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Appendix C: the rational numbers

Here we define the rational numbers and give their fundamental properties. For brevity
we denote multiplication of integers by justaposition, as is usually done.

Let A = Z × (Z\{0}). We define a relation ∼ on A as follows:

(a, b) ∼ (c, d) iff ad = bc

This definition and succeeding ones are well-motivated if you think of (a, b) as being a

b

intuitively.

Lemma C1. ∼ is an equivalence relation on A.

Proof. Reflexivity: If (a, b) ∈ A, then ab = ba, so (a, b) ∼ (a, b).
Symmetry: Assume that (a, b) ∼ (c, d). Thus ad = bc, so cb = da, and hence (c, d) ∼

(a, b).
Transitivity: Assume that (a, b) ∼ (c, d) ∼ (e, f). Thus ad = bc and cf = de. Hence

adf = bcf = bde, so 0 = adf − bde = d(af − be). Since d 6= 0, it follows that af − be = 0,
and hence af = be. This shows that (a, b) = (e, f).

We let Q′ be the set of all equivalence classes under ∼.

Proposition C2. There is a binary operation + on Q′ such that for any (a, b), (c, d) ∈ A,
[(a, b)] + [(c, d)] = [(ad + bc, bd)].

Proof. First note that if (a, b), (c, d) ∈ A, then bd 6= 0, so that at least the pair
(ad + bc, bd) is in A. Now let

R = {(x, y) : there exist (a, b), (c, d) ∈ A such that

x = ([(a, b)], [(c, d)]) and y = [(ad + bc, bd)]}.

We claim that R is a function. For, suppose that (x, y), (x, z) ∈ R. Then we can choose
(a, b), (c, d), (a′, b′), (c′, d′) ∈ A such that x = ([(a, b)], [(c, d)]), y = [(ad + bc, bd)], x =
([(a′, b′)], [(c′, d′)]), and y = [(a′d′ + b′c′, b′d′)]. so ([(a, b)], [(c, d)]) = ([(a′, b′)], [(c′, d′)]),
hence [(a, b)] = [(a′, b′)] and [(c, d)] = [(c′, d′)], hence (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′),
hence

ab′ = ba′(1)

cd′ = dc′(2)

Hence

(ad + bc)b′d′ = adb′d′ + bcb′d′

= ab′dd′ + cd′bb′

= ba′dd′ + dc′bb′ by (1), (2)

= a′d′bd + b′c′bd

= (a′d′ + b′c′)bd,
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and hence (ad+bc, bd) ∼ (a′d′+b′c′, b′d′). Thus y = [(ad+bc, bd)] = [(a′d′+b′c′, b′d′)] = y′.
This proves that R is a function. The proposition is now clear.

Proposition C3. If x, y, z ∈ Q′, then
(i) x + (y + z) = (x + y) + z.
(ii) x + y = y + x.

Proof. Let x = [(a, b)], y = [(c, d)], and z = [(e, f)]. Then

x + (y + z) = [(a, b)] + ([(c, d)] + [(e, f)])

= [(a, b)] + [(cf + de, df)]

= [(adf + b(cf + de), bdf)];

(x + y) + z = ([(a, b)] + [(c, d)]) + [(e, f)]

= [(ad + bc, bd)] + [(e, f)]

= [((ad + bc)f + bde, bdf)]

= [(adf + bcf + bde, bdf)]

= x + (y + z);

x + y = [(a, b)] + [(c, d)]

= [(ad + bc, bd)]

= [(cb + da, db)]

= [(c, d)] + [(a, b)]

= y + x.

Now we define 0′ = [(0, 1)].

Proposition C4. x + 0′ = x for any x ∈ Q. Moreover, for any x ∈ Q′ there is a y ∈ Q′

such that x + y = 0′.

Proof. Let x = [(a, b)]. Then

x + 0′ = [(a, b)] + [(0, 1)]

= [(a · 1 + b · 0, b · 1)]

= [(a, b)]

= x.

