Appendix D: the real numbers

We repeat a definition from Chapter 6. A subset A of QQ is a Dedekind cut provided the
following conditions hold:

(1) Q# A#0;
(2) Forall r,s € Q, if r < s and s € A, then r € A.
(3) A has no largest element.

Let R’ be the set of all Dedekind cuts.
If A and B are Dedekind cuts, then we define

A+ B = {z : there are a € A and b € B such that x = a + b}.

Proposition D1. If A and B are Dedekind cuts, then so is A+ B.

Proof. Since A and B are both nonempty, clearly A 4+ B is nonempty. Now take
reQ\Aand se Q\B. Sot<rforallte A and u < s forallu € B. Thena+b<r+s
for all a € A and b € B, so that x < r+ s for all x € A+ B. In particular, r +s ¢ A+ B,
by the irreflexivity of <. So we have shown that (1) holds for A + B.

Now suppose that r < s € A+ B. Write s = a+ b with a € A and b € B. Then
r<s=a+b,sor—a<b,and hence r—a € B by (2) for B. Hence r = a + (r —a) shows
that r € A+ B. So (2) holds for A + B.

Suppose that z € A+ B. Write x = a + b with a € A and b € B. Since a is not the
greatest element of A, by (3) choose @’ € A such that a < a’. Thenx =a+b<d +0b¢€
A + B, proving (3) for A+ B. O

Proposition D2. Let A, B,C be Dedekind cuts. Then
(i) A+ B =B+ A.
(ii) A+ (B+C)=(A+B)+C.

Proof. (i): obvious. (ii): Suppose that © € A+ (B + C). Then there are a € A and
y € (B + C) such that z = a + y; and there are b € B and ¢ € C such that y = b+ c.
Sox =a+b+c Nowa+be (A+ B),soz € ((A+ B)+ (). This shows that
A+ (B+C) C (A+ B)+C. Since this is generally true for all Dedekind cuts A, B, C, we
also have (A+ B)+C=C+(B+A)C(C+B)+ A=A+ (B+C). O

Now we define, following Chapter 6,
Z={reQ:r <0}
Clearly Z is a Dedekind cut.

Proposition D3. A+ Z = A for every Dedekind cut A.

Proof. Let a € A. Since A does not have a largest element, choose b € A such that
a <b. Then a —b < 0, hence a —b € Z, and so a = b+ (a — b) shows that a € A+ Z.

Conversely, suppose that x € A + Z. Then there exist a € A and b € Z such that
x=a+b. Since b < 0, we have x < a, and so = € A, as desired. O
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It is easy to check that Z is the only element of R’ such that A + Z = A for all A.
Next, for any Dedekind cut A we define

—A={r € Q:thereis an s € Q such that r < s and —s ¢ A}.

Proposition D4. A+ —A = Z for any Dedekind cut A.

Proof. First we show that —A is itself a Dedekind cut. Since A # Q, choose r € Q\ A.
Then alsor+1¢ A. so —(r+1) < —r and —(—r) =r ¢ A. It follows that —(r+1) € —A.
Hence —A # (). Next, choose r € A. Then —r ¢ —A, as otherwise there is an s such
that —r < s and —s ¢ A; but —s < r, contradiction. So —A # Q. Finally, suppose that
r € —A; we want to find a larger element in A. Choose s such that r < s and —s ¢ A.
Take t € Q such that r < ¢t < s; for example, take ¢t = (r 4+ s)/2. Clearly then t € —A, as
desired. This checks that —A is a Dedekind cut.

Now suppose that x € A+ —A. Then there are a € A and b € —A such that z = a+0b.
Choose ¢ € Q such that b < ¢ and —c ¢ A. Suppose that 0 < z. Then z =a+b < a + ¢,
and so —c¢ < a+ —x < a, and hence —c € A, contradiction. Hence = < 0, so that = € Z.

Second suppose that r € Z. Fix b ¢ A.

(1) There is a positive integer p such that b+ & € A.

In fact, to prove (1), also fix a € A. Then a < b, as otherwise we would have b € A. Hence

there are positive integers s,t such that b —a = 3. Since 5 < 0, there are also positive
integers u, v such that § = —%. Then b —a = 7 < s < su = sv(—5). Hence b+ svg < a,
and so b+ svg € A, proving (1).

