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Preface

Edition of March 11, 2019: chapter on p = t rewritten.
Edition of August 9, 2017: chapter on proper forcing rewritten.
Edition of November 14, 2016: chapter on proper forcing changed; the proof of The-

orem 28.5 was in error, and a new proof using a game is given (Theorem 28.33).
Edition of August 30, 2016: Proposition 27.21 corrected.

Some background on these notes:

0. The exercise solutions have not been carefully checked.

1. The axioms for first-order logic are due to Tarski.

2. The treatment of forcing follows Kunen, except for using Boolean values in the definition.

3. The proof of Hausdorff’s theorem in Chapter 17 follows Hausdorff’s original proof
closely.

4. The treatment of proper forcing in Chapter 28 follows Jech to a large extent.

5. For PCF in chapters 30–32 we follow Abraham and Magidor.

6. Chapter 33 is based on Blass.

7. The proof that p = t in Chapter 34 is based upon notes of Fremlin and a thesis of
Roccasalvo.

8. The consistency proofs in Chapter 35 are partly from Kunen and partly from the author.
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1. Sentential logic

We go into the mathematical theory of the simplest logical notions: the meaning of “and”,
“or”, “implies”, “if and only if” and related notions. The basic idea here is to describe a
formal language for these notions, and say precisely what it means for statements in this
language to be true. The first step is to describe the language, without saying anything
mathematical about meanings. We need very little background to carry out this develop-
ment. ω is the set of all natural numbers 0, 1, 2, . . .. Let ω+ be the set of all positive
integers. For each positive integer m let m′ = {0, . . . , m − 1}. A finite sequence is a
function whose domain is m′ for some positive integer m; the values of the function can
be arbitary.

To keep the treatment strictly mathematical, we will define the basic “symbols” of
the language to just be certain positive integers, as follows:

Negation symbol: the integer 1.
Implication symbol: the integer 2.
Sentential variables: all integers ≥ 3.

Let Expr be the collection of all finite sequences of positive integers; we think of these
sequences as expressions. Thus an expression is a function mapping m′ into ω+, for some
positive integer m. Such sequences are frequently indicated by 〈ϕ0, . . . , ϕm−1〉. The case
m = 1 is important; here the notation is 〈ϕ〉.
The one-place function ¬ mapping Expr into Expr is defined by ¬ϕ = 〈1〉⌢ϕ for any
expression ϕ. Here in general ϕ⌢ψ is the sequence ϕ followed by the sequence ψ.

The two-place function → mapping Expr×Expr into Expr is defined by ϕ→ ψ = 〈2〉⌢ϕ⌢ψ
for any expressions ϕ, ψ. (For any sets A,B, A × B is the set of all ordered pairs (a, b)
with a ∈ A and b ∈ B. So Expr × Expr is the set of all ordered pairs (ϕ, ψ) with ϕ, ψ
expressions.)

For any natural number n, let Sn = 〈n+ 3〉.
Now we define the notion of a sentential formula—an expression which, suitably inter-

preted, makes sense. We do this definition by defining a sentential formula construction,
which by definition is a sequence 〈ϕ0, . . . , ϕm−1〉 with the following property: for each
i < m, one of the following holds:

ϕi = Sj for some natural number j.

There is a k < i such that ϕi = ¬ϕk.

There exist k, l < i such that ϕi = (ϕk → ϕl).

Then a sentential formula is an expression which appears in some sentential formula con-
struction.

The following proposition formulates the principle of induction on sentential formulas.

Proposition 1.1. Suppose that M is a collection of sentential formulas, satisfying the
following conditions.
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(i) Si is in M , for every natural number i.
(ii) If ϕ is in M , then so is ¬ϕ.
(iii) If ϕ and ψ are in M , then so is ϕ→ ψ.

Then M consists of all sentential formulas.

Proof. Suppose that θ is a sentential formula; we want to show that θ ∈ M . Let
〈τ0, . . . , τm〉 be a sentential formula construction with τt = θ, where 0 ≤ t ≤ m. We prove
by complete induction on i that for every i ≤ m, τi ∈M . Hence by applying this to i = t
we get θ ∈M .

So assume that for every j < i, the sentential formula τj is in M .
Case 1. τi is Ss for some s. By (i), τi ∈M .
Case 2. τi is ¬τj for some j < i. By the inductive hypothesis, τj ∈ M , so τi ∈M by

(ii).
Case 3. τi is τj → τk for some j, k < i. By the inductive hypothesis, τj ∈ M and

τk ∈M , so τi ∈M by (iii).

Proposition 1.2. (i) Any sentential formula is a nonempty sequence.
(ii) For any sentential formula ϕ, exactly one of the following conditions holds:

(a) ϕ is Si for some i ∈ ω.
(b) ϕ begins with 1, and there is a sentential formula ψ such that ϕ = ¬ψ.
(c) ϕ begins with 2, and there are sentential formulas ψ, χ such that ϕ = ψ → χ.

(iii) No proper initial segment of a sentential formula is a sentential formula.
(iv) If ϕ and ψ are sentential formulas and ¬ϕ = ¬ψ, then ϕ = ψ.
(v) If ϕ, ψ, ϕ′, ψ′ are sentential formulas and ϕ → ψ = ϕ′ → ψ′, then ϕ = ϕ′ and

ψ = ψ′.

Proof. (i): Clearly every entry in a sentential formula construction is nonempty, so
(i) holds.

(ii): First we prove by induction that one of (a)–(c) holds. This is true of sentential
variables—in this case, (a) holds. If it is true of a sentential formula ϕ, it is obviously true
of ¬ϕ; so (b) holds. Similarly for →, where (c) holds.

Second, the first entry of a formula differs in cases (a),(b),(c), so exactly one of them
holds.

(iii): We prove this by complete induction on the length of the formula. So, suppose
that ϕ is a sentential formula and we know for any formula ψ shorter than ϕ that no proper
initial segment of ψ is a formula. We consider cases according to (ii).

Case 1. ϕ is Si for some i. Only the empty sequence is a proper initial segment of ϕ
in this case, and the empty sequence is not a sentential formula, by (i).

Case 2. ϕ is ¬ψ for some formula ψ. If χ is a proper initial segment of ϕ and it is a
formula, then χ begins with 1 and so by (ii), χ has the form ¬θ for some formula θ. But
then θ is a proper initial segment of ψ and ψ is shorter than ϕ, so the inductive hypothesis
is contradicted.

Case 3. ϕ is ψ → χ for some formulas ψ and χ. That is, ϕ is 〈2〉⌢ψ⌢χ. If θ is a proper
initial segment of ϕ which is a formula, then by (ii), θ has the form 〈2〉⌢ξ⌢η for some
formulas ξ, η. Now ψ⌢χ = ξ⌢η, so ψ is an initial segment of ξ or ξ is an initial segment
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of ψ. Since ψ and ξ are both shorter than ϕ, it follows from the inductive hypothesis that
ψ = ξ. Hence χ = η, and ϕ = θ, contradiction.

(iv) is rather obvious; if ¬ϕ = ¬ψ, then ϕ and ψ are both the sequence obtained by
deleting the first entry.

(v): Assume the hypothesis. Then ϕ → ψ is the sequence 〈2〉⌢ϕ⌢ψ, and ϕ′ → ψ′ is
the sequence 〈2〉⌢ϕ′⌢ψ′. Since these are equal, ϕ and ϕ′ start at the same place in the
sequence. By (iii) it follows that ϕ = ϕ′. Deleting the initial segment 〈2〉⌢ϕ from the
sequence, we then get ψ = ψ′.

Parts (iv) and (v) of this proposition enable us to define values of sentential formulas,
which supplies a mathematical meaning for the truth of formulas. A sentential assignment
is a function mapping the set {0, 1, . . .} of natural numbers into the set {0, 1}. Intuitively
we think of 0 as “false” and 1 as “true”. The definition of values of sentential formulas is
a special case of definition by recursion:

Proposition 1.3. For any sentential assignment f there is a function F mapping the set
of sentential formulas into {0, 1} such that the following conditions hold:

(i) F (Sn) = f(n) for every natural number n.
(ii) F (¬ϕ) = 1 − F (ϕ) for any sentential formula ϕ.
(iii) F (ϕ→ ψ) = 0 iff F (ϕ) = 1 and F (ψ) = 0.

Proof. An f -sequence is a finite sequence 〈(ϕ0, ε0), . . . , (ϕm−1, εm−1)〉 such that each
εi is 0 or 1, and such that for each i < m one of the following holds:

(1) ϕi is Sn for some n ∈ ω, and εi = f(n).

(2) There is a k < i such that ϕi = ¬ϕk and εi = 1 − εk.

(3) There are k, l < i such that ϕi = ϕk → ϕl, and εi = 0 iff εk = 1 and εl = 0.

Now we claim:

(4) For any sentential formula ψ and any f -sequences 〈(ϕ0.ε0), . . . , (ϕm−1, εm−1)〉 and
〈(ϕ′

0.ε
′
0), . . . , (ϕ′

n−1, ε
′
n−1)〉 such that ϕm−1 = ϕ′

n−1 = ψ we have εm−1 = ε′n−1.

We prove (4) by induction on ψ, thus using Proposition 1.1. If ψ = Sn, then εm−1 = f(n) =
ε′n−1. Assume that the condition holds for ψ, and consider ¬ψ. There is a k < m − 1
such that ¬ψ = ϕm−1 = ¬ϕk. By Proposition 1.2(iv) we have ϕk = ψ. Similarly, there
is an l < n − 1 such that ¬ψ = ϕ′

n−1 = ¬ϕ′
l and so ϕ′

l = ψ. Applying the inductive
hypothesis to ψ and the sequences 〈ϕ0, . . . , ϕk〉 and 〈ϕ′

0, . . . , ϕ
′
l〉 we get εk = ε′l. Hence

εm−1 = 1 − εk = 1 − ε′l = ε′n−1.
Now suppose that the condition holds for ψ and χ, and consider ψ → χ. There are

k, l < m − 1 such that (ψ → χ) = (ϕk → ϕl). By Proposition 1.2(v) we have ϕk = ψ
and ϕl = χ. Similarly there are s, t < n − 1 such that (ψ → χ) = (ϕ′

s → ϕ′
t). By

Proposition 1.2(v) we have ϕ′
s = ψ and ϕ′

t = χ. Applying the inductive hypotheis to ψ
and the sequences 〈ϕ0, . . . , ϕk〉 and 〈ϕ′

0, . . . , ϕ
′
s〉 we get εk = ε′s. Similarly, we get εl = ε′t.

Hence

εm−1 = 0 iff εk = 1 and εl = 0
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iff ε′s = 1 and ε′t = 0

iff ε′n−1 = 0.

This finishes the proof of (4).

(5) If 〈ϕ0, . . . , ϕm−1〉 is a sentential formula construction, then there is an f -sequence of
the form (ϕ0, ε0), . . . , (ϕm−1, εm−1)〉.
We prove this by induction on m. First suppose that m = 1. Then ϕ0 must equal Sn for
some n, and 〈(ϕ0, f(n))〉 is as desired. Now suppose that m > 1 and the statement is true

for m− 1. So let θ
def
= 〈(ϕ0, ε0), . . . .(ϕm−2, εm−2)〉 be an f -sequence.

Case 1. ϕm−1 = Sp. Then θ⌢〈(ϕm−1, f(p))〉 is as desired.
Case 2. There is a k < m such that ϕm−1 = ¬ϕk. Then θ⌢〈(ϕm−1, 1 − εk)〉 is as

desired.
Case 3. There are k, l < m such that ϕm−1 = ϕk → ϕl. Then θ⌢〈(ϕm−1, δ)〉 is as

desired, where δ = 0 iff εk = 1 and εl = 0.

Thus (5) holds. Now we can define the function F required in the Proposition. Let ψ
be any sentential formula. Let 〈ϕ0, . . . , ϕm−1〉 be a sentential formula construction such
that ϕm−1 = ψ. By (5), let 〈(ϕ0, ε0), . . . , (ϕm−1, εm−1)〉 be an f -sequence. We define
F (ψ) = εm−1. This is unambiguous by (4).

Case 1. ψ = Sn for some n. Then by the definition of f -sequence we have F (ψ) =
f(n).

Case 2. There is a k < m such that ψ = ϕm−1 = ¬ϕk. Then 〈(ϕ0, ε0), . . . , (ϕk, εk)〉
is an f -sequence, so F (ϕk) = εk. So

F (ψ) = F (ϕm−1) = εm−1 = 1 − εk = 1 − F (ϕk).

Case 3. There are k, l < m such that ψ = ϕm−1 = ϕk → ϕl. Then 〈(ϕ0, ε0), . . . ,
(ϕk, εk)〉 is an f -sequence, so F (ϕk) = εk; and 〈(ϕ0, ε0), . . . , (ϕl, εk)〉 is an f -sequence, so
F (ϕl) = εl. So

F (ψ) = 0 iff F (ϕm−1) = 0 iff em−1 = 0 iff

εk = 1 and εl = 0 iff F (ϕk) = 1 and F (ϕl) = 0.

With f a sentential assignment, and with F as in this proposition, for any sentential
formula ϕ we let ϕ[f ] = F (ϕ). Thus:

Si[f ] = f(i);

(¬ϕ)[f ] = 1 − ϕ[f ];

(ϕ→ ψ)[f ] =

{
0 if ϕ[f ] = 1 and ψ[f ] = 0,

1 otherwise.

The definition can be recalled by using truth tables:
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ϕ ¬ϕ

1 0

0 1

ϕ ψ ϕ→ ψ

1 1 1

1 0 0

0 1 1

0 0 1

Other logical notions can be defined in terms of ¬ and →. We define

ϕ ∧ ψ = ¬(ϕ→ ¬ψ).
ϕ ∨ ψ = ¬ϕ→ ψ.
ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ).

Working out the truth tables for these new notions shows that they mean approximately
what you would expect:

ϕ ψ ¬ψ ϕ→ ¬ψ ϕ ∧ ψ ¬ϕ ϕ ∨ ψ ϕ→ ψ ψ → ϕ ϕ↔ ψ

1 1 0 0 1 0 1 1 1 1

1 0 1 1 0 0 1 0 1 0

0 1 0 1 0 1 1 1 0 0

0 0 1 1 0 1 0 1 1 1

(Note that ∨ corresponds to non-exclusive or: ϕ or ψ, or both.)

The following simple proposition is frequently useful.

Proposition 1.4. If f and g map {0, 1, . . .} into {0, 1} and f(m) = g(m) for every m
such that Sm occurs in ϕ, then ϕ[f ] = ϕ[g].

Proof. Induction on ϕ. If ϕ is Si for some i, then the hypothesis says that f(i) = g(i);
hence Si[f ] = f(i) = g(i) = Si[g]. Assume that it is true for ϕ. Now Sm occurs in
ϕ iff it occurs in ¬ϕ. Hence if we assume that f(m) = g(m) for every m such that
Sm occurs in ¬ϕ, then also f(m) = g(m) for every m such that Sm occurs in ϕ, so
(¬ϕ)[f ] = 1 − ϕ[f ] = 1 − ϕ[g] = (¬ϕ)[g]. Assume that it is true for both ϕ and ψ, and
f(m) = g(m) for every m such that Sm occurs in ϕ → ψ. Now if Sm occurs in ϕ, then it
also occurs in ϕ→ ψ, and hence f(m) = g(m). Similarly for ψ. It follows that

(ϕ→ ψ)[f ] = 0 iff (ϕ[f ] = 1 and ψ[f ] = 0) iff (ϕ[g] = 1 and ψ[g] = 0) iff (ϕ→ ψ)[g] = 0.

This proposition justifies writing ϕ[f ] for a finite sequence f , provided that f is long enough
so that m is in its domain for every m for which Sm occurs in ϕ.

A sentential formula ϕ is a tautology iff it is true under every assignment, i.e., ϕ[f ] = 1
for every assignment f .
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Here is a list of common tautologies:

(T1) ϕ→ ϕ.
(T2) ϕ↔ ¬¬ϕ.
(T3) (ϕ→ ¬ϕ) → ¬ϕ.
(T4) (ϕ→ ¬ψ) → (ψ → ¬ϕ).
(T5) ϕ→ (¬ϕ→ ψ).
(T6) (ϕ→ ψ) → [(ψ → χ) → (ϕ→ χ)].
(T7) [ϕ→ (ψ → χ)] → [(ϕ→ ψ) → (ϕ→ χ)].
(T8) (ϕ ∧ ψ) → (ψ ∧ ϕ).
(T9) (ϕ ∧ ψ) → ϕ.
(T10) (ϕ ∧ ψ) → ψ.
(T11) ϕ→ [ψ → (ϕ ∧ ψ)].
(T12) ϕ→ (ϕ ∨ ψ).
(T13) ψ → (ϕ ∨ ψ).
(T14) (ϕ→ χ) → [(ψ → χ) → ((ϕ ∨ ψ) → χ)].
(T15) ¬(ϕ ∧ ψ) ↔ (¬ϕ ∨ ¬ψ).
(T16) ¬(ϕ ∨ ψ) ↔ (¬ϕ ∧ ¬ψ).
(T17) [ϕ ∨ (ψ ∨ χ)] ↔ [(ϕ ∨ ψ) ∨ χ].
(T18) [ϕ ∧ (ψ ∧ χ)] ↔ [(ϕ ∧ ψ) ∧ χ].
(T19) [ϕ ∧ (ψ ∨ χ)] ↔ [(ϕ ∧ ψ) ∨ (ϕ ∧ χ)].
(T20) [ϕ ∨ (ψ ∧ χ)] ↔ [(ϕ ∨ ψ) ∧ (ϕ ∨ χ)].
(T21) (ϕ→ ψ) ↔ (¬ϕ ∨ ψ).
(T22) ϕ ∧ ψ ↔ ¬(¬ϕ ∨ ¬ψ).
(T23) ϕ ∨ ψ ↔ ¬(¬ϕ ∧ ¬ψ).

Now we describe a proof system for sentential logic. Formulas of the following form are
sentential axioms; ϕ, ψ, χ are arbitrary sentential formulas.

(1) ϕ→ (ψ → ϕ).

(2) [ϕ→ (ψ → χ)] → [(ϕ→ ψ) → (ϕ→ χ)].

(3) (¬ϕ→ ¬ψ) → (ψ → ϕ).

Proposition 1.5. Every sentential axiom is a tautology.

Proof. For (1):

ϕ ψ ψ → ϕ ϕ→ (ψ → ϕ)

1 1 1 1

1 0 1 1

0 1 0 1

0 0 1 1
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For (2): Let ρ denote this formula:

ϕ ψ χ ψ → χ ϕ→ (ψ → χ) ϕ→ ψ ϕ→ χ (ϕ→ ψ) → (ϕ→ χ) ρ

1 1 1 1 1 1 1 1 1

1 1 0 0 0 1 0 0 1

1 0 1 1 1 0 1 1 1

1 0 0 1 1 0 0 1 1

0 1 1 1 1 1 1 1 1

0 1 0 0 1 1 1 1 1

0 0 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1

For (3):

ϕ ψ ¬ϕ ¬ψ ¬ϕ → ¬ψ ψ → ϕ (3)

1 1 0 0 1 1 1

1 0 0 1 1 1 1

0 1 1 0 0 0 1

0 0 1 1 1 1 1

If Γ is a collection of sentential formulas, then a Γ-proof is a finite sequence 〈ψ0, . . . , ψm〉
such that for each i ≤ m one of the following conditions holds:

(a) ψi is a sentential axiom.

(b) ψi ∈ Γ.

(c) There exist j, k < i such that ψk is ψj → ψi. (Rule of modus ponens, abbreviated MP).

We write Γ ⊢ ϕ if there is a Γ-proof with last entry ϕ. We also write ⊢ ϕ in place of ∅ ⊢ ϕ.

Proposition 1.6. (i) If Γ ⊢ ϕ, f is a sentential assignment, and ψ[f ] = 1 for all ψ ∈ Γ,
then ϕ[f ] = 1.

(ii) If ⊢ ϕ, then ϕ is a tautology.

Proof. For (i), let 〈ψ0, . . . , ψm〉 be a Γ-proof. Suppose that f is a sentential assign-
ment and χ[f ] = 1 for all χ ∈ Γ. We show by complete induction that ψi[f ] = 1 for all
i ≤ m. Suppose that this is true for all j < i.
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Case 1. ψi is a sentential axiom. Then ψi[f ] = 1 by Proposition 1.5.
Case 2. ψi ∈ Γ. Then ψi[f ] = 1 by assumption.
Case 3. There exist j, k < i such that ψk is ψj → ψi. By the inductive assumption,

ψk[f ] = ψj[f ] = 1. Hence ψi[f ] = 1.
(ii) clearly follows from (i),

Now we are going to show that, conversely, if ϕ is a tautology then ⊢ ϕ. This is a kind
of completeness theorem, and the proof is a highly simplified version of the proof of the
completeness theorem for first-order logic which will be given later.

Lemma 1.7. ⊢ ϕ→ ϕ.

Proof.
(a) [ϕ→ [(ϕ→ ϕ) → ϕ]] → [[ϕ→ (ϕ→ ϕ)] → (ϕ→ ϕ)] (2)
(b) ϕ→ [(ϕ→ ϕ) → ϕ] (1)
(c) [ϕ→ (ϕ→ ϕ)] → (ϕ→ ϕ) (a), (b), MP
(d) ϕ→ (ϕ→ ϕ) (1)
(e) ϕ→ ϕ (c), (d), MP

Theorem 1.8. (The deduction theorem) If Γ ∪ {ϕ} ⊢ ψ, then Γ ⊢ ϕ→ ψ.

Proof. Let 〈χ0, . . . , χm〉 be a (Γ ∪ {ϕ})-proof with last entry ψ. We replace each χi
by several formulas so that the result is a Γ-proof with last entry ϕ→ ψ.

If χi is a logical axiom or a member of Γ, we replace it by the two formulas χi →
(ϕ→ χi), ϕ→ χi.

If χi is ϕ, we replace it by the five formulas in the proof of Lemma 1.7; the last entry
is ϕ→ ϕ.

If χi is obtained from χj and χk by modus ponens, so that χk is χj → χi, we replace
χi by the formulas

[ϕ→ (χj → χi)] → [(ϕ→ χj) → (ϕ→ χi)]

(ϕ→ χj) → (ϕ→ χi)

ϕ→ χi

Clearly this is as desired.

Lemma 1.9. ⊢ ψ → (¬ψ → ϕ).

Proof. By axiom (1) we have {ψ,¬ψ} ⊢ ¬ϕ→ ¬ψ. Hence axiom (3) gives {ψ,¬ψ} ⊢
ψ → ϕ, and hence {ψ,¬ψ} ⊢ ϕ. Now two applications of Theorem 1.8 give the desired
result.

Lemma 1.10. ⊢ (ϕ→ ψ) → [(ψ → χ) → (ϕ→ χ)].

Proof. Clearly {ϕ→ ψ, ψ → χ, ϕ} ⊢ χ, so three applications of Theorem 1.8 give the
desired result.
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Lemma 1.11. ⊢ (¬ϕ→ ϕ) → ϕ.

Proof. Clearly {¬ϕ → ϕ,¬ϕ} ⊢ ϕ and also {¬ϕ → ϕ,¬ϕ} ⊢ ¬ϕ, so by Lemma 1.9,
{(¬ϕ → ϕ,¬ϕ} ⊢ ¬(ϕ → ϕ). Then Theorem 1.8 gives {¬ϕ → ϕ} ⊢ ¬ϕ → ¬(ϕ → ϕ), and
so using axiom (3), {¬ϕ→ ϕ} ⊢ (ϕ→ ϕ) → ϕ. Hence by Lemma 1.7, {¬ϕ→ ϕ} ⊢ ϕ, and
so Theorem 1.8 gives the desired result.

Lemma 1.12. ⊢ (ϕ→ ψ) → [(¬ϕ→ ψ) → ψ].

Proof.

{ϕ→ ψ,¬ϕ→ ψ,¬ψ} ⊢ ¬ϕ→ ¬ψ using axiom (1)

{ϕ→ ψ,¬ϕ→ ψ,¬ψ} ⊢ ψ → ϕ using axiom (3)

{ϕ→ ψ,¬ϕ→ ψ,¬ψ} ⊢ ¬ϕ→ ϕ using Lemma 1.10

{ϕ→ ψ,¬ϕ→ ψ,¬ψ} ⊢ ϕ by Lemma 1.11

{ϕ→ ψ,¬ϕ→ ψ,¬ψ} ⊢ ψ
{ϕ→ ψ,¬ϕ→ ψ} ⊢ ¬ψ → ψ by Theorem 1.8

{ϕ→ ψ,¬ϕ→ ψ} ⊢ ψ by Lemma 1.11

Now two applications of Theorem 1.8 give the desired result.

Theorem 1.13. There is a sequence 〈ϕ0, ϕ1, . . .〉 containing all sentential formulas.

Proof. One can obtain such a sequence by the following procedure.

(1) Start with S0.

(2) List all sentential formulas of length at most two which involve only S0 or S1; they are
S0, S1, ¬S0, and ¬S1.

(3) List all sentential formulas of length at most three which involve only S0, S1, or S2;
they are S0, S1, S2, ¬S0, ¬S1, ¬S2, ¬¬S0, ¬¬S1, ¬¬S2, S0 → S0, S0 → S1, S0 → S2,
S1 → S0, S1 → S1, S1 → S2, S2 → S0, S2 → S1, S2 → S2.

(4) Etc.

Theorem 1.14. If not(Γ ⊢ ϕ), then there is a sentential assignment f such that ψ[f ] = 1
for all ψ ∈ Γ, while ϕ[f ] = 0.

Proof. Let 〈χ0, χ1, . . .〉 list all the sentential formulas. We now define ∆0,∆1, . . . by
recursion. Let ∆0 = Γ. Suppose that ∆i has been defined. If not(∆i ∪ {χi} ⊢ ϕ) then we
set ∆i+1 = ∆i ∪ {χi}. Otherwise we set ∆i+1 = ∆i.

Here is a detailed proof that ∆ exists. Let M = {Ω : Ω is a function with domain m′

for some positive integer m, Ω1 = Γ, and for every positive integer i with i + 1 ≤ m we
have

Ωi+1 =

{
Ωi ∪ {χi} if not(Ωi ∪ {χi} ⊢ ϕ),
Ωi otherwise.}
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(1) If Ω,Ω′ ∈M with domains m′, n′ respectively, with m ≤ n, then ∀i ≤ m[Ωi = Ω′
i].

This is easily proved by induction on i.

(2) For every positive integer m there is a Ω ∈M with domain m′.

Again this is easily proved by induction on m.
Now we define ∆i = Ωi, where Ω ∈ M and i < dmn(Ω). This is justified by (1) and

(2).
Now it is easily verified that the defining conditions for ∆ hold.
Let Θ =

⋃

i∈ω ∆i. By induction we have not(∆i ⊢ ϕ) for each i ∈ ω. In fact, we
have ∆0 = Γ, so not(∆0 ⊢ ϕ) by assumption. If not(∆i ⊢ ϕ), then not(∆i+1 ⊢ ϕ) by
construction.

Hence also not(Θ ⊢ ϕ), since Θ ⊢ ϕ means that there is a Θ-proof with last entry ϕ,
and any Θ-proof involves only finitely many formulas χi, and they all appear in some ∆j ,
giving ∆j ⊢ ϕ, contradiction.

(∗) For any formula χi, either χi ∈ Θ or ¬χi ∈ Θ.

In fact, suppose that χi /∈ Θ and ¬χi /∈ Θ. Say ¬χi = χj . Then by construction,
∆i ∪ {χi} ⊢ ϕ and ∆j ∪ {¬χi} ⊢ ϕ. So Θ ∪ {χi} ⊢ ϕ and Θ ∪ {¬χi} ⊢ ϕ. Hence
by Theorem 1.8, Θ ⊢ χi → ϕ and Θ ⊢ ¬χi → ϕ. So by Lemma 1.12 we get Θ ⊢ ϕ,
contradiction.

(∗∗) If Θ ⊢ ψ, then ψ ∈ Θ.

In fact, clearly not(Θ ∪ {ψ} ⊢ ϕ) by Theorem 1.8, so (∗∗) follows.
Now let f be the sentential assignment such that f(i) = 1 iff Si ∈ Θ. Now we claim

(∗ ∗ ∗) For every sentential formula ψ, ψ[f ] = 1 iff ψ ∈ Θ.

We prove this by induction on ψ. It is true for ψ = Si by definition. Now suppose that it
holds for ψ. Suppose that (¬ψ)[f ] = 1. Thus ψ[f ] = 0, so by the inductive assumption,
ψ /∈ Θ, and hence by (∗), ¬ψ ∈ Θ. Conversely, suppose that ¬ψ ∈ Θ. If (¬ψ)[f ] = 0,
then ψ[f ] = 1, hence ψ ∈ Θ by the inductive hypothesis. Hence by Lemma 1.9, Θ ⊢ ϕ,
contradiction. So (¬ψ)[f ] = 1.

Next suppose that (∗∗∗) holds for ψ and χ; we show that it holds for ψ → χ. Suppose
that (ψ → χ)[f ] = 1. If χ[f ] = 1, then χ ∈ Θ by the inductive hypothesis. By axiom
(1), Θ ⊢ ψ → χ. Hence by (∗∗), (ψ → χ) ∈ Θ. Suppose that χ[f ] = 0. Then ψ[f ] = 0
also, since (ψ → χ)[f ] = 1. By the inductive hypothesis and (∗) we have ¬ψ ∈ Θ. Hence
Θ ⊢ ¬χ→ ¬ψ by axiom (1), so Θ ⊢ ψ → χ by axiom (3). So (ψ → χ) ∈ Θ by (∗∗).

Conversely, suppose that (ψ → χ) ∈ Θ. Working for a contradiction, suppose that
(ψ → χ)[f ] = 0. Thus ψ[f ] = 1 and χ[f ] = 0. So ψ ∈ Θ and ¬χ ∈ Θ by the inductive
hypothesis and (∗). Since (ψ → χ) ∈ Θ and ψ ∈ Θ, we get Θ ⊢ χ. Since also ¬χ ∈ Θ, we
get Θ ⊢ ϕ by Lemma 1.9, contradiction.

This finishes the proof of (∗ ∗ ∗).
Since Γ ⊆ Θ, (∗ ∗ ∗) implies that ψ[f ] = 1 for all ψ ∈ Γ. Also ϕ[f ] = 0 since

ϕ /∈ Θ.

Corollary 1.15. If ϕ[f ] = 1 whenever ψ[f ] = 1 for all ψ ∈ Γ, then Γ ⊢ ϕ.
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Proof. This is the contrapositive of Theorem 1.14.