Next, let y = [(−a, b)]. Then

x + y = [(a, b)] + [(−a, b)] = [(ab + b(−a), bb)] = [(0, bb)] = [(0, 1)].

Here the last equality holds because 0 · 1 = 0 = bb · 0.

The following two facts are proved as in appendix B, proof of B6 and B7.

Proposition C5. If r is an element of Q′ such that x + r = x for all x ∈ Q′, then r = 0′.
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Proposition C6. If x, y, z ∈ Q′ and x + y = 0′ = x + z, then y = z.

These are all of the properties of + that we need.

Proposition C7. There is a binary operation · on Q′ such that for all (a, b), (c, d) ∈ A,
[(a, b)] · [(c, d)] = [(ac, bd)].

Proof. First note that if (a, b), (c, d) ∈ A, then bd 6= 0, so that (ac, bd) ∈ A. Now let

R = {(x, y) : there exist (a, b), (c, d) ∈ A such that

x = ([(a, b)], y = [(c, d)]), and z = [(ac, bd)]}.

We claim that R is a function. For, suppose that (x, y), (x, z) ∈ R. Then we can
choose (a, b), (c, d), (a′, b′), (c′, d′) ∈ A such that x = ([(a, b)], [(c, d)]), y = [(ac, bd)],
x = ([(a′, b′)], [(c′, d′)]), and z = [(a′c′, b′d′)]. So ([(a, b)], [(c, d)]) = ([(a′, b′)], [(c′, d′)]), and
hence [(a, b)] = [(a′, b′)] and [(c, d)] = [(c′, d′)], hence (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′),
hence ab′ = ba′ and cd′ = dc′. Hence

acb′d′ = ab′cd′ = ba′dc′ = bda′c′,

hence (ac, bd) ∼ (a′c′, b′d′),

hence y = [(ac, bd)] = [(a′c′, b′d′)] = z.

So R is a function, and the conclusion is clear.

Proposition C8. For any x, y, z ∈ Q′ we have
(i) x · (y · z) = (x · y) · z.
(ii) x · y = y · x.
(iii) x · (y + z) = x · y + x · z.

Proof. Write x = [(a, b)], y = [(c, d), and z = [(e, f)]. Then

x · (y · z) = [(a, b)] · ([(c, d)] · [(e, f)])

= [(a, b)] · [(ce, df)]

= [(ace, bdf)]

= [(ac, bd)] · [(e, f)]

= ([(a, b)] · [(c, d)]) · [(e, f)]

= (x · y) · z;

x · y = [(a, b)] · [(c, d)]

= [(ac, bd)]

= [(ca, db)]

= [(c, d)] · [(a, b)]

= y · x;

x · (y + z) = [(a, b)] · ([(c, d)] + [(e, f)])
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= [(a, b)] · [(cf + de, df)]

= [(a(cf + de), bdf)]

= [(acf + ade, bdf)];

x · y + x · z = [(a, b)] · [(c, d)] + [(a, b)] · [(e, f)]

= [(ac, bd)] + [(ae, bf)]

= [(acbf + bdae, bdbf)].

Thus for the distributive law (iii) we just need to show that [(acf + ade, bdf)] = [(acbf +
bdae, bdbf)], or equivalently that (acf + ade, bdf) ∼ (acbf + bdae, bdbf), or equivalently
that (acf + ade)bdbf = bdf(acbf + bdae). This last statement is proved as follows:

(acf + ade)bdbf = abbcdff + abbddef and bdf(acbf + bdae) = abbcdff + abbddef.

Next, we define 1′ = [(1, 1)].

Proposition C9. Let x ∈ Q′.
(i) x · 1′ = x.
(ii) If x 6= 0′ then there is a unique y ∈ Q′ such that x · y = 1′.

