Theorem 8.22ch. If 2 ≤ κ ≤ λ ≥ ω, then κλ = 2λ.

Proof. We have

2λ ≤ κλ ≤ λλ ≤ |P(λ × λ)| = |P(λ)| = 2λ,

and the theorem follows.

As the last topic of this chapter we take infinite sums. Infinite products will be treated
later. The definition of infinite sums generalizes that of the sum of two cardinals.
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Let 〈κi : i ∈ I〉 be a system of cardinals (this just means that κ is a function with
domain I whose values are always cardinals). Then we define

∑

i∈I

κi =

∣

∣

∣

∣

∣

⋃

i∈I

(κi × {i})

∣

∣

∣

∣

∣

.

Proposition 8.23ch. If 〈κi : i ∈ 2〉 is a system of cardinals (meaning that κ is a function
with domain 2 such that both κ0 and κ1 are cardinals), then

∑

i∈2 κi = κ0 + κ1.

Proof. Recall the definition of κ0 + κ1:

κ0 + κ1 = |(κ0 × {0}) ∪ (κ1 × {1})|.

On the other hand, our new definition gives

∑

i∈2

κi =

∣

∣

∣

∣

∣

⋃

i∈I

(κi × {i})

∣

∣

∣

∣

∣

= |(κ0 × {0}) ∪ (κ1 × {1}|,

so the two sets we count with are the same.

The following is easily proved by induction on |I|:

Proposition 8.24. If 〈mi : i ∈ I〉 is a system of natural numbers, with I finite, then
∑

i∈I mi is a natural number.

We mention some important but easy facts concerning the cardinalities of unions:

Proposition 8.25ch. If 〈Ai : i ∈ I〉 is a system of pairwise disjoint sets, then
∣

∣

⋃

i∈I Ai

∣

∣ =
∑

i∈I |Ai|.

Proof. We define a function f with domain
⋃

i∈I Ai as follows. Let x ∈
⋃

i∈I Ai.
Then there is a unique i ∈ I such that x ∈ Ai. We define f(x) = (x, i). It is easily
checked that this defines a one-one function mapping

⋃

i∈I Ai onto
⋃

i∈I(Ai ×{i}), and so
the definition of sum gives the desired result.

Proposition 8.26ch. If 〈Ai : i ∈ I〉 is any system of sets, then
∣

∣

⋃

i∈I Ai

∣

∣ ≤
∑

i∈I |Ai|.

Proof. We define a function f mapping
⋃

i∈I(Ai × {i}) into
⋃

i∈I Ai by setting, for
each i ∈ I and a ∈ Ai, f(a, i) = a. We claim that f maps onto the union. (Note in this
proof that it is possible that the union is empty; in this case the function f is also empty,
and these details are taken care of by the hypthetical nature of the proof.) In fact, suppose
that x ∈

⋃

i∈I Ai. Choose i ∈ I such that x ∈ Ai. Then f(x, i) = x, as desired.

Finally, we gather together some simple arithmetic of infinite sums:

Proposition 8.27ch. (i)
∑

i∈I 0 = 0.
(ii)

∑

i∈∅ κi = 0.

69



(iii)
∑

i∈I κi =
∑

i∈I,κi 6=0 κi.
(iv) If I ⊆ J , then

∑

i∈I κi ≤
∑

i∈J κi.
(v) If κi ≤ λi for all i ∈ I, then

∑

i∈I κi ≤
∑

i∈I λi.
(vi)

∑

i∈I 1 = |I|.
(vii)

∑

i∈I κ = κ · |I|.

Proof. (i):

∑

i∈I

0 =

∣

∣

∣

∣

∣

⋃

i∈I

(0 × {i})

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

⋃

i∈I

(∅)

∣

∣

∣

∣

∣

= |∅| = 0.

(ii):

∑

i∈∅

κi =

∣

∣

∣

∣

∣

⋃

i∈∅

κi

∣

∣

∣

∣

∣

= |∅| = 0.

(iii):

∑

i∈I

κi =

∣

∣

∣

∣

∣

⋃

i∈I

(κi × {i})

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

⋃

i∈I,

κi 6=0

(κi × {i}) ∪
⋃

i∈I,

κi=0

(κi × {i})

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

⋃

i∈I,

κi 6=0

(κi × {i}) ∪ ∅

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

⋃

i∈I,

κi 6=0

(κi × {i})

∣

∣

∣

∣

∣

∣

∣

=
∑

i∈I,

κi 6=0

κi.

(iv):

∑

i∈I

κi =

∣

∣

∣

∣

∣

⋃

i∈I

(κi × {i})

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

⋃

i∈J

(κi × {i})

∣

∣

∣

∣

∣

by 7.14

=
∑

i∈J

κi.