Theorem 1.16. ⊢ ϕ iff ϕ is a tautology.

Proof. ⇒ is given by Proposition 1.6(ii). ⇐ follows from Corollary 1.15 by taking
Γ = ∅.

EXERCISES

E1.1. Verify that
S0 → ¬S1 = 〈2, 3, 1, 4〉

and
(S0 → S1) → (¬S1 → ¬S0) = 〈2, 2, 3, 4, 2, 1, 4, 1, 3〉.

E1.2. Prove that there is a sentential formula of each positive integer length.

E1.3. Prove that m is the length of a sentential formula not involving ¬ iff m is odd.

E1.4. Prove that a truth table for a sentential formula involving n basic formulas has 2n

rows.

E1.5. Use the truth table method to show that the formula

(ϕ→ ψ) ↔ (¬ϕ ∨ ψ)

is a tautology.

E1.6. Use the truth table method to show that the formula

[ϕ ∨ (ψ ∧ χ)] ↔ [(ϕ ∨ ψ) ∧ (ϕ ∨ χ)]

is a tautology.

E1.7. Use the truth table method to show that the formula

(ϕ→ ψ) → (ϕ→ ¬ψ)

is not a tautology. It is not necessary to work out the full truth table.

E1.8. Determine whether or not the following is a tautology:

S0 → (S1 → (S2 → (S3 → S1))).

E1.9. Determine whether or not the following is a tautology; an informal method is better
than a truth table:

({[(ϕ→ ψ) → (¬χ→ ¬θ)] → χ} → τ) → [(τ → ϕ) → (θ → ϕ)].

E1.10. Determine whether the following statements are logically consistent. If the contract
is valid, then Horatio is liable. If Horatio is liable, he will go bankrupt. Either Horatio
will go bankrupt or the bank will lend him money. However, the bank will definitely not
lend him money.

E1.11. Write out an actual proof for {ψ} ⊢ ¬ψ → ϕ. This can be done by following the
proof of Lemma 1.9, expanding it using the proof of the deduction theorem.
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2. First-order logic

Although set theory can be considered within a single first-order language, with only non-
logical constant ∈, it is convenient to have more complicated languages, corresponding to
the many definitions introduced in mathematics.

All first-order languages have the following symbols in common. Again, as for senten-
tial logic, we take these to be certain natural numbers.

1 (negation)
2 (implication)
3 (the equality symbol)
4 (the universal quantifier)
5m for each positive integer m (variables ranging over elements, but not subsets, of a given
structure) We denote 5m by vm−1. Thus v0 is 5, v1 is 10, and in general vi is 5(i+ 1).

Special first-order languages have additional symbols for the functions and relations and
special elements involved. These will always be taken to be some positive integers not
among the above; thus they are positive integers greater than 4 but not divisible by 5. So
we have in addition to the above logical symbols some non-logical symbols:

Relation symbols, each of a certain positive rank.
Function symbols, also each having a specified positive rank.
Individual constants.

Formally, a first-order language is a quadruple (Rel, Fcn, Cn, rnk) such that Rel, Fcn, Cn
are pairwise disjoint subsets of M (the sets of relation symbols, function symbols, and
individual constants), and rnk is a function mapping Rel∪Fcn into the positive integers;
rnk(S) gives the rank of the symbol S.

Now we will define the notions of terms and formulas, which give a precise formu-
lation of meaningful expressions. Terms are certain finite sequences of symbols. A term
construction sequence is a sequence 〈τ0, . . . , τm−1〉, m > 0, with the following properties:
for each i < m one of the following holds:

τi is 〈vj〉 for some natural number j.

τi is 〈c〉 for some individual constant c.

τi is 〈F〉⌢σ⌢0 σ⌢1 · · ·⌢ σn−1 for some n-place function symbol F, with each σj equal to τk
for some k < j, depending upon j.

A term is a sequence appearing in some term construction sequence. Note the similarity
of this definition with that of sentential formula given in Chapter 1.

Frequently we will slightly simplify the notation for terms. Thus we might write
simply vj , or c, or Fσ0 . . . σn−1 for the above.

The following two propositons are very similar, in statement and proof, to Propositions
1.1 and 1.2. The first one is the principle of induction on terms.

Proposition 2.1. Let T be a collection of terms satisfying the following conditions:
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(i) Each variable is in T .
(ii) Each individual constant is in T .
(iii) If F is a function symbol of rank m and τ0, . . . , τm−1 ∈ T , then also Fτ0 . . . τm−1 ∈

T .

Then T consists of all terms.

Proof. Let τ be a term. Say that 〈σ0, . . . , σm−1〉 is a term construction sequence
and σi = τ . We prove by complete induction on j that σj ∈ T for all j < m; hence
τ ∈ T . Suppose that j < m and σk ∈ T for all k < j. If σj = 〈vs〉 for some s, then
σj ∈ T . If σj = 〈c〉 for some individual constant c, then sj ∈ T . Finally, suppose that
σj is Fσk0 . . . σkn−1

with each kt < j. Then σkt ∈ T for each t < n by the inductive
hypothesis, and it follows that σj ∈ T . This completes the inductive proof.

Proposition 2.2. (i) Every term is a nonempty sequence.
(ii) If τ is a term, then exactly one of the following conditions holds:

(a) τ is an individual constant.
(b) τ is a variable.
(c) There exist a function symbol F, say of rank m, and terms σ0, . . . , σm−1 such

that τ is Fσ0 . . . σm−1.
(iii) No proper initial segment of a term is a term.
(iv) If F and G are function symbols, say of ranks m and n respectively, and if

σ0, . . . , σm−1, τ0, . . . , τn−1 are terms, and if Fσ0 . . . σm−1 is equal to Gτ0, . . . τn−1, then
F = G, m = n, and σi = τi for all i < m.

Proof. (i): This is clear since any entry in a term construction sequence is nonempty.
(ii): Also clear.
(iii): We prove this by complete induction on the length of a term. So suppose that

τ is a term, and for any term σ shorter than τ , no proper initial segment of σ is a term.
We consider cases according to (ii).

Case 1. τ is an individual constant. Then τ has length 1, and any proper initial
segment of τ is empty; by (i) the empty sequence is not a term.

Case 2. τ is a variable. Similarly.
Case 3. There exist an m-ary function symbol F and terms σ0, . . . , σm−1 such that

τ is Fσ0 . . . σm−1. Suppose that ρ is a term which is a proper initial segment of τ . By
(i), ρ is nonempty, and the first entry of ρ is F. By (ii), ρ has the form Fξ0 . . . ξm−1 for
certain terms ξ0, . . . , ξm−1. Since both σ0 and ξ0 are shorter terms than τ , and one of
them is an initial segment of the other, the induction hypothesis gives σ0 = ξ0. Let i < m
be maximum such that σi = ξi. Since ρ is a proper initial segment of τ , we must have
i < m− 1. But σi+1 and ξi+1 are shorter terms than τ and one is a segment of the other,
so by the inductive hypthesis σi+1 = ξi+1, contradicting the choice of i.

(iv): F is the first entry of Fσ0 . . . σm−1 and G is the first entry of Gτ0, . . . τn−1, so
F = G. Then by (ii) we get m = n. By induction using (iii), each σi = τi.

We now give the general notion of a structure. This will be modified and extended for set
theory later. For a given first-order language L = (Rel, Fcn, Cn, rnk), an L -structure is
a quadruple A = (A,Rel′, F cn′, Cn′) such that A is a nonempty set (the universe of the
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structure), Rel′ is a function assigning to each relation symbol R a rnk(R)-ary relation
on A, i.e., a collection of rnk(R)-tuples of elements of A, Fcn′ is a function assigning to
each function symbol F a rnk(F)-ary opeation on A, i.e., a function assigning a value in A
to each rnk(F)-tuple of elements of A, and Cn′ is a function assigning to each individual

constant c an element of A. Usually instead of Rel′(R), Fcn′(F) and Cn′(c) we write RA,

FA, and cA.
Now we define the “meaning” of terms. This is a recursive definition, similar to the

definition of the values of sentential formulas under assignments:

Proposition 2.3. Let A be a structure, and a a function mapping ω into A. (A is the
universe of A.) Then there is a function F mapping the set of terms into A with the
following properties:

(i) F (vi) = ai for each i ∈ ω.

(ii) F (c) = cA for each individual constant c.

(iii) F (Fσ0 . . . σm−1) = FA(F (σ0), . . . , F (σm−1)) for every m-ary function symbol F
and all terms σ0, . . . , σm−1

Proof. An (A, a)-term sequence is a sequence 〈(τ0, b0), . . . , (τm−1, bm−1)〉 such that
each bi ∈ A and for each i < m one of the following conditions holds:

(1) τi is 〈vj〉 and bi = aj .

(2) τi is 〈c〉 for some individual constant c, and bi = cA.

(3) τi = 〈F〉⌢τ⌢k(0) · · ·⌢τk(n−1) and bi = FA(bk(0), . . . , bk(n−1)) for some n-ary function

symbol F and some k(0), . . . , k(n− 1) < i.

Now we claim

(4) For any term σ and any (A, a)-term sequences

〈(τ0, b0), . . . , (τm−1, bm−1)〉 and 〈(τ ′0, b′0), . . . , (τ ′n−1, b
′
n−1)〉

such that τm−1 = τ ′n−1 = σ we have bm−1 = b′n−1.

We prove (4) by induction on σ, thus using Proposition 2.1. If σ = vi, then bm−1 =

ai = bn−1. If σ is an individual constant c, then bm−1 = cA = b′n−1. Finally, if σ =
〈F〉⌢ρ0 · · ·⌢ ρp−1, then we have:

τm−1 = 〈F〉⌢τ⌢k(0) · · ·⌢τk(p−1) and bm−1 = FA(bk(0), . . . , bk(p−1));

τ ′n−1 = 〈F〉⌢τ ′⌢l(0) · · ·⌢τ ′l(p−1) and b′m−1 = FA(b′l(0), . . . , b
′
l(p−1))

with each k(s) and l(t) less than i. By Proposition 2.2(iv) we have τk(s) = τ ′l(s) for every
s < p. Now for every s < p we can apply the inductive hypothesis to τk(s) and the
sequences

〈(τ0, b0), . . . , (τk(s), bk(s)) and 〈(τ ′0, b′0), . . . , (τ ′l(s), b
′
l(s))
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to obtain bk(s) = b′l(s). Hence

bm−1 = FA(bk(0), . . . , bk(p−1)) = FA(b′l(0), . . . , b
′
l(p−1)) = b′n−1,

completing the inductive proof of (4).

(5) If 〈τ0, . . . , τm−1〉 is a term construction sequence, then there is an (A, a)-term sequence
of the form 〈(τ0, b0), . . . , (τm−1, bm−1〉.
We prove this by induction on m. For m = 1 we have two possibilities.

Case 1. τ0 is vj for some j ∈ ω. Then 〈(τ0, bj)〉 is as desired.

Case 2. τ0 is c, an individual constant. Then 〈(τ0, cA)〉 is as desired.

Now assume the statement for m − 1 ≥ 1. By the induction hypothesis there is an

(A, a)-term sequence of the form σ
def
= 〈(τ0, b0), . . . , (τm−2, bm−2)〉. Then we have three

possibilities:
Case 1. τm−1 is vj for some j ∈ ω. Then σ⌢〈(τm−1, bj)〉 is as desired.

Case 2. τm−1 is c, an individual constant. Then σ⌢〈(τm−1, c
A)〉 is as desired.

Case 3. τm−1 is 〈F〉⌢τ⌢
k(0) · · ·⌢τk(p−1) for some p-ary function symbol F with each

k(s) < i. Then σ⌢〈(τm−1,F
A(bk(0), . . . , bk(p−1))〉 is as desired.

So (5) holds.
Now we can define F as needed in the Proposition. Let σ be a term. Let 〈τ0, . . . , τm−1〉

be a term construction sequence with τm−1 = σ. By (5), let 〈(τ0, b0), . . . , (τm−1bm−1)〉 be
an (A, a)-term sequence. Then we define F (σ) = bm−1. This definition is unambigu-
ous by (4). Now we check the conditions of the Proposition. Let σ be a term, and let
〈(τ0, b0), . . . , (τm−1, bm−1)〉 be an (A, a)-term sequence with τm−1 = σ.

Case 1. σ = vj for some j ∈ ω. Then F (σ) = bm−1 = aj .

Case 2. σ = c for some individual constant c. Then F (σ) = bm−1 = cA.
Case 3. σ = 〈F〉⌢ρ⌢0 · · ·⌢ρp−1 with F a p-ary function symbol and each ρs a term.

Then there exist c(0), . . . , c(p − 1) < m − 1 such that ρs = τc(s) for every s < p. Then

F (τc(s)) = bc(s) = τAc(s) for each s < p, and hence

F (σ) = bm−1 = FA(bs(0), . . . , bs(p−1)) = FA(τAs(0), . . . , τ
A
s(p−1)) = FA(ρA0 , . . . , ρ

A
p−1).

With F as in Proposition 2.3, we denote F (σ) by σA(a). Thus

vAi (a) = ai;

cA(a) = cA;

(Fτ0 . . . τm−1)A(a) = FA(τA0 (a), . . . , τAm−1(a)).

Here vi is any variable, c any individual constant, and F any function symbol (of some
rank, say m).
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What σA(a) means intuitively is: replace the individual constants and function sym-
bols by the actual members of A and functions on A given by the structure A, and replace
the variables vi by coresponding elements ai of A; calculate the result, giving an element
of A.

Proposition 2.4. Suppose that τ is a term, A is a structure, a, b assignments, and

a(i) = b(i) for all i such that vi occurs in τ . Then τA(a) = τA(b).

Proof. By induction on τ :

cA(a) = cA = cA(b);

vAi (a) = a(i) = b(i) = vAi (b);

(Fσ0 . . . σm−1)A(a) = FA(σA0 (a), . . . , σAm−1(a))

= FA(σA0 (b), . . . , σAm−1(b))

= (Fσ0 . . . σm−1)A(b).

The last step here is the induction step (many of them, one for each function symbol and
associated terms). The inductive assumption is that a(i) = b(i) for all i for which vi occurs
in Fσ0 . . . σm−1; hence also for each j < m, a(i) = b(i) for all i for which vi occurs in σj ,
so that the inductive hypothesis can be applied.

This proposition enables us to simplify our notation a little bit. If n is such that each

variable occurring in τ has index less than n, then in the notation ϕA(a) we can just use
the first n entries of a rather than the entire infinite sequence.

We turn to the definition of formulas. For any terms σ, τ we define σ = τ to be the sequence
〈3〉⌢σ⌢τ . Such a sequence is called an atomic equality formula. An atomic non-equality
formula is a sequence of the form 〈R〉⌢σ⌢0 · · ·⌢ σm−1 where R is an m-ary relation symbol
and σ0, . . . σm−1 are terms. An atomic formula is either an atomic equality formula or an
atomic non-equality formula.

We define ¬, a function assigning to each sequence ϕ of symbols of a first-order

language the sequence ¬ϕ def
= 〈1〉⌢ϕ. → is the function assigning to each pair (ϕ, ψ) of

sequences of symbols the sequence ϕ → ψ
def
= 〈2〉⌢ϕ⌢ψ. ∀ is the function assigning to

each pair (i, ϕ) with i ∈ ω and ϕ a sequence of symbols the sequence ∀viϕ def
= 〈4, 5i+5〉⌢ϕ.

A formula construction sequence is a sequence 〈ϕ0, . . . , ϕm−1〉 such that for each i < m
one of the following holds:

(1) ϕi is an atomic formula.

(2) There is a j < i such that ϕi is ¬ϕj
(3) There are j, k < i such that ϕi is ϕj → ϕk.

(4) There exist j < i and k ∈ ω such that ϕi is ∀vkϕj .
A formula is an expression which appears as an entry in some formula construction se-
quence.
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The following is the principle of induction on formulas.

Proposition 2.5. Suppose that Γ is a set of formulas satisfying the following conditions:
(i) Every atomic formula is in Γ.
(ii) If ϕ ∈ Γ, then ¬ϕ ∈ Γ.
(iii) If ϕ, ψ ∈ Γ, then (ϕ→ ψ) ∈ Γ.
(iv) If ϕ ∈ Γ and i ∈ ω, then ∀viϕ ∈ Γ.

Then Γ is the set of all formulas.

Proof. It suffices to take any formula construction sequence 〈ϕ0, . . . , ϕm−1〉 and show
by complete induction on i that ϕi ∈ Γ for all i ∈ ω. We leave this as an exercise.

Proposition 2.6. (i) Every formula is a nonempty sequence.
(ii) If ϕ is a formula, then exactly one of the following conditions holds:

(a) ϕ is an atomic equality formula, and there are terms σ, τ such that ϕ is σ = τ .
(b) ϕ is an atomic non-equality formula, and there exist a positive integer m, a

relation symbol R of rank m, and terms σ0, . . . , σm−1, such that ϕ is Rσ0 . . . σm−1.
(c) There is a formula ψ such that ϕ is ¬ψ.
(d) There are formulas ψ, χ such that ϕ is ψ → χ.
(e) There exist a formula ψ and a natural number i such that ϕ is ∀viψ.

(iii) No proper initial segment of a formula is a formula.
(iv) (a) If ϕ is an atomic equality formula, then there are unique terms σ, τ such that

ϕ is σ = τ .
(b) If ϕ is an atomic non-equality formula, then there exist a unique positive integer

m, a unique relation symbol R of rank m, and unique terms σ0, . . . , σm−1, such that ϕ is
Rσ0 . . . σm−1.

(c) If ϕ is a formula and the first symbol of ϕ is 1, then there is a unique formula
ψ such that ϕ is ¬ψ.

(d) If ϕ is a formula and the first symbol of ϕ is 2, then there are unique formulas
ψ, χ such that ϕ is ψ → χ.

(e) If ϕ is a formula and the first symbol of ϕ is 4, then there exist a unique natural
number i and a unique formula ψ such that ϕ is ∀viψ.

Proof. (i): First note that this is true of atomic formulas, since an atomic formula
must have at least a first symbol 3 or some relation symbol. Knowing this about atomic
formulas, any entry in a formula construction sequence is nonempty, since the entry is
either an atomic formula or else begins with 1,2, or 4.

(ii): This is true on looking at any entry in a formula construction sequence: either
the entry begins with 3 or a relation symbol and hence (a) or (b) holds, or it begins with
1, 2, or 4, giving (c), (d) or (e). Only one of (a)–(e) holds because of the first symbol in
the entry.

(iii): We prove this by complete induction on the length of the formula. Thus suppose
that ϕ is a formula of length m, and for any formula ψ of length less than m, no proper
initial segment of ψ is a formula. Suppose that χ is a proper initial segment of ϕ and χ is
a formula; we want to get a contradiction. By (ii) we have several cases.
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Case 1. ϕ is an atomic equality formula σ = τ for certain terms σ, τ . Thus ϕ is
〈3〉⌢σ⌢τ . Since χ is a formula which begins with 3 (since χ is an initial segment of ϕ and
is nonempty by (i)), (ii) yields that χ is 〈3〉⌢ρ⌢ξ for some terms ρ, ξ. Hence σ⌢ψ = ρ⌢ξ.
Thus σ is an initial segment of ρ or ρ is an initial segment of σ. By Proposition 2.2(iii) it
follows that σ = ρ. Then also τ = ξ, so ϕ = χ, contradiction.

Case 2. ϕ is an atomic non-equality formula Rσ0 . . . σm−1 for some m-ary relation
symbol R and some terms σ0, . . . , σm−1. Then χ is a formula which begins with R, and so
there exist terms τ0, . . . , τm−1 such that χ is Rτ0 . . . τm−1. By induction using Proposition
2.2(iii), σi = τi for all i < m, so ϕ = χ, contradiction.

Case 3. ϕ is ¬ψ for some formula ψ. Then 1 is the first entry of χ, so by (ii) χ has
the form ¬ρ for some formula ρ. Thus ρ is a proper initial segment of ψ, contradicting the
inductive hypothesis, since ψ is shorter than ϕ.

Case 4. ϕ is ψ → θ for some formulas ψ, θ, i.e., it is 〈2〉⌢ψ⌢θ. Then χ starts with 2,
so by (ii) χ has the form 〈2〉⌢σ⌢τ for some formulas σ, τ . Now both ψ and σ are shorter
than ϕ, and one is an initial segment of the other. So ψ = σ by the inductive assumption.
Then τ is a proper initial segment of θ, contradicting the inductive assumption.

Case 5. ϕ is 〈4, 5(i+ 1)〉⌢ψ for some i ∈ ω and some formula ψ. Then by (ii), χ is
〈4, 5(i+ 1)〉⌢θ for some formula θ. So θ is a proper initial segment of ψ, contradiction.

(iv): These conditions follow from Proposition 2.2(iii) and (iii).

Now we come to a fundamental definition connecting language with structures. Again this
is a definition by recursion; it is given in the following proposition. First a bit of notation.
If a : ω → A, i ∈ ω, and s ∈ A, then by ais we mean the sequence which is just like a
except that ais(i) = s.

Proposition 2.7. Suppose that A is an L -structure. Then there is a function G assigning
to each formula ϕ and each sequence a : ω → A a value G(ϕ, a) ∈ {0, 1}, such that

(i) For any terms σ, τ , G(σ = τ, a) = 1 iff σA(a) = τA(a).
(ii) For each m-ary relation symbol R and terms σ0, . . . , σm−1, G(Rσ0 . . . σm−1, a) =

1 iff 〈σA0 (a), . . . , σAm−1(a)〉 ∈ RA.
(iii) For every formula ϕ, G(¬ϕ, a) = 1 −G(ϕ, a).
(iv) For all formulas ϕ, ψ, G(ϕ→ ψ, a) = 0 iff G(ϕ, a) = 1 and G(ψ, a) = 0.
(v) For all formulas ϕ and any i ∈ ω, G(∀viϕ, a) = 1 iff for every s ∈ A, G(ϕ, ais) = 1.

Proof. An (A, a)-formula sequence is a sequence 〈(ϕ0, b0), . . . , (ϕm−1, bm−1)〉 such

that each bs is a function mapping M
def
= {a : a : ω → A} into {0, 1} and for each i < m

one of the following holds:

(1) ϕi is an atomic equality formula σ = τ , and ∀a ∈M [bi(a) = 1 iff σA(a) = τA(a)].

(2) ϕi is an atomic nonequality formula Rσ0 . . . σm−1, and

∀a ∈M [bi(a) = 1 iff 〈σA0 (a), . . . , σAm−1(a)〉 ∈ RA].

(3) There is a j < i such that ϕi = ¬ϕj , and ∀a ∈M [bi(a) = 1 − bj(a)].
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(4) There are j, k < i such that ϕi = ϕj → ϕk, and ∀a ∈ M [bi(a) = 0 iff bj(a) = 1 and
bk(a) = 0].

(5) There are j < i and k ∈ ω such that ϕi = ∀vkϕj , and ∀a ∈ M [bi(a) = 1 iff ∀u ∈
A[bj(a

k
u) = 1]].

Now we claim

(6) For any formula ψ and any (A, a)-formula sequences

〈(ϕ0, b0), . . . , (ϕm−1, bm−1)〉 and 〈(ϕ′
0, b

′
0), . . . , (ϕ′

n−1, b
′
n−1)〉

such that ϕm−1 = ϕ′
n−1 = ψ we have bm−1 = b′n−1.

We prove (6) by induction on ψ, thus using Proposition 2.5. First suppose that ψ is an
atomic equality formula σ = τ . Then the desired conclusion is clear. Similarly for atomic
nonequality formulas. Now suppose that ψ is ¬χ. Then by Proposition 2.6(c) there are
j < m and k < n such that χ = ϕj = ϕ′

k. By the inductive hypothesis we have bj = b′k,
and hence ∀a ∈M [bm−1(a) = 1− bj(a) = 1− b′k(a) = bn−1(a)], so that bm−1 = b′n−1. Next
suppose that ψ is χ → θ. Then by Proposition 2.6(d) there are j, k < m − 1 such that
χ = ϕj and θ = ϕk, and there are s, t < n− 1 such that χ = ϕ′

s and θ = ϕ′
t. Then bj = b′s

and bk = b′t by the inductive hypothesis. Hence for any a ∈M ,

bm−1(a) = 0 iff bj(a) = 1 and bk = 0 iff b′s = 1 and b′t = 0 iff b′n−1(a) = 0.

Thus bm−1 = b′n−1. Finally, suppose that ψ is ∀vkθ. Then by Proposition 2.6(e) there are
j, s < i such that ϕj = θ and ϕ′

s = θ. So by the inductive hypothesis bj = b′s. Hence for
any a ∈M we have

bm−1(a) = 1 iff for every u ∈ A[bj(a
k
u) = 1]

iff for every u ∈ A[b′s(a
k
u) = 1]

iff b′n−1(a) = 1.

Thus bm−1 = b′n−1, finishing the proof of (6).

(7) If 〈ϕ0, . . . , ϕm−1〉 is a formula construction sequence, then there is an (A, a)-formula
sequence of the form 〈(ϕ0, b0), . . . , (ϕm−1, bm−1)〉.
We prove (7) by induction on m. For m = 1 we have two possibilities.

Case 1. ϕ0 is an atomic equality formula σ = τ . Let b0(a) = 1 iff σA(a) = τA(a).
Case 2. ϕ0 is an atomic nonequality formula Rσ0 . . . , xm−1. Let b0(a) = 1 iff

〈σA0 (a), . . . , σAm−1〉 ∈ RA.

Now assume the statement in (7) for m− 1 ≥ 1. By the inductive hypothesis there is an

(A, a)-formula sequence of the form ψ
def
= 〈(ϕ0, b0), . . . , (ϕm−2, bm−2)〉. Then we have these

possibilities for ϕm−1.

Case 1. ϕm−1 is σ = τ for some terms σ, τ . Define bm−1(a) = 1 iff σA(a) = τA(a).
Then ψ⌢〈(ϕm−1, bm−1)〉 is as desired.
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Case 2. ϕm−1 is Rσ0 . . . σp−1 for some terms σ0, . . . , σp−1. Define bm−1(a) = 1 iff

〈σA0 (a), . . . , σAp−1(a)〉 ∈ RA. Then ψ⌢〈(ϕm−1, bm−1)〉 is as desired.
Case 3. ϕm−1 is ¬ϕi with i < m − 1. Define bm−1(a) = 1 − bi(a) for any a. Then

ψ⌢〈(ϕm−1, bm−1)〉 is as desired.
Case 4. ϕm−1 is ϕi → ϕj with i, j < m − 1. Define bm−1(a) = 0 iff bi(a) = 1 and

bj(a) = 0. Then ψ⌢〈(ϕm−1, bm−1)〉 is as desired.
Case 5. ϕm−1 is ∀vkϕi with i < m− 1. Define bm−1(a) iff for all u ∈ A, bi(a

k
u) = 1.

Then ψ⌢〈(ϕm−1, bm−1)〉 is as desired.

This completes the proof of (7).
Now we can define the function G needed in the Proposition. Let ψ be a formula

and a : ω → A. Let 〈ϕ0, . . . , ϕm−1〉 be a formula construction sequence with ϕm−1 = ψ.
By (7) let 〈(ϕ0, b0), . . . , (ϕm−1, bm−1)〉 be an (A, a)-formula sequence. Then we define
G(ψ, a) = bm−1(a). The conditions in the Proposition are clear.

With G as in Proposition 2.7, we write A |= ϕ[a] iff G(ϕ, a) = 1. A |= ϕ[a] is read: “A is
a model of ϕ under a” or “A models ϕ under a” or “ϕ is satisfied by a in A” or “ϕ holds
in A under the assignment a”. In summary:

A |= (σ = τ)[a] iff σA(a) = τA(b). Here σ and τ are terms.

A |= (Rσ0 . . . σm−1)[a] iff the m-tuple 〈σA0 , . . . , σAm−1〉 is in the relation RA. Here R is an
m-ary relation symbol, and σ0, . . . , σm−1 are terms.

A |= (¬ϕ)[a] iff it is not the case that A |= ϕ[a].

A |= (ϕ → ψ)[a] iff either it is not true that A |= ϕ[a], or it is true that A |= ψ[a].
(Equivalently, iff (A |= ϕ[a] implies that A |= ψ[a]).

A |= (∀viϕ)[a] iff A |= ϕ[ais] for every s ∈ A.

We define some additional logical notions:

ϕ ∨ ψ is the formula ¬ϕ→ ψ; ϕ ∨ ψ is called the disjunction of ϕ and ψ.

ϕ ∧ ψ is the formula ¬(ϕ→ ¬ψ); ϕ ∧ ψ is called the conjunction of ϕ and ψ.

ϕ↔ ψ is the formula (ϕ→ ψ) ∧ (ψ → ϕ); ϕ↔ ψ is called the equivalence between ϕ and
ψ.

∃viϕ is the formula ¬∀vi¬ϕ; ∃ is the existential quantifier.

These notions mean the following.

Proposition 2.8. Let A be a structure and a : ω → A.
(i) A |= (ϕ ∨ ψ)[a] iff A |= ϕ[a] or A |= ψ[a] (or both).
(ii) A |= (ϕ ∧ ψ)[a] iff A |= ϕ[a] and A |= ψ[a].
(iii) A |= (ϕ↔ ψ)[a] iff (A |= ϕ[a] iff A |= ψ[a]).
(iv) A |= ∃viϕ[a] iff there is a b ∈ A such that A |= ϕ[aib].
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Proof. The proof consists in reducing the statements to ordinary mathematical usage.
(i):

A |= (ϕ ∨ ψ)[a] iff A |= (¬ϕ→ ψ)[a]

iff either it is not true that A |= (¬ϕ)[a] or it is true that A |= ψ[a]

iff not(not(A |= ϕ[a])) or A |= ψ[a]

iff A |= ϕ[a] or A |= ψ[a].

(ii):

A |= (ϕ ∧ ψ)[a] iff not(A |= (ϕ→ ¬ψ)[a])

iff not(not(A |= ϕ[a]) or A |= ¬ψ[a])

iff not(not(A |= ϕ[a]) or not(A |= ψ[a]))

iff A |= ϕ[a] and A |= ψ[a].

(iii):

A |= (ϕ↔ ψ)[a] iff A |= ((ϕ→ ψ) ∧ (ψ → ψ))[a]

iff A |= ((ϕ→ ψ)[a] and A |= (ψ → ψ))[a]

iff (A |= ϕ[a] implies that A |= ψ[a]) and

(A |= ψ[a] implies that A |= ϕ[a])

iff (A |= ϕ[a] iff A |= ψ[a]).