Let p be the smallest positive integer such that b +p5 € A. Recall that b ¢ A, so that

even if p = 1 we can assert that b+ (p —1)5 ¢ A. Now

o+

r=b+pr+(=b+(-p+ 1)% + g),
and (—b+(—p+1)§ + %) < (—b+(—p—|—1)§, and —(—b+(—p—|—1)§) = b+(p—1)§ ¢ A.
This shows that r € A + —A. O

The element —A is unique: if A+ B = Z, then B = —A. In particular, —Z = Z.
Next, we call a Dedekind cut A positive iff if has at least one positive member.

Proposition D5. For any Dedekind cut A, exactly one of the following holds:

(i) A is positive;

(ii) A= Z;

(iii) — A is positive.

Proof. Suppose that A is not positive, and A # Z. Since A is not positive, all its
members are negative or zero; since it has no largest element, 0 ¢ A. Thus A C Z. Since
A # Z, we actually have A C Z. Choose r € Z\A. Now r+r <0+r =r <0, and so
r < 5 <0. Hence 0 < —% < —r. So —§ € —A, since —(—7r) = r ¢ A. This shows that —A
is positive.

So we have shown that one of (i)—(iii) holds.
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Obviously (i) and (ii) do not simultaneously hold. Suppose that both A and —A are
positive. Hence there is a positive element r € A, and a positive element s € —A. By the
definition of —A, choose ¢ such that s <t and —t ¢ A. Then —t < —s <0< 7r,s0 —t € A,
contradiction. Thus (i) and (iii) do not simultaneously hold. Finally, suppose that —Z is
positive. Let r be a positive element of —Z. Then by definition there is an s such that
r<sand —s ¢ Z. So 0 < —s < —r, contradicting r being positive. ]

On the basis of Proposition D5, the following definition makes sense. For any Dedekind
cut A,

4] = A if A= Z or A is positive,
| —A if —A is positive.

Now we repeat the definition of product from Chapter 6. Let A and B be Dedekind cuts.

A-B={reQ:there are s € A and ¢t € B such that 0 < s

(a) and 0 <t and r < s-t} if A and B are positive,

(b) A-B=ZifA=Zor B=2,

(c) A-B=—(|A]-|B|)if A+# Z # B and exactly one of A, B is positive
(d) A-B=(—-A)-(—B)if —A and —B are both positive.

Proposition D6. Let A, B,C be Dedekind cuts.
(i) A-B=B-A.
(ii) (—A)-B=—(A-B)=A-(—B).
(isi) A-(B-C)=(A-B)-C.
(iv) A-(B+C)=A-B+A-C.

Proof. (i): this is clear if both A and B are positive, or if one of them is Z. If both
are different from Z and exactly one of them is positive, then |A| and | B| are both positive,
and

A-B=—(|A]-|B|) = =(|B| - |A]) = B - A.

If —A and —B are both positive, then

Thus (i) holds.
(ii): First we prove that (—A)- B = —(A - B). This is true by (b) if one of A, B is Z,
since —Z = Z. If A and B are positive, then

(~A)-B=—(A-B) by (o).
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If —A and B are positive, then

—(4-B) = —(=((-=4)- B)) by (c)
— (-4) - B.

If A and —B are positive, then

(=A)-B=B-(=4) by (i)
= —(B-A) by the previous case
= —(4-B) by ()
Finally, if —A and —B are positive, then

(=4)-B=—((-4)-(=B)) by (c)

Thus (—A) - B= —(A- B) in general. The other part of (ii) follows from (i).
(iif):
(1) If A, B,C are all positive, then A-(B-C)C (A-B)-C.

For, assume that A, B, C are all positive. Clearly then A - B and B - C are positive. Now
let z € A-(B-C). Then there exist s,t such that xt < s-t,0<se€ A,and 0 <t e B-C.
Since t € B - C, there exist u,v such that t < u-v, 0 <wu € B, and 0 < v € C. Choose
s’ € Asuch that s < s’. Thens-u<s -u,0<s € A,and0<ue B,sos-ue€A-B.
Thenz <s-u-v,0<s-u€A-B,and0<wveC,soxe(A-B)-C. This proves (1).

(2) If one of A, B,C is equal to Z, then A-(B-C)=2Z=(A-B)-C.
This is clear.

(3) If A, B, C are all positive, then A-(B-C)=(A-B)-C.

In fact,

A-(B-C)C(A-B)-C by (1)
=C-(B-A) by(
c(C-B)-A by
=A-(B-C) by (i).

