
9. Transfinite induction and recursion

April 16, 2015

In this chapter we continue the discussion of ordinal numbers, generalizing the induction
and recursion principles to them. So far we have only used ordinals in order to define
cardinals and size of sets. In this chapter we do not use the axiom of choice. Now we
consider ordinals in general, as a generalization of the order aspect of the natural numbers.
Let us list the main things that we know about ordinals so far. Recall that an ordinal is
defined to be a transitive set a well-ordered by the set ∈a; this set is {(b, c) : b, c ∈ a and
b ∈ c}.

7.1: Every natural number is an ordinal.
7.2: ω is an ordinal.
7.3: The ordering < between ordinals, which is the same as ∈, is transitive.
7.4: Every member of an ordinal is an ordinal.
7.5: α ⊂ β iff α ∈ β, for ordinals α, β.
7.6: trichotomy: any two ordinals are comparable under ≤.
7.7: Any nonempty set of ordinals has a least element.
8.3: If α and β are order-isomorphic ordinals, then α = β.
8.6: Every well-ordered set is order-isomorphic to a unique ordinal.
8.28: If Γ is a set of ordinals, then

⋃

Γ is an ordinal, and it is the least upper bound of Γ.

We now develop some further simple properties of ordinals.

Proposition 9.1. If x is an ordinal, then so is x ∪ {x}.

Proof. If z ∈ y ∈ x ∪ {x}, then either z ∈ y ∈ x and so z ∈ x ⊆ x ∪ {x} because x is
transitive, or z ∈ y = x, so obviously z ∈ x ∪ {x}. This proves that x ∪ {x} is transitive.
If A is a nonempty subset of x ∪ {x}, there are two possibilities. If A = {x}, then x is the
least element of A, since it is the only element of A. If A 6= {x}, then A ∩ x 6= ∅, and the
least element of A ∩ x is also the least element of A. Hence x ∪ {x} is an ordinal.

In a later chapter we will introduce addition, multiplication, and exponentiation of ordinals.
Then, as for the natural numbers, α∪{α} will turn out to equal α+o 1. We use a subscript
for +o since this is not the same as α + 1 for a cardinal α. To aid the intuition we define
α +o 1 = α ∪ {α} now; and when we introduce addition of ordinals in general, this will be
seen to be consistent with that definition.

Corollary 9.2. For any ordinals α, β we have: α < β iff α +o 1 ≤ β.

Proof. ⇒: Assume that α < β. If β < α +o 1, then β ∈ α ∪ {α}, hence β ≤ α < β,
contradiction. So α +o 1 < β by 7.6.

⇐: Assume that α +o 1 ≤ β. Hence α ∪ {α} ⊆ β, so α ∈ β, hence α < β.

There are so many ordinals that the set of all of them is one of the illegal sets mentioned
before. This is an important fact philosophically, and is actually technically useful too.

Theorem 9.3. There does not exist a set which has all ordinals as members.
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Proof. Assume that A is such a set, and let B = {x ∈ A : x is an ordinal}. Thus B
is the set of all ordinals. Since every member of an ordinal is an ordinal, B is a transitive
set. By 7.7 (see above), B is well-ordered by ∈, so B itself is an ordinal. Hence B ∈ B,
contradiction.

We now expand a little on Theorem 7.7.

Theorem 9.4. If Γ is a nonempty set of ordinals, then
⋂

Γ is an ordinal, and is in fact
the least element of Γ.

Proof. We know from 7.7 that Γ has a least element α, so it suffices to show that
α =

⋂

Γ. If β ∈ Γ, then α ≤ β, which means by 7.5 that α ⊆ β. Thus α ⊆ β for every
β ∈ Γ, so α ⊆

⋂

Γ.
We claim that

⋂

Γ is an ordinal. To show that it is transitive, suppose that x ∈ y ∈
⋂

Γ. If β ∈ Γ, then y ∈ β, so also x ∈ β since β is transitive. So x ∈
⋂

Γ. This shows that
⋂

Γ is transitive. Now Γ has some member γ, so
⋂

Γ ⊆ γ, hence
⋂

Γ is well-ordered by ∈
because γ is. So

⋂

Γ is an ordinal.
Thus our assertion above that α ⊆

⋂

Γ implies by 7.5 that α ≤
⋂

Γ. But also α ∈ Γ,
so

⋂

Γ ⊆ α and hence
⋂

Γ ≤ α by 7.5. So
⋂

Γ = α.

We now introduce a standard classification of ordinals; ordinals are of three mutually
exclusive types:

• The ordinal 0.

• Successor ordinals: ordinals of the form α +o 1 for some ordinal α.

• Limit ordinals: nonzero ordinals which are not successor ordinals.

Examples of successor ordinals are 1, 2, 3, . . . and also ω +o 1. So far we have encountered
only one limit ordinal, namely ω.

Proposition 9.5. Every infinite cardinal is a limit ordinal.

Proof. Let κ be an infinite cardinal. Thus ω ≤ κ, so ω ⊆ κ. Suppose that α is an
ordinal and κ = α +o 1; we want to get a contradiction. We will do this by defining a
bijection f from κ to α. We define, for any β < κ,

f(β) =

{

β +o 1 if β < ω,
β if ω ≤ β < α,
0 if β = α.

Clearly f maps κ into α. Now f ↾ ω is a bijection from ω to ω\{0}, f ↾ (α\ω) is the
identity map on α\ω, and f maps α itself to 0. Clearly then f is the indicated bijection,
contradiction.

Proposition 9.6. The following conditions are equivalent:
(i) α is a limit ordinal;
(ii) α 6= 0, and for every β < α there is a γ such that β < γ < α.
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(iii) α =
⋃

α 6= 0.

Proof. (i)⇒(ii): suppose that α is a limit ordinal. So α 6= 0, by definition. Suppose
that β < α. By 9.2 we have β +o 1 < α, since α is not a successor ordinal. Thus γ = β +o 1
works as indicated.

(ii)⇒(iii): if β ∈
⋃

α, choose γ ∈ α such that β ∈ γ. Then β ∈ α since α is an ordinal.
This shows that

⋃

α ⊆ α.
Conversely, if β ∈ α, choose γ with β < γ < α. Thus β ∈

⋃

α. This proves that
α =

⋃

α, and α 6= 0 is given.
(iii)⇒(i): suppose that α = β +o 1. Then β ∈ β ∪ {β} = β +o 1 = α =

⋃

α, so choose
γ ∈ α such that β ∈ γ. Thus β < γ ≤ β by 9.2, so β < β, contradiction. Thus α is not a
sucessor ordinal. By (iii) it is also not 0, so it is a limit ordinal.