(iv):

A |= ∃viϕ[a] iff A |= ¬∀vi¬ϕ[a]

iff not(for all b ∈ A(A |= ¬ϕ[aib]))

iff not(for all b ∈ A(not(A |= ϕ[aib]))

iff there is a b ∈ A such that A |= ϕ[aib].

We say that A is a model of ϕ iff A |= ϕ[a] for every a : ω → A. If Γ is a set of formulas,
we write Γ |= ϕ iff every structure which models each member of Γ also models ϕ. |= ϕ
means that every structure models ϕ. ϕ is then called universally valid.

Now we want to apply the material of Chapter 1 concerning sentential logic. By definition,
a tautology in a first-order language is a formula ψ such that there exist formulas ϕ0, ϕ1, . . .
and a sentential tautology χ such that ψ is obtained from χ by replacing each symbol Si
occurring in χ by ϕi, for each i < ω.

Theorem 2.9. If ψ is a tautology in a first-order language, then ψ holds in every structure
for that language.

Proof. Let A be any structure, and b : ω → A any assignment. We want to show
that A |= ψ[b]. Let formulas ϕ0, ϕ1, . . . , χ be given as in the above definition. For each
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sentential formula θ, let θ′ be the first-order formula obtained from θ by replacing each
sentential variable Si by ϕi. Thus χ′ is ψ. We define a sentential assignment f by setting,
for each i ∈ ω,

f(i) =

{

1 if A |= ϕi[b],
0 otherwise.

Then we claim:

(*) For any sentential formula θ, A |= θ′[b] iff θ[f ] = 1.

We prove this by induction on θ:

If θ is Si, then θ′ is ϕi, and our condition holds by definition. If inductively θ is ¬τ , then
θ′ is ¬τ ′, and

A |= θ′[b] iff not(A |= τ ′[b])

iff not(τ [f ] = 1)

iff τ [f ] = 0

iff θ[f ] = 1.

Finally if inductively θ is τ → ξ, then θ′ is τ ′ → ξ′, and

A |= θ′[b] iff (A |= τ ′[b] implies that A |= ξ′[b]

iff τ [f ] = 1 implies that ξ[f ] = 1

iff θ[f ] = 1.

This finishes the proof of (*).
Applying (*) to χ, we get A |= χ′[b], i.e., A |= ψ[b].

EXERCISES

E2.1. Give an exact definition of a language for the structure (ω,<).

E2.2. Give an exact definition of a language for the set A (no individual constants, function
symbols, or relation symbols).

E2.3. Describe a term construction sequence which shows that + • v0v0v1 is a term in the
language for (R,+, ·, 0, 1, <).

E2.4. In any first-order language, show that the sequence 〈v0, v0〉 is not a term. Hint: use
Proposition 2.2.

E2.5. In the language for (ω, S, 0,+, ·), show that the sequence 〈+, v0, v1, v2〉 is not a term.
Here S(i) = i+ 1 for any i ∈ ω. Hint: use Proposition 2.2.

E2.6. Prove Proposition 2.5.

E2.7. Show how the structure (ω, S, 0,+, ·) can be put in the general framework of struc-
tures.
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E2.8. Prove that in the language for the structure (ω,+), a term has length m iff m is
odd.

E2.9. Give a formula ϕ in the language for (Q,+, ·) such that for any a : ω → Q,
(Q,+, ·) |= ϕ[a] iff a0 = 1.

E2.10. Give a formula ϕ which holds in a structure, under any assignment, iff the structure
has at least 3 elements.

E2.11. Give a formula ϕ which holds in a structure, under any assignment, iff the structure
has exactly 4 elements.

E2.12. Write a formula ϕ in the language for (ω,<) such that for any assignment a,
(ω,<) |= ϕ[a] iff a0 < a1 and there are exactly two integers between a0 and a1.

E2.13. Prove that the formula

v0 = v1 → (Rv0v2 → Rv1v2)

is universally valid, where R is a binary relation symbol.

E2.14. Give an example showing that the formula

v0 = v1 → ∀v0(v0 = v1)

is not universally valid.

E2.15. Prove that ∃v0∀v1ϕ→ ∀v1∃v0ϕ is universally valid.
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3. Proofs

The purpose of this chapter is give the definition of a mathematical proof, and give the
simplest proofs which will be needed in proving the completeness theorem in the next
chapter. Given a set Γ of formulas in a first-order language, and a formula ϕ in that
language, we explain what it means to have a proof of ϕ from Γ.

The following formulas are the logical axioms. Here ϕ, ψ, χ are arbitrary formulas
unless otherwise indicated.

(L1a) ϕ→ (ψ → ϕ).
(L1b) [ϕ→ (ψ → χ)] → [(ϕ→ ψ) → (ϕ→ χ)].
(L1c) (¬ϕ→ ¬ψ) → (ψ → ϕ).
(L2) ∀vi(ϕ→ ψ) → (∀viϕ→ ∀viψ), for any i ∈ ω.
(L3) ϕ→ ∀viϕ for any i ∈ ω such that vi does not occur in ϕ.
(L4) ∃vi(vi = σ) if σ is a term and vi does not occur in σ.
(L5) σ = τ → (σ = ρ→ τ = ρ), where σ, τ, ρ are terms.
(L6) σ = τ → (ρ = σ → ρ = τ), where σ, τ, ρ are terms.
(L7) σ = τ → Fξ0 . . . ξi−1σξi+1 . . . ξm−1 = Fξ0 . . . ξi−1τξi+1 . . . ξm−1, where F is an m-ary
function symbol, i < m, and σ, τ, ξ0, . . . , ξi−1, ξi+1, . . . ξm−1 are terms.
(L8) σ = τ → (Rξ0 . . . ξi−1σξi+1 . . . ξm−1 → Rξ0 . . . ξi−1τξi+1 . . . ξm−1), where R is an
m-ary relation symbol, i < m, and σ, τ, ξ0, . . . , ξi−1, ξi+1, . . . ξm−1 are terms.

Theorem 3.1. Every logical axiom is universally valid.

Proof. (L1a–c): Universally valid by Theorem 2.9.
(L2): Assume that

(1) A |= ∀vi(ϕ→ ψ)[a] and
(2) A |= ∀viϕ[a];

We want to show that A |= ∀viψ[a]. To this end, take any b ∈ A; we want to show that
A |= ϕ[aib]. Now by (1) we have A |= (ϕ→ ψ)[aib], hence A |= ϕ[aib] implies that A |= ψ[aib].
Now by (2) we have A |= ϕ[aib], so A |= ψ[aib].

(L3): We prove by induction on ϕ that if vi does not occur in ϕ, and if a, b : ω → A
are such that a(j) = b(j) for all j 6= i, then A |= ϕ[a] iff A |= ϕ[b]. This will imply that
(L3) is universally valid.

• ϕ is σ = τ . Thus vi does not occur in σ or in τ . Then

A |= (σ = τ)[a] iff σA(a) = τA(a)

iff σA(b) = τA(b) by Proposition 2.4

iff A |= (σ = τ)[b].

• ϕ is Rσ0 . . . σm−1 for some m-ary relation symbol and some terms σ0, . . . , σm−1. We
leave this case to an exercise.
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• ϕ is ¬ψ (inductively).

A |= ϕ[a] iff not(A |= ψ[a])

iff not(A |= ψ[b]) (inductive hypothesis)

iff A |= ϕ[b].

• ϕ is ψ → χ (inductively).

A |= ϕ[a] iff (A |= ψ[a] implies that A |= χ[a])

iff (A |= ψ[b] implies that A |= χ[b])

(inductive hypothesis)

iff A |= ϕ[b].

• ϕ is ∀vkψ (inductively). By symmetry it suffices to prove just one direction. Suppose
that A |= ϕ[a]; we want to show that A |= ϕ[b]. To this end, suppose that u ∈ A; we want
to show that A |= ψ[bku]. Since A |= ϕ[a], we have A |= ψ[aku]. Now k 6= i, since vi does
not occur in ϕ. Hence (aku)(j) = (bku)(j) for all j 6= i. Hence A |= ψ[bku] by the inductive
hypothesis, as desired.

This finishes our proof by induction of the statement made above. Now assume that
A |= ϕ[a] and u ∈ A; we want to show that A |= ϕ[aiu]. This holds by the statement above.

This finishes the proof of (L3).
(L4): Suppose that σ is a term and vi does not occur in σ. To prove that A |=

(∃vi(vi = σ))[a], we want to find u ∈ A such that A |= (vi = σ)[aiu]. Let u = σA(a). Then

(vi)
A[aiu] = u = σA(a) = σA(aiu)

by Proposition 2.4 (since vi does not occur in σ, hence a(j) = aiu(j) for all j such that vj
occurs in σ). Hence A |= (vi = σ)[aiu].

(L5): Assume that A |= (σ = τ)[a] and A |= (σ = ρ)[a]. Then σA(a) = τA(a) and

σA(a) = ρA(a), so τA(a) = ρA(a), hence A |= (τ = ρ)[a].
(L6): Left as an exercise.

(L7): Assume that A |= (σ = τ)[a]. Then σA(a) = τA(a), and so

(Fξ0 . . . ξi−1σξi+1 . . . ξm−1)A(a) = FA(ξA0 (a), . . . , ξAi−1(a), σA(a), ξAi+1(a), . . . , ξAm−1(a))

= FA(ξA0 (a), . . . , ξAi−1(a), τA(a), ξAi+1(a), . . . , ξAm−1(a))

= (Fξ0 . . . ξi−1τξi+1 . . . ξm−1)A(a);

it follows that A |= (Fξ0 . . . ξi−1σξi+1 . . . ξm−1 = Fξ0 . . . ξi−1τξi+1 . . . ξm−1)[a], hence (L7)
is universally valid.

(L8): Left as an exercise.

Now let Γ be a set of formulas. A Γ-proof is a finite sequence 〈ϕ0, . . . , ϕm−1〉 of formulas
such that for each i < m one of the following conditions holds:
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(I1) ϕi is a logical axiom
(I2) ϕi ∈ Γ.
(I3) (modus ponens) There are j, k < i such that ϕj is the formula ϕk → ϕi.
(I4) (generalization) There exist j < i and k ∈ ω such that ϕi is the formula ∀vkϕj .
Then we say that Γ proves ϕ, in symbols Γ ⊢ ϕ, provided that ϕ is an entry in some
Γ-proof. We write ⊢ ϕ in place of ∅ ⊢ ϕ.

Theorem 3.2. If Γ ⊢ ϕ, then Γ |= ϕ.

Proof. Recall the notion Γ |= ϕ from Chapter 2: it says that for every structure A
for the implicit language we are dealing with, if A |= ψ[a] for all ψ ∈ Γ and all a : ω → A,
then A |= ϕ[a] for every a : ω → A. Now it suffices to take a Γ-proof 〈ψ0, . . . , ψm−1〉 and
prove by complete induction on i that Γ |= ψi for each i < m.

Case 1. ψi is a logical axiom. Then the result follows by Theorem 3.1.
Case 2. ψi ∈ Γ. Obviously then Γ |= ψi.
Case 3. There are j, k < i such that ϕj is ϕk → ϕi. Suppose that A is a model of Γ

and a : ω → A. Then A |= ϕk[a] by the inductive hypothesis, and also A |= (ϕk → ϕi)[a]
by the inductive hypothesis. Thus A |= ϕk[a] implies that A |= ϕi[a], so A |= ϕi[a].

Case 3. There exist j < i and k ∈ ω such that ϕi is ∀vkϕj . Given u ∈ A, we want to
show that A |= ϕj [a

k
u]; but this follows from the inductive hypothesis.

One form of the completeness theorem, proved in the next chapter, is that, conversely,
Γ |= ϕ implies that Γ ⊢ ϕ.

In this chapter we will show that many definite formulas ϕ are such that ⊢ ϕ. We begin
with tautologies.

Lemma 3.3. ⊢ ϕ for any first-order tautology ϕ.

Proof. Let χ be a sentential tautology, and let 〈ψ0, ψ1, . . .〉 be a sequence of first-order
formulas such that ϕ is obtained from χ by replacing each sentential variable Si by ψi. For
each sentential formula θ, let θ′ be obtained from θ by replacing each sentential variable
Si by ψi. By Theorem 1.16, ⊢ χ (in the sentential sense). Hence there is a sentential
proof 〈θ0, . . . , θm〉 with θm = χ. We claim that 〈θ′0, . . . , θ′m〉 is a first-order proof. Since
θ′m = χ′ = ϕ, this will prove the lemma. If i ≤ m and θi is a (sentential) axiom, then θ′i is
the corresponding first-order axiom:

[ρ→ (σ → ρ)]′ = [ρ′ → (σ′ → ρ′)];

[[ρ→ (σ → τ ] → [(ρ→ σ) → (ρ→ τ)]]′ =

[[ρ′ → (σ′ → τ ′)] → [(ρ′ → σ′) → (ρ′ → τ ′)]];

[(¬ρ→ ¬σ) → (σ → ρ)]′ = [(¬ρ′ → ¬σ′) → (σ′ → ρ′)].

If j, k < i and θk is θj → θi, then θ′k is θ′j → θ′i.

We proceed with simple theorems concerning equality.

Proposition 3.4. ⊢ σ = σ for any term σ.
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Proof. The following is a ∅-proof; on the left is the entry number, and on the right
a justification. Let vi be a variable not occurring in σ.

(1) vi = σ → (vi = σ → σ = σ) (L5)
(2) [vi = σ → (vi = σ → σ = σ)] → [¬(σ = σ) → ¬(vi = σ)] (taut.)
(3) ¬(σ = σ) → ¬(vi = σ) ((1), (2), MP)
(4) ∀vi[¬(σ = σ) → ¬(vi = σ)] ((3), gen.)
(5) ∀vi[¬(σ = σ) → ¬(vi = σ)] → [∀vi¬(σ = σ) → ∀vi¬(vi = σ)] (L2)
(6) ∀vi¬(σ = σ) → ∀vi¬(vi = σ) (4), (5), MP
(7) ¬(σ = σ) → ∀vi¬(σ = σ) (L3)
(8) (7) → [(6) → [¬(σ = σ) → ∀vi¬(vi = σ)] (taut.)
(9) (6) → [¬(σ = σ) → ∀vi¬(vi = σ)] (7), (8), MP
(10) ¬(σ = σ) → ∀vi¬(vi = σ) (6), (9), MP
(11) (10) → [∃vi(vi = σ) → σ = σ] (taut.)
(12) ∃vi(vi = σ) → σ = σ (10), (11), MP
(13) ∃vi(vi = σ) (L4)
(14) (13) → [(12) → σ = σ] (L1)
(15) (12) → σ = σ ((13), (14), MP)
(16) σ = σ ((12), (15), MP)

Proposition 3.5. ⊢ σ = τ → τ = σ for any terms σ, τ .

Proof. By (L5) we have

⊢ σ = τ → (σ = σ → τ = σ);

and by Proposition 3.4 we have ⊢ σ = σ. Now

σ = σ → ([σ = τ → (σ = σ → τ = σ)] → (σ = τ → τ = σ))

is a tautology, so ⊢ σ = τ → τ = σ.

Proposition 3.6. ⊢ σ = τ → (τ = ρ→ σ = ρ) for any terms σ, τ, ρ.

Proof. By (L5), ⊢ τ = σ → (τ = ρ→ σ = ρ). By Proposition 3.5, ⊢ σ = τ → τ = σ.
Now

(σ = τ → τ = σ) → ([τ = σ → (τ = ρ→ σ = ρ)] → [σ = τ → (τ = ρ→ σ = ρ)])

is a tautology, so ⊢ σ = τ → (τ = ρ→ σ = ρ).

We now give several results expressing the principle of substitution of equals for equals.
The main fact is expressed in Theorem 3.16, which says that under certain conditions the
formula σ = τ → (ϕ ↔ ψ) is provable, where ψ is obtained from ϕ by replacing some
occurrences of σ by τ .
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Lemma 3.7. If σ and τ are terms, ϕ and ψ are formulas, vi is a variable not occurring
in σ or τ , and ⊢ σ = τ → (ϕ→ ψ), then ⊢ σ = τ → (∀viϕ→ ∀viψ).

Proof.

(1) ⊢ ∀vi[σ = τ → (ϕ→ ψ)] (hypothesis, gen.)
(2) ⊢ ∀vi(σ = τ) → ∀vi(ϕ→ ψ)] (from (1), using (L2))
(3) ⊢ ∀vi(ϕ→ ψ) → (∀viϕ→ ∀viψ) ((L2))
(4) ⊢ σ = τ → ∀vi(σ = τ). ((L3))

Now putting (2)–(4) together with a tautology gives the lemma.

To proceed further we need to discuss the notion of free and bound occurrences of variables
and terms. This depends on the notion of a subformula. Recall that a formula is just a
finite sequence of positive integers, subject to certain conditions. Atomic equality formulas
have the form σ = τ for some terms σ, τ , and σ = τ is defined to be 〈3〉⌢σ⌢τ . Atomic non-
equality formulas have the form Rσ0 . . . σm−1 for some m, some m-ary relation symbol R,
and some terms σ0, . . . , σm−1. R is actually some positive integer k greater than 5 and not
divisible by 5, and Rσ0 . . . σm−1 is the sequence 〈k〉⌢σ⌢0 · · ·⌢ σm−1. Non-atomic formulas
have the form

¬ϕ = 〈1〉⌢ϕ,
ϕ→ ψ = 〈2〉⌢ϕ⌢ψ, or
∀vsϕ = 〈4, 5(s+ 1)〉⌢ϕ.

Thus every formula begins with one of the integers 1,2,3,4 or some positive integer greater
than 5 not divisible by 5 which is a relation symbol. This helps motivate the following
propositions.

Proposition 3.8. If σ = 〈σ0, . . . , σk−1〉 is a term, then each σi is either of the form 5m
with m a positive integer, or it is an odd integer greater than 5 which is a function symbol
or individual constant.

Proof. We prove this by induction on σ, thus using Proposition 2.1. The proposition
is obvious if σ is a variable or individual constant. Suppose that F is a function symbol of
rank m, τ0, . . . , τm−1 are terms, and σ is Fτ0 . . . τm−1, where we assume the truth of the
proposition for τ0, . . . , τm−1. Suppose that i < k. If i = 0, then σi is F, a function symbol.
If i > 0, then σi is an entry in some τj, and the desired conclusion follows by the inductive
hypothesis.

Proposition 3.9. Let ϕ = 〈ϕ0, . . . ϕk−1〉 be a formula, suppose that i < k, and ϕi is one
of the integers 1,2,3,4 or a positive integer greater than 5 which is a relation symbol. Then
there is a unique segment 〈ϕi, ϕi+1, . . . , ϕj〉 of ϕ which is a formula.

Proof. We prove this by induction on ϕ, thus using Proposition 2.5. We assume the
hypothesis of the proposition. First suppose that ϕ is an atomic equality formula σ = τ
with σ and τ terms. Thus σ = τ is the sequence 〈1〉⌢σ⌢τ . Now by Proposition 2.2(ii), no
entry of a term is among the integers 1, 2, 3, 4 or is a positive integer greater than 5 which
is a relation symbol. It follows from the assumption about i that i = 0, and hence the
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desired segment of ϕ is ϕ itself. It is unique by Proposition 2.6(iii). Second suppose that
ϕ is an atomic non-equality formula Rσ0 . . . σm−1 with R an m-ary relation symbol and
σ0, . . . , σm−1 terms. This is very similar to the first case. Rσ0 . . . σm−1 is the sequence
〈R〉⌢σ⌢0 · · ·⌢ σm−1. By Proposition 2.2(ii) i must be 0, and hence the desired segment of
ϕ is ϕ itself. It is unique by Proposition 2.6(iii).

Now assume inductively that ϕ is ¬ψ; so ϕ is 〈1〉⌢ψ. If i = 0, then ϕ itself is
the desired segment, unique by Proposition 2.6(iii). If i > 0, then ϕi = ψi−1, where
ψ = 〈ψ0, . . . , ψk−1〉. By the inductive hypothesis there is a segment 〈ψi−1, ψi, . . . , ψj〉 of
ψ which is a formula. This gives a segment 〈ϕi, ϕi+1, . . . , ϕj+1〉 of ϕ which is a formula; it
is unique by Proposition 2.6(iii).

Assume inductively that ϕ is ψ → χ for some formulas ψ, χ. So ϕ is 〈2〉⌢ψ⌢χ. If
i = 0, then ϕ itself is the required segment, unique by Proposition 2.6(iii). Now suppose
that i > 0. Now we have ψ = 〈ϕ1, . . . , ϕm〉 and χ = 〈ϕm+1, . . . , ϕk−1〉 for some m. If
1 ≤ i ≤ m, then by the inductive assumption there is a segment 〈ϕi, ϕi+1, . . . , ϕn〉 of ψ
which is a formula. This is also a segment of ϕ, and it is unique by Proposition 2.6(iii). If
m+ 1 ≤ i ≤ k − 1, a similar argument with χ gives the desired result.

Finally, assume inductively that ϕ is ∀vsψ with ψ some formula and s ∈ ω. We leave
this case to an exercise.

The segment of ϕ asserted to exist in Proposition 3.9 is called the subformula of ϕ beginning

at i. For example, consider the formula ϕ
def
= ∀v0[v0 = v2 → v0 = v2]. The formula v0 = v2

occurs in two places in ϕ. In detail, ϕ is the sequence 〈4, 5, 2, 3, 5, 15, 3, 5, 15〉. Thus

ϕ0 = 4;

ϕ1 = 5;

ϕ2 = 2;

ϕ3 = 3;

ϕ4 = 5;

ϕ5 = 15;

ϕ6 = 3;

ϕ7 = 5;

ϕ8 = 15;

On the other hand, v0 = v2 is the formula 〈3, 5, 15〉. It occurs in ϕ beginning at 3, and
also beginning at 6.

Now a variable vs is said to occur bound in ϕ at the j-th position iff with ϕ =
〈ϕ0, . . . , ϕm−1〉, we have ϕj = vs and there is a subformula of ϕ of the form ∀vsψ =
〈ϕi, ϕi+1, . . . , ϕm〉 with i + 1 ≤ j ≤ m. If a variable vs occurs at the j-th position of ϕ
but does not occur bound there, then that occurrence is said to be free. We give some
examples. Let ϕ be the formula v0 = v1 → v1 = v2. All the occurrences of v0, v1, v2 are
free occurrences in ϕ. Note that as a sequence ϕ is 〈2, 3, 5, 10, 3, 10, 15〉; so ϕ0 = 2, ϕ1 = 3,
ϕ2 = 5, ϕ3 = 10, ϕ4 = 3, ϕ5 = 10, and ϕ6 = 15. The variable v0, which is the integer 5,
occurs free at the 2-nd position. The variable v1, which is the integer 10, occurs free at
the 3rd and 5th positions. The variable v2, which is the integer 15, occurs free at the 6th
position.
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Now let ψ be the formula v0 = v1 → ∀v1(v1 = v2). Then the first oc-
curence of v1 is free, but the other two occurrences are bound. As a sequence, ψ is
〈2, 3, 5, 10, 4, 10, 3, 10, 15〉. The variable v1 occurs free at the 3rd position, and bound at
the 5th and 7th positions.

We also need the notion of a term occurring in another term, or in a formula. The following
two propositions are proved much like 3.9.

Proposition 3.10. If σ = 〈σ0, . . . , σm−1〉 is a term and i < m, then there is a unique
term τ which is a segment of σ beginning at i.

Proof. We prove this by induction on σ. For σ a variable or individual constant,
we have m = 1 and so i = 0, and σ itself is the only possibility for τ . Now suppose
that the proposition is true for terms τ0, . . . τn−1, F is an n-ary function symbol, and σ
is Fτ0 . . . τn−1. If i = 0, then σ itself begins at i, and it is the only term beginning at i
by Proposition 2.2(iii). If i > 0, then i is inside some term τk, and so by the inductive
assumption there is a term which is a segment of τk beginning there; this term is a segment
of σ too, and it is unique by Proposition 2.2(iii).

Under the assumptions of Proposition 3.10, we say that τ occurs in σ beginning at i.

Proposition 3.11. If ϕ = 〈ϕ0, . . . , ϕm−1〉 is a formula, i < m, and ϕi is a variable, an
individual constant, or a function symbol, then there is a unique segment of ϕ beginning
at i which is a term.

Proof. We prove this by induction on ϕ. First suppose that ϕ is an atomic equality
formula σ = τ for some terms σ, τ . Thus ϕ is 〈3〉⌢σ⌢τ . So i > 0, and hence i is inside
σ or τ . If i is inside σ, then by Proposition 3.10, there is a term which is a segment of σ
beginning at i; it is also a segment of ϕ, and it is unique by Proposition 2.2(iii). Similarly
for τ .

We leave the other parts of the proof to an exercise.

Under the assumptions of Proposition 3.11, we say that the indicated segment occurs in ϕ
beginning at i.

We now extend the notions of free and bound occurrences to terms. Let σ be a term which
occurs as a segment in a formula ϕ. Say that ϕ = 〈ϕ0, . . . , ϕm−1〉 and σ = 〈ϕi, . . . ϕk〉. We
say that this occurrence of σ in ϕ is bound iff there is a variable vs which occurs bound in
ϕ at some place t with i ≤ t ≤ k; the occurrence of σ is free iff there is no such variable.

We give some examples. The term v0 + v1 is bound in its only occurrence in the
formula ∀v0(v0 + v1 = v2). The same term is bound in its first occurrence and free in its
second occurrence in the formula ∀v0(v0 + v1 = v2) ∧ v0 + v1 = v0.

Suppose that σ, τ, ρ are terms, and τ occurs in σ beginning at i. By the result of
replacing that occurrence of τ by ρ we mean the following sequence ξ. Say σ, τ, ρ have
domains (lengths) m,n, p respectively. Then ξ is the sequence

〈σ0, . . . , σi−1, ρ0, . . . , ρp−1, σi+n, . . . , σm−1〉.
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Put another way, if σ is θ⌢τ⌢η with θ of length i, then ξ is θ⌢ρ⌢η.

Proposition 3.12. Suppose that σ, τ, ρ are terms, and the sequence ξ is obtained from ρ
by replacing one occurrence of σ by τ . Then ξ is a term.

Proof. We prove this by induction on ρ, thus by using Proposition 2.1. If ρ is a
variable or an individual constant, then σ must be ρ itself, and ξ is τ , which is a term.
Now suppose that ρ is Fη0 . . . ηm−1 for some m-ary function symbol F and some terms
η0, . . . , ηm−1, and the proposition holds for η0, . . . , ηm−1. Say the occurrence of σ in ρ
begins at i. If i = 0, then σ equals ρ, and hence ξ equals τ , which is a term. If i > 0,
then i is inside some ηj , and hence the occurrence of σ is actually an occurrence in ηj by
Proposition 2.2(iii). Replacing this occurrence of σ in ηj by τ we obtain a term by the
inductive hypothesis; call this term η′j . It follows that ξ is Fη0 . . . ηj−1η

′
j , ηj+1 . . . ηm−1,

which is a term.

As an example, consider the term v0 • (v1 + v2) in the language for (Q,+, ·). Replacing
the occurrence of v1 by v0 • v1 we obtain the term v0 • ((v0 • v1) + v2). Writing this out
in detail, assuming that • corresponds to 9 and + corresponds to 7, we start with the
sequence 〈9, 5, 7, 10, 15〉 and end with the sequence 〈9, 5, 7, 9, 5, 10, 15〉.
Our first form of subsitution of equals for equals only involves terms:

Theorem 3.13. If σ, τ, ρ are terms, and ξ is a sequence obtained from ρ by replacing an
occurrence of σ in ρ by τ , then ξ is a term and ⊢ σ = τ → ρ = ξ.

Proof. ξ is a term by Proposition 3.12. Now we proceed by induction on ρ. If ρ is
a variable or an individual constant, then σ must be the same as ρ, since ρ has length 1
and σ occurs in ρ. Then ξ is τ , and σ = τ → ρ = ξ is σ = τ → σ = τ , a tautology. So the
proposition is true in this case.

Now assume inductively that ρ is Fη0 . . . ηm−1 with F an m-ary function symbol and
η0, . . . , ηm−1 terms. There are two possibilities for the occurrence of σ. First, possibly σ is
the same as ρ. Then ξ is τ , and again we have the tautology σ = τ → σ = τ , Second, the
occurrence of σ is within some ηi. Then by the inductive hypothesis, ⊢ σ = τ → ηi = η′i,
where η′i is obtained from ηi by replacing the indicated occurrence of σ by τ . Now an
instance of (L7) is

ηi = η′i → Fη0 . . . ηi−1 . . . ηiηi+1 . . . ηm−1 = Fη0 . . . ηi−1 . . . η
′
iηi+1 . . . ηm−1.

Putting this together with ⊢ σ = τ → ηi = η′i and a tautology gives ⊢ σ = τ → ρ = ξ.

Proposition 3.14. Suppose that ϕ is a formula and σ, τ are terms. Suppose that σ occurs
at the i-th place in ϕ, and if i > 0 and ϕi−1 = ∀, then τ is a variable. Let the sequence ψ
be obtained from ϕ by replacing that occurrence of σ by τ . Then ψ is a formula.

Proof. Exercise.

For the exact definition of ψ see the description before Proposition 3.12.
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Lemma 3.15. Suppose that σ and τ are terms, ϕ is a formula, and ψ is obtained from ϕ
by replacing one free occurrence of σ in ϕ by τ , such that the occurrence of τ that results
is free in ψ. Then ⊢ σ = τ → (ϕ↔ ψ).

Proof. We proceed by induction on ϕ. First suppose that ϕ is an atomic equality
formula ρ = ξ. If the occurrence of σ that is replaced is in ρ, let ρ′ be the resulting term.
Then by Proposition 3.13, ⊢ σ = τ → ρ = ρ′. Now (L5) gives ⊢ ρ = ρ′ → (ρ = ξ → ρ′ = ξ).
Putting these two together with a tautology gives ⊢ σ = τ → (ρ = ξ → ρ′ = ξ). By
symmetry, ⊢ σ = τ → (ρ′ = ξ → ρ = ξ). Hence ⊢ σ = τ → (ρ = ξ ↔ ρ′ = ξ).