So (3) holds.
Now we can use (ii) to finish (iii):
A, B,—C positive: A-(B-C)=A-—(B--C)
= _(A . (B . _C’>
~ ~((4-B)-—C)
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=(A-B)-C;
A,—B,C positive: A-(B-C)=A-—(—B-C)
——(A-(-B-0))
—((A--B)-C)
=(A-B)-C;
A,—B,—C positive: A-(B-C)=A-((—-B)-(-C))
=(A-—-B)--C
=(A-B)-C;
C positive: (A-B)-C=C-(B-A)

Q
>
L

—A, B, —C positive: A-(B-C) =

—A,—B,—C positive: A- (B - C) =A- ((—B (=

(iv): Clearly
(4) If one of A, B,C'is Z,then A- (B+C)=A-B+ A-C.
(5) If A, B,C are positive, then A- (B+C)=A-B+ A-C.

For, first suppose that x € A- (B 4+ C). Then we can choose s,t so that 0 < s € A,
0<teB+C,and z < s-t. Sincet € B+ C, there are b € B and ¢ € C such that
t = b+ c. Now choose v’ € B with b <V and 0 < ¥, and choose ¢’ € C such that ¢ < ¢
and 0 < . Nowz =s-b + (r —s-V'), and clearly s- b’ € A- B, while

/

r—s-b<s-(V+d)—s-b =5,

and clearly s-¢ € A-C. This proves C in (5).

Now suppose that y € A- B+ A-C. Then we can write y = u +v with u € A- B
andv e A-C. Sayu<s-twithO<seAandO<te B,andv<a-cwith0<a€A
and 0 < ¢ € C. Let s’ be the maximum of s and a. Then y < s'- (t+¢), 0 < s’ € A, and
t+ceB+C. Soye A-(B+ (). This proves D in (5).

(6) If A, B, —C are positive, and also B + C' is positive, then A- (B+C)=A-B+ A-C.
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For,

A

=A-(B+C)+ A-(=C) by (5)
A-(B+C)+—(A-C), by (ii)

and (6) follows.

(7) If A, B, —C are positive, and B + C is negative, then A- (B+C)=A-B+ A-C.

For,

A-(=C) by (6)

—(A-C), by (ii)

and (7) follows.

(8) If A, B, —C are positive, and B+ C = Z,then A-(B+C)=A-B+ A-C.
For, under these hypotheses, C' = —B, and so

A (B+C)=A-Z=Z=A-B+—(A-B)=A-B+A-(-B)=A-B+A-C.

(9) If A, —B, C are positive, then A- (B+C)=A-B+ A-C.
This follows from (6)—(8) since + is commutative.
(10) If A, —B, —C are positive, then A- (B+C)=A-B+ A-C.
For,
A-(B+C)=—(A-(-B+-0C)) by (ii)
= (A (-B) +A- (~0)
= ~(~(A-B) + ~(4-0C)
=A-B+A-C.
(11) If A is positive, then A- (B+C)=A-B+ A-C.
This is true by (6)—(10).
(12) If —A is positive, then A- (B+C)=A-B+ A-C.
In fact, (—A)- (B+C)=(—A)-B+(—A)-C by (11), and (12) follows, using (ii). O

Now we define
I={reQ:r<1}.

Clearly I is a Dedekind cut.
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Proposition D7. A-1 = A for any Dedekind cut A.

Proof. This is clear if A = Z. Now suppose that A is positive. Suppose that r € A-1.
Then there are s,t € Q such that 0 < s € A, 0 <t €I, and r < s-t. Clearly then r < s,
so r € A by the definition of Dedekind cut.

Conversely, suppose that r € A. Choose ', 7" € A such that r <" <r” and 0 < r'.

Let s=L;. Then 0 < s <1,s0s¢€l. Smcer<r =" .s, it follows that r € A-I. Thus
we have shown that A- I = A for A positive.
If —A is positive, then A- 1 = —((—A)-I) = —(—A) = A, using D6(ii). O

Proposition D8. If A is a Dedekind cut and A # Z, then there is a Dedekind cut B such
that A- B = 1.

Proof. First suppose that A is positive. Let
B={reQ:r<0, or0<randr-s<1forevery s € A for which 0 < s}.