Proposition 9.7. If α = β +o 1, then
⋃

α = β.

Proof. If γ ∈ β, then γ ∈ β ∈ α, so γ ∈
⋃

α. Suppose that γ ∈
⋃

α. Choose δ ∈ α
such that γ ∈ δ. Then γ < δ ≤ β, so γ < β, i.e., γ ∈ β.

Now we turn to the discussion of transfinite induction. This is a generalization of induction
on the natural numbers, ω, to induction on other ordinals. The principle of complete
transfinite induction generalizes 6.8, the principle of complete induction on ω.

Theorem 9.8. (Complete transfinite induction) Suppose that α is an ordinal, Γ ⊆ α, and

(∗) For all β < α, if γ ∈ Γ for all γ < β, then β ∈ Γ.

Then Γ = α.

Proof. Suppose not. Then α\Γ is nonempty, and we let β be the least element of it.
Thus γ ∈ Γ for all γ < β, so by the assumption (∗), also β ∈ Γ, contradiction.

There is also an ordinary principle of transfinite induction, in which the argument goes
step-by-step, except for limit ordinals, where we have to do complete induction again.

Theorem 9.9. (Ordinary transfinite induction) Suppose that α is an ordinal, Γ ⊆ α, and
the following three conditions hold:

(i) If 0 < α, then 0 ∈ Γ.
(ii) If β +o 1 < α and β ∈ Γ, then β +o 1 ∈ Γ.
(iii) If β < α is a limit ordinal, and if γ ∈ Γ for all γ < β, then β ∈ Γ.

Under these assumptions, Γ = α.

Proof. Again, suppose not, and let β be the least element of α\Γ. Then β 6= 0 by
(i). Suppose that β is a successor ordinal γ +o 1. Then γ ∈ Γ, and (ii) is contradicted.
Finally, if β is a limit ordinal, then (iii) is contradicted.

There are also transfinite induction principles which involve properties of ordinals rather
than sets of ordinals. The intuition is like that for sets, except that properties might be
too big to be considered as sets. The situation is similar to that for the comprehension
axioms, where we had properties which could be used to define subsets of a given set. Now,
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though, we are not trying to introduce any new axioms, but just to indicate another valid
form of reasoning. When, later, we give concrete applications of these “property” forms of
transfinite induction, the notions should become clearer.

Theorem 9.10. (Complete transfinite induction principle, for properties) Let A(α) be a
property of ordinals. Assume also:

(∗) For every ordinal β, if A(γ) holds for all γ < β, then A(β) holds.

Then A(α) holds for every ordinal α.

Proof. Suppose not. Choose β so that A(β) is false. Then the set

Γ
def
= {γ ∈ β +o 1 : A(γ) fails}

is nonempty, since β is in it. (Remember once again that β +o 1 = β ∪ {β}.) Since Γ is a
nonempty subset of the ordinal β +o 1, it has a least element, γ. Now for every δ < γ we
have δ ∈ β +o 1 because β +o 1 is an ordinal. By the choice of γ, then, it must be the case
that δ /∈ Γ, and so A(δ) holds. This being true for every δ < γ, the hypothesis (∗) implies
that A(γ) holds too, contradicting the fact that γ ∈ Γ.

Theorem 9.11. (Ordinary transfinite induction, for properties) Let A(α) be a property
of ordinals satisfying the following conditions:

(i) A(0) holds;
(ii) for all α, if A(α) then A(α +o 1);
(iii) for every limit ordinal α, if A(β) for all β < α, then A(α).

Then A(α) for every ordinal α.

Proof. Suppose not, and let α be any ordinal such that A(α) fails. Let β be the least
element of {γ ∈ α +o 1 : A(γ) fails}. By (i), β 6= 0. By (ii), β is not a successor ordinal.
So β is a limit ordinal, contradicting (iii).

Now we turn to transfinite recursion.

Theorem 9.12. (Transfinite recursion principle) Suppose that α is an ordinal, A is a set,
and g is a function mapping

⋃

β<α(βA) into A. Then there is a unique function f : α → A
such that, for every β < α,

f(β) = g(f ↾ β).

Proof. The proof is very similar to that of 6.10, the recursion theorem for ω. Let
B =

⋃

β≤α(βA). Define

F = {h : there is a β ≤ α such that h : β → A

and for all γ < β, h(γ) = g(h ↾ γ))}.

Each such h is in B, so this definition is legal. As in the case of the natural numbers, we
are considering here all of the approximations to the function we are trying to find.

We claim
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(1) If h, k ∈ F , h : β → A, k : γ → A, and β ≤ γ, then h = k ↾ β.

To prove (1), we need to show that h(δ) = k(δ) for every δ < β. We do this by transfinite
induction. Suppose that δ < β and h(ε) = k(ε) for all ε < δ. Then h ↾ δ = k ↾ δ, and so
h(δ) = g(h ↾ δ) = g(k ↾ δ) = k(δ). This finishes the inductive proof. So (1) holds.

(2) For every β ≤ α there is an h ∈ F such that dmn(h) = β.

Again we prove this by transfinite induction. Suppose that β ≤ α, and for every γ < β
there is an h ∈ F such that dmn(h) = γ. This function is unique by (1), so call it k(γ).
Thus we have defined a function k with domain β, at least intuitively. Let us see how we
get it more rigorously. So, we redefine k:

k = {(γ, h) ∈ β × F : dmn(h) = γ}.

By (1), k is a function, and by the inductive assumption it has domain β, as desired.
Now we define

h =
⋃

γ<β

k(γ).

By (1), h is still a function. Let δ be its domain.
First suppose that β is a successor ordinal γ +o 1. Then clearly h = k(γ). Let

s = h∪{(γ, g(h))}. Then s is a function with domain β and range included in A, If ε < γ,
then

s(ε) = (k(γ))(ε) = g((k(γ)) ↾ ε) = g(s ↾ ε).

