Appendix C: the rational numbers

Here we define the rational numbers and give their fundamental properties. For brevity

we denote multiplication of integers by justaposition, as is usually done.
Let A =7 x (Z\{0}). We define a relation ~ on A as follows:

(a,b) ~ (¢c,d) iff ad=bc

This definition and succeeding ones are well-motivated if you think of (a,b) as being 7
intuitively.

Lemma C1. ~ is an equivalence relation on A.

Proof. Reflexivity: If (a,b) € A, then ab = ba, so (a,b) ~ (a,b).

Symmetry: Assume that (a,b) ~ (¢,d). Thus ad = be, so ¢b = da, and hence (¢, d) ~
(a,b).

Transitivity: Assume that (a,b) ~ (¢,d) ~ (e, f). Thus ad = bc and ¢f = de. Hence
adf = bef = bde, so 0 = adf — bde = d(af — be). Since d # 0, it follows that af — be = 0,
and hence af = be. This shows that (a,b) = (e, f). O

We let Q" be the set of all equivalence classes under ~.

Proposition C2. There is a binary operation + on Q' such that for any (a,b), (¢,d) € A,
[(a,b)] + [(c, d)] = [(ad + bc, bd)].

Proof. First note that if (a,b),(c,d) € A, then bd # 0, so that at least the pair
(ad + be, bd) is in A. Now let

= {(z,y) : there exist (a,b), (c,d) € A such that
z = ([(a,0)],[(c,d)]) and y = [(ad + bc, bd)]}.

We claim that R is a function. For, suppose that (z,y), (x,z) € R. Then we can choose
(a,b), (¢,d), (a',b),(c,d") € A such that z = ([(a,b)],[(c,d)]), y = [(ad + bec, bd)], =

([ D)L [, d)]), and y = [(@'d’ + ¥ Wd)]. so ([(a,b)], [.d)]) = ([(a’.D)].[(¢' d’)])
Eence [(a,b)] = [(d’,V)] and [(¢,d)] = [(¢,d")], hence (a,b) ~ (a’,0’) and (¢,d) ~ (¢, d'),

(1) ab’ = ba'
(2) cd = dc
Hence

(ad + be)b'd = adb'd' + beb'd’
= ab'dd’ + cd'bb’
= ba'dd’ +dc'bl by (1), (2)
=a'd'bd+V'c'bd
= (a'd" 4+ b')bd,
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and hence (ad+be, bd) ~ (a’d'+b' ', b'd"). Thus y = [(ad+be, bd)] = [(a'd' +b'c,b'd)] =
This proves that R is a function. The proposition is now clear. ]

Proposition C3. If z,y,z € Q', then
(i)z+(y+2)=(+y)+=
(ii) x +y =y + x.

Proof. Let x = [(a,b)], y = [(¢,d)], and z = [(e, f)]. Then

z+ (y+2) = [(a,0)] + ([(c; )] + [(e, f)])
= [(a,b)] + [(cf + de, df)]
= [(adf + b(cf + de), bdf)];
(@ +y)+2z=([(a,0)] + [(c; D)]) + (e, f)]
= [(ad 4 be, bd)] + [(e, f)]
= [((ad + be) f + bde, bdf)]
= [(adf + bef + bde, bdf )]
=z+(y+2);
z+y = [(a,0)] + [(c,d)]
= [(ad + bc, bd)]
= [(c¢b + da, db)]
= [(c,d)] + [(a, )]
=y+ . ]

Now we define 0" = [(0, 1)].
Proposition C4. x + 0" = x for any x € Q. Moreover, for any x € Q' there is a y € Q/
such that x +y = 0.
Proof. Let x = [(a,b)]. Then
z 40" =[(a,5)] + [(0,1)]
[(a-1+b-0,b-1)]
[(a, b)]

Next, let y = [(—a, b)]. Then
z+y = [(a,0)] + [(—a,b)] = [(ab+ b(—a),bb)] = [(0,bb)] = [(0, 1)].

Here the last equality holds because 0-1 =0 = bb- 0. L
The following two facts are proved as in appendix B, proof of B6 and B7.

Proposition C5. Ifr is an element of Q' such that x +r = x for all x € Q', thenr =0’.
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Proposition C6. Ifz,y,2€ Q andx+y =0 =z + 2, then y = 2.
These are all of the properties of + that we need.

Proposition C7. There is a binary operation - on Q' such that for all (a,b), (c,d) € A,
[(a,b)] - [(c, d)] = [(ac, bd)].
Proof. First note that if (a,b), (c,d) € A, then bd # 0, so that (ac,bd) € A. Now let

R ={(x,y): there exist (a,b), (c,d) € A such that
z = ([(a,0)],y = [(¢,d)]), and z = [(ac, bd)]}.