Then B # (), since clearly 0 € B. Clearly if ¥’ < r € B, then alsor’ € B. If 0 < s € A,
then 1 ¢ B. So B is a Dedekind cut.
We claim that A- B = I. Suppose that r € A- B. Choose s,t so that 0 < s € A,
0<te B,and r < s-t. Then by the definition of B, s-t < 1,s0or < 1. Hence r € I.
Conversely, suppose that r € I, so that » < 1. Choose r’,r”,r"" so that 0,7 < 1’ <
" <r" <1. Let C ={s € Q:s<r"}. Clearly C is a Dedekind cut.

(1) (A-C) C A.
In fact, clearly (A-C) C A. Suppose that A-C = A. Now

A=A-T=(A-C)+(A-(I-C)=A+(A-(I-0)),

so A-(I —C) = Z. Choose s,t so that "’ < s <t < 1. Then —s < —r"" and r" ¢ C,
so —s € —=C. Hence 0 < t—s € (I —C). So I — C is positive. Since A is also positive, it
follows that A - (I — C) is positive, contradiction. Hence (1) holds.

By (1), choose s € A\(A - C). We may assume that 0 < s. Thus

(2)F0rallac if0<aceAandO0<ceC,thena-c<s.

Now let v = Z-. Thus s-v =1’ > r. Hence we will get » € A- B as soon as we show that
v € B. Suppose that 0 <a € A. Now 0 < 7" € C, so by (2) we have a - r” < s. Hence

T r!
a-v=a-—<a-— <1,
s s

so that a - v < 1, as desired.
Thus we have finished the proof in the case that A is positive. If —A is positive, then
choose B so that (—A)- B = 1. Then (A-(—B)) = (—A)- B = I, using D7(ii). O

This finishes the purely arithmetic part of the construction of the real numbers. Now we
discuss ordering. We define A < B iff B — A is positive. Elementary properties of < are
given in the following proposition.
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Proposition D9. Let A,B,C € R'. Then
(i) A £ A.
(i) If A< B < C, then A< C.
(iii) A< B, A= B, or B < A.
(iv) A< Biff A+ C < B+C.
(v) Z < 1.
(vi) If Z < A and Z < B, then Z < A - B.
(vii) If Z < C, then A < B implies that A-C < B - C.
(viii) A < B iff A C B.

Proof. (i): A—A=2,s0 A< A by D5.

(ii) Suppose that A < B < C. Thus B — A and C — B are positive. Hence clearly
also C — A=C — B+ B — A is positive.

(iii): Given A, B, by D5 we have A — B positive, A— B=Z,or —-(A—B)=B—- A
is positive. By definition this gives A < B, A= B, or B < A.

(iv): First suppose that A < B. Thus B— A is positive. Since B4+C—(A+C) = B—A,
it follows that A+ C < B+ C.

Second, suppose that A+C < B+ C. Thus B— A= B+ C — (A+ C) is positive, so
A< B.

(v): Obviously I is positive.

(vi): Assume that Z < A and Z < B. Thus A and B are positive. Clearly then A - B
is positive. So Z < A - B.

(vii): Assume that Z < C and A < B. Then C and B — A are positive, so also
C-(B-—A)=C-B—(A-C)is positive, and so A-C < B-C.

(viii): Suppose that A < B. Thus B — A is positive. Choose z so that 0 < z € B — A.
Then we can write x = b+ a with b € B and a € —A. By the definition of —A, choose
s € Qso that a < s and —s ¢ A. Then —s < —a, so also —a ¢ A. Also b+ a > 0, so
b > —a, and it follows that b ¢ A. Now if y € A, then y < b, as otherwise b < y would
imply that b € A. But then y € B. So A C B, and since b € B\ A, even A C B.

Conversely, suppose that A C B. Choose b € B\ A. Choose ¢,d such that b < ¢ <
de B. Now —c< —band b ¢ A, so —c € —A. Thus d — ¢ is a positive element of B — A,
hence B — A is positive and A < B. O

The following theorem expresses the essential new property of the reals as opposed to the
rationals.

Theorem D10. FEvery nonempty subset of R’ which is bounded above has a least upper
bound. That is, if 0 # 2 C R’, and there is a Dedekind cut D such that A < D for all
A e R/, then there is a Dedekind cut B such that the following two conditions hold:

(i) A < B for every A € Z .

(ii) For any Dedekind cut C, if A < C for every A € 2", then B < C.

Proof. Let B = J ¢ o~ A. Since 2" is nonempty, and each Dedekind cut is nonempty,
it follows that B is nonempty. To show that B does not consist of all rationals, we use the
assumption that 2 has an upper bound. Let D be an upper bound for 2. Thus A < D
for all A € 2. By D9(viii), A C D for all A € 27, and hence B C D. Since D # Q, also
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B#Q. If t <y € B, then y € A for some A € 2", hence x € A, hence x € B. Thus B is
a Dedekind cut.