If the occurrence of σ that is replaced is in ξ, a similar argument using (L6) works.
Second, suppose that ϕ is an atomic non-equality formula Rρ0 . . . ρm−1, with R an m-

ary relation symbol and ρ0, . . . , ρm−1 terms. Say that the occurrence of σ that is replaced
by τ is in ρi, the resulting term being ρ′i. Then by Proposition 3.13, ⊢ σ = τ → ρi = ρ′i.
By (L8) we have

⊢ ρi = ρ′i → (Rρ0 . . . ρm−1 → Rρ0 . . . ρi−1ρ
′
iρi+1 . . . ρm−1),

so by a tautology we get from these two facts

⊢ σ = τ → (Rρ0 . . . ρm−1 → Rρ0 . . . ρi−1ρ
′
iρi+1 . . . ρm−1),

and by symmetry

⊢ σ = τ → (Rρ0 . . . ρi−1ρ
′
iρi+1 . . . ρm−1 → Rρ0 . . . ρm−1),

and then another tautology gives

⊢ σ = τ → (Rρ0 . . . ρm−1 ↔ Rρ0 . . . ρi−1ρ
′
iρi+1 . . . ρm−1),

This finishes the atomic cases. Now suppose inductively that ϕ is ¬χ. The occurrence of σ
in ϕ that is replaced actually occurs in χ; let χ′ be the result of replacing that occurrence
of σ by τ . Now the occurrence of σ in χ is free in χ. In fact, suppose that ∀viθ is a
subformula of χ which has as a segment the indicated occurrence of σ, and vi occurs in
σ. Then ∀viθ is also a subformula of ϕ, contradicting the assumption that the occurrence
of σ is free in ϕ. Similarly the occurrence of τ in χ′ which replaced the occurrence of σ
is free. So by the inductive hypothesis, ⊢ σ = τ → (χ ↔ χ′), and hence a tautology gives
⊢ σ = τ → (¬χ↔ ¬χ′), i.e., ⊢ σ = τ → (ϕ↔ ψ).

We leave the case of an implication to an exercise.
Finally, suppose that ϕ is ∀viρ. Then the occurrence of σ in ϕ that is replaced is

in ρ. Let ρ′ be obtained from ρ by replacing that occurrence of σ by τ . The occurrence
of σ in ρ must be free since it is free in ϕ, as in the treatment of ¬ above; similarly
for τ and ρ′. Hence by the inductive hypothesis, ⊢ σ = τ → (ρ ↔ ρ′). Now since the
occurrence of σ in ϕ is free, the variable vi does not occur in σ. Similarly, it does not
occur in τ . Hence by Proposition 3.7 and tautologies we get ⊢ σ = τ → (∀viρ ↔ ∀viρ′),
i.e., ⊢ σ = τ → (ϕ↔ ψ).
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The hypothesis that the term τ is still free in the result of the replacement in this propo-
sition is necessary for the truth of the proposition. This hypothesis is equivalent to saying
that the occurrence of σ which is replaced is not inside a subformula of ϕ of the form ∀viχ
with vi a variable occurring in τ .

Theorem 3.16. (Substitution of equals for equals) Suppose that ϕ is a formula, σ is a
term, and σ occurs freely in ϕ starting at indices i(0) < · · · < i(m− 1). Also suppose that
τ is a term. Let ψ be obtained from ϕ by replacing each of these occurrences of σ by τ ,
and each such occurrence of τ is free in ψ. Then ⊢ σ = τ → (ϕ↔ ψ).

Proof. We prove this by induction on m. If m = 0, then ϕ is the same as ψ, and
the conclusion is clear. Now assume the result for m, for any ϕ. Now assume that σ
occurs freely in ϕ starting at indices i(0) < · · · < i(m), and no such occurrence is inside a
subformula of ϕ of the form ∀vjχ with vj a variable occurring in τ . Let θ be obtained from
ϕ by replacing the last occurrence of σ, the one beginning at i(m), by τ . By Proposition
3.15, ⊢ σ = τ → (ϕ↔ θ). Now we apply the inductive hypothesis to θ and the occurrences
of σ starting at i(0), . . . , i(m− 1); this gives ⊢ σ = τ → (θ ↔ ψ). Hence a tautology gives
⊢ σ = τ → (ϕ↔ ψ), finishing the inductive proof.

Proposition 3.17. Suppose that ϕ, ψ, χ are formulas, and the sequence θ is obtained from
ϕ by replacing an occurrence of ψ in ϕ by χ. Then θ is a formula.

Proof. Exercise.

For the exact meaning of θ see the description before Proposition 3.12.

Another form of the substitution of equals by equals principle is as follows:

Theorem 3.18. Let ϕ, χ, ρ be formulas, and let ψ be obtained from ϕ by replacing an
occurrence of χ in ϕ by ρ. Suppose that ⊢ χ↔ ρ. Then ⊢ ϕ↔ ψ.

Proof. Induction on ϕ. If ϕ is atomic, then ψ is the same as ρ, and the conclusion is
clear. Suppose inductively that ϕ is ¬ϕ′. If χ is equal to ϕ, then ψ is equal to ρ and the
conclusion is clear. Suppose that χ occurs within ϕ′, and let ψ′ be obtained from ϕ′ by
replacing that occurrence by ρ. Assume that ⊢ χ ↔ ρ. Then by the inductive hypothesis
⊢ ϕ′ ↔ ψ′, so ⊢ ¬ϕ′ ↔ ¬ψ′, as desired.

The case in which ϕ is ϕ′ → ϕ′′ is similar. Finally, suppose that ϕ is ∀viϕ′, and χ
occurs within ϕ′. Let ψ′ be obtained from ϕ′ by replacing that occurrence by ρ. Assume
that ⊢ χ↔ ρ. Then ⊢ ϕ′ ↔ ψ′ by the inductive assumption. So by a tautology, ⊢ ϕ′ → ψ′,
and then by generalization ⊢ ∀vi(ϕ′ → ψ′). Using (L2) we then get ⊢ ∀viϕ′ → ∀viψ′.
Similarly, ⊢ ∀viψ′ → ∀viϕ′. Hence using a tautology, ⊢ ∀viϕ′ ↔ ∀viψ′.

Now we work to prove two important logical principles: changing bound variables, and
dropping a universal quantifier in favor of a term.

For any formula ϕ, i ∈ ω, and term σ by Subfviσ ϕ we mean the result of replacing
each free occurrence of vi in ϕ by σ. We now work towards showing that under suitable
conditions, the formula ∀viϕ→ Subfviσ ϕ is provable. The supposition expressed in the first
sentence of the following lemma will be eliminated later on.
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Lemma 3.19. Suppose that vi does not occur bound in ϕ, and does not occur in the term
σ.

Assume that no free occurrence of vi in ϕ is within a subformula of ϕ of the form
∀vjχ with vj a variable occurring in σ. Then ⊢ ∀viϕ→ Subfviσ ϕ.

Proof.

(1) ⊢ vi = σ → (ϕ→ Subfviσ ϕ) (by Proposition 3.16 and a tautology)
(2) ⊢ ϕ→ (¬Subfviσ ϕ→ ¬(vi = σ)) (using a tautology)
(3) ⊢ ∀vi[ϕ→ (¬Subfviσ ϕ→ ¬(vi = σ))] (generalization)
(4) ⊢ ∀viϕ→ ∀vi(¬Subfviσ ϕ→ ¬(vi = σ)) (using (L2))
(5) ⊢ ∀vi(¬Subfviσ ϕ→ ¬(vi = σ)) → (∀vi¬Subfviσ ϕ→ ∀vi¬(vi = σ)) ((L2))
(6) ⊢ ∀viϕ→ (∀vi¬Subfviσ ϕ→ ∀vi¬(vi = σ)) ((4), (5), a tautology)
(7) ⊢ ¬∀vi¬(vi = σ) → (∀viϕ→ ¬∀vi¬Subfviσ ϕ) ((6), a tautology)
(8) ⊢ ¬∀vi¬(vi = σ) ((L4))
(9) ⊢ ∀viϕ→ ¬∀vi¬Subfviσ ϕ) ((7), (8), modus ponens)
(10) ⊢ ¬Subfviσ ϕ→ ∀vi¬Subfviσ ϕ ((L3))
(11) ⊢ ∀viϕ→ Subfviσ ϕ ((9), (10), a tautology)

Lemma 3.20. If i 6= j, ϕ is a formula, vi does not occur bound in ϕ, and vj does not
occur in ϕ at all, then ⊢ ∀viϕ→ ∀vjSubfvivjϕ.

Proof.

⊢ ∀viϕ→ Subfvivjϕ (by Lemma 3.19)
⊢ ∀vj∀viϕ→ ∀vjSubfvivjϕ (using (L2) and a tautology)
⊢ ∀viϕ→ ∀vj∀viϕ (by (L3))
⊢ ∀viϕ→ ∀vjSubfvivjϕ

Lemma 3.21. If i 6= j, ϕ is a formula, vi does not occur bound in ϕ, and vj does not
occur in ϕ at all, then ⊢ ∀viϕ↔ ∀vjSubfvivjϕ.

Proof. By Proposition 3.20 we have ⊢ ∀viϕ → ∀vjSubfvivjϕ. Now vj does not occur
bound in Subfvivjϕ and vi does not occur in Subfvivjϕ at all. Hence by Proposition 3.20
again, ⊢ ∀vjSubfvivjϕ → ∀viSubfvjviSubfvivjϕ. Now SubfvjviSubfvivjϕ is actually just ϕ itself; so
⊢ ∀vjSubfvivjϕ→ ∀viϕ. Hence the proposition follows.

For i, j ∈ ω and ϕ a formula, by Subbvivjϕ we mean the result of replacing all bound
occurrences of vi in ϕ by vj . By Proposition 3.14 this gives another formula.

Proposition 3.22. If vi occurs bound in a formula ϕ, then there is a subformula ∀viψ of
ϕ such that vi does not occur bound in ψ.

Proof. Induction on ϕ. Note that the statement to be proved is an implication. If
ϕ is atomic, then vi cannot occur bound in ϕ; thus the hypothesis of the implication is
false, and so the implication itself is true. Now suppose inductively that ϕ is ¬χ, and vi
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occurs bound in ϕ. Then it occurs bound in χ, and so by the inductive hypothesis, χ has
a subformula ∀viψ such that vi does not occur bound in ψ. This is also a subformula of
ϕ. The implication case is similar. Finally, suppose that ϕ is ∀vkχ, and vi occurs bound
in ϕ. If it occurs bound in χ, then by the inductive hypothesis χ has a subformula ∀viψ
such that vi does not occur bound in ψ; this is also a subformula of ϕ. If vi does not occur
bound in χ, then we must have i = k since vi occurs bound in ϕ, and then ϕ itself is the
desired subformula.

Theorem 3.23. (Change of bound variables) If ψj does not occur in ϕ, then ⊢ ϕ ↔
Subbvivjϕ.

Proof. We proceed by induction on the number m of bound occurrences of vi in ϕ. If
m = 0, then Subbvivjϕ is just ϕ itself, and the conclusion is clear. Now assume that m > 0
and the conclusion is known for all formulas with fewer than m bound occurrences of vi.
By Proposition 3.22, let ∀viψ be a formula occurring in ϕ such that vi does not occur
bound in ψ. Let k be such that vk does not occur in ϕ, and hence also does not occur in
ψ, and with k 6= j. Note that k 6= i since vk does not occur in ϕ while vi does. Then by
Proposition 3.21 we have

(1) ⊢ ∀viψ ↔ ∀vkSubfvivkψ.

Let ϕ′ be obtained from ϕ by replacing an occurrence of ∀viψ by ∀vkSubfvivkψ. By Theorem
3.18,

(2) ⊢ ϕ↔ ϕ′.

Now vj does not occur in ϕ′, and ϕ′ has fewer than m bound occurrences of vi. Hence by
the inductive hypothesis,

(3) ⊢ ϕ′ ↔ Subbvivjϕ
′.

Now k 6= i, j and vk does not occur bound in Subfvivkψ. Moreover, vj does not occur in
Subfvivkψ at all. Hence by Proposition 3.20,

⊢ ∀vkSubfvivkψ ↔ ∀vjSubfvkvj Subfvivkψ.

Now clearly Subfvkvj Subfvivkψ = Subfvivjψ; so

(4) ⊢ ∀vkSubfvivkψ ↔ ∀vjSubfvivjψ.

Now Subbvivjϕ can be obtained from Subbvivjϕ
′ by replacing an occurrence of ∀vkSubfvivkψ

by ∀vjSubfvivjψ. Hence by (4) and Theorem 3.18 we get

(5) ⊢ Subbvivjϕ↔ Subbvivjϕ
′.

(2), (3), and (5) now give the desired result, finishing the inductive proof.
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We can now strengthen Lemma 3.19 by eliminating one of its hypotheses; the remaining
inessential hypothesis will be eliminated next.

Lemma 3.24. Suppose that vi does not occur in the term σ.
Assume that no free occurrence of vi in a formula ϕ is within a subformula of ϕ of

the form ∀vjχ with vj a variable occurring in σ. Then ⊢ ∀viϕ→ Subfviσ ϕ.

Proof. Choose j so that vj does not occur in ϕ or in σ, with i 6= j. Then by the
change of bound variables theorem 3.23, ⊢ ϕ ↔ Subbvivjϕ. From this, using generalization
and (L2) we obtain

(1) ⊢ ∀viϕ↔ ∀viSubbvivjϕ.

Now vi does not occur bound in Subbvivjϕ, and no free occurrence of vi in Subbvivjϕ is in a
subformula of Subbvivjϕ of the form ∀vkψ, with vk a variable occurring in σ. This is true
since it is true of ϕ, and vj does not occur in σ. Hence by Lemma 3.19 we get

(2) ⊢ ∀viSubbvivjϕ→ Subfviσ Subbvivjϕ.

Now vi does not occur at all in Subfviσ Subbvivjϕ, so by change of bound variable,

(3) ⊢ Subfviσ Subbvivjϕ↔ SubbvjviSubfviσ Subbvivjϕ.

But clearly SubbvjviSubfviσ Subbvivjϕ = Subfviσ ϕ. Hence from (1)–(3) and tautologies we get
the result of the lemma.

Theorem 3.25. (Universal specification) Assume that no free occurrence of vi in a formula
ϕ is within a subformula of ϕ of the form ∀vjχ with vj a variable occurring in a term σ.
Then ⊢ ∀viϕ→ Subfviσ ϕ.

Proof. Choose j so that vj does not occur in ϕ or in σ, with j 6= i. Then by Lemma
3.24, ⊢ ∀viϕ→ Subfvivjϕ. Hence using (L2) we easily get

(1) ⊢ ∀vj∀viϕ→ ∀vjSubfvivjϕ.

By (L3) we have

(2) ⊢ ∀viϕ→ ∀vj∀viϕ.

Now no free occurrence of vj in Subfvivjϕ is within a subformula of Subfvivjϕ of the form
∀vkψ with vk occurring in σ; this is true because it holds for ϕ. Also, vj does not occur in
σ. Hence by Lemma 3.24 we have

(3) ⊢ ∀vjSubfvivjϕ→ Subfvjσ Subfvivjϕ.

Clearly Subfvjσ Subfvivjϕ = Subfviσ ϕ, so from (1)–(3) the desired result follows.

This finishes the fundamental things that can be proved. We now give various corollaries.
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Corollary 3.26. ⊢ ∀viϕ→ ϕ.

Proposition 3.27. If vi does not occur free in ϕ, then ⊢ ϕ↔ ∀viϕ.

Proof. By Corollary 3.26 we have

(1) ⊢ ∀viϕ→ ϕ.

Now let vj be a variable not occurring in ϕ. Then by a change of bound variable,

(2) ⊢ ϕ↔ Subbvivjϕ.

Hence using (L2) we easily get

(3) ⊢ ∀viSubbvivjϕ→ ∀viϕ.

Now note that vi does not occur in Subbvivjϕ. Hence by (L3) we get

(4) ⊢ Subbvivjϕ→ ∀viSubbvivjϕ.

Now from (1)–(4) the desired result easily follows.

Proposition 3.28. ⊢ ∀vi∀vjϕ↔ ∀vj∀viϕ, for any formula ϕ and any i, j ∈ ω.

Proof.

⊢ ∀vi∀vjϕ→ ϕ by Corollary 3.26 twice

⊢ ∀vi∀vi∀vjϕ→ ∀viϕ by (L2)

⊢ ∀vi∀vjϕ→ ∀vi∀vi∀vjϕ using Prop. 3.27

⊢ ∀vi∀vjϕ→ ∀viϕ
⊢ ∀vj∀vi∀vjϕ→ ∀vj∀viϕ by (L2)

⊢ ∀vi∀vjϕ→ ∀vj∀vi∀vjϕ using Prop. 3.27

⊢ ∀vi∀vjϕ→ ∀vj∀viϕ
⊢ ∀vj∀viϕ→ ∀vi∀vjϕ similarly

⊢ ∀vi∀vjϕ↔ ∀vj∀viϕ

Recall that ∃viϕ is defined to be the formula ¬∀vi¬ϕ. The following simple propositions
expand on this.

Proposition 3.29. ⊢ ¬∀viϕ↔ ∃vi¬ϕ for any formula ϕ and any i ∈ ω.

Proof. Exercise.

Proposition 3.30. ⊢ ¬∃viϕ↔ ∀vi¬ϕ for any formula ϕ and any i ∈ ω.

Proof. Exercise.
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Some important results concerning ∃ are as follows.

Theorem 3.31. If no free occurrence of vi in a formula ϕ is within a subformula of the
form ∀vkψ with vk occurring in a term σ, then ⊢ Subfviσ ϕ→ ∃viϕ.

Proof. Exercise.

Corollary 3.32. ⊢ ϕ→ ∃viϕ for any formula ϕ.

Corollary 3.33. ⊢ ∀viϕ→ ∃viϕ.

Proof. Exercise.

Proposition 3.34. If vi does not occur free in ϕ, then ⊢ ϕ↔ ∃viϕ.

Proof. Exercise.

Theorem 3.35. ⊢ ∃vi∀vjϕ→ ∀vj∃viϕ for any formula ϕ.

Proof.

⊢ ϕ→ ∃viϕ by Corollary 3.32

⊢ ∀vjϕ→ ∀vj∃viϕ generalization, (L2)

⊢ ¬∀vj∃viϕ→ ¬∀vjϕ tautology

⊢ ∀vi[¬∀vj∃viϕ→ ¬∀vjϕ] generalization

⊢ ∀vi[¬∀vj∃viϕ→ ¬∀vjϕ] → [∀vi¬∀vj∃viϕ→ ∀vi¬∀vjϕ] (L2)

⊢ ∀vi¬∀vj∃viϕ→ ∀vi¬∀vjϕ
⊢ ¬∀vj∃viϕ→ ∀vi¬∀vjϕ by Proposition 3.27

⊢ ∃vi∀vjϕ→ ∀vj∃viϕ tautology

Now we prove several results involving two formulas ϕ and ψ, and some variable vi which
is not free in one of them.

Proposition 3.36. If vi does not occur free in the formula ϕ, and ψ is any formula, then
⊢ ∀vi(ϕ→ ψ) → (ϕ→ ∀viψ).

Proof. By Proposition 3.27,

(1) ⊢ ϕ→ ∀viϕ.

By (L2) we have ⊢ ∀vi(ϕ→ ψ) → (∀viϕ→ ∀viψ), and hence by a tautology

(2) ⊢ ∀viϕ→ [∀vi(ϕ→ ψ) → ∀viψ]
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By a tautology, from (1) and (2) we get

⊢ ϕ→ [∀vi(ϕ→ ψ) → ∀viψ],

and then another tautology gives the desired result.

Proposition 3.37. If vi does not occur free in the formula ψ, then ⊢ ∀vi(ϕ → ψ) →
(∃viϕ→ ψ).

Proof.

(1) ⊢ (ϕ→ ψ) → (¬ψ → ¬ϕ) (taut.)
(2) ⊢ ∀vi(ϕ→ ψ) → ∀vi(¬ψ → ¬ϕ) ((1), gen., (L2))
(3) ⊢ ∀vi(¬ψ → ¬ϕ) → (¬ψ → ∀vi¬ϕ) (Prop. 3.36)
(4) ⊢ (¬ψ → ∀vi¬ϕ) → (∃viϕ→ ψ) (taut.)

⊢ ∀vi(ϕ→ ψ) → (∃viϕ→ ψ) ((2)–(4), taut.)

Lemma 3.38. If ϕ and ψ are formulas and vi does not occur free in ψ, then ⊢ ∀viϕ∨ψ ↔
∀vi(ϕ ∨ ψ).

Proof.
(1) ⊢ ∀viϕ ∨ ψ ↔ (¬ψ → ∀viϕ) taut.
(2) ⊢ ∀viϕ→ ϕ Cor. 3.26
(3) ⊢ (¬ψ → ∀viϕ) → (¬ψ → ϕ) (2), taut.
(4) ⊢ (¬ψ → ϕ) → (ϕ ∨ ψ) taut.
(5) ⊢ ∀vi(¬ψ → ϕ) → ∀vi(ϕ ∨ ψ) (4), gen., (L2)
(6) ⊢ ∀vi(¬ψ → ∀viϕ) → ∀vi(¬ψ → ϕ) (3), gen., (L2)
(7) (¬ψ → ∀viϕ) → ∀vi(¬ψ → ∀viϕ) Prop. 3.27
(8) ⊢ ∀viϕ ∨ ψ → ∀vi(ϕ ∨ ψ) (1), (7), (6), (5)
(9) ⊢ ϕ ∨ ψ → (¬ψ → ϕ) taut.
(10) ⊢ ∀vi(ϕ ∨ ψ) → ∀vi(¬ψ → ϕ) (9), gen., (L2)
(11) ∀vi(¬ψ → ϕ) → (¬ψ → ∀viϕ) Prop. 3.36
(12) ⊢ (¬ψ → ∀viϕ) → ∀viϕ ∨ ψ taut.

The desired conclusion now follows from (8) and (10)–(12).

Proposition 3.39. ⊢ ∀vi(ϕ ∧ ψ) ↔ ∀viϕ ∧ ∀viψ, for any formulas ϕ, ψ.

Proof.

⊢ ∀vi(ϕ ∧ ψ) → ϕ ∧ ψ by Corollary 3.26

⊢ ∀vi(ϕ ∧ ψ) → ϕ using a tautology

⊢ ∀vi∀vi(ϕ ∧ ψ) → ∀viϕ using (L2)

⊢ ∀vi(ϕ ∧ ψ) → ∀viϕ using Proposition 3.27

⊢ ∀vi(ϕ ∧ ψ) → ∀viψ similarly
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(1) ⊢ ∀vi(ϕ ∧ ψ) → ∀viϕ ∧ ∀viψ a tautology

⊢ ∀viϕ→ ϕ by Corollary 3.26

⊢ ∀viψ → ψ by Corollary 3.26

⊢ ∀viϕ ∧ ∀viψ → ϕ ∧ ψ by a tautology

⊢ ∀vi(∀viϕ ∧ ∀viψ) → ∀vi(ϕ ∧ ψ) using (L2)

⊢ ∀viϕ ∧ ∀viψ → ∀vi(ϕ ∧ ψ). using Proposition 3.27

Now the desired result follows using (1) and a tautology.

Proposition 3.40. If ϕ and ψ are formulas and vi does not occur free in ψ, then ⊢
∃viϕ ∧ ψ ↔ ∃vi(ϕ ∧ ψ).

Proof.

⊢ ¬∃viϕ ∨ ¬ψ ↔ ∀vi¬ϕ ∨ ¬ψ by Prop. 3.30

⊢ ∀vi¬ϕ ∨ ¬ψ ↔ ∀vi(¬ϕ ∨ ¬ψ) by Prop. 3.38

⊢ (¬ϕ ∨ ¬ψ) ↔ ¬(ϕ ∧ ψ) taut.

⊢ ∀vi(¬ϕ ∨ ¬ψ) ↔ ∀vi¬(ϕ ∧ ψ) gen., (L2)

⊢ ∀vi¬(ϕ ∧ ψ) ↔ ¬∃vi(ϕ ∧ ψ). taut.

From these facts we get ⊢ ¬∃viϕ ∨ ¬ψ ↔ ¬∃vi(ϕ ∧ ψ). The proposition follows by a
tautology.

Proposition 3.41. If ⊢ ϕ↔ ψ, then ⊢ ∀viϕ↔ ∀viψ.

Proof. Exercise.

Proposition 3.42. If ⊢ ϕ↔ ψ, then ⊢ ∃viϕ↔ ∃viψ.

Proof. Exercise.

Proposition 3.43. ⊢ ∃vi(ϕ ∨ ψ) ↔ ∃viϕ ∨ ∃viψ for any formulas ϕ, ψ.

Proof.

⊢ ¬(ϕ ∨ ψ) ↔ ¬ϕ ∧ ¬ψ a tautology

⊢ ∀vi¬(ϕ ∨ ψ) ↔ ∀vi(¬ϕ ∧ ¬ψ) by Proposition 3.41

⊢ ∀vi(¬ϕ ∧ ¬ψ) ↔ ∀vi¬ϕ ∧ ∀vi¬ψ by Proposition 3.39

⊢ ¬∀vi¬(ϕ ∨ ψ) ↔ ¬∀vi¬ϕ ∨ ¬∀vi¬ψ; a tautology

this gives the desired result.
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EXERCISES

E3.1. Do the case Rσ0 . . . σm−1 for some m-ary relation symbol and terms σ0, . . . , σm−1

in the proof of Theorem 3.1, (L3).

E3.2. Prove that (L6) is universally valid, in the proof of Theorem 3.1.

E3.3. Prove that (L8) is universally valid, in the proof of Theorem 3.1.

E3.4. Finish the proof of Proposition 3.9.

E3.5. Finish the proof of Proposition 3.11.

E3.6. Indicate which occurrences of the variables are bound and which ones free for the
following formulas.

∃v0(v0 < v1) ∧ ∀v1(v0 = v1).
v4 + v2 = v0 ∧ ∀v3(v0 = v1).
∃v2(v4 + v2 = v0).

E3.7. Prove Proposition 3.14.

E3.8. Indicate all free and bound occurrences of terms in the formula v0 = v1 + v1 →
∃v2(v0 + v2 = v1).

E3.9. Prove Proposition 3.17.

E3.10. Show that the condition in Lemma 3.15 that the resulting occurrence of τ is free
is necessary. Hint: use Theorem 3.2; describe a specific formula of the type in Proposition
3.15, but with τ not free, such that the formula is not universally valid.

E3.11. Do the case of implication in the proof of Lemma 3.15.

E3.12. Prove that the hypothesis of Theorem 3.25 is necessary.

E3.13. Prove Proposition 3.29.

E3.14. Prove Proposition 3.30.

E3.15. Prove Proposition 3.31.

E3.16. Prove Proposition 3.33.

E3.17. Prove Proposition 3.34.

E3.18. Prove Proposition 3.41.

E3.19. Prove Proposition 3.42.

E3.20. Prove that
⊢ ∀v0∀v1(v0 = v1) → ∀v0(v0 = v1 ∨ v0 = v2).

E3.21. Prove that

⊢ ∃v0(¬v0 = v1 ∧ ¬v0 = v2) → ∃v0∃v1(¬v0 = v1).
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4. The completeness theorem

The completeness theorem, in its simplest form, says that for any formula ϕ, ⊢ ϕ iff |= ϕ.
We already know the direction ⇒, in Theorem 3.2.

A more general form of the completeness theorem is that Γ ⊢ ϕ iff Γ |= ϕ, for any set
Γ ∪ {ϕ} of formulas. Again the direction ⇒ is given in Theorem 3.2.

Basic for the proof of the completeness theorem is the notion of consistency. A set Γ
of formulas is consistent iff there is a formula ϕ such that Γ 6⊢ ϕ.

Lemma 4.1. For any set Γ of formulas the following conditions are equivalent:
(i) Γ is inconsistent.
(ii) There is a formula ϕ such that Γ ⊢ ϕ and Γ ⊢ ¬ϕ.
(iii) Γ ⊢ ¬(v0 = v0).

Proof. (i)⇒(ii): Assume (i). Since Γ ⊢ ψ for every formula ψ, (ii) is clear.
(ii)⇒(iii): Assume (ii). Then the following is a Γ-proof:

A Γ-proof of ϕ.
A Γ-proof of ¬ϕ.
A ∅-proof of ϕ→ (¬ϕ→ ¬(v0 = v0). (This is a tautology; see Lemma 3.3.)
¬ϕ→ ¬(v0 = v0).
¬(v0 = v0).

(iii)⇒(i): By (iii) we have Γ ⊢ ¬(v0 = v0), while by Proposition 3.4 we have Γ ⊢ v0 = v0.
Then for any formula ϕ, the following is a Γ-proof of ϕ:

A ∅-proof of v0 = v0
A Γ-proof of ¬(v0 = v0)
A ∅-proof of v0 = v0 → (¬(v0 = v0) → ϕ). (This is a tautology; see Lemma 3.3.)
¬(v0 = v0) → ϕ
ϕ.

A sentence is a formula which has no variable occurring free in it. A set Γ of sentences
has a model iff there is a structure A for the language in question such that A |= ϕ[a] for
every ϕ ∈ Γ and every a : ω → A.

The following first-order version of the deduction theorem, Theorem 1.8, will be useful.

Theorem 4.2. (First-order deduction theorem) If Γ ∪ {ψ} is a set of formulas, ϕ is a
sentence, and Γ ∪ {ϕ} ⊢ ψ, then Γ ⊢ ϕ→ ψ.

Proof. Let 〈χ0, . . . , χm−1〉 be a (Γ ∪ {ϕ})-proof with χi = ψ for some i < m. We
modify this proof, replacing each χj by one or more formulas, converting the proof to a
Γ-proof, in such a way that ϕ → χj is in the new proof for every j < m. If χj is a logical
axiom or a member of Γ, we replace it by the three formulas

χj → (ϕ→ χj)

χj

ϕ→ χj .
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If χj is ϕ, we replace it by the five formulas giving a little proof of ϕ→ ϕ; see Lemma 1.7.
If there exist k, l < j such that χk is χl → χj , we replace χj by the formulas

(ϕ→ χk) → [(ϕ→ χl) → (ϕ→ χj)]

(ϕ→ χl) → (ϕ→ χj)

ϕ→ χj .

If there exist k < j and l ∈ ω such that χj is ∀vlχk, we replace χj by the formulas

∀vl(ϕ→ χk)

a proof of ∀vl(ϕ→ χk) → (ϕ→ ∀vlχk) see Proposition 3.36

ϕ→ χj .

Theorem 4.3. Suppose that every consistent set of sentences has a model. Then Γ ⊢ ϕ
iff Γ |= ϕ, for every set Γ ∪ {ϕ} of formulas.