We claim that R is a function. For, suppose that (x, Y),(z,z) € R. Then we can

choose (a,b), (¢,d),(a’,b"),(c,d) € A such that x = ([(a,b)],[(c,d)]), vy = [(ac,bd)],
o = ([(a,0)[(¢, ), and = = [(@'e V). So ([(a,b)],[(c,d)]) = ([(a.D)], [(¢,)]), and
hence [(a,b)] = [(a b')] and [(c,d)] = [(¢,d)], hence (a,b) ~ (a',0') and (¢,d) ~ (¢, d'),
hence ab’ = ba’ and cd’ = d¢’. Hence

ach'd’ = ab'ed’ = ba'dc’ = bdd'c,

hence (ac, bd) ~ (a’'cd’,b'd"),

hence y = [(ac, bd)] = [(a'd',b'd")] =
So R is a function, and the conclusion is clear. ]

Proposition C8. For any x,y,z € Q" we have
(i)x-(y-2)=(z-y) 2
(ii) x-y=1y-x.
(iii) x - (y+2)=x-y+x- 2.

Proof. Write x = [(a,b)], y = [(¢,d), and z = [(e, f)]. Then

z-(y-2)=[(a,b)] - ([(c,d)] - [(e, f)])
= [(a,b)] - [(ce, df)]
= [(ace, bdf)]
= [(ac,bd)] - [(e, f)]
= ([(a,0)] - [(c,d)]) - [(e, f)]
=(z-y) 2
z -y =|[(a,b)]-[(c,d)]
= [(ac, bd)]
= [(ca, db)]
= [(e;d)] - [(a, )]
—y-x



b)] - [(cf + de, df )]
a(cf + de), bdf)]
acf + ade, bdf)];
b)] - (e, d)] + [(a, b)] - [(e, )]
ac, bd)] + [(ae, bf)]
acbf + bdae, bdbf)].

rT-y+x-

[(a,
[(
[(
[(a,
[(
[(

Thus for the distributive law (iii) we just need to show that [(acf + ade, bdf)] = [(acbf +
bdae, bdbf)], or equivalently that (acf + ade,bdf) ~ (acbf + bdae,bdbf), or equivalently
that (acf + ade)bdbf = bdf (acbf + bdae). This last statement is proved as follows:

(acf + ade)bdbf = abbedf f + abbdde f and bdf (acbf + bdae) = abbedf f + abbddef. [
Next, we define 1’ = [(1,1)].

Proposition C9. Let x € Q'.
(i) z-1 =x.
(ii) If x # 0 then there is a unique y € Q" such that -y =1'.

Proof. Write z = [(a, b)] Then z-1" = [(a,b)] - [(1,1)] = [(a, b)] = x. For (ii), assume
that « # 0. Thus [(a,b)] # [(0,1)], s0 a-1 # b-0, i.e., a # 0. Let y = [(b,a)]. Then
x-y=|(a,b)][(b,a)] = [(ab, ba)], and this is equal to [(1, 1)] = 1’ since abl = bal. Suppose
that also x - z = 1'. Write z = [(¢,d)]. then [(1,1)] =z -2z = [(a,b)] - [(¢,d)] = |ac, bd), and
so ac = bd, and hence y = [(b,a)] = [(¢,d)] = =. O

We turn to the order of the rationals. In general outline, we follow the procedure used for
the integers.
First we define the set P of positive rationals:

P ={[(a,b)] € Q : ab > 0}.

As for the similar definition for integers, this definition says that if ab > 0 then [(a,b)] € P,
but does not say anything about the converse, so we prove this converse:

Proposition C10. [(a,b)] € P iff ab > 0.

Proof. As mentioned, < holds by definition. Now assume that [(a,b)] € P. This
means that there is a [(c,d)] € Q' such that [(a,b)] = [(¢,d)] and ed > 0. So (a,b) ~ (¢, d),
and hence ad = bc. Hence adbd = bebd. Now we need the following little general fact:

(1) If x € Z and x # 0, then zz > 0.

In fact, we have x > 0 or —x > 0 by B13(i) and the definition of < for integers, so by
B14(v), zx > 0 or xx = (—z)(—z) > 0, as desired in (1).

Now by (1) and B14(v) we have abdd = bcbd > 0. In particular, ab # 0. If ab < 0,
then abdd < 0dd = 0, contradiction. So ab > 0. ]
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Proposition C11. Suppose that r,s € Q'.
(i) If r # 0, then r € P or —r € P, but not both.
(ii) If r,s € P, then r + s € P.
(iii) If r,s € P, thenr-s € P.

Proof. Let r = [(a,b)] and s = [(c, d)].

(i): Assume that r # 0’. Then ab # 0, since ab = 0 would imply that a = 0 (since
b # 0), and so (a,b) = (0,b) ~ (0,0) and hence r = [(a,b)] = [(0,0)] = 0’, contradiction. If
ab > 0, then r € P, and if —(ab) > 0, then (—a)b > 0, so —r = [(—a,b)] € P. Thus r € P
or —r € P. Suppose that r € P and —r € P. Thus ab > 0 and (—a)b > 0, contradiction.