And s(γ) = g(h) = g(s ↾ γ). It follows that s ∈ F and dmn(s) = β.
Second, suppose that β = 0. In this case it is trivial that h is in F . Third, suppose

that β is a limit ordinal. Then β = δ, and clearly h ∈ F .
This completes the inductive proof of (2). The case β = α in (2) gives the existence

of the function required in the theorem.
Now we prove uniqueness. Suppose that both f and k satisfy the conditions of the

theorem. We prove that f(β) = k(β) for all β < α by transfinite induction. Suppose that
this is true for all β < γ, where γ < α. Then f ↾ γ = k ↾ γ, and so

f(γ) = g(f ↾ γ) = g(k ↾ γ) = k(γ),

finishing the inductive proof.

There is also a version of transfinite recursion involving class functions. Remember from
our treatment of the ordinal representation theorem that this is an intuitive concept of
a function that may be too big to actually be a set. Before giving this general recursion
principle we need a lemma indicating when a class function can be represented by a set.

Lemma 9.13. Suppose that F is a class function, defined for all ordinals, and α is an
particular ordinal. Then there is a unique function f with domain α such that f(ξ) = F (ξ)
for every ξ < α.
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Proof. By the axiom of replacement, the set

A
def
= {x : F (ξ) = x for some ξ < α}

exists. Let
f = {(ξ, η) ∈ α × A : F (ξ) = η}.

Clearly f is as desired, and it is unique.

The function f asserted to exist in this lemma will be denoted by F ↾ α.

Theorem 9.14. (Class version of the transfinite recursion principle) Suppose that G is a
class function whose domain consists of all (set) functions. Then there is a unique class
function F defined for all ordinals such that for every ordinal α we have F (α) = G(F ↾ α).

Proof. This proof is very similar to that of 9.12. We consider the following condition:

(*) f is a function with domain α, and for every ξ < α we have f(ξ) = G(f ↾ ξ).

First we show

(1) If f, α satisfy (*) and g, β satisfy (*) and α ≤ β, then f = g ↾ α.

To prove this, we prove by transfinite induction on ξ that if ξ < α then f(ξ) = g(ξ).
Suppose that this is true for all η < ξ, where ξ < α. Then f ↾ ξ = g ↾ ξ, so f(ξ) = G(f ↾

ξ) = G(g ↾ ξ) = g(ξ), finishing the inductive proof.

(2) For every ordinal α there is a function f such that (*) holds.

We prove this by transfinite induction. Assume that it is true for all β < α. By (1), for
each β < α there is a unique f satisfying (1); we denote it by fβ (the replacement axiom
is being used). Let g =

⋃

β<α fβ . Then g is a function by (1), and its domain is clearly
⋃

α.

(3) For any β < α we have fβ = g ↾ β, and g(β) = G(g ↾ β).

In fact, the first condition is clear. For the second,

g(β) = fβ+o1(β) = G(fβ+o1 ↾ β) = G(g ↾ β).

So, (3) holds.
If α = 0, clearly (*) holds.
If α is a limit ordinal, then

⋃

α = α and (*) holds for g and α.
Finally, suppose that α = β +o 1 for some β. Thus

⋃

α = β. Let h = g ∪ {(β, G(g))}.
So, h is a function with domain α. Suppose that γ < α. If γ < β, then h(γ) = g(γ) =
G(g ↾ γ) = G(h ↾ γ). If γ = β, then h(γ) = G(g) = G(h ↾ γ). Thus h and α satisfy (*).

This finishes the inductive proof of (2).
Now for any ordinal α we let F (α) = f(α), where f is chosen so that (*) holds for

α +o 1 and f . This definition is unambiguous by (1). Also by (1), we have F ↾ α = f ↾ α.
Hence F (α) = f(α) = G(f ↾ α) = G(F ↾ α).

79



This finishes the proof of existence.
For uniqueness, suppose that H also satisfies the conditions of the theorem. We prove

that F (α) = H(α) for every ordinal α by induction. Suppose that this is true for all β < α.
Then F ↾ α = H ↾ α, and hence F (α) = G(F ↾ α) = G(H ↾ α) = H(α). This finishes the
inductive proof.

As a first application of transfinite recursion we prove some theorems which show that, in
a sense, all sets are built up from the emptyset!

Theorem 9.15. There is a class function V , defined for all ordinals, with the following
properties:

(i) V0 = ∅.
(ii) For any ordinal α, Vα+o1 = P(Vα).
(iii) For any limit ordinal α, Vα =

⋃

β<α Vβ.

Proof. We define a class function G, with domain the class of all functions f , as
follows:

G(f) =











∅ if f = ∅,
P(f(α)) if dmn(f) = α +o 1 for some ordinal α,
⋃

β<α f(β) if dmn(f) is a limit ordinal α,
∅ otherwise.

Now we apply the transfinite recursion principle to get a class function V such that for
any ordinal α, Vα = G(V ↾ α). Then

V0 = G(V ↾ 0) = G(∅) = ∅;

Vα+o1 = G(V 〈(α +o 1)) = P(Vα);

Vα = G(V ↾ α) =
⋃

β<α

Vβ for limit α.

Proposition 9.16. Vα is transitive, for every ordinal α.

Proof. We prove this by ordinary transfinite induction for properties. Since V0 = ∅,
and ∅ is trivially transitive, our statement is true for α = 0. Assume that Vα is transitive
(induction hypothesis), and suppose that a ∈ b ∈ Vα+o1. Since Vα+o1 = P(Vα), we have
b ⊆ Vα, and hence a ∈ Vα. By the inductive hypothesis, Vα is transitive, and hence a ⊆ Vα.
So a ∈ Vα+o1. This finishes this inductive step.

There is another inductive step: assume that α is a limit ordinal, and Vβ is transitive
for all β < α; we want to show that Vα is transitive. Suppose that a ∈ b ∈ Vα. Now
Vα =

⋃

β<α Vβ , so we can choose β < α so that b ∈ Vβ . By the inductive hypothesis, Vβ is
transitive, and a ∈ b, so a ∈ Vβ ⊆ Vα, as desired.

Proposition 9.17. If α and β are ordinals and α ≤ β, then Vα ⊆ Vβ.

Proof. First note that Vγ ⊆ Vγ+o1 for every ordinal γ. In fact, if x ∈ Vγ , then x ⊆ Vγ

by 9.16, and so x ∈ Vγ+o1.
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Now we prove the proposition by induction on β, with α fixed. If β = 0, then also
α = 0, and the conclusion is trivial. Assume that α ≤ β implies that Vα ⊆ Vβ, and
suppose that α ≤ β +o 1. Again the conclusion is trivial if α = β +o 1, so suppose that
α < β +o 1. Then α ≤ β, and so Vα ⊆ Vβ by the inductive assumption. By our initial
remark, Vβ ⊆ Vβ+o1, so Vα ⊆ Vβ+o1. The inductive step to a limit ordinal β is very
easy.