(v): Recall here that κi ≤ λi implies that κi ⊆ λi. Thus

∑

i∈I

κi =

∣

∣

∣

∣

∣

⋃

i∈I

(κi × {i})

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

⋃

i∈J

(λi × {i})

∣

∣

∣

∣

∣

by 7.14

=
∑

i∈J

λi.

(vi):

∑

i∈I

1 =

∣

∣

∣

∣

∣

⋃

i∈I

(1 × {i})

∣

∣

∣

∣

∣

= |1 × I| = 1 · |I| = |I|.
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(vii):

∑

i∈I

κ =

∣

∣

∣

∣

∣

⋃

i∈I

(κ × {i})

∣

∣

∣

∣

∣

= |κ × I| = κ · |I|.

Now we need another fact about ordinals and cardinals.

Proposition 8.28. If Γ is a set of ordinals, then
⋃

Γ is also an ordinal. For any α ∈ Γ
we have α ≤

⋃

Γ, and if α ≤ β for all α ∈ Γ, then
⋃

Γ ≤ β.
If Γ is a set of cardinals, then

⋃

Γ is a cardinal.

Proof. To show that
⋃

Γ is transitive, suppose that x ∈ y ∈
⋃

Γ. Choose α ∈ Γ such
that y ∈ α. Since α is transitive, we have x ∈ α, and so x ∈

⋃

Γ.

To show that
⋃

Γ is well-ordered under ∈, suppose that X is a nonempty subset of
⋃

Γ. Thus each member of X is a member of some member of Γ, and the members of
Γ are ordinals; so each member of X is a member of some ordinal, and hence is itself an
ordinal by 7.4. Hence X is a nonempty set of ordinals, and hence it has a least element.
So we have proved the first part of the proposition.

If α ∈ Γ, then α ⊆
⋃

Γ, and hence α ≤
⋃

Γ by 7.5. Suppose that α ≤ β for all α ∈ Γ.
By 7.6 we have

⋃

Γ ≤ β or β <
⋃

Γ. If β <
⋃

Γ, then β ∈
⋃

Γ, so β ∈ α ∈ Γ for some α;
but α ≤ β, and ∈ means < for ordinals. So

⋃

Γ ≤ β.
This finishes the part of the proposition concerning ordinals.
Now suppose that Γ is a set of cardinals. Suppose that

⋃

Γ is not a cardinal. Then
it is equipotent with some α <

⋃

Γ. Say that f is a bijection from
⋃

Γ onto α. Now <
means ∈ for ordinals, so α ∈ β ∈ Γ for some β. Hence α ⊆ β ⊆

⋃

Γ. So f ↾ β is a one-one
function mapping β into α, so by 7.16, β = |β| ≤ |α| = α, contradicting α < β.

The first part of 8.28 says that
⋃

Γ is an ordinal which is the least upper bound of Γ.

Proposition 8.29ch. If 〈Ai : i ∈ I〉 is any system of sets, then

∣

∣

∣

∣

∣

⋃

i∈I

Ai

∣

∣

∣

∣

∣

≤ |I| ·
⋃

i∈I

|Ai|.

Proof. This is an easy computation:

∣

∣

∣

∣

∣

⋃

i∈I

Ai

∣

∣

∣

∣

∣

≤
∑

i∈I

|Ai| ≤
∑

i∈I

(

⋃

i∈I

|Ai|

)

= |I| ·
⋃

i∈I

|Ai|.

This theorem has the following very useful corollary, which generalizes the theorem in
Chapter 7 which says that a countable union of countable sets is countable.

Corollary 8.30ch. Let κ be an infinite cardinal. Then a union of at most κ sets, each of
size at most κ, has size at most κ.
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Proof. Suppose that 〈Ai : i ∈ I〉 is a system of sets with |I| ≤ κ and |Ai| ≤ κ for
each i ∈ I. Then

∣

∣

∣

∣

∣

⋃

i∈I

Ai

∣

∣

∣

∣

∣

≤ |I| ·
⋃

i∈I

|Ai| by 8.30

≤ κ · κ by the assumptions

= κ by 8.16.

The next theorem reduces infinite sums to the operations of unions (taking the supremum,
by 8.28) and binary products.

Theorem 8.31ch. If 〈κi : i ∈ I〉 is a system of nonzero cardinals, and either I is infinite
or some κi is infinite, then

∑

i∈I κi = |I| ·
⋃

i∈I κi.