Proof. Assume that every consistent set of sentences has a model. Note again
that Γ ⊢ ϕ implies that Γ |= ϕ, by Theorem 3.2. We prove the converse by proving its
contrapositive. Thus suppose that Γ ∪ {ϕ} is a set of formulas such that Γ 6⊢ ϕ. We want
to show that Γ 6|= ϕ, i.e., there is a model of Γ which is not a model of ϕ. For any formula
ψ, let [[ψ]] be the closure of ψ, i.e., the sentence

∀vi(0) . . .∀vi(m−1)ψ,

where i(0) < · · · < i(m − 1) lists all the integers j such that vj occurs free in ψ. Let
Γ′ = {[[ψ]] : ψ ∈ Γ}. We claim that Γ′ ∪ {¬[[ϕ]]} is consistent. Suppose not. Then
Γ′ ∪ {¬[[ϕ]]} ⊢ ¬(v0 = v0). Hence by the deduction theorem, Γ′ ⊢ ¬[[ϕ]] → ¬(v0 = v0), so
Γ′ ⊢ v0 = v0 → [[ϕ]]. Hence, using Proposition 3.4, Γ′ ⊢ [[ϕ]]. Now in a Γ′-proof that has
[[ϕ]] as a member, replace each formula

∀vi(0) . . .∀vi(m−1)ψ,

with ψ ∈ Γ, by the sequence

ψ

∀vi(m−1)ψ

· · · · · · · · ·
∀vi(0) . . .∀vi(m−1)ψ.

This converts the proof into a Γ-proof one of whose members is [[ϕ]]. Thus Γ ⊢ [[ϕ]]. Using
Corollary 3.26, it follows that Γ ⊢ ϕ, contradiction.

Hence Γ′ ∪ {¬[[ϕ]]} is consistent. Since this is a set of sentences, by supposition it has
a model M . Clearly M is a model of Γ. Since M is a model of ¬[[ϕ]], clearly there is an
a ∈ ωM such that M |= ¬ϕ[a]. Thus M is not a model of ϕ. This shows that Γ 6|= ϕ.
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To prove that every consistent set of sentences has a model, we need several lemmas,
starting with some additional facts about structures and satisfaction.

Lemma 4.4. Suppose that A is a structure, a and b map ω into A, ϕ is a formula, and
ai = bi for every i such that vi occurs free in ϕ. Then A |= ϕ[a] iff A |= ϕ[b].

Proof. Induction on ϕ. For ϕ an atomic equality formula σ = τ , the hypothesis
means that ai = bi for all i such that vi occurs in σ or τ . Hence, using Proposition 2.4,

A |= ϕ[a] iff σA(a) = τA(a) iff σA(b) = τA(b) iff A |= ϕ[b].

For ϕ an atomic non-equality formula Rη0 . . . ηm−1, the hypothesis means that ai = bi for
all i such that vi occurs in one of the terms ηj . Hence, again using Proposition 2.4,

A |= ϕ[a] iff 〈ηA0 (a), . . . , ηAm−1(a)〉 ∈ RA

iff 〈ηA0 (b), . . . , ηAm−1(b)〉 ∈ RA

iff A |= ϕ[b].

Assume inductively that ϕ is ¬ψ. The hypothesis implies that ai = bi for all i such that
vi occurs free in ψ. Hence

A |= ϕ[a] iff not(A |= ψ[a])

iff not(A |= ψ[b]) (induction hypothesis)

iff A |= ϕ[b].

Assume inductively that ϕ is ψ → χ. The hypothesis implies that ai = bi for all i such
that vi occurs free in ψ or in χ. Hence

A |= ϕ[a] iff not(A |= ψ[a]) or A |= χ[a]

iff not(A |= ψ[b]) or A |= χ[b] (induction hypothesis)

iff A |= ϕ[b].

Now assume inductively that ϕ is ∀vkψ. By symmetry it suffices to show that A |= ϕ[a]
implies that A |= ϕ[b]. So, assume that A |= ϕ[a]. Take any u ∈ A. Then A |= ψ[aku].
We claim that (aku)i = (bku)i for every i such that vi occurs free in ψ. If i 6= k this is true
since vi also occurs free in ϕ, so that ai = bi; and (aku)i = ai = bi = (bku)i. If i = k, then
(aku)i = u = (bku)i. It follows now by the inductive hypothesis that A |= ψ[bku]. Since u is
arbitrary, A |= ϕ[b].

As in the case of terms (see Proposition 2.4 and the comments after it), Lemma 4.4 enables
us to simplify the notation A |= ϕ[a]. Instead of a full assignment a : ω → A, it suffices to
take a function a : {0, . . . , m} → A such that every variable vi occurring free in ϕ is such
that i ≤ m. Then A |= ϕ[a] means that A |= ϕ[b] for any b (or some b) such that b extends
a. If ϕ is a sentence, thus with no free variables, then A |= ϕ means that A |= ϕ[b] for any,
or some, b : ω → A.
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Lemma 4.5. Suppose that τ , ρ, and ν are terms, and ρ is obtained from τ by replacing
all occurrences of vi in τ by ν. Then for any structure A and any assignment a : ω → A,

ρA(a) = τA
(

ai
νA(a)

)

.

Proof. By induction on τ . If τ is vk with k 6= i, then ρ is the same as τ , and both

sides of the above equation are equal to ak. If τ is vi, then ρ is ν, and ρA(a) = νA(a) =

vAi

(

ai
νA(a)

)

= τA
(

ai
νA(a)

)

. If τ is an individual constant k, then ρ is equal to τ , and both

sides of the equation in the lemma are equal to kA.
Now suppose inductively that τ is Fη0 . . . ηm−1. Let µi be obtained from ηi by re-

placing all occurrences of vi by ν. Then

ρA(a) = (Fµ0 . . . µm−1)A(a)

= FA(µA0 (a), . . . , µAm−1(a))

= FA
(

η0

(

ai
νA(a)

)

, . . . , ηm−1

(

ai
νA(a)

))

= (Fη0 . . . ηm−1)
[

ai
νA(a)

]

= τA
(

ai
νA(a)

)

.

Lemma 4.6. Suppose that ϕ is a formula, ν is a term, no free occurrence of vi in ϕ
is within a subformula of the form ∀vkµ with vk a variable occurring in ν, and A is a

structure. Then A |= Subfviν ϕ[a] iff A |= ϕ
[

ai
νA(a)

]

.

Proof. By induction on ϕ. For ϕ a formula σ = τ , let ρ and η be obtained from σ
and τ by replacing all occurrences of vi by ν. Then by Lemma 4.5,

A |= Subfviν ϕ[a] iff A |= (ρ = η)[a]

iff ρA(a) = ηA(a)

iff σA
(

ai
νA(a)

)

= τA
(

ai
νA(a)

)

iff A |= (σ = τ)
(

ai
νA(a)

)

iff A |= ϕ
(

ai
νA(a)

)

.

For ϕ a formula Rσ0 . . . σm−1, let ηi be obtained from σi by replacing all occurrences of
vi by ν. Then

A |= Subfviν ϕ[a] iff A |= (Rη0 . . . ηm−1)[a]

iff 〈ηA0 (a), . . . , ηAm−1(a) ∈ RA

iff
〈

σA0

(

ai
νA(a)

)

, . . . σAm−1

(

ai
νA(a)

)〉

∈ RA

iff A |= (Rσ0 . . . σm−1)
[

ai
νA(a)

]

iff A |= ϕ
[

ai
νA(a)

]

.
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Now suppose inductively that ϕ is ¬ψ. Then

A |= Subfv1ν ϕ[a] iff A |= (¬Subfv1ν ψ) [a]

iff not
(
A |= (Subfv1ν ψ)

)
[a]

iff not
(

A |= ψ
[

ai
νA(a)

])

iff A |= ϕ
[

ai
νA(a)

]

.

Suppose inductively that ϕ is ψ → χ. Then

A |= Subfv1ν ϕ[a] iff not
(
A |= Subfv1ν ψ[a]

)
or A |= Subfv1ν χ[a]

iff not
(

A |= ψ
[

ai
νA(a)

])

or A |= χ
[

ai
νA(a)

]

iff A |= ϕ
[

ai
νA(a)

]

.

Finally, suppose inductively that ϕ is ∀vkψ. Now if vi does not occur free in ϕ, then
Subfviν ϕ is just ϕ itself, and A |= ϕ[a] iff A |= ϕ[ai

νA(a)
] by Lemma 4.4. Hence we may

assume that vi occurs free in ϕ.

If k = i, then Subfviν ϕ is ϕ, and by Lemma 4.4, A |= ϕ
[

ai
νA(a)

]

iff A |= ϕ[a]; so the

theorem holds in this case. Now suppose that k 6= i. Then Subfviν ϕ is ∀vkSubfviν ψ. Suppose
that A |= Subfviν ϕ[a]. Take any u ∈ A. Then A |= Subfviν ψ[aku]. Now no free occurrence
of vi in ψ is within a subformula of the form ∀vsµ with vs occurring in ν. Hence by the

inductive hypothesis A |= ψ
[

(aku)i
νA(aku)

]

. Now since ϕ is ∀vkψ and vi occurs free in ϕ,

the assumption of the lemma says that vk does not occur in ν. Hence νA(a) = νA(aku) by

Proposition 2.4. Hence A |= ψ
[

(aku)i
νA(a)

]

. Since
(
aku
)i

νA(a)
=
(

ai
νA(a)

)k

u
, it follows that

A |= ϕ
[

ai
νA(a)

]

.

Conversely, suppose that A |= ϕ
[

ai
νA(a)

]

. Take any u ∈ A. Then A |= ψ

[(

ai
νA(a)

)k

u

]

.

Since
(

ai
νA(a)

)k

u
=
(
aku
)i

νA(a)
, and νA(a) = νA(aku) (see above), by the inductive hypothesis

we get A |= Subfviν ψ[aku]. It follows that A |= Subfviν ϕ[a].

A set Γ of sentences is complete iff for every sentence ϕ, Γ ⊢ ϕ or Γ ⊢ ¬ϕ. Γ is rich iff for
every sentence of the form ∃viϕ there is an individual constant c such that Γ ⊢ ∃viϕ →
Subfvic (ϕ).

The main lemma for the completeness proof is as follows.

Lemma 4.7. If Γ is a complete, rich, consistent set of sentences, then Γ has a model.

Proof. Let B = {σ : σ is a term in which no variable occurs}. We define ≡ to be the
set

{(σ, τ) : σ, τ ∈ B and Γ ⊢ σ = τ}.
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By Propositions 3.4–3.6, ≡ is an equivalence relation on B. Let π be the function which
assigns to each σ ∈ B the equivalence class [σ]≡, and let A be the set of all equivalence
classes.

We recall some basic facts about equivalence relations. An equivalence relation on a set
M is a set R of ordered pairs (a, b) with a, b ∈M satisfying the following conditions:

(reflexivity) (a, a) ∈ R for all a ∈M .
(symmetry) For all (a, b) ∈ R we have (b, a) ∈ R.
(transitivity) For all a, b, c, if (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R.

Given an equivalence relation R on a set M , for each a ∈M we let [a]R = {b ∈M : (a, b) ∈
R}; this is the equivalence class of a. Some basic facts:

(a) For any a, b ∈M , (a, b) ∈ R iff [a]R = [b]R.

Proof. ⇒: suppose that (a, b) ∈ R. Suppose also that x ∈ [a]R. Thus (a, x) ∈ R. Since R
is symmetric, (b, a) ∈ R. Since R is transitive, (b, x) ∈ R. Hence x ∈ [b]R. This proves that
[a]R ⊆ [b]R. Suppose that x ∈ [b]R. Thus (b, x) ∈ R. Since also (a, b) ∈ R, by transitivity
we get (a, x) ∈ R. So x ∈ [a]R. This proves that [b]R ⊆ [a]R, and completes the proof that
[a]R = [b]R.

⇐: Assume that [a]R = [b]R. Since R is reflexive on M , we have (b, b) ∈ R, and hence
b ∈ [b]R. Now [a]R = [b]R, so b ∈ [a]R. Hence (a, b) ∈ R.

(b) For any a, b ∈M , [a]R = [b]R or [a]R ∩ [b]R = ∅.

Proof. Suppose that [a]R ∩ [b]R 6= ∅; say x ∈ [a]R ∩ [b]R. Thus (a, x) ∈ R and (b, x) ∈ R.
By symmetry, (x, b) ∈ R. By transitivity, (a, b) ∈ R. By (a), [a]R = [b]R.

We are now going to define a structure with universe A. If k is an individual constant, let

kA = [k]≡.

(1) If F is an m-ary function symbol and σ0, . . . , σm−1, τ0, . . . , τm−1 are members of B
such that σi ≡ τi for all i < m, then Fσ0 . . . σm−1 ≡ Fτ0 . . . τm−1.

In fact, the hypothesis implies that Γ ⊢ σi = τi for all i < m. Now we claim

(2) Fσ0 . . . σm−1 ≡ Fσ0 . . . σm−iτm−i+1 . . . τm−1 for every positive integer i ≤ m+ 1.

We prove (2) by induction on i. For i = 1 the statement is Fσ0 . . . σm−1 ≡ Fσ0 . . . σm−1,
which holds by Proposition 3.4. Now assume that 1 ≤ i ≤ m and Fσ0 . . . σm−1 ≡
Fσ0 . . . σm−iτm−i+1 . . . τm−1. By logical axiom (L7) we also have

Fσ0 . . . σm−iτm−i+1 . . . τm−1 ≡ Fσ0 . . . σm−i−1τm−i . . . τm−1,

so Proposition 3.6 yields

Fσ0 . . . σm−1 ≡ Fσ0 . . . σm−i−1τm−i . . . τm−1.

This finishes the inductive proof of (2). The case i = m+ 1 in (2) gives (1).
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(3) If F is an m-ary function symbol, then there is a function FA mapping m-tuples of

members of A into A, such that for any σ0, . . . , σm−1 ∈ B, FA([σ0]≡, . . . , [σm−1]≡) =
[Fσ0 . . . σm−1]≡.

In fact, we can define FA as a set of ordered pairs:

FA = {(x, y) :there are σ0, . . . , σm−1 ∈ B such that

x = 〈[σ0]≡, . . . , [σm−1]≡〉 and y = [Fσ0 . . . σm−1]≡}

Then FA is a function. For, suppose that (x, y), (x, z) ∈ FA. Accordingly choose el-
ements σ0, . . . σm−1 ∈ B and τ0, . . . τm−1 ∈ B such that x = 〈[σ0]≡, . . . , [σm−1]≡〉 =
〈[τ0]≡, . . . , [τm−1]≡, y = [Fσ0 . . . σm−1]≡, and z = [Fτ0 . . . ϕm−1]≡. Thus for any i < m
we have [σi]≡ = [τi]≡, hence σi ≡ τi. From (1) it then follows that Fσ0 . . . σm−1 ≡
Fτ0 . . . ϕm−1, hence y = z. So FA is a function. Clearly then (3) holds.

For R an m-ary relation symbol we define

RA = {x : ∃σ0, . . . σm−1 ∈ B[x = 〈[σ0]≡, . . . , [σm−1]≡〉 and Γ ⊢ Rσ0 . . . σm−1]}.

(4) If R is an m-ary relation symbol and σi ≡ τi for all i < m, then for any positive integer
i < m+ 1, ⊢ Rσ0 . . . σm−1 ↔ Rσ0 . . . σm−iτm−i+1 . . . τm−1.

We prove (4) by induction on i. For i = 1 the conclusion is ⊢ Rσ0 . . . σm−1 ↔ Rσ0 . . . σm−1,
so this holds by a tautology. Now assume our statement for i < m. Then by logical axiom
(L8),

⊢ Rσ0 . . . σm−iτm−i+1 . . . τm−1 → Rσ0 . . . σm−i−1τm−i . . . τm−1;

using Proposition 3.5 we can easily get

⊢ Rσ0 . . . σm−iτm−i+1 . . . τm−1 ↔ Rσ0 . . . σm−i−1τm−i . . . τm−1.

This finishes the inductive proof of (4). Now we have

(5) If R is anm-ary relation symbol and σ0, . . . , σm−1 ∈ B, then 〈[σ0]≡, . . . , [σm−1]≡〉 ∈ RA

iff Γ ⊢ Rσ0 . . . σm−1.

In fact, ⇐ follows from the definition. Now suppose that 〈[σ0]≡, . . . , [σm−1]≡〉 ∈ RA. Then
by definition there exist τ0, . . . , τm−1 ∈ B such that

〈[σ0]≡, . . . , [σm−1]≡〉 = 〈[τ0]≡, . . . , [τm−1]≡〉 and Γ ⊢ Rτ0 . . . τm−1.

Thus [σi]≡ = [τi]≡, hence σi ≡ τi, hence Γ ⊢ σi = τi, for each i < m. Now by (4),
⊢ ∧i<m(σi = τi) → (Rσ0 . . . σm−1 ↔ Rτ0 . . . τm−1). It follows that Γ ⊢ Rσ0 . . . σm−1, as
desired; so (5) holds.

(6) For any σ ∈ B we have σA = [σ]≡.

48



We prove (6) by induction on σ. If σ is an individual constant k, then by definition

kA = [k]≡. Now suppose that (6) is true for τ0, . . . , τm−1 ∈ B and σ is Fτ0 . . . τm−1. Then

σA = FA([τ0]≡, . . . , [τm−1]≡) = [Fτ0 . . . τm−1]≡ = [σ]≡,

proving (6).
The following claim is the heart of the proof.

(7) For any sentence ϕ, Γ ⊢ ϕ iff A |= ϕ.

We prove (7) by induction on the number m of the symbols =, relation symbols, ¬, →,
and ∀ in ϕ. For m = 1, ϕ is atomic, and we have

Γ ⊢ σ = τ iff σ ≡ τ

iff [σ]≡ = [τ ]≡

iff σA = τA by (6)

iff A |= σ = τ ;

Γ ⊢ Rσ0 . . . σm−1 iff 〈[σ0]≡, . . . , [σm−1]≡〉 ∈ RA by (5)

iff 〈σA0 , . . . , σAm−1〉 ∈ RA by (6)

iff A |= Rσ0 . . . σm−1.

Now we take the inductive steps.

Γ ⊢ ¬ψ iff not(Γ ⊢ ψ)

iff not(A |= ψ)

iff A |= ¬ψ;

Γ ⊢ ψ → χ iff not(Γ ⊢ ψ) or Γ ⊢ χ
iff not(A |= ψ) or A |= χ

iff A |= ψ → χ.

Finally, suppose that ϕ is ∀viψ. First suppose that Γ ⊢ ϕ. We want to show that A |= ϕ,
so take any σ ∈ B and let u = [σ]≡; we want to show that A |= ψ[aiu], where a : ω → A.
Let χ be the sentence Subfviσ ψ. Then by Theorem 3.25 we have Γ ⊢ χ, and hence by the

inductive assumption A |= χ. By (6) we have σA = [σ]≡. Hence by Lemma 4.6 we get
A |= ψ[aiu].

Second suppose that Γ 6⊢ ϕ. Then by completeness Γ ⊢ ¬ϕ, and hence Γ ⊢ ∃vi¬ψ.
Hence by richness there is an individual constant c such that Γ ⊢ ∃vi¬ψ → Subfvi

c
(¬ψ),

hence Γ ⊢ ¬Subfvi
c
ψ, and so Γ 6⊢ Subfvi

c
ψ. By the inductive assumption, A 6|= Subfvi

c
ψ, and

so by (6) and Lemma 4.6, A 6|= ψ[aiu], where a : ω → A and u = [c]≡. So A 6|= ϕ.

This finishes the proof of (7). Applying (7) to members ϕ of Γ we see that A is a model
of Γ.
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The following rather technical lemma will be used in a few places below.

Lemma 4.8. Suppose that Γ is a set of formulas in L , and 〈ψ0, . . . , ψm−1〉 is a Γ-proof
in L . Suppose that C is a set of individual constants such that no member of C occurs in
any member of Γ. Let vj be a variable not occurring in any formula ψk, and for each k let
ψ′
k be obtained from ψk by replacing each member of C by vj. Similarly, for each term σ

let σ′ be obtained from σ by replacing each member of C by vj . Then 〈ψ′
0, ψ

′
1, . . . , ψ

′
m−1〉

is a Γ-proof in L .

Proof. Assume the hypotheses. We need to show that if ψk is a logical axiom, then
so is ψ′

k. We consider the possibilities one by one:

(ϕ→ (ψ → ϕ))′ is ϕ′ → (ψ′ → ϕ′);

((ϕ→ (ψ → χ) → ((ϕ→ ψ) → (ϕ→ χ)))′ is

(ϕ′ → (ψ′ → χ′) → ((ϕ′ → ψ′) → (ϕ′ → χ′));

((¬ϕ→ ¬ψ) → (ψ → ϕ))′ is (¬ϕ′ → ¬ψ′) → (ψ′ → ϕ′);

(∀vk(ϕ→ ψ) → (∀vkϕ→ ∀vkψ))′ is ∀vk(ϕ′ → ψ′) → (∀vkϕ′ → ∀vkψ′);

(ϕ→ ∀vkϕ)′ is ϕ′ → ∀vkϕ′ if vk does not occur in ϕ;

(∃vk(vk = σ))′ is ∃vk(vk = σ′) if vk does not occur in σ;

(σ = τ → (σ = ρ→ τ = ρ))′ is (σ′ = τ ′ → (σ′ = ρ′ → τ ′ = ρ′);

(σ = τ → (ρ = σ → ρ = τ))′ is (σ′ = τ ′ → (ρ′ = σ′ → ρ′ = τ ′);

(σ = τ → Fξ0 . . . ξi−1σξi+1 . . . ξm−1 = Fξ0 . . . ξi−1τξi+1 . . . ξm−1)′ is

σ′ = τ ′ → Fξ′0 . . . ξ
′
i−1σ

′ξ′i+1 . . . ξ
′
m−1 = Fξ′0 . . . ξ

′
i−1τ

′ξ′i+1 . . . ξ
′
m−1;

(σ = τ → (Rξ0 . . . ξi−1σξi+1 . . . ξm−1 → Rξ0 . . . ξi−1τξi+1 . . . ξm−1))′ is

σ′ = τ ′ → (Rξ′0 . . . ξ
′
i−1σ

′ξ′i+1 . . . ξ
′
m−1 → Rξ′0 . . . ξ

′
i−1τ

′ξ′i+1 . . . ξ
′
m−1).

Now back to our claim that 〈ψ′
0, . . . , ψ

′
m−1〉 is a Γ-proof. If ψk is a logical axiom, then by

the above, ψ′
k is a logical axiom. If ψk ∈ Γ, then no member of C occurs in ψk, and hence

ψ′
k = ψk. Suppose that s, t < k and ψs is ψt → ψk. Then ψ′

s is ψ′
t → ψ′

k. If s < k and
t ∈ ω, and ψk is ∀vtψs, then ψ′

k is ∀vtψ′
s. Thus our claim holds.

Lemma 4.9. Suppose that c is an individual constant not occurring in any formula in
Γ ∪ {ϕ}. Suppose that Γ ⊢ Subfvic ϕ. Then Γ ⊢ ϕ.

Proof. Let 〈ψ0, . . . , ψm−1〉 be a Γ-proof with ψj = Subfvic ϕ. Let vj and the sequence
〈ψ′

0, . . . , ψ
′
m−1〉 be as in Lemma 4.8, with C = {c}. Then by Lemma 4.8, 〈ψ′

0, . . . , ψ
′
m−1〉

is a Γ-proof. Note that ψ′
j is Subfvivjϕ. Thus Γ ⊢ Subfvivjϕ. Hence Γ ⊢ ∀vjSubfvivjϕ, and so

by Theorem 3.25, Γ ⊢ ϕ.

A first-order language L is finite iff L has only finitely many non-logical symbols. Note
that in a finite language there are infinitely many integers which are not symbols of the
language. We prove the main completeness theorem only for finite languages. This is not
an essential restriction. With an expanded notion of first-order language the present proof
still goes through.
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Lemma 4.10. Let L be a finite first-order language. Let L ′ extend L by adding indi-
vidual constants c0, c1, . . .. Suppose that Γ is a consistent set of formulas in L . Then it
is also consistent as a set of formulas in L ′.

Suppose not. Let 〈ψ0, . . . , ψm−1〉 be a Γ-proof in the L ′ sense with ψi the formula ¬(v0 =
v0). Let C be the set of all constants ci which appear in some formula ψk. Let vj and
〈ψ′

0, ψ
′
1, . . . , ψ

′
m−1〉 be as in Lemma 4.8. Then by Lemma 4.8, 〈ψ′

0, ψ
′
1, . . . , ψ

′
m−1〉 is a

Γ-proof. Clearly each ψ′
k is a L formula. Note that ψ′

i = ψi = ¬(v0 = v0). So Γ is
inconsistent in L , contradiction.

Lemma 4.11. Let L be a finite first-order language. Let L ′ extend L by adding indi-
vidual constants c0, c1, . . ..

Then there is an enumeration 〈ϕ0, ϕ1, . . .〉 of all of the sentences of L ′, and also an
enumeration 〈ψ0, ψ1, . . .〉 of all the sentences of L ′ of the form ∃viχ.

Proof. Recall that a formula is a certain finite sequence of positive integers. First
we describe how to list all finite sequences of positive integers. Given positive integers m
and n, we can list all sequences of members of {1, . . . , m} of length n by just listing them
in dictionary order. For example, with m = 3 and n = 2 our list is

〈1, 1〉
〈1, 2〉
〈1, 3〉
〈2, 1〉
〈2, 2〉
〈2, 3〉
〈3, 1〉
〈3, 2〉
〈3, 3〉

To list all finite sequences, we then do the following:

(1) List all sequences of members of {1} of length 1. (There is only one such, namely 〈1〉.)
(2) List all sequences of members of {1, 2} of length 1 or 2. Here they are:

〈1〉
〈2〉
〈1, 1〉
〈1, 2〉
〈2, 1〉
〈2, 2〉

(3) List all sequences of members of {1, 2, 3} of length 1,2, or 3.
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(4) General step: list all members of {1, . . . , m} of length 1, 2, . . .m.

Let 〈ψ0, ψ1, . . .〉 be the listing described. Now we go through this list and select the
ones which are sentences of L ′, giving the desired list 〈ϕ0, ϕ1, . . .〉. Similarly for the list
〈ψ0, ψ1, . . .〉 of all sentences of the form ∃viχ.

Lemma 4.12. Let L be a finite first-order language. Let L ′ extend L by adding indi-
vidual constants c0, c1, . . ..

Suppose that Γ is a consistent set of sentences of L ′. Then there is a rich consistent
set ∆ of sentences with Γ ⊆ ∆.

Proof. By Lemma 4.11, let 〈ψ0, ψ1, . . .〉 enumerate all the sentences of L ′ of the
form ∃viχ; say that ψk is ∃vt(k)ψ′

k for all k ∈ ω. Now we define an increasing sequence
〈j(k) : k ∈ ω〉 by recursion. Suppose that j(k) has been defined for all k < l. Let j(l) be
the smallest natural number not in the set

{j(k) : k < l} ∪ {s : cs occurs in some formula ψk with k ≤ l}.

Again we justify this definition. Let M be the set of all functions f defined on some set
m′ = {i ∈ ω : i < m} with m ∈ ω such that for all l < m, f(l) is the smallest number not
in the set

{f(k) : k < l} ∪ {s : cs occurs in some formula ψk with k ≤ l}.

(1) If f, g ∈ M , say with domains s′, t′ respectively, with s ≤ t, then f(k) = g(k) for all
k < s.

We prove this by complete induction on k. Assume that it is true for all k′ < k. Then
f(k) is the smallest number not in the set

{f(k′′) : k′′ < k} ∪ {u : cu occurs in some formula ψ′′
k with k′′ ≤ k} =

{g(k′′) : k′′ < k} ∪ {u : cu occurs in some formula ψ′′
k with k′′ ≤ k},

and this is the same as g(k). So (1) holds.

(2) For each m ∈ ω there is a member of M with domain m′.

We prove this by induction on m. For m = 0 we take the empty function. Assume that
f ∈M has domain m′. Define the extension g of f with domain (m+ 1)′ by letting g(m)
be the smallest number not in the set

{f(k) : k < m} ∪ {s : cs occurs in some formula ψk with k ≤ m}.

This proves (2).
Now we define f(l) to be g(l) for any g ∈M with l in the domain of g.
For each l ∈ ω let

Θl = Γ ∪ {∃vt(k)ψ′
k → Subf

vt(k)
cj(k)

ψ′
k : k < l}.
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We claim that each set Θl is consistent. We prove this by induction on l. Note that Θ0 = Γ,
which is given as consistent. Now suppose that we have shown that Θl is consistent.
Now Θl+1 = Θl ∪ {∃vt(l)ψ′

l → Subf
vt(l)
cj(l)

ψ′
l}. Assume that Θl+1 is inconsistent. Then

Θl+1 ⊢ ¬(v0 = v0). By the deduction theorem 4.2, it follows that

Θl ⊢ (∃vt(l)ψ′
l → Subf

vt(l)
cj(l)

ψ′
l) → ¬(v0 = v0),

hence easily
Θl ⊢ ¬(∃vt(l)ψ′

l → Subf
vt(l)
cj(l)

ψ′
l),

so that using tautologies

Θl ⊢ ∃vt(l)ψ′
l and

Θl ⊢ ¬Subf
vt(l)
cj(l)

ψ′
l.

Now by the definition of the sequence 〈j(k) : k ∈ ω〉, it follows that cj(l) does not occur in
any formula in Θl ∪ {ψ′

l}. Hence by Lemma 4.9 we get Θl ⊢ ¬ψ′
l, and so Θl ⊢ ∀vt(l)¬ψ′

l.
But we also have Θl ⊢ ∃vt(l)ψ′

l, so that Θl is inconsistent, contradiction.
Now let ∆ =

⋃

l∈ω Θl. We claim that ∆ is consistent. Suppose not. Then ∆ ⊢ ¬(v0 =
v0). Let 〈ϕ0, . . . ϕm−1〉 be a ∆-proof with ϕi = ¬(v0 = v0). For each k < m such that
ϕk ∈ ∆, choose s(k) ∈ ω such that ϕk ∈ Θs(k). Let l be such that s(l) is largest among
all k < m such that ϕk ∈ Θs(k). Then 〈ϕ0, . . . ϕm−1〉 is a Θs(l)-proof, and hence Θs(l) is
inconsistent, contradiction.

Now clearly Γ ⊆ ∆, since Θ0 = Γ. We claim that ∆ is rich. For, let ∃vlχ be a sentence.
Say ∃vlχ is ψm. Then ∃vlχ is ∃vt(m)ψ

′
m, so that l = t(m) and c = ψ′

m. Now the formula

∃vt(m)ψ
′
m → Subf

vt(m)
cj(m)ψ

′
m

is a member of Θm+1, and hence is a member of ∆. This formula is ∃vlχ → Subfvlcj(m)
χ.