For any A € 2" we have A C B, and hence A < B by D9(viii).

Now suppose that A C C for all A € 2, where C is a Dedekind cut. Then B C C,
hence B < C by D9(viii). O

Next we want to embed the rationals into R’. For every rational r we define f(r) = {q €
Q:q < r}. Clearly f(r) is a Dedekind cut.

Proposition D11. (i) f is one-one.
(ir) f(r+s)=f(r)+ f(s) for any r,s € Q.
(iii) f(r-s)= f(r)- f(s) for any r,s € Q.

Proof. (i): Suppose that r,s € Q; say r < s. Then r € f(s)\f(r), so f(r) # f(s).

(ii): First suppose that € f(r+s). Thus x < r+s, so x —s < r. Let r’ be a rational
number such that x —s <’ <r. Thenz ="+ (x—7'),and z —1' < s,soz € f(r)+ f(s).

Conversely, suppose that © € f(r) + f(s). Choose a € f(r) and b € f(s) so that
x=a+b. Thena <randb<s,sox<r+s,andsoz € f(r+s).

(iii): Note that f(0) = Z; hence (iii) is clear if » = 0 or s = 0. Suppose that r, s > 0.
Suppose that 2 € f(r-s). So x <r-s. Hence £ < r. Choose v’ € Q such that £ <r' <r
and 0 < 7’. Hence ; < s. Choose s’ € Q such that 77 < s’ <sand 0 < s’. Thenz <71'-5’,
0<r' e f(r),and 0 < s € f(s),sox € f(r)- f(s).

Conversely, suppose that € f(r) - f(s). Then there are ' € f(r) and s’ € f(s) such
that 0 <7/, 0 < s’;and z < r'-s'. Hence x < r-s,sox € f(r-s), as desired. This finishes
the case in which r,s > 0.

To continue we need the following little fact:

(1) =f(r) ={q € Q: ¢ < —r} for any rational number 7.

In fact, suppose that ¢ € —f(r). Then there is a rational ¢ such that ¢ < t and —t ¢ f(r).
thus —t £ r, so r < —t. Hence t < —r, so ¢ < —r. Conversely, suppose that ¢ < —r. Now
r & f(r),soq€ —f(r). Thus (1) holds.

Now suppose that » < 0 < s. Then, using (1),

Proposition D12. QNR’ = (.

Proof. First, w "R’ = (), since the members of w are all finite, while the members of
R’ are all infinite.

Now suppose that a € ZNR’. Then a ¢ w by the preceding paragraph, so a = [(m,n)]
for some m,n € w. But also a € R’, so a is a set of rationals. In particular, (m,n) is a
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rational. Now (m,n) has either one or two elements; the only rationals with only one or
two elements are 1 and 2. Since () € 1 and 0 € 2, we get 0 € (m,n), contradiction.
A similar argument shows that a € Q N R’ leads to a contradiction. ]

We can now proceed very much like in previous appendices. We define R = (R"\rng(f))uQ.
There is a one-one function g : R — R’, defined by g(A) = A if A € R'\rng(f), and
g(A) = f(A) for A € Q. Clearly g is a bijection. Now the operations +" and -" are defined
on R as follows. For any a,b € R,

a+'b=g""(g(a)+ g(b));
a'b=g "(g(a)- g(b)).

moreover, we define a <’ b iff g(a) < g(b). With these definitions, g becomes an isomor-
phism of R onto R’. Namely, if a,b € R, then

~—
Q
—~
S
~—
+
<
—
=
~—

g(a+'b) = g(g " (g(a) + g(b))) =
g(a-'b) = g(g7 " (g(a) - g(b))) = g(a) - g(b);
a<'b iff g(a) < g(b).

Moreover, the operations +' and - on Q coincide with the ones defined in appendix C,
since if a,b € Q, then

a+'b=g gla)+gb) =g "(f(a)+ f(b))
a'b=g""(gla)-g(b) =g ' (f(a)- f(b) =g
a<'b iff g g(

9 (fa+b)) =a+b;
“(fla-b) =a-b;

All of the properties above, like the associative, commutative, and distributive laws, hold
for R since g is an isomorphism. Of course we use +, -, < now rather than +', ./, <’.
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