Theorem 9.18. For any set x there is a transitive set y such that x ⊆ y and for every
transitive set z, if x ⊆ z then y ⊆ z.

We call this set y, which is clearly unique, the transitive closure of x.

Proof. By recursion on ω let

A0 = x,

Am+o1 = Am ∪
⋃

Am for any m ∈ ω.

Then let y =
⋃

m∈ω Am. Clearly x ⊆ y. To show that y is transitive, suppose that
a ∈ b ∈ y. Choose m ∈ ω so that b ∈ Am. Then a ∈ b ∈ Am, so a ∈

⋃

Am, and hence
a ∈ Am+o1 ⊆ y, and so a ∈ y. Thus y is transitive.

Now suppose that x ⊆ z and z is transitive. We show by induction on m that Am ⊆ z
for all m ∈ ω. First, A0 = x ⊆ z, so this is true for m = 0. Now suppose that Am ⊆ z
(induction hypothesis). Take any a ∈ Am+o1. Recall that Am+o1 = Am∪

⋃

Am. If a ∈ Am,
then a ∈ z by the inductive hypothesis. Suppose that a ∈

⋃

Am. Say a ∈ b ∈ Am. Since
Am ⊆ z by the inductive hypothesis, we have b ∈ z. Now a ∈ b ∈ z and z is transitive, so
a ∈ z. This shows that Am+o1 ⊆ z and finishes the inductive proof. It now follows that
y =

⋃

m∈ω Am ⊆ z.

Theorem 9.19. For any set x there is an ordinal α such that x ∈ Vα.

Proof. Suppose that this is not true, and let x be a set such that x /∈ Vα for every
ordinal α. Let y be the transitive closure of x ∪ {x}. We define

M = {a ∈ y : a /∈ Vα for every ordinal α}.

Thus x ∈ M , so M is nonempty. Choose a ∈ M such that a ∩ M = ∅, by the foundation
axiom. Thus for all z ∈ a we have z /∈ M ; but z ∈ y since y is transitive, so there must
exist an ordinal α such that z ∈ Vα; let αz be the least such ordinal. By the axiom of
replacement we have a set {αz : z ∈ a}; call this set Γ. Let β =

⋃

Γ; recall that
⋃

Γ is an
ordinal. Now for any z ∈ a we have z ∈ Vαz

⊆ Vβ by 9.17. Thus a ⊆ Vβ , so a ∈ Vβ+o1,
contradiction.

There will be many uses of transfinite induction and recursion in the remainder of these
notes.

Exercises, Chapter 9
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The first few exercises give five equivalent definitions of ordinal, counting the official defi-
nition.

1. We say that x is an ordinal2 iff x is transitive, and for all y, z ∈ x, either y ∈ z, y = z, or
z ∈ y. (We say that y and z are comparable then.) Show that every ordinal is an ordinal2.

2. We say that x is an ordinal3 iff x is transitive, and for all y, if y ⊂ x and y is transitive,
then y ∈ x. Show that every ordinal2 is an ordinal3. Hint: apply the foundation axiom to
x\y.

3. We say that x is an ordinal4 iff x is transitive, and every member of x is transitive. Show
that every ordinal3 is an ordinal4. Hint: assume that x is an ordinal3, and y = {z ∈ x : z
is an ordinal4}, and get a contradiction from assuming that y ⊂ x.

4. Show that every ordinal4 is an ordinal2. Hint: Assume that x is an ordinal4 and it is
not an an ordinal2. Find a “minimal” y ∈ x not comparable with some z ∈ x, and take a
“minimal” such z. Prove that y = z (contradiction).

5. We say that x is an ordinal5 iff the following two conditions hold:
(i) for all y ∈ x, either y ∪ {y} = x or y ∪ {y} ∈ x;
(ii) for all y ⊆ x, either

⋃

y = x or
⋃

y ∈ x.
Show that every ordinal4 is an ordinal5.

6. Show that every ordinal5 is an ordinal4. Hint: let A = {y ∈ x : y is an ordinal4}. Show
that both

⋃

A and
⋃

A ∪ {
⋃

A} are ordinal4s. Then apply (ii) followed by (i).

7. Show that every ordinal4 is an ordinal.

8. Suppose that α < β, and A is a set of ordinals such for all γ with α ≤ γ < β, if δ ∈ A
for all δ such that α ≤ δ < γ then γ ∈ A. Show that every ordinal γ such that α ≤ γ < β
is in A. This is a principle of transfinite induction from α to β.

9. For any set x, let ρ(x) be the least ordinal such that x ∈ Vα+o1. Show that for any set
x, ρ(x) =

⋃

y∈x(ρ(y) +o 1).

10. (Continuing 9) Show that if x ⊆ y, then ρ(x) ≤ ρ(y).

11. (Continuing 9) Show that ρ(α) = α for any ordinal α. Hint: use complete induction
on α.

12. (Continuing 9) Show that for any ordinal α, ρ(Vα) = α. Hint: first show that
ρ(P(x)) = ρ(x) +o 1 for any set x.

13. (Continuing 9) Show that for any ordinal α, Vα = {x : ρ(x) < α}.

14. (Continuing 9) For any sets x, y, determine ρ({x}), ρ({x, y}), ρ((x, y)), ρ(
⋃

x), and
ρ(x × y) in terms of ρ(x) and ρ(y).

By 7.31 there is a cardinal number greater than ω; let ω1 be the least such cardinal.

15. Show that if A ⊆ ω1 and A is countable, then
⋃

A < ω1.

A subset C of ω1 is closed iff for every countable A ⊆ C we have
⋃

A ∈ C.
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16. Show that the intersection of any nonempty collection of closed subsets of ω1 is again
closed.

A subset C of ω1 is unbounded in ω1 iff for every α < ω1 there is a β ∈ C such that α < β.

17. Show that C is unbounded in ω1 iff for every α < ω1 there is a β ∈ C such that α ≤ β.

18. Let C ⊆ ω1. Prove that the following conditions are equivalent:
(i) C is closed and unbounded.
(ii) There is a function f : ω1 → ω1 with the following properties:

(a) For all α, β < ω1, if α < β then f(α) < f(β).
(b) For every limit ordinal α < ω1, f(α) =

⋃

β<α f(β).
(c) rng(f) = C.