Proof. We have |I| =
∑

i∈I 1 ≤
∑

i∈I κi and, for each j ∈ I we have κj ≤
∑

i∈I κi,
so
⋃

i∈I κi ≤
∑

i∈I κi. So the hypothesis of the proposition implies that
∑

i∈I κi is infinite,
and

∑

i∈I

κi =

∣

∣

∣

∣

∣

∑

i∈I

κi

∣

∣

∣

∣

∣

≤ |I| ·
⋃

i∈I

κi by 7.29

≤

(

∑

i∈I

κi

)

·

(

∑

i∈I

κi

)

=
∑

i∈I

κi,

and the desired conclusion follows.

As the last theorem of this chapter we calculate the size of the closure of a set under
operations; recall 6.35 and 6.36 for this important concept.

Theorem 8.32ch. (Closure theorem, II) Let F be a set of finitary partial operations on a
set A, and let X ⊆ A. Then

|ClF (X)| ≤ max(ω, |F |, |X |).

Proof. Let κ = max(ω, |F |, |X |). We consider the sets Di, i ∈ ω as in 6.36(ii). We
first show that |Dm| ≤ κ for every m ∈ ω, by induction. First, |D0| = |X | ≤ κ. Now
suppose that we have shown that |Dm| ≤ κ. For each positive integer i, let

Mi = {(i, f, b) : f ∈ F, dmn(f) = i, b ∈ dmn(f) ∩ Dm}

and N =
⋃

i∈ω,i6=0 Mi. Then for each positive integer i,

|Mi| ≤ |F × iDm| ≤ |F | · |Dm|i ≤ κ · κi = κ,
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and
|N | ≤

∑

i∈ω,

i 6=0

|Mi| ≤ ω · κ = κ.

Now for each positive integer i and each (i, f, b) ∈ Ni define F (i, f, b) = f(b). Clearly F
maps N onto the set {f(b) : f ∈ F, b ∈ dmn(f), rng(b) ⊆ Dm}, so that set has size at
most κ. Hence |Dm+1| ≤ κ. This finishes the inductive proof that each Dm has size at
most κ. Hence

|ClF (X)| =

∣

∣

∣

∣

∣

⋃

m∈ω

Dm

∣

∣

∣

∣

∣

≤ ω · κ = κ.

Exercises, Chapter 8

1. Give an example of partially ordered sets (A, <), (B,≺) with a strictly increasing
function from A to B which is neither one-one nor onto.

2. Give an example of a linearly ordered set A and a strictly increasing function from A
onto A which is not the identity.

3. Give details for (1) in the proof of 8.11.

4. Give details for (2), (3), and (4) in the proof of 8.11.

5. Prove (5) in the proof of 8.11.

6. Prove Proposition 8.13.

7. Finish the proof of 8.19(viii).

8. Prove 8.20.

9. Prove 8.24.

10. Finish the proof of 8.25.

11. A Group is an ordered pair (A, ·) satisfying some simple conditions, where · is a binary
operation on A, i.e., a function mapping A × A into A. Show that if A is infinite, then
there are at most 2|A| groups with underlying set A. The same upper bound applies to
the number of groups of size |A|, up to isomorphism; this can be shown by showing that
every group of size |A| is isomorphic to one with underlying set A. On the other hand,
there does not exist a set of all groups of size |A|; here assume the well-known fact that
there is at least one group of size |A|.

12. If A is an infinite set then there are at most 2|A| simple orderings on A; and the same
bound applies for the number of simple orderings of size |A|, up to isomorphism.

13. Prove that there are exactly 2ω continuous functions mapping R into R. Hint: show
that any continuous function is determined by what it does to the rationals.

14. Prove that if A is infinite and m is a positive integer, then there are exactly |A|
sequences of elements of A of length m.
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15. Prove that if A is infinite, then there are exactly |A| finite sequences of elements of A.

16. Show that if A is infinite, then the number of finite subsets of A is |A|.

17. Show that for any sets A, B, C,

|A ∪ B ∪ C| + |A ∩ B| + |A ∩ C| + |B ∩ C| = |A| + |B| + |C| + |A ∩ B ∩ C|.

18. Show that if A is an infinite set, κ is a cardinal, and 1 ≤ κ ≤ |A|, then there is a
partition of A into κ sets each of size |A|. Hint: use the fact that κ · |A| = |A|.

19. Show that if A is an infinite set, κ is a cardinal, and 1 ≤ κ ≤ |A|, then there is a
partition of A into |A| sets each of size κ. Hint: use the fact that κ · |A| = |A|.

20. Suppose that A is an infinite set, and let a ∈ A. Let F be the collection of all functions
f : A → A such that {x ∈ A : f(x) 6= a} is finite. Show that |F | = |A|.

21. Show that the set of all permutations of ω (i.e., bijections of ω to ω) has size 2ω.

22. Show that the set of all equivalence relations on an infinite set A has size 2|A|.

74