Proof. Write x = [(a, b)]. Then x · 1′ = [(a, b)] · [(1, 1)] = [(a, b)] = x. For (ii), assume
that x 6= 0′. Thus [(a, b)] 6= [(0, 1)], so a · 1 6= b · 0, i.e., a 6= 0. Let y = [(b, a)]. Then
x ·y = [(a, b)] · [(b, a)] = [(ab, ba)], and this is equal to [(1, 1)] = 1′ since ab1 = ba1. Suppose
that also x · z = 1′. Write z = [(c, d)]. then [(1, 1)] = x · z = [(a, b)] · [(c, d)] = [ac, bd), and
so ac = bd, and hence y = [(b, a)] = [(c, d)] = z.

We turn to the order of the rationals. In general outline, we follow the procedure used for
the integers.

First we define the set P of positive rationals:

P = {[(a, b)] ∈ Q′ : ab > 0}.

As for the similar definition for integers, this definition says that if ab > 0 then [(a, b)] ∈ P ,
but does not say anything about the converse, so we prove this converse:

Proposition C10. [(a, b)] ∈ P iff ab > 0.

Proof. As mentioned, ⇐ holds by definition. Now assume that [(a, b)] ∈ P . This
means that there is a [(c, d)] ∈ Q′ such that [(a, b)] = [(c, d)] and cd > 0. So (a, b) ∼ (c, d),
and hence ad = bc. Hence adbd = bcbd. Now we need the following little general fact:

(1) If x ∈ Z and x 6= 0, then xx > 0.

In fact, we have x > 0 or −x > 0 by B13(i) and the definition of < for integers, so by
B14(v), xx > 0 or xx = (−x)(−x) > 0, as desired in (1).

Now by (1) and B14(v) we have abdd = bcbd > 0. In particular, ab 6= 0. If ab < 0,
then abdd < 0dd = 0, contradiction. So ab > 0.
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Proposition C11. Suppose that r, s ∈ Q′.
(i) If r 6= 0′, then r ∈ P or −r ∈ P , but not both.
(ii) If r, s ∈ P , then r + s ∈ P .
(iii) If r, s ∈ P , then r · s ∈ P .

Proof. Let r = [(a, b)] and s = [(c, d)].
(i): Assume that r 6= 0′. Then ab 6= 0, since ab = 0 would imply that a = 0 (since

b 6= 0), and so (a, b) = (0, b) ∼ (0, 0) and hence r = [(a, b)] = [(0, 0)] = 0′, contradiction. If
ab > 0, then r ∈ P , and if −(ab) > 0, then (−a)b > 0, so −r = [(−a, b)] ∈ P . Thus r ∈ P
or −r ∈ P . Suppose that r ∈ P and −r ∈ P . Thus ab > 0 and (−a)b > 0, contradiction.

(ii): Suppose that r, s ∈ P . Then ab > 0 and cd > 0. Now r + s = [(ad + bc, bd)],
and (ad + bc)bd = abdd + bbcd. By (1) in the proof of C10, dd > 0 and bb > 0. Hence by
properties of integers, abdd + bbcd > 0.

(iii): Suppose that r, s ∈ P . Then ab > 0 and cd > 0. Now rs = [(ac, bd)] and
acbd = abcd > 0.

Now we can define the order: a < b iff b − a ∈ P . The main properties of < are given in
the following proposition.

Proposition C12. Let x, y, z ∈ Q′. Then
(i) x 6< x.
(ii) If x < y < z, then x < z.
(iii) x < y, x = y, or y < x.
(iv) x < y iff x + z < y + z.
(v) If 0′ < x and 0′ < y, then 0′ < x · y.
(vi) If 0′ < z, then x < y implies that x · z < y · z.

Proof. (i): x − x = 0′, so (i) follows from C11(i).
(ii): Assume that x < y < z. So y − x ∈ P and z − y ∈ P . Hence z − x =

(z − y) + y − x) ∈ P by C11(ii), so x < z.
(iii): We have x = y or x − y ∈ P or y − x ∈ P , so (iii) follows.
(iv): x < y iff y − x ∈ P iff (y + z) − (x + z) ∈ P iff x + z < y + z.
(v): This is immediate from C11(iii).
(vi): Assume that 0′ < z and x < y. So z, y − x ∈ P , so by C11(iii), y · z − x · z =

z · (y − x) ∈ P , and so x · z < y · z.