19. Prove that the intersection of two closed unbounded subsets of ω1 is again closed and
unbounded. Hint: for unbounded, do a back-and-forth recursion on ω.

20. Prove that the intersection of countably many closed unbounded subsets of ω1 is again
closed and unbounded. Hint: generalize the procedure used for exercise 19.

21. Show that every closed and unbounded subset of ω1 has a limit ordinal as a member.

10. Equivalents of the axiom of choice

In this chapter we prove the equivalence of several versions of the axiom of choice, and
indicate a few applications of that axiom. The set of axioms of ZFC with the axiom of
choice removed is denoted by ZF; so we work in ZF in this section. We begin with a lemma
which will simplify the equivalence proofs.

Lemma 10.1. For any set A there is an ordinal α such that there is no one-one function
mapping α into A.

Proof. For each well-ordered set (B, <) such that B ⊆ A, let βB,< be the unique
ordinal to which it is isomorphic. Then let W = {(B, <) : B ⊆ A and (B, <) is a well-
ordering}, and let

α =





⋃

(B,<)∈W

βB,<



 +o 1.

Suppose that f is a one-one function from α into A. Let B be the range of f , and define ≺
to be the set {(b0, b1) : b0, b1 ∈ B and f−1(b0) < f−1(b1)}. So (B,≺) is a well-ordering and
B ⊆ A. Hence α = βB,≺. It follows by the definition of α that α < α, contradiction.

For ease of reference we now define several statements which we will prove are equvalent
to the axiom of choice, starting with our original form of the axiom of choice.

Axiom of Choice. For any sets A, B and any function f mapping A onto B there

is a function g : B → A such that f ◦ g = IdB.

Although we have chosen this as our definition of the axiom of choice, it is not the most
commonly used formulation of this axiom. This most common form is as follows.
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Axiom of choice, second version. For any set A, there is a function f whose

domain is P(A)\{∅} such that f(X) ∈ X for all X ∈ P(A)\{∅}.

We call the function in this version of the axiom of choice a choice function for nonempty
subsets of A.

Product choice axiom. For any system 〈Ai : i ∈ I〉 of nonempty sets,
∏

i∈I Ai 6= ∅.

Zorn’s Lemma. If (A, <) is a partial ordering such that A 6= 0 and every subset of A
simply ordered by < has an upper bound, then A has a maximal element under <, i.e., an
element a such that there is no element b ∈ A such that a < b.

Here an upper bound for a subset X of A is an element a ∈ A such that x ≤ a for all
x ∈ X . This is a very popular form of the axiom of choice, particularly in advanced
algebra arguments.

Well-ordering principle. For every set A there is a well-ordering of A, i.e., there is a
relation < such that (A, <) is a well-ordering.

These are all of our equivalents. However, many others are known. A comprehensive
list can be found in the following book; some 240 equivalents are given, with proofs of
equivalence.

Rubin, H.; Rubin, J. Equivalents of the axiom of choice. 1985.

Theorem 10.2. On the basis of all of our axioms except the axiom of choice, the above
statements are equivalent.

Proof. Axiom of choice ⇒ Axiom of choice, second version: Assume the
axiom of choice, and suppose that A is any set. Let

B = {(X, a) : X ⊆ A and a ∈ X}

For each (X, a) ∈ B let g(X, a) = X . Thus g maps B onto P(X)\{∅}, so by the axiom
of choice there is a function h : P(X)\{∅} → B such that g ◦ h is the identity function
on P(X)\{∅}. Now define f(X) = 2nd(h(X)) for every X ∈ P(X)\{∅}. Then for any
X ∈ P(X)\{∅} we have g(h(X)) = X , and hence by the definition of g, h(X) must have
the form (X, a). So f(X) = a ∈ X , as desired.

Axiom of choice, second version ⇒ Product choice axiom: Assume the second
version of the axiom of choice, and suppose that 〈Ai : i ∈ I〉 is a system of nonempty sets.
Let B =

⋃

i∈I Ai, and let f be a choice function for nonempty subsets of B. Now define
g(i) = f(Ai) for all i ∈ I. Then g ∈

∏

i∈I Ai, as desired.
Product choice axiom ⇒ Axiom of choice: Assume the product choice axiom,

and suppose that f : A → B is a surjection; we want to find a function g : B → A such
that f ◦ g = IdB . For each b ∈ B let Ab = {a ∈ A : f(a) = b}. Then 〈Ab : b ∈ B〉 is a
system of nonempty sets, since f maps onto B. Let g ∈

∏

b∈B Ab. Then for any b ∈ B we
have g(b) ∈ Ab, and hence f(g(b)) = b, as desired.

Axiom of choice ⇒ well-ordering principle: Let a set A be given. We want to
well-order A. The idea is to use transfinite recursion to list out the elements of A, one
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after the other, thereby producing a well-order of A. Let γ be chosen by Lemma 10.1:
it is an ordinal such that there is no one-one function from γ into A. Let f be a choice
function for P(A)\{0}, i.e., assume that f is a function with domain P(A)\{0} such that
f(X) ∈ X for every X ∈ P(A)\{0}. By the transfinite recursion principle on γ there is a
function h such that for every ordinal α < γ,

h(α) =

{

f(A\h[α]) if A\h[α] 6= 0,
A if A\h[α] = 0.

The idea here is that the first clause in the definition cannot always hold, since eventually
we run out of elements. Taking the first time that we run out of elements, we get our
desired listing of elements of A. Rigorously, we first show

(1) If α < β and h(α) = A, then h(β) = A.

In fact, assume that α < β and h(α) = A. So by the definition, A\h[α] = 0, which means
that A ⊆ h[α]. Now h[α] ⊆ h[β], so also A ⊆ h[β], and so A\h[β] = 0; so h(β) = A, as
asserted in (1).

(2) If α < β and h(β) 6= A, then h(α) 6= h(β).

In fact, assume that α < β and h(β) 6= A. By (1), also h(α) 6= A. Then h(β) =
f(A\h[β]) ∈ A\h[β], and h(α) ∈ h[β], so h(β) 6= h(α).

(3) There is an ordinal α such that h(α) = A.

For, otherwise by (2) h is a one-one function from γ into A, contradicting the choice of γ.
By (3), let α be minimum such that h(α) = A. Let k = h ↾ α. Then k is a

one-one function mapping α onto A. We define a0 < a1 iff k−1(a0) < k−1(a1) for all
a0, a1 ∈ A. Hence for any ordinals β, δ < α we have α < β iff k(α) < k(β). From this it is
straightforward to check that <, as defined on A, is a well-ordering; see an exercise.