Hence ∆ is rich.

Lemma 4.13. Let L be a finite first-order language. Let L ′ extend L by adding indi-
vidual constants c0, c1, . . ..

Suppose that Γ is a consistent set of sentences of L ′. Then there is a consistent
complete set ∆ of sentences with Γ ⊆ ∆.

Proof. By Lemma 4.11, let 〈ϕ0, ϕ1, . . .〉 be an enumeration of all the sentences of L ′.
We now define by recursion sets Θi of sentences. Let Θ0 = Γ. Suppose that Θi has been
defined so that it is consistent. If Θi ∪{ϕi} is consistent, let Θi+1 = Θi ∪ {ϕi}. Otherwise
let Θi+1 = Θi ∪ {¬ϕi}. We claim that in this otherwise case, still Θi+1 is consistent.
Suppose not. Then Θi+1 ⊢ ¬(v0 = v0), i.e., Θi ∪ {¬ϕi} ⊢ ¬(v0 = v0). By the deduction
theorem, Θi ⊢ ¬ϕi → ¬(v0 = v0), and then by Proposition 3.4 and a tautology Θi ⊢ ϕi.
It follows that Θi ∪ {ϕi} is consistent; otherwise Θi ∪ {ϕi} ⊢ ¬(v0 = v0), hence by the
deduction theorem Θi ⊢ ϕi → ¬(v0 = v0), so by Proposition 4.3 and a tautology Θi ⊢ ¬ϕi.
Together with Θi ⊢ ϕi, this shows that Θi is inconsistent, contradiction. So, Θi ∪ {ϕi} is
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consistent. But this contradicts our “otherwise” condition. So, Θi+1 is consistent. So the
recursion continues.

Once more we give details on the recursion. Let M be the set of all functions f such
that the domain of f is m′ = {0, . . . , m− 1} for some m ∈ ω, and for all i < m one of the
following holds:

(1) i = 0 and f(0) = Γ.

(2) i = j + 1 for some j ∈ ω, f(j) is a set of sentences, f(j) ∪ {ϕj} is consistent, and
f(i) = f(j) ∪ {ϕj}.

(3) i = j + 1 for some j ∈ ω, f(j) is a set of sentences, f(j) ∪ {ϕj} is not consistent, and
f(i) = f(j) ∪ {¬ϕj}.

We claim:

(4) If f, g ∈M , say with domains m′, n′ respectively, with m ≤ n, then f(i) = g(i) for all
i < m.

We prove this by induction on i. For i = 0 we have f(0) = Γ = g(0). Suppose it is true
for i, with i+ 1 < m. Then by the definition of M we have two cases.

Case 1. f(i) is a set of sentences, f(i)∪{ϕi} is consistent, and f(i+ 1) = f(i)∪{ϕi}.
Since f(i) = g(i) by the inductive assumption, the definition of M gives g(i + 1) =
g(i) ∪ {ϕi} = f(i) ∪ {ϕi} = f(i+ 1).

Case 2. f(i) is a set of sentences, f(i) ∪ {ϕi} is not consistent, and f(i + 1) =
f(i) ∪ {¬ϕi}. Since f(i) = g(i) by the inductive assumption, the definition of M gives
g(i+ 1) = g(i) ∪ {¬ϕi} = f(i) ∪ {¬ϕi} = f(i+ 1).

This finishes the inductive proof of (4).

(5) For all f ∈M and all i in the domain of f , f(i) is a set of sentences.

This is easily proven by induction on i.

(6) For each m ∈ ω there is an f ∈M with domain m′.

We prove (5) by inducation on m. For m = 0 we can let f be the empty function. Suppose
f ∈ M with the domain of f equal to m′. If m = 0 we can let g be the function with
domain {0} and g(0) = Γ. Assume that m > 0. By (5), f(m − 1) is a set of sentences.
Then we define g to be the extension of f such that

g(m) =

{
f(m− 1) ∪ {ϕm−1} if this set is consistent,
f(m− 1) ∪ {¬ϕm−1} otherwise.

Thus (6) holds.
Now we define Θi = f(i) for any f ∈M which has i in its domain. Then by (5), each

Θi is a set of sentences, Θ0 = Γ, and

Θi+1 =

{
Θi ∪ {ϕi} if this set is consistent,
Θi ∪ {¬ϕi} otherwise.
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Now we show by induction that each Θi is consistent. Since Θ0 = Γ, Θ0 is consistent by
assumption. Now suppose that Θi is consistent. If Θi ∪ {ϕi} is consistent, then Θi+1 =
Θi ∪ {ϕi} and hence Θi+1 is consistent. Suppose that Θi ∪ {ϕi} is not consistent. Then
Θi ∪ {ϕi} ⊢ ¬(v0 = v0), and hence an easy argument which we have used before gives
Θi ⊢ ¬ϕi. Now Θi+1 = Θi ∪ {¬ϕi}, so if Θi+1 is not consistent we easily get Θi ⊢ ϕi.
Hence Θi is inconsistent, contradiction. This completes the inductive proof.

Now let ∆ =
⋃

i∈ω Θi. Then ∆ is consistent. In fact, suppose not. Then ∆ ⊢ ¬(v0 =
v0). Let 〈ψ0, . . . , ψm−1〉 be a ∆-proof with ψi = ¬(v0 = v0). Let 〈χ0, . . . , χn−1〉 enumerate
all of the members of ∆ which are in the proof. Say χj ∈ Θs(j) for each j < n. Let t be
maximum among all the s(j) for j < n. Then each χk is in Θt, so that 〈ψ0, . . . , ψm−1〉 is
a Θt-proof. It follows that Θt is inconsistent, contradiction.

So ∆ is consistent. Since Θ0 = Γ, we have Γ ⊆ ∆. Finally, ∆ is complete, since every
sentence is equal to some ϕi, and our construction assures that ϕi ∈ ∆ or ¬ϕi ∈ ∆.

Lemma 4.14. Let L be a first-order language. Let L ′ extend L by adding new non-
logical symbols Suppose that M is an L ′-structure, and N is the L -structure obtained
from M by removing the denotations of the new non-logical symbols. Suppose that ϕ is a
formula of L , and a : ω →M . Then M |= ϕ[a] iff N |= ϕ[a].

Proof. First we prove the following similar statement for terms:

(1) If σ is a term of L , then σM (a) = σN (a).

We prove this by induction on σ:

vMi (a) = ai = vNi (a);

kM (a) = kM = kN = kN (a) for k an individual constant of L

(Fσ0 . . . σm−1)M (a) = FM (σM0 (a), . . . σMm−1(a))

= FN (σN0 (a), . . . σNm−1(a))

= (Fσ0 . . . σm−1)N (a).

Here F is a function symbol of L . Thus (1) holds.
Now we prove the lemma itself by induction on ϕ:

M |= (σ = τ)[a] iff σM (a) = τM (a)

iff σN (a) = τN (a)

iff N |= (σ = τ)[a];

M |= (Rσ0 . . . σm−1)[a] iff 〈σM0 (a), . . . , σMm−1(a)〉 ∈ RM

iff 〈σN0 (a), . . . , σNm−1(a)〉 ∈ RN

iff N |= (Rσ0 . . . σm−1)[a];

M |= (¬ϕ)[a] iff not(M |= ϕ[a])

iff not(N |= ϕ[a])
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iff N |= (¬ϕ)[a];

M |= (ϕ→ ψ)[a] iff not(M |= ϕ[a]) or M |= ψ[a]

iff not(N |= ϕ[a]) or N |= ψ[a]

iff N |= (ϕ→ ψ)[a];

M |= (∀viϕ)[a] iff for all u ∈M(M |= ϕ[aiu])

iff for all u ∈ N(N |= ϕ[aiu])

iff N |= (∀viϕ)[a].

Theorem 4.15. (Completeness Theorem 1) Every consistent set of sentences in a finite
language has a model.

Proof. Let Γ be a consistent set of sentences in the finite language L . Let L ′ be
obtained from L by adjoining individual constants ci for each i ∈ ω. By Lemmas 4.12
and 4.13 let ∆ be a consistent rich complete set of sentences in L ′ such that Γ ⊆ ∆.
By Lemma 4.7, let M be a model of ∆. Let N be the L -structure obtained from M by
removing the denotations of the constants ci for i ∈ ω. By Lemma 4.14, N is a model of
Γ.

Theorem 4.16. (Completeness Theorem 2) Let Γ ∪ {ϕ} be a set of formulas in a finite
language. Then Γ ⊢ ϕ iff Γ |= ϕ.

Proof. By Theorems 4.3 and 4.15.

Theorem 4.17. (Completeness Theorem 3) For any formula ϕ, ⊢ ϕ iff |= ϕ.

Proof. Note that the implicit language L here is arbitrary, not necessarily finite. ⇒
holds by Theorem 4.3. Now suppose that |= ϕ in the sense of L : for every L -structure
M and every a : ω → M we have M |= ϕ[a]. Let L ′ be the language whose non-logical
symbols are those occurring in ϕ. There are finitely many such symbols, so L ′ is a finite
language. By Lemma 4.14 we have |= ϕ in the sense of L ′. Hence by Theorem 4.16, ⊢ ϕ
in the sense of L ′. But every L ′-proof is also an L -proof; so ⊢ ϕ in the sense of L .

As the final topic of this chapter we consider the role of definitions. To formulate the
results we need another elementary logical notion. We define ∃!viϕ to be the formula
∃vi[ϕ ∧ ∀vj [Subfvivjϕ → vi = vj ]], where j is minimum such that j 6= i and vj does not
occur in ϕ.

Theorem 4.18. A |= ∃!viϕ[a] iff there is a unique u ∈ A such that A |= ϕ[aiu].

Proof. ⇒: Assume that A |= ∃!viϕ[a]. Choose u ∈ A such that

(1) A |= (ϕ ∧ ∀vj [Subfvivjϕ→ vi = vj ])[a
i
u].

In particular, A |= ϕ[aiu]. Suppose that also A |= ϕ[aiw]. By Lemma 4.4, A |= ϕ[(ajw)iw],
i.e.,

A |= ϕ[(ajw)i
vj(a

j
w)

].
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Now we apply Lemma 4.6, with a replaced by ajw and obtain

A |= Subfvivjϕ[ajw].

Since vi does not occur free in Subfvivjϕ, this implies that

(2) A |= Subfvivjϕ[(aiu)jw].

Now by (1) we have
A |= (Subfvivjϕ→ vi = vj)[(a

i
u)jw],

so by (2) we have u = w.
⇐: Suppose that u ∈ A is unique such that A |= ϕ[aiu]. To check the other part

of ∃!viϕ, suppose that w ∈ A and A |= Subfvivjϕ[(aiu)jw]. Since vi does not occur free in

Subfvivjϕ, it follows by Proposition 4.4 that A |= Subfvivjϕ[ajw]. Applying Lemma 4.6 with a

replaced by ajw we obtain A |= ϕ[(ajw)i
vj(a

j
w)

], i.e., A |= ϕ[(ajw)iw]. By Proposition 4.4 again

this yields A |= ϕ[aiw]. Hence by supposition u = w, as desired.

By a theory we mean a pair (L ,Γ) such that L is a first-order language and Γ is a set
of formulas in L . A theory (L ′,Γ′) is a simple definitional expansion of a theory (L ,Γ)
provided that the following conditions hold:

(1) L ′ is obtained from L by adding one new non-logical symbol.

(2) If the new symbol of L ′ is an m-ary relation symbol R, then there is a formula ϕ of
L with free variables among v0, . . . , vm−1 such that

Γ′ = Γ ∪ {Rv0 . . . vm−1 ↔ ϕ}.

(3) If the new symbol of L ′ is an individual constant c, then there is a formula ϕ of L

with free variables among v0 such that Γ ⊢ ∃!v0ϕ and

Γ′ = Γ ∪ {c = v0 ↔ ϕ}.

(4) If the new symbol of L ′ is an m-ary function symbol F, then there is a formula ϕ of
L with free variables among v0, . . . , vm such that Γ ⊢ ∀v0 . . .∀vm−1∃!vmϕ and

Γ′ = Γ ∪ {Fv0 . . . vm−1 = vm ↔ ϕ}.

The basic facts about definitions are that the defined terms can always be eliminated, and
adding a definition does not change what is is provable in the original language. In order
to prove these two facts, we first show that any formula can be put in a certain standard
form, which is interesting in its own right. A formula ϕ is standard provided that every
atomic subformula of ϕ has one of the following forms:

vi = vj for some i, j ∈ ω.
c = v0 for some individual constant c.
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Rv0 . . . vm−1 for some m-ary relation symbol R.
Fv0 . . . vm−1 = vm for some m-ary function symbol F.

Lemma 4.19. If c is an individual constant and i 6= 0, then ⊢ c = vi ↔ ∃v0(v0 = vi∧c =
v0).

Proof. We argue model-theoretically. Suppose that A is a structure and a : ω → A.

If A |= (c = vi)[a], then cA = ai. Then vA0 (a0
ai

) = ai and vAi (a0
ai

) = ai. Hence A |= (v0 =

vi ∧ c = v0)[a0
ai

], and so A |= ∃v0(v0 = vi ∧ c = v0)[a]. Thus A |= (⊢ c = vi)[a] implies

that A |= ∃v0(v0 = vi ∧ c = v0)[a].
Conversely, suppose that A |= ∃v0(v0 = vi ∧ c = v0)[a]. Choose x ∈ A such that A |=

(v0 = vi ∧ c = v0)[a0
x]. Then x = vA0 (a0

x) = vAi (a0
x) = ai and cA = vA0 (a0

x) = ai = vAi (a).
Hence A |= (⊢ c = vi)[a].

So we have shown that A |= (⊢ c = vi)[a] iff A |= ∃v0(v0 = vi ∧ c = v0)[a]. It
follows that |= c = vi ↔ ∃v0(v0 = vi ∧ c = v0). Hence by the completeness theorem,
⊢ c = vi ↔ ∃v0(v0 = vi ∧ c = v0).

Lemma 4.20. Suppose that R is an m-ary relation symbol and 〈i(0), . . . , i(m − 1)〉 is a
sequence of natural numbers such that m ≤ i(j) for all j < m. Also assume that k < m.
Then

⊢ Rv0 . . . vk−1vi(k) . . . vi(m−1) ↔ ∃vk[vk = vi(k) ∧ Rv0 . . . vkvi(k+1) . . . vi(m−1)].

Proof. Again we argue model-theoretically. Suppose that A is a structure and a :
ω → A. First suppose that

A |= Rv0 . . . vk−1vi(k) . . . vi(m−1)[a]

Thus

〈a0, . . . , ak−1, ai(k), . . . , ai(m−1)〉 ∈ RA hence

〈(akai(k))0, . . . , (a
k
ai(k)

)k−1, (a
k
ai(k)

)i(k), . . . , (a
k
ai(k)

)i(m−1)〉 ∈ RA hence

〈(akai(k))0, . . . , (a
k
ai(k)

)k−1, (a
k
ai(k)

)k, . . . , (a
k
ai(k)

)i(m−1)〉 ∈ RA hence

A |= [vk = vi(k) ∧ Rv0 . . . vkvi(k+1) . . . vi(m−1)][a
k
ai(k)

] hence

A |= ∃vk[vk = vi(k) ∧ Rv0 . . . vkvi(k+1) . . . vi(m−1)][a].(∗)

Second, suppose that (∗) holds. Choose s ∈ A such that

A |= [vk = vi(k) ∧ Rv0 . . . vkvi(k+1) . . . vi(m−1)][a
k
s ]

Then s = ai(k) and 〈a0, . . . , ak−1, s, ai(k+1), . . . , ai(m−1)〉 ∈ RA, so

〈a0, . . . , ak−1, ai(k), ai(k+1), . . . , ai(m−1)〉 ∈ RA,
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so A |= Rv0 . . . vk−1vi(k) . . . vi(m−1)[a].
Now the Lemma follows by the completeness theorem.

Lemma 4.21. Suppose that R is an m-ary relation symbol and 〈i(0), . . . , i(m − 1)〉 is a
sequence of natural numbers such that m ≤ i(j) for all j < m. Then there is a standard
formula ϕ with free variables vi(j) for j < m such that ⊢ Rvi(0) . . . vi(m−1) ↔ ϕ.

Proof. This follows by an easy induction from Lemma 4.20.

The proof of the following lemma is very similar to the proof of Lemma 4.20.

Lemma 4.22. Suppose that F is an m-ary function symbol and 〈i(0), . . . , i(m)〉 is a
sequence of natural numbers such that m+1 ≤ i(j) for all j ≤ m. Also assume that k < m
Then

⊢Fv0 . . . vk−1vi(k) . . . vi(m−1) = vi(m) ↔
∃vk[vk = vi(k) ∧ Fv0 . . . vkvi(k+1) . . . vi(m−1) = vi(m)].

Proof. Again we argue model-theoretically. Suppose that A is a structure and a :
ω → A. First suppose that A |= (Fv0 . . . vk−1vi(k) . . . vi(m−1) = vi(m))[a]. Then

FA(a0, . . . , ak−1, ai(k), . . . , ai(m−1) = ai(m), hence

FA((aki(k))0, . . . , (a
k
i(k))k−1, (a

k
i(k))i(k), . . . , (a

k
i(k))i(m−1) = (aki(k))i(m), hence

FA((aki(k))0, . . . , (a
k
i(k))k−1, (a

k
i(k))k, . . . , (a

k
i(k))i(m−1) = (aki(k))i(m), hence

A |= (vk = vi(k) ∧ Fv0 . . . vkvi(k+1) . . . vi(m−1) = vi(m))[a
k
i(k)], hence

A |= ∃vk[vk = vi(k) ∧ Fv0 . . . vkvi(k+1) . . . vi(m−1) = vi(m)][a].(∗)

Second, suppose that (∗) holds. Choose s so that

A |= [vk = vi(k) ∧ Fv0 . . . vkvi(k+1) . . . vi(m−1) = vi(m)][a
k
s ].

Then s = ai(k) and FA(a0, . . . , s, ai(k+1) . . . ai(m−1)) = ai(m). Hence

FA(a0, . . . , ak−1, ai(k), ai(k+1) . . . ai(m−1)) = ai(m),

and so A |= (Fv0 . . . vk−1vi(k) . . . vi(m−1) = vi(m))[a].
The Lemma now follows by the completeness theorem.

Lemma 4.23. Suppose that F is an m-ary function symbol and 〈i(0), . . . , i(m)〉 is a
sequence of natural numbers such that m+1 ≤ i(j) for all j ≤ m. Then there is a standard
formula ϕ with free variables vi(j) for j ≤M such that ⊢ Fvi(0) . . . vi(m−1) = vi(m) ↔ ϕ.

Proof. By an easy induction using Lemma 4.22 there is a formula ψ with free variables
vi(j) for j ≤ m such that the only nonlogical atomic formula which is a segment of ψ is
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Fv0 . . . vm−1 = vi(m) and ⊢ Fvi(0) . . . vi(m−1) = vi(m) ↔ ϕ. Now for any structure A and
any a : ω → A we have

(∗) A |= (Fv0 . . . vm−1 = vi(m) ↔ ∃vm[vm = vi(m) ∧ Fv0 . . . vm−1 = vm)][a].

To prove (∗), first suppose that A |= (Fv0 . . . vm−1 = vi(m))[a]. Thus F(a0, . . . , am−1) =
ai(m). Hence

F(a0, . . . , am−1) = ai(m) hence

F((amai(m)
)0, . . . , (a

m
ai(m)

)m−1) = (amai(m)
)i(m) hence

A |= (vm = vi(m) ∧ Fv0 . . . vm−1 = vm)[amai(m)
] hence

A |= ∃vm[vm = vi(m) ∧ Fv0 . . . vm−1 = vm)][a](∗∗)

Second, assume (∗∗). Choose s ∈ A such that A |= [vm = vi(m) ∧Fv0 . . . vm−1 = vm)][ams ].

It follows that s = ai(m) and FA(a0, . . . , am−1 = s, so FA(a0, . . . , am−1 = ai(m), hence

A |= (Fv0 . . . vm−1 = vi(m))[a].
This proves (∗). From (∗) the Lemma is clear.

Lemma 4.24. Suppose that F is an m-ary function symbol, σ0, . . . , σm−1 are terms, the
integers i(0), . . . , i(m) are all greater than m and do not appear in any of the terms σj,
and k < m. Then

⊢Fvi(0) . . . vi(k−1)σk . . . σm−1 = vi(m)

↔ ∃vi(k)[σk = vi(k) ∧ Fvi(0) . . . vi(k)σk+1 . . . σm−1 = vi(m)].

Proof. Arguing model-theoretically, let A be a structure and a : ω → A. Let

b = a
i(k)

σA
k

(a)
. First suppose that A |= (Fvi(0) . . . vi(k−1)σk . . . σm−1 = vi(m))[a]. Thus

FA(ai(0), . . . , ai(k−1), σ
A
k (a), . . . , σAm−1(a)) = vAi(m)(a) hence

FA(bi(0), . . . , bi(k−1), bi(k), σ
A
k+1(b), . . . , σAm−1(b)) = vAi(m)(b) hence

A |= (σk = vi(k) ∧ Fvi(0) . . . vi(k)σk+1 . . . σm−1 = vi(m))[b] hence

A |= ∃vi(k)(σk = vi(k) ∧ Fvi(0) . . . vi(k)σk+1 . . . σm−1 = vi(m))[a].(∗)

Second, suppose that (∗) holds. Choose s ∈ A so that

A |= (σk = vi(k) ∧ Fvi(0) . . . vi(k)σk+1 . . . σm−1 = vi(m))[a
i(k)
s ].

Hence σAk (a
i(k)
s ) = s and

FA((ai(k)s )i(0), . . . , (a
i(k)
s )i(k), σ

A
k+1(ai(k)s ), . . . σA(ai(k)s ) = (ai(k)s )i(m), hence

FA((ai(k)s )i(0), . . . , σ
A
k (ai(k)s ), σAk+1(ai(k)s ), . . . σA(ai(k)s ) = (ai(k)s )i(m), hence

FA(ai(0), . . . , ai(k−1), σ
A
k (a), . . . , σAm−1(a)) = vAi(m)(a) hence

A |= (Fvi(0) . . . vi(k−1)σk . . . σm−1 = vi(m))[a]
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Lemma 4.25. Suppose that F is an m-ary function symbol, σ0, . . . , σm−1 are terms, the
integers i(0), . . . , i(m) are all greater than m and do not appear in any of the terms σj.

Then there is a formula ϕ with free variables among vi(0), . . . , vi(m) such that the
atomic subformulas of ϕ are the formulas σk = vi(k) for k < m along with the formula
Fvi(0) . . . vi(m−1) = vi(m), and ⊢ Fσ0 . . . σm−1 = vi(m) ↔ ϕ.

Lemma 4.26. Suppose that τ is a term and i ∈ ω is greater than m for each m such that
a function symbol of rank m occurs in τ , and such that vm does not occur in τ .

Then there is a standard formula ϕ with the same free variables occurring in τ = vm,
such that ⊢ τ = vm ↔ ϕ.

Proof. We go by induction on τ . If τ is vi, then we can take ϕ to be vi = vm. If
τ is an individual constant c, then Lemma 4.19 gives the desired result. Finally, suppose
inductively that τ is Fσ0 . . . σm−1. Then the desired result follows by Lemma 4.26, the
inductive hypothesis, and Lemma 4.23.

Lemma 4.27. For any terms σ, τ there is a standard formula ϕ with the same free
variables as σ = τ such that ⊢ σ = τ ↔ ϕ.

Proof. Let i be greater than each m such that there is a function symbol of rank m
appearing in σ = τ , and also such that vi does not occur in σ = τ . Then

(1) ⊢ σ = τ ↔ ∃vi(σ = vi ∧ τ = vi).

We prove (1) model-theoretically. First suppose that A |= (σ = τ)[a]. Thus σA(a) = τA(a).
By Proposition 2.4 we then have

σA(ai
σA(a)

) = τA(ai
αA(a)

) hence

A |= (σ = vi ∧ τ = vi)[a
i

σA(a)
] hence

A |= ∃vi(σ = vi ∧ τ = vi)[a].(∗)

Second, suppose that (∗) holds. Choose s ∈ A such that A |= (σ = vi ∧ τ = vi)[a
i
s]. Thus

σA(ais) = s = τA(ais), hence σA(a) = τA(a) by Proposition 2.4. That is, A |= (σ = τ)[a].
This finishes the proof of (1).

Now by (1) and Lemma 4.26 our lemma follows.

The proof of the following lemma is very similar to that of Lemma 4.24.

Lemma 4.28. Suppose that R is an m-ary relation symbol, σ0, . . . , σm−1 are terms, the
integers i(0), . . . , i(m) are all greater than m and do not appear in any of the terms σj,
and k < m. Then

⊢Rvi(0) . . . vi(k−1)σk . . . σm−1

↔ ∃vi(k)[σk = vi(k) ∧ Rvi(0) . . . vi(k)σk+1 . . . σm−1].
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Proof. Arguing model-theoretically, let A be a structure and a : ω → A. Let

b = a
i(k)

σA
k

(a)
. First suppose that A |= (Rvi(0) . . . vi(k−1)σk . . . σm−1[a]. Thus

〈ai(0), . . . , ai(k−1), σ
A
k (a), . . . , σAm−1(a) ∈ RA, hence

〈bi(0), . . . , bi(k−1), bi(k), σ
A
k+1(b), . . . , σAm−1(b) ∈ RA, hence

A |= (σk = vi(k) ∧ Rvi(0) . . . vi(k)σk+1 . . . σm−1)[b] hence

A |= ∃vi(k)(σk = vi(k) ∧ Rvi(0) . . . vi(k)σk+1 . . . σm−1)[a].(∗)

Second, suppose that (∗) holds. Choose s ∈ A so that

A |= (σk = vi(k) ∧ Rvi(0) . . . vi(k)σk+1 . . . σm−1)[ai(k)s ].

Hence σAk (a
i(k)
s ) = s and

〈(ai(k)s )i(0), . . . , (a
i(k)
s )i(k), σ

A
k+1(ai(k)s ), . . . σA(ai(k)s )〉 ∈ RA, hence

〈(ai(k)s )i(0), . . . , σ
A
k (ai(k)s ), σAk+1(ai(k)s ), . . . σA(ai(k)s )〉 ∈ RA, hence

〈ai(0), . . . , ai(k−1), σ
A
k (a), . . . σAm−1(a)〉 ∈ RA, hence

A |= (Rvi(0) . . . vi(k−1)σk . . . σm−1)[a]

Theorem 4.29. For any formula ϕ there is a standard formula ψ with the same free
variables as ϕ such that ⊢ ϕ↔ ψ.

Proof. We proceed by induction on ϕ. For ϕ an atomic equality formula σ = τ the
desired result is given by Lemma 4.27. Now suppose that ϕ is an atomic nonequality formul
Rσ0 . . . σm−1. Using induction we see from Lemma 4.28 that there is a formula ϕ whose
atomic parts are of the form σk = vi(k) and Rvi(0 . . . vi(m−1) such that ⊢ Rσ0 . . . σm−1 ↔ ϕ,
and each i(k) is greater than each n such that a function symbol of rank n occurs in some
σl, and also is such that no vi(k) occurs in any σs, and eack i(k) > m. Now by Lemmas
4.21 and 4.26, ⊢ ϕ ↔ ψ for some standard formula ψ. The condition on free variables
holds in each of these steps. Thus the atomic cases of the induction hold.

The induction steps are easy:
Suppose that ⊢ ϕ↔ ψ with ψ standard. Then ⊢ ¬ϕ↔ ¬ψ and ¬ψ is standard.
Suppose that ⊢ ϕ ↔ ψ with ψ standard and ⊢ ϕ′ ↔ ψ′ with ψ′ standard. Then

⊢ (ϕ→ ψ) ↔ (ψ → ψ′) and ψ → ψ′ is standard.
Suppose that ⊢ ϕ↔ ψ with ψ standard. Then ⊢ ∀viϕ↔ ∀viψ with ∀viψ standard.

The following theorem expresses that defined notions can be eliminated.

Theorem 4.30. Let (L ′,Γ′) be a simple definitional expansion of (L ,Γ), and let ϕ be a
formula of L ′. Then there is a formula ψ of L with the same free variables as ϕ such
that Γ′ ⊢ ϕ↔ ψ.
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(Note here that ⊢ is in the sense of L ′.)

Proof. Let χ be a standard formula (of L ′) such that ⊢ ϕ↔ χ, such that χ has the
same free variables as ϕ. Now we consider cases depending on what the new symbol s of
L ′ is. Let θ be as in the definition of simple definitional expansion, with θ instead of ϕ.

Case 1. s is an individual constant c. Then we let ψ be obtained from χ by replacing
every subformula c = v0 of χ by θ.

Case 2. s is an m-ary relation symbol R. Then we let ψ be obtained from χ by
replacing every subformula Rv0 . . . vm−1 of χ by θ.

Case 3. s is an m-ary function symbol F. Then we let ψ be obtained from χ by
replacing every subformula Fv0 . . . vm−1 = vm of χ by θ.

The following theorem expresses that a simple definitional expansion does not increase the
set of old formulas which are provable.

Theorem 4.31. Let (L ′,Γ′) be a simple definitional expansion of (L ,Γ) with L finite,
and let ϕ be a formula of L . Suppose that Γ′ ⊢ ϕ. Then Γ ⊢ ϕ.

Proof. By the completeness theorem we have Γ′ |= ϕ, and it suffices to show that
Γ |= ϕ. So, suppose that A |= ψ for each ψ ∈ Γ. In order to show that A |= ϕ, suppose

that a : ω → A; we want to show that A |= ϕ[a]. We define an L ′-structure A
′

by defining
the denotation of the new symbol s of L ′. The three cases are treated similarly, but we
give full details for each of them.

Case 1. s is c, an individual constant. By the definition of simple definitional expan-
sion, there is a formula χ of L with free variables among v0 such that Γ ⊢ ∃!v0χ, and
Γ′ = Γ ∪ {c = v0 ↔ χ}. Then Γ |= ∃!v0χ. Since A |= Γ, it follows that A |= χ[a0

x] for a

unique x ∈ A. Let cA
′

= x. We claim that A
′ |= (c = v0 ↔ χ). In fact, suppose that

b : ω → A. If A
′ |= (c = v0)[b], then b0 = cA

′

= x. Then a0
x and b agree at 0, so by

Lemma 4.4, since the free variables of χ are among v0, we have A |= χ[b]. By Lemma

4.14, A
′ |= χ[b]. Conversely, suppose that A

′ |= χ[b]. Then b and a0
b(0) agree on 0, so

A
′ |= χ[a0

b(0)]. Hence A |= χ[a0
b(0)] by Lemma 4.14. Since also A |= χ[a0

x] and A |= ∃!v0χ,

it follows that b(0) = x. Hence A
′ |= (c = v0)[b]. This proves the claim.