(ii): Suppose that r,s € P. Then ab > 0 and ¢d > 0. Now r + s = [(ad + be, bd)],
and (ad 4 bc)bd = abdd + bbed. By (1) in the proof of C10, dd > 0 and bb > 0. Hence by
properties of integers, abdd + bbed > 0.

(iii): Suppose that r,s € P. Then ab > 0 and ¢d > 0. Now rs = [(ac, bd)] and
acbd = abed > 0. ]

Now we can define the order: a < b iff b — a € P. The main properties of < are given in
the following proposition.

Proposition C12. Let x,y,z € Q'. Then
(ii) If x <y < z, then x < z.
(iii) v <y, x =y, ory < x.
(iv) <y iffr+z<y+z.
(v) If 0 <z and 0/ <y, then 0/ <z -y.
(vi) If 0) < z, then x < y implies that z -z <y - z.

Proof. (i): x —x =0, so (i) follows from C11(i).

(ii): Assume that x < y < z. Soy—z € Pand z—y € P. Hence z —x =
(z—y)+y—x) € P by Cl1(ii), so = < z.

(iii): We have x =y orx —y € P or y — x € P, so (iii) follows.

(ivi z<yiffy—zePiff (y+2)—(x+2)ePiffr+2<y+ 2.

(v): This is immediate from C11(iii).

(vi): Assume that 0/ < z and z < y. So z,y —x € P, so by C11(iii), y -z —x - 2 =
z-(y—x)€P,andsoz-2<y-z. ]

This finishes the main construction of the rational numbers. There are still two things to
do, though: identify the integers among the rationals, and make a replacement so that the
integers are a subset of the rationals.

For every integer a we define f(a) = [(a,1)].

Proposition C13. f is an isomorphism of Z into Q'. That is, [ is an injection, and for
any a,b € Z we have f(a+b) = f(a)+ f(b) and f(a-b) = f(a)- f(b).
Proof. Suppose that f(a) = f(b). Thus [(a,1)] = [(b,1)], hence (a,1) ~ (b,1), hence

a=al =1b=0>5. So f is an injection.
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Now suppose that a,b € Z. Then

fla) + f(b) = [(a, D]+ [(b; 1)] = [(al +1b,1)] = [(a + b, 1)] = f(a + b);
f(a)- f(b) = [(a, D] - [(b, 1)] = [(ab, 1)] = f(ab). U

Proposition C14. ZNQ' =0

Proof. To show that wNQ’ = ) it suffices to show that each element of Q' is infinite.
If [(a,b)] € Q, then (ca,cb) € [(a,b)] for every ¢ € Z, and ¢b # db for ¢ # d, and so
(ca, cb) # (da,db) for ¢ # d; hence [(a, )] is infinite.

Now suppose that z € ZNQ' with ¢ w. Temporarily denote the equivalence relation
used to define Z' by =. Then there exist m,n € w such that z = [(m, n)]=, and there exists
(a,b) € A such that = = [(a,b)]~. Then (a,b) ~ (2a,2b), so also [(2a,2b)]. = [(a,b)]~
x = [(m,n)]=. Hence (a,b),(2a,2b) € [(m,n)]=, and it follows that (a,b) = (2a,2b). So
a + 2b = b+ 2a, and hence a = b. Then (0,0) = (a,b), so (0,0) € [(a,b)]= = [(a,])]~, and
we infer that (0, 0) € A, contradiction. O

We can now proceed very much like for Z and Z’. We define Q = (Q'\rng(f)) UZ. There
is a one-one function g : Q — Q’, defined by g([(a, b)]) = [(a, )] if [(a,b)] € Q' \rng(f), and
g(a) = f(a) for a € Z. Clearly g is a bijection. Now the operations +’ and -" are defined
on Q as follows. For any a,b € Q,

a+'b=g""(g(a)+ g(b));
a'b=g "(g(a)- g(b)).

moreover, we define a <’ b iff g(a) < g(b). With these definitions, g becomes an isomor-
phism of Q onto Q. Namely, if a,b € Q, then

~—
Q
—~
S
~—
+
<
—~
=
~—

g(a+'b) = g(g~ " (g(a) + g(b))) =
g(a-'b) = g(g~ " (g(a) - g(b))) = g(a) - g(b);
a<'b iff g(a) < g(b).

Moreover, the operations 4+’ and - on Z coincide with the ones defined in appendix C,
since if a,b € Z, then

a+'b=g""(g(a) +g(b) = g7 (f(a) + (b)) = g7 (f(a+b)) = a+b;
ab=g " (gla) - 9(b) = g (f(@) - FB) = g (fla-B) =a b
a<'b iff g(a) < g(b)
iff  f(a) < f(b)
iff a<bd

All of the properties above, like the associative, commutative, and distributive laws, hold
for Z since ¢ is an isomorphism. Of course we use +, -, < now rather than +/,.", <'.
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