Well-ordering principle ⇒ Zorn’s lemma. Let (A, <) be a partial ordering such that
A 6= 0 and every subset of A simply ordered by < has an upper bound. Also, let ≺ be a
well-ordering of A. Again, choose an ordinal γ such that there is no one-one function from
γ into A. For any subset X of A we set sub(X) = {a ∈ A : b < a for all b ∈ X}. (“sub”
for “strict upper bound”) Then we define by transfinite recursion, for each α < γ,

h(α) =
{

≺ -least element of sub(h[α] ∩ A) if there is such,
A otherwise.

The idea is similar to the above. We start listing out some elements of A in increasing
order according to both ≺ and <, and eventually we must stop; the stopping place is a
maximal element of A. Rigorously the argument is similar to the above:

(1) If α < β and h(α) = A, then h(β) = A.

For, assume that α < β and h(α) = A. This means that sub(h[α]∩A) is empty, i.e., there
is no element of A which is > each element of h[α]∩A. Since h[α] ⊆ h[β], the same is true
for β, so h(β) = A. Thus (1) holds.
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(2) If α < γ and h(α) 6= A, then h(α) ∈ A.

This is clear.

(3) If α < β and h(β) 6= A, then h(α) < h(β).

For, by (1), also h(α) 6= A, so h(α) ∈ h[β] ∩ A. Hence h(α) < h(β).

(4) There is an ordinal α such that h(α) = A.

In fact, otherwise h is a one-one function from γ into A, contradicting the definition of γ.
Again, we take the least α such that h(α) = A. Let f = h ↾ α. By (3), we have

f(β) < f(γ) whenever β < γ < α. Also note that α 6= 0, since, A being nonempty,
h[0] = 0 has a strict upper bound. Hence by the hypothesis of Zorn’s lemma, there is an
element a ∈ A such that f(β) ≤ a for all β < α. Since f [α] has no strict upper bound in
A, there is no element b ∈ A such that a < b. So a is a maximal element of A.

Zorn’s lemma ⇒ axiom of choice. Let A be any set. Define

A = {f : f is a function and dmn f ⊆ P(A)\{∅} and f(a) ∈ a for all a ∈ dmn(f)}.

Now A 6= 0, since ∅ ∈ A . A is partially ordered by ⊆. If B is a subset of A simply
ordered by inclusion, then

⋃

f∈B
f is a function. For, if (x, y), (x, z) ∈

⋃

f∈B
f , choose

f, g ∈ B such that (x, y) ∈ f and (x, z) ∈ g. Since B is simply ordered by ⊆, say
f ⊆ g. So (x, y), (x, z) ∈ g, hence y = z. Clearly, then,

⋃

f∈B
f ∈ A , and it is an upper

bound for B. Therefore, by Zorn’s lemma let h be a maximal member of A under ⊆.
Suppose that dmnh 6= P(A)\{∅}. Take any a ∈ (P(A)\{∅})\dmnh, and take any x ∈ a.
Let f = h ∪ {(a, x)}. Then clearly f ∈ A and h ⊂ f , contradiction. It follows that
dmn h = P(A)\{∅}, and it is the desired choice function.

Applications of the axiom of choice in analysis are usually straightforward uses of choice
functions. We give a few applications of the axiom of choice in algebra. Each application
requires some knowledge of other parts of mathematics. We state exactly what knowledge
is needed, and then the treatment here will be self-contained based upon that knowledge.

Vector spaces. We consider vector spaces over fields. If the notion of a field is not
familiar, little is lost in this discussion if one assumes that the field is the usual system of
real numbers with ordinary addition and multiplication.

A vector space over a field F is a triple (V, +, ·) such that + is a binary operation
on V , · maps F × V into V , and the following conditions hold for all x, v, w ∈ V and all
a, b ∈ F ; members of V are called vectors and members of F are called scalars.

(1) x + (v + w) = (x + v) + w.

(2) x + v = v + x.

(3) There is a unique vector z ∈ V such that z + v = v + z = v for all v ∈ V ; we denote
this vector by 0.

(4) For any v ∈ V there is a unique vector w such that v + w = w + v = 0.
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Given a vector space with this notation, a linear combination of members of a subset
X ⊆ V is a vector of the form

(∗) a1v1 + a2v2 + · · ·+ amvm

with m ∈ ω, each ai ∈ F , and each vi ∈ X . Here m = 0 is allowed; the expression (∗)
is then taken to be the 0 vector. We say that X is linearly independent iff 0 cannot be
written as a linear combination as in (∗) with some ai 6= 0. The span of a subset X ⊆ V
is the collection of all vectors which can be written as linear combinations of members of
X , including 0 as a linear combination. A basis for V is a linearly independent set which
spans the whole space.

The only result we assume from linear algebra is that if X and Y are both finite bases
for V , then |X | = |Y |.

Theorem 10.3. If V is a vector space over a field F , then V has a basis.

Proof. We are going to apply Zorn’s lemma.
Let A = {X ⊆ V : X is linearly independent}, partially ordered by ⊆. Then A 6= ∅,

since trivially ∅ ∈ A. Now suppose that B is a subset of A simply ordered by ⊆. We claim
that

⋃

B ∈ A; this will verify the hypothesis of Zorn’s lemma. Suppose that v1, . . . , vn ∈
⋃

B, a1, . . . , an ∈ F , and a1v1 + · · · + anvn = 0; we want to show that all ai are 0. For
each i = 1, . . . , n choose Xi ∈ B such that vi ∈ Xi. Now {Xi : i = 1, . . . , n} has a largest
member Xj under ⊆, since B is simply ordered. Here we are using 6.34. Clearly vi ∈ Xj

for all i = 1, . . . , n. Since Xj is linearly independent, it follows that each ai = 0, as desired.
Now we apply Zorn’s lemma to obtain a maximal member Y of A under ⊆. We claim

that Y is a basis for A. Since Y is linearly independent, it suffices to show that Y spans A.
Suppose that w ∈ A. If w ∈ Y , then obviously w is in the span of Y . Suppose that w /∈ Y .
Then Y ⊂ Y ∪ {w} so by the maximality of Y , Y ⊂ Y ∪ {w} is linearly dependent. Hence
there is a natural number n, elements v1, . . . , vn ∈ Y ∪ {w}, and elements a1, . . . , an ∈ F ,
not all 0, such that a1v1 + · · ·+anvn = 0. Since Y is linearly independent, not all vi are in
Y ; say that vj = w. Then again because Y is linearly independent, we must have aj 6= 0.
So

w =

(

−
a1

aj

v1

)

+ · · ·+

(

−
aj−1

aj

vj−1

)

+

(

−
aj+o1

aj

vj+o1

)

+ · · · +

(

−
an

aj

vn

)

,

so that w is in the span of Y , as desired.