By the claim, A
′

is a model of Γ′. Hence it is a model of ϕ. By Lemma 4.14, A is a
model of ϕ, as desired.

Case 2. s is F, an m-ary function symbol. By the definition of simple defi-
nitional expansion, there is a formula χ of L with free variables among v0, . . . , vm
such that Γ ⊢ ∀v0 . . .∀vm−1∃!vmχ, and Γ′ = Γ ∪ {Fv0 . . . vm−1 = vm ↔ χ}. Then
Γ |= ∀v0 . . .∀vm−1∃!vmχ. Let x(0), . . . , x(m − 1) ∈ A. Since A |= Γ, it follows that

A |= χ[(· · · (a0
x(0))

1
x(1)) · · ·)m−1

x(m−1))
m
y ] for a unique y ∈ A. Let FA

′

(x(0), . . . , x((m−1)) = y.

We claim that A
′ |= (Fv0 . . . vm−1 = vm ↔ χ). In fact, suppose that b : ω → A. If

A
′ |= (Fv0 . . . vm−1 = vm)[b], then FA

′

(b0, . . . , bm−1) = bm. Now b and (· · · (a0
b0

)1b1) · · ·)mbm
and b agree on {0, . . . , m}, so by the definition of FA

′

we get A |= χ[(· · · (a0
b0

)1b1) · · ·)mbm ],

and hence also A |= χ[b], and by Lemma 4.14 A
′ |= χ[b].
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Conversely, suppose that A
′ |= χ[b]. Then A |= [(· · · (a0

b0
)1b1) · · ·)mbm ], and therefore

FA
′

(b0, . . . , bm−1) = bm. This proves the claim.

By the claim, A
′

is a model of Γ′. Hence it is a model of ϕ. By Lemma 4.14, A is a
model of ϕ, as desired.

Case 3. s is R, an m-ary relation symbol. By the definition of simple definitional
expansion, there is a formula χ of L with free variables among v0, . . . , vm−1 such that
Γ′ = Γ ∪ {Rv0 . . . vm−1 ↔ χ}. Let

RA
′

= {〈a0, . . . , am−1〉 : A |= χ[a]

for some a : ω → A which extends 〈a0, . . . , am−1〉}.

We claim that A
′ |= (Rv0 . . . vm−1 ↔ χ). In fact, suppose that b : ω → A. If A

′ |=
(Rv0 . . . vm−1[b], then 〈b0, . . . , bm−1〉 ∈ RA

′

, and so there is an extension a : ω → A of
〈b0, . . . , bm−1〉 such that A |= χ[a]. Since a and b agree on all k such that vk occurs in χ,

it follows that A |= χ[b], and hence A
′ |= χ[b].

Conversely, suppose that A
′ |= χ[b]. Then A |= χ[b] by Lemma 4.14, and it follows

that 〈b0, . . . , bm−1〉 ∈ RA
′

. This proves the claim.

By the claim, A
′

is a model of Γ′. Hence it is a model of ϕ. By Lemma 4.14, A is a
model of ϕ, as desired.

Theorem 4.32. Let m be an integer ≥ 2, and suppose that (Li+1,Γi+1) is a simple
definitional expansion of (Li,Γi) for each i < m. Suppose that ϕ is an Lm formula. Then
there is an L0 formula ψ with the same free variables as ϕ such that Γm ⊢ ϕ↔ ψ.

Proof. By induction on m. If m = 2, the conclusion follows from Theorem 4.30. now
assume the result for m and suppose that (Li+1,Γi+1) is a simple definitional expansion
of (Li,Γi) for each i ≤ m. Let ϕ be a formula of Lm+1. Then by Theorem 4.30 there
is a formula ψ of L with the same free variables as ϕ such that Γm+1 ⊢ ϕ ↔ ψ. By
the inductive hypothesis, there is a formula χ with the same free variables as ψ such that
Γm ⊢ ψ ↔ χ. Then Γm+1 ⊢ ϕ↔ χ.

Theorem 4.33. Let m be an integer ≥ 2, and suppose that (Li+1,Γi+1) is a simple
definitional expansion of (Li,Γi) for each i < m. Also assume that L0 is finite. Suppose
that ϕ is an L0 formula and Γm ⊢ ϕ. Then Γ0 ⊢ ϕ.

Proof. By induction on m. If m = 2, the conclusion follows from Theorem 4.31. now
assume the result for m and suppose that (Li+1,Γi+1) is a simple definitional expansion
of (Li,Γi) for each i ≤ m. Suppose that ϕ is an L0 formula and Γm+1 ⊢ ϕ. Then by
Theorem 4.31, Γm ⊢ ϕ, and so by the inductive assumption, Γ0 ⊢ ϕ.

EXERCISES

E4.1. Suppose that Γ ⊢ ϕ → ψ, Γ ⊢ ϕ → ¬ψ, and Γ ⊢ ¬ϕ → ϕ. Prove that Γ is
inconsistent.
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E4.2. Let L be a language with just one non-logical constant, a binary relation symbol
R. Let Γ consist of all sentences of the form ∃v1∀v0[Rv0v1 ↔ ϕ] with ϕ a formula with
only v0 free. Show that Γ is inconsistent. Hint: take ϕ to be ¬Rv0v0.

E4.3. Show that the first-order deduction theorem fails if the condition that ϕ is a sentence
is omitted. Hint: take Γ = ∅, let ϕ be the formula v0 = v1, and let ψ be the formula v0 = v2.

E4.4. In the language for A
def
= (ω, S, 0,+, ·), let τ be the term v0 + v1 · v2 and ν the term

v0 + v2. Let a be the sequence 〈0, 1, 2, . . .〉. Let ρ be obtained from τ by replacing the
occurrence of v1 by ν.

(a) Describe ρ as a sequence of integers.

(b) What is ρA(a)?

(c) What is νA(a)?
(d) Describe the sequence a1

νA(a)
as a sequence of integers.

(e) Verify that ρA(a) = τA(a1

νA(a)
) (cf. Lemma 4.4.)

E4.5. In the language for A
def
= (ω, S, 0,+, ·), let ϕ be the formula ∀v0(v0 · v1 = v1), let ν

be the formula v1 + v1, and let a = 〈1, 0, 1, 0, . . .〉.
(a) Describe Subfv1ν ϕ as a sequence of integers

(b) What is νA(a)?
(c) Describe a1

νA(a)
as a sequence of integers.

(d) Determine whether A |= Subfv1ν ϕ[a] or not.
(e) Determine whether A |= ϕ[a1

νA(a)
] or not.

E4.6. Show that the condition in Lemma 4.6 that

no free occurrence of vi in ϕ is within a subformula of the form ∀vkµ with vk a variable
occurring in ν

is necessary for the conclusion of the lemma.

E4.7. Let A be an L -structure, with L arbitrary. Define Γ = {ϕ : ϕ is a sentence and
A |= ϕ[a] for any a : ω → A}. Prove that Γ is complete and consistent.

E4.8. Call a set Γ strongly complete iff for every formula ϕ, Γ ⊢ ϕ or Γ ⊢ ¬ϕ. Prove that
if Γ is strongly complete, then Γ ⊢ ∀v0∀v1(v0 = v1).

E4.9. Prove that if Γ is rich, then for every term σ with no variables occurring in σ there
is an individual constant c such that Γ ⊢ σ = c.

E4.10. Prove that if Γ is rich, then for every sentence ϕ there is a sentence ψ with no
quantifiers in it such that Γ ⊢ ϕ↔ ψ.

E4.11. Describe sentences in a language for ordering which say that < is a linear ordering
and there are infinitely many elements. Prove that the resulting set Γ of sentences is not
complete.

E4.12. Prove that if a sentence ϕ holds in every infinite model of a set Γ of sentences, then
there is an m ∈ ω such that it holds in every model of Γ with at least m elements.
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E4.13. Let L be the language of ordering. Prove that there is no set Γ of sentences whose
models are exactly the well-ordering structures.

E4.14. Suppose that Γ is a set of sentences, and ϕ is a sentence. Prove that if Γ |= ϕ, then
∆ |= ϕ for some finite ∆ ⊆ Γ.

E4.15. Suppose that f is a function mapping a set M into a set N . Let R = {(a, b) : a, b ∈
M and f(a) = f(b)}. Prove that R is an equivalence relation on M .

E4.16. Suppose that R is an equivalence relation on a set M . Prove that there is a function
f mapping M into some set N such that R = {(a, b) : a, b ∈M and f(a) = f(b)}.

E4.17. Let Γ be a set of sentences in a first-order language, and let ∆ be the collection of
all sentences holding in every model of Γ. Prove that ∆ = {ϕ : ϕ is a sentence and Γ ⊢ ϕ}.
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5. The axioms of set theory

ZFC, the axioms of set theory, are formulated in a language which has just one nonlogical
constant, a binary relation symbol ∈. The development of set theory can be considered as
taking place entirely within this language, or in various finite definitional extensions of it.

Before introducing any set-theoretic axioms at all, we can introduce some more ab-
breviations.

x ⊆ y abbreviates ∀z(z ∈ x→ z ∈ y).
x ⊂ y abbreviates x ⊆ y ∧ x 6= y.

For x ⊆ y we say that x is included or contained in y, or that x is a subset of y. Then
x ⊂ y means proper inclusion, containment, or subset.

Now we introduce the axioms of ZFC set theory. We give both a formal and informal
description of them. The informal versions will suffice for much of these notes.

Axiom 1. (Extensionality) If two sets have the same members, then they are equal.
Formally:

∀x∀y[∀z(z ∈ x↔ z ∈ y) → x = y].

Note that the other implication here holds on the basis of logic.

Axiom 2. (Comprehension) Given any set z and any property ϕ, there is a subset of z
consisting of those elements of z with the property ϕ.

Formally, for any formula ϕ with free variables among x, z, w1, . . . , wn we have an
axiom

∀z∀w1 . . .∀wn∃y∀x(x ∈ y ↔ x ∈ z ∧ ϕ).

Note that the variable y is not free in ϕ.
From these first two axioms the existence of a set with no members, the empty set ∅,

follows:

Proposition 5.1. There is a unique set with no members.

Proof. On the basis of logic, there is at least one set z. By the comprehension axiom,
let y be a set such that ∀x(x ∈ y ↔ x ∈ z ∧ x 6= x). Thus y does not have any elements.
By the extensionality axiom, such a set y is unique.

Proposition 5.1 is written in usual mathematical fashion. More formally we would write

ZFC ⊢ ∃v0[∀v1[¬(v1 ∈ v0)] ∧ ∀v2[∀v1[¬(v1 ∈ v2)] → v0 = v2]].

The same applies to most of the results which we will state. But some results are metathe-
orems, describing a whole collection of results of this sort.

In general, the set asserted to exist in the comprehension axiom is unique; we denote it by
{x ∈ z : ϕ}. We sometimes write {x : ϕ} if a suitable z is evident. Note that this notation
cannot be put into the framework of definitional extensions. But it is clear that uses of it
can be eliminated, if necessary.
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Axiom 3. (Pairing) For any sets x, y there is a set which has them as members (possibly
along with other sets). Formally:

∀x∀y∃z(x ∈ z ∧ y ∈ z).

The unordered pair {x, y} is by definition the set {u ∈ z : u = x or u = y}, where z is
as in the pairing axiom. The definition does not depend on the particular such z that is
chosen. This same remark can be made for several other definitions below. We define the
singleton {x} to be {x, x}.

Axiom 4. (Union) For any family A of sets, we can form a new set A which has as
elements all elements which are in at least one member of A (maybe A has even more
elements). Formally:

∀A ∃A∀Y ∀x(x ∈ Y ∧ Y ∈ A → x ∈ A).

With A as in this axiom, we define
⋃

A = {x ∈ A : ∃Y ∈ A (x ∈ Y )}. We call
⋃

A the
union of A . Also, let x ∪ y =

⋃{x, y}. This is the union of x and y.

Axiom 5. (Power set) For any set x, there is a set which has as elements all subsets of x,
and again possibly has more elements. Formally:

∀x∃y∀z(z ⊆ x→ z ∈ y).

Axiom 6. (Infinity) There is a set which intuitively has infinitely many elements:

∃x[∅ ∈ x ∧ ∀y ∈ x(y ∪ {y} ∈ x)].

If we take the smallest set x with these properties we get the natural numbers, as we will
see later.

Axiom 7. (Replacement) If a function has domain a set, then its range is also a set.
Here we use the intuitive notion of a function. Later we define the rigorous notion of a
function. The present intuitive notion is more general, however; it is expressed rigorously
as a formula with a function-like property. The rigorous version of this axiom runs as
follows.

For each formula with free variables among x, y, A, w1, . . . , wn, the following is an
axiom.

∀A∀w1 . . .∀wn[∀x ∈ A∃!yϕ→ ∃Y ∀x ∈ A∃y ∈ Y ϕ].

For the next axiom, we need another definition. For any sets x, y, let x∩y = {z ∈ x : z ∈ y}.
This is the intersection of x and y.

Axiom 8. (Foundation) Every nonempty set x has a member y which has no elements in
common with x. This is a somewhat mysterious axiom which rules out such anti-intuitive
situations as a ∈ a or a ∈ b ∈ a.

∀x[x 6= ∅ → ∃y ∈ x(x ∩ y = ∅)].
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Axiom 9. (Choice) This axiom will be discussed carefully later; it allows one to pick out
elements from each of an infinite family of sets. A convenient form of the axiom to start
with is as follows. For any family A of nonempty sets such that no two members of A

have an element in common, there is a set B having exactly one element in common with
each member of A .

∀A [∀x ∈ A (x 6= ∅)∧∀x ∈ A ∀y ∈ A (x 6= y → x∩y = ∅) → ∃B∀x ∈ A ∃!y(y ∈ x∧y ∈ B).

The axiom of choice will not be used until later, where we will give several
equivalent forms of it.
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6. Elementary set theory

Here we will see how the axioms are used to develop very elementary set theory. The axiom
of choice is not used in this chapter. To some extent the main purpose of this chapter is
to establish common notation.

The proof of the following theorem shows what happens to Russell’s paradox in our
axiomatic development. Russell’s paradox runs as follows, working in naive, non-axiomatic
set theory. Let x = {y : y /∈ y}. If x ∈ x, then x /∈ x; but also if x /∈ x, then x ∈ x.
Contradiction.

Theorem 6.1. ¬∃z∀x(x ∈ z).

Proof. Suppose to the contrary that ∀x(x ∈ z). Let y = {x ∈ z : x /∈ x}. Then
(y ∈ y ↔ y /∈ y), contradiction.

Lemma 6.2. If {x, y} = {u, v}, then one of the following conditions holds:
(i) x = u and y = v;
(ii) x = v and y = u.

Proof. Since x ∈ {x, y} = {u, v}, we have x = u or x = v.
Case 1. x = u. Since y ∈ {x, y} = {u, v}, we have y = u or y = v. If y = v, that is

as desired. If y = u, then x = y too, and v ∈ {u, v} = {x, y}, so v = x = y. In any case,
y = v.

Case 2. x = v. By symmetry to case 1, y = u.

Now we can define the notion of an ordered pair: (x, y) = {{x}, {x, y}}.

Lemma 6.3. If (x, y) = (u, v), then x = u and y = v.

Proof. Assume that (x, y) = (u, v). Thus {{x}, {x, y}} = {{u}, {u, v}}. By Lemma
6.1, this gives two cases.

Case 1. {x} = {u} and {x, y} = {u, v}. Then x ∈ {x} = {u}, so x = u. By Lemma
6.1 again, {x, y} = {u, v} implies that either y = v, or else x = v and y = u; in the latter
case, y = u = x = v. So y = v in any case.

Case 2. {x} = {u, v} and {x, y} = {u}. Then u ∈ {u, v} = {x}, so u = x. Similarly
v = x. Now y ∈ {x, y} = {u}, so y = u = x = v.

This lemma justifies the following definition:

1st(a, b) = a and 2nd(a, b) = b.

These are the first and second coordinates of the ordered pair.
The notion of intersection is similar to that of union, but there is a minor problem

concerning what to define the intersection of the empty set to be. We have decided to let
it be the empty set.

Theorem 6.4. For any set F there is a set y such that if F 6= ∅ then ∀x[x ∈ y ↔ ∀z ∈
F [x ∈ z]], while y = ∅ if F = ∅.
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Proof. Let F be given. If F = ∅, let y = ∅. Otherwise, choose w ∈ F and let
y = {x ∈ w : ∀z ∈ F [x ∈ z]}.

The set y in Theorem 6.4 is clearly unique, and we denote it by
⋂

F . This is the inter-
section of F . We already introduced in Chapter 2 the notations

⋃
, ∪, and ∩. To round

out the simple Boolean operations we define

A\B = {x ∈ A : x /∈ B}.

This is the relative complement of B in A.
Sets a, b are disjoint iff a ∩ b = ∅.
The replacement schema will almost always be used in connection with the compre-

hension schema. Namely, under the assumption ∀x ∈ A∃!yϕ(x, y), we choose Y by the
replacement axiom, so that ∀x ∈ A∃y ∈ Y ϕ(x, y); then we form

{y ∈ Y : ∃x ∈ Aϕ(x, y)}.

Lemma 6.5. ∀A∀B∃Z∀z(z ∈ Z ↔ ∃x ∈ A∃y ∈ B(z = (x, y))).

Proof. Define

Z = {z ∈ P(P(A ∪B)) : ∃a ∈ A∃b ∈ B[z = (a, b)]}.

Thus if z ∈ Z then ∃a ∈ A∃b ∈ B[z = (a, b)]. Now suppose that a ∈ A, b ∈ B, and
z = (a, b). Then a, b ∈ A∪B, so {a}, {a, b} ∈ P(A∪B), and so z = (a, b) = {{a}, {a, b}} ∈
P(P(A ∪B)), and hence z ∈ Z.

We now define A×B to be the unique Z of Lemma 6.5; this is the cartesian product of A
and B. Normally we would define A×B as follows:

A×B = {(x, y) : x ∈ A ∧ y ∈ B}.

This notation means
{u : ∃x, y(u = (x, y) ∧ x ∈ A ∧ y ∈ B)},

which is justified by the lemma.
An important informal notation is

(∗) {τ(x, y) ∈ A : ϕ(x, y)},

where τ(x, y) is some set determined by x and y. That is, there is a formula ψ(w, x, y) in
our set theoretic language such that ∀x, y∃!wψ(w, x, y), and τ(x, y) is this w. For example
τ(x, y) might be x ∪ y, or (x, y). Then (∗) really means

(∗∗) {w ∈ A : ∃x, y[ψ(w, x, y)∧ ϕ(x, y)]}.

A relation is a set of ordered pairs.
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Lemma 6.6. If (x, y) ∈ R then x, y ∈ ⋃⋃R.

Proof. x ∈ {x} ∈ {{x}, {x, y}} = (x, y) ∈ R, so x ∈ ⋃⋃R. Similarly y ∈ ⋃⋃R.

This lemma justifies the following definitions of the domain and range of a set R (we think
of R as a relation, but the definitions apply to any set):

dmn(R) = {x : ∃y((x, y) ∈ R)};

rng(R) = {y : ∃x((x, y) ∈ R)}.

Now we define, using the notation above,

R−1 = {(x, y) ∈ rng(R) × dmn(R) : (y, x) ∈ R}.

This is the inverse or converse of R. Note that R−1 is a relation, even if R is not. Clearly
(x, y) ∈ R−1 iff (y, x) ∈ R, for any x, y, R. Usually we use this notation only when R is
a function (defined shortly as a special kind of relation), and even then it is more general
than one might expect, since the function in question does not have to be 1-1 (another
notion defined shortly).

A function is a relation f such that

∀x ∈ dmn(f)∃!y ∈ rng(f)[(x, y) ∈ f ].

Some common notation and terminology is as follows. f : A → B means that f is a
function, dmn(f) = A, and rng(f) ⊆ B. We say then that f maps A into B. If f : A→ B
and x ∈ A, then f(x) is the unique y such that (x, y) ∈ f . This is the value of f with
the argument x. We may write other things like fx, f

x in place of f(x). Note that if
f, g : A → B, then f = g iff ∀a ∈ A[f(a) = g(a)]. If f : A → B and C ⊆ A, the
restriction of f to C is f ∩ (C ×B); it is denoted by f ↾ C. The image of a subset C of A

is f [C]
def
= rng(f ↾ C). Note that f [C] = {f(c) : c ∈ C}. If D ⊆ B then the preimage of D

under f is f−1[D]
def
= {x ∈ A : f(x) ∈ D}.

For any sets f, g we define

f ◦ g = {(a, b) : ∃c[(a, c) ∈ g and (c, b) ∈ f ]}.

This is the composition of f and g. We usually apply this notation when there are sets
A,B,C such that g : A→ B and f : B → C.

Lemma 6.7. (i) If g : A→ B and f : B → C, then (f ◦g) : A→ C and ∀a ∈ A[(f ◦g)(a) =
f(g(a))].

(ii) If g : A→ B, f : B → C, and h : C → D, then h ◦ (f ◦ g) = (h ◦ f) ◦ g.
Proof. (i): First we show that f ◦g is a function. Suppose that (a, b), (a, b′) ∈ (f ◦g).

Accordingly choose c, c′ so that (a, c) ∈ g, (c, b) ∈ f , (a, c′) ∈ g, and (c′, b′) ∈ f . Then
g(a) = c, f(c) = b, g(a) = c′, and f(c′) = b′. So c = c′ and hence b = b′. This shows
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that f ◦ g is a function. Clearly dmn(f ◦ g) = A and rng(f ◦ g) ⊆ C. For any a ∈ A
we have (a, g(a)) ∈ g and (g(a), f(g(a))) ∈ f , and hence (a, f(g(a))) ∈ (f ◦ g), so that
(f ◦ g)(a) = f(g(a)).

(ii): By (i), both functions map A into D. For any a ∈ A we have

(h ◦ (f ◦ g))(a) = h((f ◦ g)(a)) = h(f(g(a))) = (h ◦ f)(g(a)) = ((h ◦ f) ◦ g)(a).

Hence the equality holds.

Given f : A → B, we call f injective, or 1-1, if f−1 is a function; we call f surjective, or
onto, if rng(f) = B; and we call f bijective if it is both injective and surjective.

A function f will sometimes be written in the form 〈f(i) : i ∈ I〉, where I = dmn(f).
As an informal usage, we will even define functions in the form 〈. . . x . . . : x ∈ I〉, meaning
the function f with domain I such that f(x) = . . . x . . . for all x ∈ I.

If A is a function with domain I, we define

⋃

i∈I
Ai =

⋃

rng(A) and
⋂

i∈I
Ai =

⋂

rng(A).

EXERCISES

In the exercises that ask for counterexamples, it is reasonable to use any prior knowledge
rather that restricting to the material in these notes.

E6.1. Prove that if f : A → B and 〈Ci : i ∈ I〉 is a system of subsets of A, then
f
[⋃

i∈I Ci
]

=
⋃

i∈I f [Ci].

E6.2. Prove that if f : A → B and C,D ⊆ A, then f [C ∩ D] ⊆ f [C] ∩ f [D]. Give an
example showing that equality does not hold in general.

E6.3. Given f : A → B and C,D ⊆ A, compare f [C\D] and f [C]\f [D]: prove the
inclusions (if any) which hold, and give counterexamples for the inclusions that fail to
hold.

E6.4. Prove that if f : A → B and 〈Ci : i ∈ I〉 is a system of subsets of B, then
f−1

[⋃

i∈I Ci
]

=
⋃

i∈I f
−1[Ci].

E6.5. Prove that if f : A → B and 〈Ci : i ∈ I〉 is a system of subsets of B, then
f−1

[⋂

i∈I Ci
]

=
⋂

i∈I f
−1[Ci].

E6.6. Prove that if f : A→ B and C,D ⊆ B, then f−1[C\D] = f−1[C]\f−1[D].

E6.7. Prove that if f : A→ B and C ⊆ A, then

{b ∈ B : f−1[{b}] ⊆ C} = B\f [A\C].

E6.8. For any sets A,B define A△B = (A\B) ∪ (B\A); this is called the symmetric
difference of A and B. Prove that if A,B,C are given sets, then A△(B△C) = (A△B)△C.

E6.9. For any set A let
IdA = {〈x, x〉 : x ∈ A}.
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This is the identity function on the set A. Justify this definition on the basis of the axioms.

E6.10. Suppose that f : A → B. Prove that f is surjective iff there is a g : B → A such
that f ◦ g = IdB. Note: the axiom of choice might be needed.

E6.11. Let A be a nonempty set. Suppose that f : A → B. Prove that f is injective iff
there is a g : B → A such that g ◦ f = IdA.

E6.12. Suppose that f : A → B. Prove that f is a bijection iff there is a g : B → A such
that f ◦ g = IdB and g ◦ f = IdA. Prove this without using the axiom of choice.

E6.16. For any sets R, S define

R|S = {〈x, z〉 : ∃y(〈x, y〉 ∈ R ∧ 〈y, z〉 ∈ S)}.

This is the relative product of R and S. Justify this definition on the basis of the axioms.

E6.14. Suppose that f, g : A→ A. Prove that

(A×A)\[((A× A)\f)|((A×A)\g)]

is a function.

E6.15. Suppose that f : A → B is a surjection, g : A → C, and ∀x, y ∈ A[f(x) = f(y) →
g(x) = g(y)]. Prove that there is a function h : B → C such that h ◦ f = g. Define h as a
set of ordered pairs.

E6.16. The statement

∀A ∈ A ∀B ∈ B(A ⊆ B) implies that
⋃

A ⊆ ⋂B

is slightly wrong. Fix it, and prove the result.

E6.17. Suppose that ∀A ∈ A ∃B ∈ B(A ⊆ B). Prove that
⋃

A ⊆ ⋃B.

E6.18. The statement

∀A ∈ A ∃B ∈ B(B ⊆ A) implies that
⋂

B ⊆ ⋂A .

is slightly wrong. Fix it, and prove the result.
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7. Ordinals, I

In this chapter we introduce the ordinals and give basic facts about them.
A set A is transitive iff ∀x ∈ A∀y ∈ x(y ∈ A); in other words, iff every element of

A is a subset of A. This is a very important notion in the foundations of set theory, and
it is essential in our definition of ordinals. An ordinal number, or simply an ordinal, is a
transitive set of transitive sets. We use the first few Greek letters to denote ordinals. If
α, β, γ are ordinals and α ∈ β ∈ γ, then α ∈ γ since γ is transitive. This partially justifies
writing α < β instead of α ∈ β when α and β are ordinals. This helps the intuition in
thinking of the ordinals as kinds of numbers. We also define α ≤ β iff α < β or α = β.

By a vacuous implication we have:

Proposition 7.1. ∅ is an ordinal.

Because of this proposition, the empty set is a number; it will turn out to be the first
nonnegative integer, the first ordinal, and the first cardinal number. For this reason, we
will use 0 and ∅ interchangably, trying to use 0 when numbers are involved, and ∅ when
they are not.

Proposition 7.2. If α is an ordinal, then so is α ∪ {α}.
Proof. If x ∈ y ∈ α ∪ {α}, then x ∈ y ∈ α or x ∈ y = α. Since α is transitive, x ∈ α

in either case. So α∪{α} is transitive. Clearly every member of α∪{α} is transitive.

We denote α ∪ {α} by α+′ 1. After introducing addition of ordinals, it will turn out that
α+ 1 = α+′ 1 for every ordinal α, so that the prime can be dropped. This ordinal α+′ 1
is the successor of α. We define 1 = 0 +′ 1, 2 = 1 +′ 1, etc. (up through 9; no further since
we do not want to try to justify decimal notation).

Proposition 7.3. If A is a set of ordinals, then
⋃
A is an ordinal.

Proof. Suppose that x ∈ y ∈ ⋃A. Choose z ∈ A such that y ∈ z. Then z is an
ordinal, and x ∈ y ∈ z, so x ∈ z; hence x ∈ ⋃A. Thus

⋃
A is transitive.

If u ∈ ⋃A, choose v ∈ A such that u ∈ v. then v is an ordinal, so u is transitive.

We sometimes write sup(A) for
⋃
A. In fact,

⋃
A is the least ordinal ≥ each member of

A. We prove this shortly.

Proposition 7.4. Every member of an ordinal is an ordinal.

Proof. Let α be an ordinal, and let x ∈ α. Then x is transitive since all members of
α are transitive. Suppose that y ∈ x. Then y ∈ α since α is transitive. So y is transitive,
since all members of α are transitive.

Theorem 7.5. ∀x(x /∈ x).

Proof. Suppose that x is a set such that x ∈ x. Let y = {x}. By the foundation
axiom, choose z ∈ y such that z ∩ y = ∅. But z = x, so x ∈ z ∩ y, contradiction.
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Theorem 7.6. There does not exist a set which has every ordinal as a member.

Proof. Suppose to the contrary that A is such a set. Let B = {x ∈ A : x is an
ordinal}. Then B is a set of transitive sets and B itself is transitive. Hence B is an
ordinal. So B ∈ A. It follows that B ∈ B. contradicting Theorem 7.5.

Theorem 7.6 is what happens in our axiomatic framework to the Burali-Forti paradox.

Theorem 7.7. If α and β are ordinals, then α = β, α ∈ β, or β ∈ α.

Proof. Suppose that this is not true, and let α and β be ordinals such that α 6= β,
α /∈ β, and β /∈ α. Let A = (α +′ 1) ∪ (β +′ 1). Define B = {γ ∈ A : ∃δ ∈ A[γ 6= δ, γ /∈ δ,
and δ /∈ γ]}. Thus α ∈ B, since we can take δ = β. So B 6= ∅. By the foundation axiom,
choose γ ∈ B such that γ ∩ B = ∅. Let C = {δ ∈ A : γ 6= δ, γ /∈ δ, and δ /∈ γ}. So C 6= ∅
since γ ∈ B. By the foundation axiom choose δ ∈ C such that δ ∩ C = ∅. We will now
show that γ = δ, which is a contradiction.

Suppose that ε ∈ γ. Then ε /∈ B. Clearly ε ∈ A, so it follows that ∀ϕ ∈ A[ε = ϕ or
ε ∈ ϕ or ϕ ∈ ε]. Since δ ∈ A we thus have ε = δ or ε ∈ δ or δ ∈ ε. If ε = δ then δ ∈ γ,
contradiction. If δ ∈ ε, then δ ∈ γ since γ is transitive, contradiction. So ε ∈ δ. This
proves that γ ⊆ δ.