This finishes the main construction of the rational numbers. There are still two things to
do, though: identify the integers among the rationals, and make a replacement so that the
integers are a subset of the rationals.

For every integer a we define f(a) = [(a, 1)].

Proposition C13. f is an isomorphism of Z into Q′. That is, f is an injection, and for
any a, b ∈ Z we have f(a + b) = f(a) + f(b) and f(a · b) = f(a) · f(b).

Proof. Suppose that f(a) = f(b). Thus [(a, 1)] = [(b, 1)], hence (a, 1) ∼ (b, 1), hence
a = a1 = 1b = b. So f is an injection.
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Now suppose that a, b ∈ Z. Then

f(a) + f(b) = [(a, 1)] + [(b, 1)] = [(a1 + 1b, 1)] = [(a + b, 1)] = f(a + b);

f(a) · f(b) = [(a, 1)] · [(b, 1)] = [(ab, 1)] = f(ab).

Proposition C14. Z ∩ Q′ = ∅.

Proof. To show that ω∩Q′ = ∅ it suffices to show that each element of Q′ is infinite.
If [(a, b)] ∈ Q′, then (ca, cb) ∈ [(a, b)] for every c ∈ Z, and cb 6= db for c 6= d, and so
(ca, cb) 6= (da, db) for c 6= d; hence [(a, b)] is infinite.

Now suppose that x ∈ Z∩Q′ with x /∈ ω. Temporarily denote the equivalence relation
used to define Z′ by ≡. Then there exist m, n ∈ ω such that x = [(m, n)]≡, and there exists
(a, b) ∈ A such that x = [(a, b)]∼. Then (a, b) ∼ (2a, 2b), so also [(2a, 2b)]∼ = [(a, b)]∼ =
x = [(m, n)]≡. Hence (a, b), (2a, 2b) ∈ [(m, n)]≡, and it follows that (a, b) ≡ (2a, 2b). So
a + 2b = b + 2a, and hence a = b. Then (0, 0) ≡ (a, b), so (0, 0) ∈ [(a, b)]≡ = [(a, b)]∼, and
we infer that (0, 0) ∈ A, contradiction.

We can now proceed very much like for Z and Z′. We define Q = (Q′\rng(f)) ∪ Z. There
is a one-one function g : Q → Q′, defined by g([(a, b)]) = [(a, b)] if [(a, b)] ∈ Q′\rng(f), and
g(a) = f(a) for a ∈ Z. Clearly g is a bijection. Now the operations +′ and ·′ are defined
on Q as follows. For any a, b ∈ Q,

a +′ b = g−1(g(a) + g(b));

a ·′ b = g−1(g(a) · g(b)).

moreover, we define a <′ b iff g(a) < g(b). With these definitions, g becomes an isomor-
phism of Q onto Q′. Namely, if a, b ∈ Q, then

g(a +′ b) = g(g−1(g(a) + g(b))) = g(a) + g(b);

g(a ·′ b) = g(g−1(g(a) · g(b))) = g(a) · g(b);

a <′ b iff g(a) < g(b).

Moreover, the operations +′ and ·′ on Z coincide with the ones defined in appendix C,
since if a, b ∈ Z, then

a +′ b = g−1(g(a) + g(b)) = g−1(f(a) + f(b)) = g−1(f(a + b)) = a + b;

a ·′ b = g−1(g(a) · g(b)) = g−1(f(a) · f(b)) = g−1(f(a · b)) = a · b;

a <′ b iff g(a) < g(b)

iff f(a) < f(b)

iff a < b.

All of the properties above, like the associative, commutative, and distributive laws, hold
for Z since g is an isomorphism. Of course we use +, ·, < now rather than +′, ·′, <′.
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