Theorem 10.4. Let V be a vector space over a field F . Then any two bases for V over
F have the same number of elements.

Proof. Let X and Y be bases for V over F . If both of them are finite, then |X | = |Y |
by the assumed result above. Suppose now that at least one of them is infinite, but
they have different cardinalities. Say that |X | < |Y | ≥ ω. Now each v ∈ X is a linear
combination of members of Y . So we can write

(∗) v = a1,vw1,v + · · ·+ amv,vwmv,v
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with each ai,v ∈ F and nonzero, and each wi,v ∈ Y . Since the ai,v’s and wi,v’s are uniquely
determined by v, the axiom of choice is not involved here. Now let W = {wi,v : v ∈ X, i =
1, . . . , mv}. Then W spans V . In fact, given x ∈ V , we can write

x = b1v1 + · · · + bnvn

with each bi ∈ F and each vi ∈ X , and then by (∗) it is clear that x is a linear combination
of members of W . However, |W | < |Y |. In fact, if X is finite, then so is W , and hence
|W | < |Y |. If X is infinite, then |W | = |X | < |Y | by exercise 15 in Chapter 8. Thus,
indeed, |W | < |Y |. Choose y ∈ Y \W . Then y is a linear combination of members of W
since W spans V , and this contradicts Y being linearly independent.

Algebraically closed fields. As mentioned above, a field is a structure like the real
numbers—a nonempty set together with operations of addition and multiplication satisfy-
ing conditions similar to familiar ones for the reals. Another important example of a field
is the field Q of rational numbers.

An extension G of F is algebraic over F iff every element of G is the zero of some
polynomial with coefficients from F . A field G is said to be algebraically closed iff it has a
subfield F such that G is algebraic over F , and any polynomial with coefficients in F splits
into linear factors over G. There are various equivalent definitions of this notion which we
do not need to enter into. We assume these results about fields:

(1) If f(x) is a non-constant polynomial with coefficients in a field F , then F has an
algebraic extension G in which f(x) splits into linear factors, and such that |G| ≤ |F |+ ω.

(2) If K is an algebraic extension of G and G is an algebraic extension of F , then K is an
algebraic extension of F .

(3) If k is an isomorphism from F onto G, then k extends to an isomorphism of F [x] onto
G[x], namely,

a0 + a1x + · · ·+ amxm maps to

k(a0) + k(a1)x + · · ·+ k(am)xm

for any a0, . . . , am ∈ F .

Theorem 10.5. For any field F there is an algebraically closed field G which extends F
and has size at most |F | + ω. Moreover, every element of G is algebraic over F .

Proof. Let κ = |F |+ ω, and let λ be a cardinal number greater than κ; this cardinal
exists by 7.31. By induction, |Fm| ≤ κ for all m ∈ ω. We can map 〈a0, . . . , am〉 to
a0 +a1x+ · · ·+amxm, thus mapping Fm onto the set of all polynomials of degree at most
m. So there are at most κ polymomials of degree at most m. Hence the total number of
polynomials is at most ω · κ = κ. Let 〈fα(x) : α < κ〉 list all polynomials with coefficients
in F , possibly with repetitions.

Let g be a bijection from a subset G0 of λ onto F . We can make G0 into a field such
that g is an isomorphism from G0 onto F by the following definition. For any a, b ∈ G0,

a + b = g−1(g(a) + g(b)) and

a · b = f−1(g(a) · g(b)).
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Let α < κ, and let

fα(x) be aα,0 + aα,1x + aα,2x
2 + · · ·+ aα,mα

xmα .

We then let

f ′
α(x) be g−1(aα,0) + g−1(aα,1)x + g−1(aα,2)x

2 + · · ·+ g−1(aα,mα
)xmα .

So f ′
α(x) is a polynomial with coefficients in G0.
Next, we define F to be the collection of all fields (H, +H , ·H) such that H ⊆ λ, and

we let c be a choice function for nonempty members of P(F ); that is, for any nonempty
X ⊆ F , c(X) ∈ X .

We make a construction of fields Gα for α ≤ κ by transfinite recursion as follows,
starting with G0. Suppose that Gα has been defined as an extension of G0, with |Gα| ≤ κ.
By the result (1) on field extensions which we are assuming, there is a field (K, +K, ·K)
which is an algebraic extension of Gα and in which f ′

α(x) splits into linear factors, with
|K| ≤ κ. Let

X = {(H, +H , ·H) : H ⊆ λ, H is an algebraic extension of Gα,

|H| ≤ κ, and f ′
α(x) splits into liinear factors in H}.

Let k be a one-one function mapping K into λ, with k the identity on K∩λ; this is possible
because |K| < λ: for then we have |K ∩ λ| < λ and so |λ\K| = λ, and we can map K\λ
one-one into λ\K. Let H be the range of k. Then we make H into a field by defining, for
any a, b ∈ K,

a + b = k(k−1(a) + k−1(b)) and

a · b = k(k−1(a) · k−1(b)).

Then k is an isomorphism of K onto H. The coefficients of f ′
α(x) are in Gα ⊆ λ, and so

they are fixed by k. Now by result (3), k extends to an isomorphism of K[x] onto H[x].
It follows that f ′

α(x) splits into linear factors over H too. Moreover, H is an algebraic
extension of Gα. In fact, let b ∈ H. Then k−1(b) ∈ K. Since K is an algebraic extension
of Gα, there is a polynomial a0 + a1x + · · · + amxm with coefficients ai ∈ Gα such that
a0 + a1k

−1(b) + · · · + am(k−1(b))m = 0. Since Gα ⊆ λ and k is the identity on K ∩ λ, we
have k(ai) = ai for all i, and hence

0 = k(0) = k(a0 + a1k
−1(b) + · · ·+ am(k−1(b))m) = a0 + a1b + · · ·+ ambm.

This shows that b is algebraic over Gα.
We have now shown that X 6= ∅. We let Gα+o1 = c(X).
At limit steps α ≤ λ we define Gα =

⋃

β<α Gβ . Note that then

|Gα| ≤
∑

β<α

|Gβ| ≤
∑

β<α

λ ≤ λ · λ = λ.
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Now let l be a one-one function mapping Gκ onto a superset L of F , extending g. We
make L into a field by setting, for any a, b ∈ L,

a + b = l(l−1(a) + l−1(b)) and

a · b = l(l−1(a) · l−1(b)).

We claim that L is as desired in the theorem. Since l is a bijection, L has size at most
λ = |F | + ω. We have F ⊆ L. If a, b ∈ F , then

a +L b = l(l−1(a) +G0
l−1(b))

= l(g−1(a) +G0
g−1(b))

= l(g−1(g(g−1(a)) +F g(g−1(b)))

= l(g−1(a +F b))

= g(g−1(a +F b))

= a +F b.

Similarly, a ·L b = a ·F b. Hence L extends F .
For any α < κ, the polynomial f ′

α(x) splits into linear factors over Gκ; thus

f ′
α(x) is g−1(aα,0) + g−1(aα,1)x + g−1(aα,2)x

2 + · · ·+ g−1(aα,mα
)xmα

which is (b0x − c0)(b1x − c1) . . . (bmα
x − cmα

)

for some bi’s and ci’s in Gκ. By (3), l extends to an isomorphism from Gκ onto L. Clearly
l(f ′

α(x)) = fα(x), and so we see that fα(x) splits into linear factors over L, namely, fα(x)
is

(l(b1)x − l(c1)(l(b2)x − l(c2)) · · · (l(bmα
)x − l(cmα

)).

Finally, we show that L is an algebraic extension of F . To do this, we first prove that
each Gα is an algebraic extension of G0, by transfinite induction. This is obviously true
for α = 0. If we have shown that Gα is an algebraic extension of G0, then Gα+o1 is also,
by (2). If α is limit ≤ κ and we know that each Gβ for β < α is an algebraic extension
of G0, then each element of Gα is in some Gβ for β < α, and hence is the zero of some
polynomial with coefficients in G0, as desired. This finishes the inductive proof. Hence
Gκ is an algebraic extension of G0. Now take any b ∈ L. Then l−1(b) is a zero of some
polynomial g(x) with coefficients in G0, so it is clear that b is a zero of the polynomial
l(g(x)) which has coefficients in F ; a detailed argument in a similar situation was given
above.

It is of some interest to recognize some statements which go beyond the axioms of ZF, are
implied by the axiom of choice, but are demonstrably weaker than AC. Here is a partial
list of such statements, taken from T. Jech, The axiom of choice:

Boolean prime ideal theorem. Every Boolean algebra has a prime ideal.

Ordering principle. Every set can be simply ordered.
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Axiom of choice for families of well-orderable sets. If 〈Ai : i ∈ I〉 is a system of
non-empty sets each of which can be well-ordered, then there is a function f with domain
I such that f(i) ∈ Ai for all i ∈ I.

Axiom of choice for families of two-element sets. If 〈Ai : i ∈ I〉 is a system of
non-empty sets, and for each i ∈ I there exist distinct x, y such that Ai = {x, y}, then
there is a function f with domain I such that f(i) ∈ Ai for all i ∈ I.

Axiom of choice for families of finite sets. If 〈Ai : i ∈ I〉 is a system of non-empty
finite sets, then there is a function f with domain I such that f(i) ∈ Ai for all i ∈ I.

Countable axiom of choice. If 〈Ai : i ∈ ω〉 is a system of non-empty sets, then there is
a function f with domain ω such that f(i) ∈ Ai for all i ∈ ω.

Exercises, Chapter 10

1. Show carefully how the function h defined in the proof of 10.2, Axiom of Choice ⇒
Well-ordering principle, is shown to exist by the transfinite recursion principle.

2. Prove that the relation < on A, defined in the proof that the axiom of choice implies
the well-ordering principle, really does well-order A.

3. Show carefully how the function h defined in the proof of 10.2, Well-ordering principle
⇒ Zorn’s lemma, is shown to exist by the transfinite recursion principle.

4. Show by induction on m, without using the axiom of choice, that if m ∈ ω and
〈Ai : i ∈ m〉 is a system of nonempty sets, then there is a function f with domain m such
that f(i) ∈ Ai for all i ∈ m.

5. Using AC, prove the following, which is called the Principle of Dependent Choice (which
is also weaker than the axiom of choice, but cannot be proved in ZF). If R is a relation,
R ⊆ A × A, and for every a ∈ A there is a b ∈ A such that aRb, then there is a function
f : ω → A such that f(i)Rf(i + 1) for all i ∈ ω.

The next exercises give some more equivalents to the axiom of choice; so each exercise
states something provable in ZF. Consider the following statements.

(1) If < is a partial ordering and ≺ is a simple ordering which is a subset of <, then there
is a maximal (under ⊆) simple ordering ≪ such that ≺ is a subset of ≪, which in turn is
a subset of <.

(2) For any two sets A and B, either there is a one-one function mapping A into B or
there is a one-one function mapping B into A.

(3) For any two nonempty sets A and B, either there is a function mapping A onto B or
there is a function mapping B onto A.

(4) A family F of subsets of a set A has finite character if for all X ⊆ A, X ∈ F iff every
finite subset of X is in F . Principle (4) says that every family of finite character has a
maximal element under ⊆.
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(5) For any relation R there is a function f ⊆ R such that dmn R = dmn f .

6. Show that the axiom of choice implies (1). [Use Zorn’s lemma]

7. Prove that (1) implies (2). [Given sets A and B, define f < g iff f and g are one-one
functions which are subsets of A × B, and f ⊂ g. Apply (1) to < and the empty simple
ordering.]

8. Prove that (2) implies (3). [Easy]

9. Prove that (3) implies the axiom of choice. [Show that any set A can be well-ordered, as
follows. Use Lemma 10.1 to find an ordinal which cannot be mapped one-one into P(A).
Show that if f : A → α maps onto α, then 〈f−1[{β}] : β < α〉 is a one-one function from
α into P(A).

10. Show that the axiom of choice implies (4). [Use Zorn’s lemma.]

11. Show that (4) implies (5). [Given a relation R, let F consist of all functions contained
in R.]

12. Show that (5) implies the axiom of choice. [Given a family 〈Ai : i ∈ I〉 of nonempty
sets, let R = {(i, x) : i ∈ I and x ∈ Ai}.]
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