Suppose that ε ∈ δ. Then ε /∈ C. It follows that γ = ε or γ ∈ ε or ε ∈ γ. If γ = ε
then γ ∈ δ, contradiction. If γ ∈ ε then γ ∈ δ since δ is transitive, contradiction. So ε ∈ γ.
This proves that δ ⊆ γ.

Hence δ = γ, contradiction.

Proposition 7.8. α ≤ β iff α ⊆ β.

Proof. ⇒: Assume that α ≤ β and x ∈ α. Then x < α ≤ β, so x < β since β is
transitive. Hence x ∈ β. Thus α ⊆ β.

⇐: Assume that α ⊆ β. If β < α, then β < β, hence β ∈ β, contradicting Theorem
7.5. Hence α ≤ β by Theorem 7.7.

Proposition 7.9. α < β iff α ⊂ β.

Proof. α < β iff (α ≤ β and α 6= β) iff (α ⊆ β and α 6= β) (by Proposition 7.8) iff
α ⊂ β.

Proposition 7.10. α < β iff α+′ 1 ≤ β.

Proof. ⇒: Assume that α < β. If β < α +′ 1, then β ∈ α ∪ {α}, so β ∈ α or β = α.
Since α ∈ β, this implies that β ∈ β, contradicting Theorem 7.5. Hence by Theorem 7.7,
α+′ 1 ≤ β.

⇐: Assume that α+′ 1 ≤ β. Then α < α+′ 1 ≤ β, so α < β.

Proposition 7.11. There do not exist ordinals α, β such that α < β < α+′ 1.

Theorem 7.12. If A is a set of ordinals, then α ≤ ⋃
A for each α ∈ A, and if β is an

ordinal such that α ≤ β for all α ∈ A then
⋃
A ≤ β.
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Proof. Suppose that A is a set of ordinals. If α ∈ A, then α ⊆ ⋃A, and so α ≤ ⋃A
by Proposition 7.8.

Now suppose that β is an ordinal such that α ≤ β for all α ∈ A. Take any x ∈ ⋃A.
Choose y ∈ A such that x ∈ y. Then y ≤ β. Also x < y, so x < β. Hence x ∈ β. This
proves that

⋃
A ⊆ β. Hence

⋃
A ≤ β by Proposition 7.8.

Theorem 7.13. If Γ is a nonempty set of ordinals, then
⋂

Γ is an ordinal,
⋂

Γ ∈ Γ, and
⋂

Γ ≤ α for every α ∈ Γ.

Proof. The members of
⋂

Γ are clearly ordinals, so for the first statement it suffices
to show that

⋂
Γ is transitive. Suppose that α ∈ β ∈ ⋂Γ; and suppose that γ ∈ Γ. Then

β ∈ γ, and hence α ∈ γ since γ is transitive. This argument shows that α ∈ ⋂Γ. Since α
is arbitrary, it follows that

⋂
Γ is transitive, and hence is an ordinal.

For every α ∈ Γ we have
⋂

Γ ⊆ α, and hence
⋂

Γ ≤ α by Proposition 7.8.
Suppose that

⋂
Γ /∈ Γ. For any α ∈ Γ we have

⋂
Γ ⊆ α, hence

⋂
Γ ≤ α, hence

⋂
Γ < α

since α ∈ Γ but we are assuming that
⋂

Γ /∈ Γ. But this means that ∀α ∈ Γ[
⋂

Γ ∈ α]. So
⋂

Γ ∈ ⋂Γ, contradiction.

Ordinals are divided into three classes as follows. First there is 0, the empty set. An
ordinal α is a successor ordinal if α = β +′ 1 for some β. Finally, α is a limit ordinal if it
is nonzero and is not a successor ordinal. Thus 1, 2, etc. are successor ordinals.

To prove the existence of limit ordinals, we need the infinity axiom. Let x be as in
the statement of the infinity axiom. Thus 0 ∈ x, and y ∪ {y} ∈ x for all y ∈ x. We define

ω =
⋂

{z ⊆ x : 0 ∈ z and y ∪ {y} ∈ z for all y ∈ z}.

This definition does not depend on the choice of x. In fact, suppose that also 0 ∈ x′, and
y ∪ {y} ∈ x′ for all y ∈ x′; we want to show that

⋂

{z ⊆ x : 0 ∈ z and y ∪ {y} ∈ z for all y ∈ z}

=
⋂

{z ⊆ x′ : 0 ∈ z and y ∪ {y} ∈ z for all y ∈ z}.

Let A = {z ⊆ x : 0 ∈ z and y ∪ {y} ∈ z for all y ∈ z} and A ′ = {z ⊆ x′ : 0 ∈
z and y∪{y} ∈ z for all y ∈ z}. Suppose that w ∈ ⋂A , and suppose that z ∈ A ′. Clearly
z ∩ x ∈ A , so w ∈ z ∩ x, so w ∈ z. This shows that w ∈ ⋂A ′. Hence

⋂
A ⊆ ⋂A ′. The

other inclusion is proved in the same way.

The members of ω are natural numbers.

Theorem 7.14. If A ⊆ ω, 0 ∈ A, and y ∪ {y} ∈ A for all y ∈ A, then A = ω.

Proof. With x as in the definition of ω, we clearly have x ∩ A ∈ A where A is as
above. Hence ω ⊆ x ∩A ⊆ A, so A = ω.

Proposition 7.15. 0 ∈ ω, and for all y ∈ ω, also y +′ 1 ∈ ω.
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Proof. With A as above, if z ∈ A , then 0 ∈ z. So 0 ∈ ⋂A = ω. Now suppose that
y ∈ ω and z ∈ A . Then y ∈ z, and it follows that y +′ 1 ∈ z. Hence y +′ 1 ∈ ω.

Theorem 7.16. ω is the first limit ordinal.

Proof. Let A = {y ∈ ω : y is an ordinal}. Then 0 ∈ A by Propositions 7.1 and 7.15.
Suppose that y ∈ A. Then y ∈ ω, so y +′ 1 ∈ ω by Proposition 7.15. Also, y is an ordinal,
so y +′ 1 is an ordinal by Proposition 7.2. This shows that y +′ 1 ∈ A. It follows that
A = ω, by Theorem 7.17. Hence every member of ω is an ordinal, and hence is transitive.

Next, let B = {y ∈ ω : y ⊆ ω}. Then 0 ∈ B by Proposition 7.15. Suppose that y ∈ B.
Then y ∈ ω, so y +′ 1 ∈ ω by Proposition 7.15. Also, y ⊆ ω. Since y ∈ ω, it follows
that y ∪ {y} ⊆ ω. So y +′ 1 ∈ B. Hence B = ω by Theorem 7.17. This shows that ω is
transitive, and hence is an ordinal.

Next, let C = {y ∈ ω : y is not a limit ordinal}. 0 ∈ ω by Theorem 7.15, and by
definition 0 is not a limit ordinal, so 0 ∈ C. Suppose that y ∈ C. Then y ∈ ω, so y+′1 ∈ ω.
Also, by definition y +′ 1 is not a limit ordinal. So y +′ 1 ∈ C. It follows that C = ω, and
hence for every α < ω, α is not a limit ordinal.

Since 0 ∈ ω, ω 6= 0. If ω = y+′ 1, then y ∈ ω and hence ω = y+′ 1 ∈ ω, contradiction.
Thus ω is a limit ordinal.

Proposition 7.17. The following conditions are equivalent:
(i) α is a limit ordinal;
(ii) α 6= 0, and for every β < α there is a γ such that β < γ < α.
(iii) α =

⋃
α 6= 0.

Proof. (i)⇒(ii): suppose that α is a limit ordinal. So α 6= 0, by definition. Suppose
that β < α. Then β +′ 1 ≤ α by Proposition 7.10. Hence β +′ 1 < α since α is not a
successor ordinal. Thus β < β +′ 1 < α.

(ii)⇒(iii): if β ∈ ⋃α, choose γ ∈ α such that β ∈ γ. Then β ∈ α since α is an ordinal.
This shows that

⋃
α ⊆ α.

If β ∈ α, choose γ with β < γ < α. Thus β ∈ ⋃α. This proves that α =
⋃
α, and

α 6= 0 is given.
(iii)⇒(i): suppose that α = β +′ 1. Then β ∈ α =

⋃
α, so choose γ ∈ α such that

β ∈ γ. Thus β < γ ≤ β, so β < β, contradiction.

Proposition 7.18. If α = β +′ 1, then
⋃
α = β.

Proof. Assume that α = β +′ 1. Suppose that γ ∈ ⋃α. Choose δ ∈ α such that
γ ∈ δ. Thus γ < δ < α, so δ ≤ β, hence γ ∈ β. This shows that

⋃
α ⊆ β.

If γ ∈ β, then γ ∈ β ∈ α, so γ ∈ ⋃α. So
⋃
α = β.

EXERCISES

These exercises give some equivalent definitions of ordinals. A well-ordered set is a pair
(A,<) such that A is a set, < is a relation included in A×A, < is irreflexive on A (a 6< a
for all a ∈ A), < is transitive (a < b < c implies that a < c), < is linear on A (for all
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a, b ∈ A, either a = b, a < b, or b < a), and any nonempty subset X of A has a least
element (an element a ∈ X such that a ≤ b for all b ∈ X).

E7.1. Prove that if x is an ordinal, then x is transitive and (x, {(y, z) ∈ x× x : y ∈ z}) is
a well-ordered set.

E7.2. Assume that x is transitive and (x, {(y, z) ∈ x × x : y ∈ z}) is a well-ordered set.
Prove that for all y, z ∈ x, either y = z or y ∈ z or z ∈ y.

E7.3. Assume that x is transitve and for all y, z ∈ x, either y = z or y ∈ z or z ∈ y. Prove
that for all y, if y ⊂ x and y is transitive, then y ∈ x. Hint: apply the foundation axiom
to x\y.

E7.4. Assume that x is transitive and for all y, if y ⊂ x and y is transitive, then y ∈ x.
Show that x is an ordinal. Hint: let y = {z ∈ x : z is an ordinal}, and get a contradiction
from the assumption that y ⊂ x.

E7.5. Show that if x is an ordinal, then the following two conditions hold:
(i) For all y ∈ x, either y ∪ {y} = x or y ∪ {y} ∈ x.
(ii) For all y ⊆ x, either

⋃
y = x or

⋃
y ∈ x.

E7.6. Assume the two conditions of exercise E7.5. Show that x is an ordinal. Hint: Show
that there is an ordinal α not in x. Taking such an ordinal α, show that there is a least
β ∈ α ∪ {α} such that β /∈ x. Work with such a β to show that x is an ordinal.
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8. Recursion

In this chapter we prove a general recursion theorem which will be used many times in
these notes. The theorem involves classes, so we begin with a few remarks about classes
and sets.

Classes and sets

Although expressions like {x : x = x} and {α : α is an ordinal} are natural, they cannot
be put into the framework of our logic for set theory. These “collections” are “too big”.
It is intuitively indispensible to continue using such expressions. One should understand
that when this is done, there is a rigorous way of reformulating what is said. These big
collections are called classes; their rigorous counterparts are simply formulas of our set
theoretic language. We can also talk about class functions, class relations, the domain
of class functions, etc. Most of the notions that we have introduced so far have class
counterparts. In particular, we have the important classes V, the class of all sets, and On,
the class of all ordinals. They correspond to the formulas “x = x” and “α is an ordinal”.
We attempt to use bold face letters for classes; in some cases the classes in question are
actually sets. A class which is not a set is called a proper class.

Well-founded class relations

If A is a class, a class relation R is well-founded on A iff R ⊆ A × A and for every
nonempty subset X of A there is an x ∈ X such that for all y ∈ X it is not the case that
(y, x) ∈ R. Such a set x is called R-minimal.

This notion is important even if A and R are mere sets. Two important examples of
well-founded class relations are as follows.

Proposition 8.1. The class relation {(x, y) : x ∈ y} is well-founded on V.

Proof. Let X be a nonempty subset of V. This just means that X is a nonempty
set. By the foundation axiom, choose x ∈ X such that x ∩X = ∅. Then for all y ∈ X it
is not the case that y ∈ x.

Proposition 8.2. The class relation {(α, β) : α < β} is well-founded on On.

Proof. Let X be a nonempty subset of On. Thus X is a nonempty set of ordinals.
By Theorem 4.14 we have

⋂
X ∈ X and for all y ∈ X it is not the case that y ∈ ⋂X .

On the other hand, the class relation R = {(x, y) : y ∈ x} is not well-founded on V. In
fact the set ω does not have an R-minimal element, since if m ∈ ω then also m +′ 1 ∈ ω
and (m+′ 1, m) ∈ R.

Recall that our intuitive notion of class is made rigorous by using formulas instead.
Thus we would talk about a formula ϕ(x, y) being well-founded on another formula ψ(x).
In the case of ∈, we are really looking at the formula x ∈ y being well-founded on the
formula x = x. So, rigorously we are associating with two formulas ϕ(x, y) and ψ(x)
another formula “ϕ(x, y) is well-founded on ψ(x)”, namely the following formula:

∀x∀y[ϕ(x, y) → ψ(x) ∧ ψ(y)] ∧ ∀X [∀x ∈ Xψ(x) ∧X 6= ∅ → ∃x ∈ X∀y ∈ X¬ϕ(y, x)].
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Let A be a class and R a class relation with R ⊆ A × A. For any x ∈ A we define
pred

AR
(x) = {y ∈ A : (y, x) ∈ R}. We say that R is set-like on A iff R ⊆ A × A and

predAR(x) is a set for all x ∈ A.
For example, for R = {(x, y) : x ∈ y} we have pred

VR
(x) = x for any set x, and R is

set-like on V. For R = {(α, β) : α < β}} we have predOnR(α) = α for any ordinal α, and
R is set-like on On.

On the other hand, R = {(α, β) : α > β} is not set-like on On, since for example
pred

OnR
(0) = {α : α > 0} and this is not a set, as otherwise On = {0} ∪ pred

OnR
(0)

would be a set.
Formally we are dealing with formulas ϕ(x, y) and ψ(x), such that ∀x, y[ϕ(x, y) →

ψ(x) ∧ ψ(y)]. Then predϕψ is the formula ϕ(y, x), and “ϕ is set-like on ψ” is the formula

∀x[ψ(x) → ∃z∀y[y ∈ z ↔ ϕ(y, x)]].

Now let R be a class relation. We define

R∗ = {(a, b) : ∃n ∈ ω\1∃f [f is a function with domain n+′ 1 and

∀i < n[(f(i), f(i+′ 1)) ∈ R and f(0) = a and f(n) = b]]}.

This is called the transitive closure of R.
Formally, given a formula ϕ(x, y), we define another formula ϕ∗:

∃n ∈ ω\1∃f [f is a function with domain n+′ 1 and

∀i < n[ϕ(f(i), f(i+′ 1)) and f(0) = x and f(n) = y]]}.

The actual formula in our set-theoretical language is long, since we have to replace the
definitions of ω, function, ordered pair, etc. by formulas involving ∈ alone.

We actually do not need the fact that R∗ is transitive, but we do need the following
facts. If R ⊆ A × A and x ∈ A, let pred′

AR
(x) = {x} ∪ predAR(x).

Theorem 8.3. Let R be a class relation.
(i) R ⊆ R∗.
(ii) If R ⊆ A × A, x ∈ A, (u, v) ∈ R, and v ∈ pred′

AR∗(x), then u ∈ pred′
AR∗(x).

Proof. (i): Suppose that (a, b) ∈ R. Let f be the function with domain 2 such that
f(0) = a and f(1) = b. This function shows that (a, b) ∈ R∗.

(ii): Assume the hypotheses. There are two cases.
Case 1. v = x. Then (u, x) ∈ R, so by (i), (u, x) ∈ R∗. Hence u ∈ predAR(x) ⊆

pred′
AR

(x).
Case 2. v ∈ predAR∗(x). Choose n and f correspondingly. Let

g = {(0, u)} ∪ {(i+′ 1, f(i)) : i ≤ n}.

Then g is a function with domain n+′2, g(0) = u, g(n+′1) = x, and ∀i < n+′1[(g(i), g(i+′

1)) ∈ R]. Hence u ∈ predAR∗(x) ⊆ pred′
AR∗(x).
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Theorem 8.4. If R is set-like on A, then also R∗ is set-like on A.

Proof. Let x ∈ A; we want to show that predAR∗(x) is a set. For each n ∈ ω\1 let

Dn = {y ∈ A : there is a function f with domain n+′ 1 such that

f(0) = y, f(n) = x and ∀i < n[(f(i), f(i+′ 1)) ∈ R]}

We will prove by induction on n that each Dn is a set. First take n = 1. Now D1 =
{y ∈ A :there is a function f with domain 2 such that f(0) = y, f(1) = x, and (y, x) ∈
R} = pred

AR
(x), so D1 is a set by hypothesis. Now assume that Dn is a set. Let

F(y) = predAR(y) for each y ∈ Dn. This makes sense, since by hypothesis each class
pred

AR
(y) is a set. So F is a function whose domain is the set Dn. By the replacement

and comprehension axioms, its range is a set. That is, {predAR(y) : y ∈ Dn} is a set. Now
we claim

(∗) Dn+′1 =
⋃

{predAR(y) : y ∈ Dn}.

This claim shows that Dn+′1 is a set, completing the inductive proof.
To prove the claim, first suppose that z ∈ Dn+′1. Let f be a function with domain

n +′ 2 such that f(0) = z, f(n +′ 1) = x, and ∀i < n +′ 1[(f(i), f(i +′ 1) ∈ R. Define
g with domain n +′ 1 by setting g(i) = f(i +′ 1) for all i < n +′ 1. Then g(0) = f(1),
g(n) = f(n+′ 1) = x. and for all i < n, (g(i), g(i+′ 1)) = (f(i+′ 1), f(i+′ 2)) ∈ R. Hence
g(0) ∈ Dn. Clearly (z, g(0)) ∈ R, so z ∈ predAR(g(0)). Thus z is in the right side of (∗).

Second, suppose that z is in the right side of (∗). Say z ∈ pred
AR

(y) with y ∈ Dn. So
(z, y) ∈ R, and there is a function f with domain n+′ 1 such that f(0) = y, f(n) = x, and
∀i < n[(f(i), f(i+′1)) ∈ R]. Define g with domain n+′2 by setting g(0) = z and g(i+′1) =
f(i) for all i < n +′ 1. Then g(n+′ 1) = f(n) = x and ∀i < n +′ 1[(g(i), g(i+′ 1)) ∈ R].
Hence z ∈ Dn+′1, and the claim is proved.

Now for each n ∈ ω\1 let G(n) = Dn. Then G is a function whose domain is the set
ω\1, so by replacement and comprehension, it range is a set. Thus {Dn : n ∈ ω\1} is a
set. Now we claim

predAR∗(x) =
⋃

{Dn : n ∈ ω\1}.

This claim will finish the proof. We have

⋃

{Dn : n ∈ ω\1} = {y ∈ A : ∃n ∈ ω\1∃f [f is a function with domain n+′ 1

such that f(0) = y, f(n) = x, and ∀i < n[(f(i), f(i+′ 1)) ∈ R]]

= predAR∗(x).

Theorem 8.5. If R is well-founded and set-like on a class A, then every nonempty
subclass of A has an R-minimal element.

Proof. Suppose that X is a nonempty subclass of A. Take any x ∈ X. Now
pred′

AR∗(x)∩X is a nonempty subset of A, by Theorem 8.4 and the comprehension axioms.
Let y be an R-minimal element of pred′

AR∗(x) ∩ X. In particular, y ∈ X. Suppose that
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(z, y) ∈ R. Then z ∈ predAR(y). By Theorem 8.3(ii) it follows that z ∈ pred′
AR∗(x).

Hence z /∈ X by the choice of y. so y is the desired R-minimal element of X.

Theorem 8.6. If F is a class function and a is a set contained in the domain of F, then
there is a (set) function f with domain a such that f(x) = F(x) for all x ∈ a.

Proof. Let G(x) = (x,F(x)) for all x ∈ dmn(F. By the replacement and compre-
hension axioms, the class {G(x) : x ∈ a} is a set. This class is {(x,F(x)) : x ∈ a}. Thus
it is the desired function f .

In terms of formulas, F corresponds to a formula ϕ(x, y) such that for all x there is at most

one y such that ϕ(x, y). Then G corresponds to the formula ψ(x, y)
def
= ∃z[ϕ(x, z) ∧ y =

(x, z)]. Clearly for all x there is at most one y such that ψ(x, y), and if ψ(x, y) then
y = (x, z) where ϕ(x, z) holds.

The function asserted to exist in Theorem 8.6 will be denoted by F ↾ a.

Theorem 8.7. (The recursion theorem) Suppose that R is a class relation which is well-
founded and set like on a class A, and G is a class function mapping A×V into V. Then
there is a class function F mapping A into V such that F(a) = G(a,F ↾ predAR(a)) for
all a ∈ A.

Proof. We say that a function f is an approximation to F iff dmn(f) ⊆ A and for
every a ∈ dmn(f) we have predAR(a) ⊆ dmn(f) and f(a) = G(a, f ↾ predAR(a)).

(1) If f and f ′ are approximations to F and a ∈ dmn(f) ∩ dmn(f ′), then f(a) = f ′(a).

In fact, suppose that this is not true. Then the set X = {a ∈ dmn(f) ∩ dmn(f ′) : f(a) 6=
f ′(a)} is nonempty. Let a be an R-minimal element of X . Now if b ∈ pred

AR
(a) then

b ∈ dmn(f)∩dmn(f ′) and (b, a) ∈ R, hence b /∈ X ; so f(b) = f ′(b). Thus f ↾ predAR(a) =
f ′ ↾ pred

AR
(a). It follows that

f(a) = G(a, f ↾ predAR(a)) = G(a, f ′ ↾ predAR(a)) = f ′(a),

contradiction. So (1) holds.

(2) If f is an approximation to F, x ∈ dmn(f), n is a positive integer, g is a function with
domain n+′ 1, g(n) = x, and ∀i < n[(g(i), g(i+′ 1)) ∈ R], then g(0) ∈ dmn(f).

To prove this, assuming that f is an approximation to F and x ∈ dmn(f), we prove
by induction on n ≥ 1 that if g is a function with domain n +′ 1, g(n) = x, and ∀i <
n[(g(i), g(i +′ 1)) ∈ R], then g(0) ∈ dmn(f). For n = 1 we have (g(0), x) ∈ R, so
g(0) ∈ pred

AR
(x) and hence g(0) ∈ dmn(f). Assume that it is true for n, and now assume

that g is a function with domain n+′ 2, g(n+′ 1) = x, and ∀i < n+′ 1[(g(i), g(i+′ 1)) ∈ R].
Define h(i) = g(i+′1) for all i < n. Then h(n) = g(n+′1) = x and ∀i < n[(h(i), h(i+′1)) =
(g(i +′ 1), g(i +′ 2)) ∈ R]. Hence h(0) ∈ dmn(f) by the inductive hypothesis. Since
(g(0), h(0)) = (g(0), g(1)) we have (g(0), h(0)) ∈ R and hence g(0) ∈ dmn(f). This
finishes the inductive proof of (2).

(3) If f is an approximation to F and x ∈ dmn(f), then pred′
AR∗(x) ⊆ dmn(f).
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This is clear from (2) and the definition of pred′
AR∗(x).

(4) If f is an approximation to F and x ∈ dmn(f), then f ↾ pred′
AR∗(x) is an approximation

to F.

In fact, if a ∈ pred′
AR∗(x) then predAR(a) ⊆ pred′

AR∗(x) by Theorem 8.3(ii). Suppose
that a ∈ pred′

AR∗(x). Then

(f ↾ pred′
AR∗(x))(a) = f(a) = G(a, f ↾ predAR(a))

= G(a, (f ↾ pred′
AR∗(x)) ↾ predAR(a)).

This proves (4).

(5) For all x ∈ A there is an approximation f to F such that x ∈ dmn(f).

Suppose not. Let X = {x ∈ A : there does not exist an approximation f to F such that
x ∈ dmn(f)}. So X is a nonempty subclass of A. By Theorem 8.5, let x be an R-minimal
element of X. Now if (y, x) ∈ R then y /∈ X, and so there is an approximation f to F
such that y ∈ dmn(f). Then by (4), also f ↾ pred′

AR∗(y) is an approximation to F. If
also g is an approximation to F such that y ∈ dmn(g), then by (4) g ↾ pred′

AR∗(y) is an
approximation to F. By (1), f ↾ pred′

AR∗(y) = g ↾ pred′
AR∗(y). Thus there is a unique

approximation to F whose domain is pred′
AR∗(y). This is true for all y ∈ predAR(x), so

by replacement and comprehension there is a set

A
def
= {f : f is an approximation to F with domain

pred′
AR∗(y), for some y ∈ pred

AR
(x)}.

Let g =
⋃

A . We claim that g is an approximation to F. We prove this in several steps.
First, g is a function. For suppose that (a, b), (a, c) ∈ g. Choose f, f ′ ∈ A such

that (a, b) ∈ f and (a, c) ∈ f ′. Since both f and f ′ are approximations to F and a ∈
dmn(f) ∩ dmn(f ′), it follows from (1) that b = c.

Second, the domain of g is
⋃{pred′

AR∗(y) : y ∈ pred
AR

(x)}. In fact, if a ∈ dmn(g)
then there is an f ∈ A such that a ∈ dmn(f), and dmn(f) = pred′

AR∗(y) for some
y ∈ pred

AR
(x); so a is in the indicated union. If y ∈ pred

AR
(x), then pred′

AR∗(y) is
the domain of some f ∈ A , and hence pred′

AR∗(y) ⊆ dmn(g). So the domain of g is as
indicated.

Next, if a ∈ dmn(g) then predAR(a) ⊆ dmn(g). For, suppose that b ∈ predAR(a).
Then a ∈ dmn(f) for some f ∈ A , hence a ∈ pred′

AR∗(y) for some y ∈ pred
AR

(x), so
b ∈ pred′

AR∗(y) by Theorem 8.3(ii), and it follows that b ∈ dmn(g). This proves that
predAR(a) ⊆ dmn(g).

The final condition for g to be an approximation to F is shown as follows. Suppose that
a ∈ dmn(g). Choose y ∈ predAR(x) such that a ∈ dmn(f), where f is an approximation
to F with domain pred′

AR
(y). Then

g(a) = f(a) = G(a, f ↾ pred′
AR(y)) = G(a, g ↾ pred′

AR(y)).

Now let h = g ∪ {(x,G(x, g ↾ pred
AR

(x)))}. We claim that h is an approximation to F.
Since x ∈ dmn(h), this is a contradiction, proving (5).
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To prove the claim, first note that h is a function, since x /∈ dmn(g) by the choice
of x, since g is an approximation. Clearly dmn(h) ⊆ A. Suppose that a ∈ dmn(h). if
a ∈ dmn(g), then predAR(a) ⊆ dmn(g) ⊆ dmn(h). If a = x and y ∈ predAR(x), then
y ∈ pred′

AR∗ ⊆ dmn(g) ⊆ dmn(h). Hence pred
AR

(x) ⊆ dmn(h). Finally, if a ∈ dmn(g),
then

h(a) = g(a) = G(a, g ↾ predAR(a)) = G(a, h ↾ predAR(a)).

If a = x, then

h(a) = h(x) = G(x, g ↾ predAR(x)) = G(x, h ↾ predAR(x)).

So we have proved (5).
Now by (5), for all a ∈ A there is a b such that there is an f such that f is an

approximation to F and b ∈ dmn(f). By (1), this b is uniquely determined by a. Hence
there is a class function F′ such that for all a ∈ A, F′(a) is equal to such a b. Moreover,
if f is as indicated and b ∈ pred

AR
(a), then F′(b) = f(b). Thus F′ ↾ pred

AR
(a) = f ↾

predAR(a). It follows that

F′(a) = f(a) = G(a, f ↾ predAR(a)) = G(a,F′ ↾ predAR(a)).

Theorem 8.8. Suppose that R is a class relation which is well-founded and set like
on a class A, and G is a class function mapping A × V into V. Suppose that F and
F′ are class functions mapping A into V such that F(a) = G(a,F ↾ predAR(a)) and
F′(a) = G(a,F′ ↾ pred

AR
(a)) for all a ∈ A. Then F = F′.

Proof. Suppose not. Then X
def
= {a ∈ A : F(a) 6= F′(a)} is a nonempty subclass of

A. Hence by Theorem 8.5 let a be an R-minimal element of X. If (b, a) ∈ R, then b /∈ X,
and hence F(b) = F′(b). Thus F ↾ pred

AR
(a) = F′ ↾ pred

AR
(a). So

F(a) = G(a,F ↾ predAR(a)) = G(a,F′ ↾ predAR(a)) = F′(a),

contradiction.

We make some remarks about the rigorous formulation of Theorems 8.7 and 8.8. In
Theorem 8.7 we are given formulas ϕ(x, y), ψ(x), and χ(x, y, z) corresponding to R, A,
and G. We assume that ϕ is well-founded and set-like on ψ. The assumption on χ is

∀x∀y[ψ(x) → ∃!zχ(x, y, z)]

∧ ∀x∀y∀z[χ(x, y, z) → ψ(x)].

The conclusion is that there is a formula θ(x, y) such that

∀x[ψ(x) → ∃!yθ(x, y)]∧ ∀x∀y[θ(x, y) → ψ(x)](∗)

∧ ∀x∃y∃f [f is a function ∧ ∀u∀v[(u, v) ∈ f ↔ ϕ(u, x) ∧ θ(u, v)] ∧ χ(x, f, y)]]
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The proof defines the formula θ explicitly. Namely, let µ(f) be the following formula, the
rigorous version of “f is an approximation to F”:

f is a function ∧ ∀ x[x ∈ dmn(f) → ϕ(x)]∧
∀x∀y[x ∈ dmn(f) ∧ ϕ(y, x) → y ∈ dmn(f)]∧
∀a∀g[a ∈ dmn(f) ∧ g is a function ∧ ∀y[y ∈ dmn(g) ↔ ϕ(y, x)]∧
∀y ∈ dmn(g)[g(y) = f(y)] → χ(a, g, f(a))]

Then θ(x, y) is the formula ∃f [µ(f) ∧ x ∈ dmn(f) ∧ f(x) = y].
The rigorous version of Theorem 8.8 is that if θ′(x, y) is another formula satisfying

(∗) (with θ replaced by θ′), then ∀x∀y[θ(x, y) ↔ θ′(x, y)].

EXERCISES

E8.1. Give an example of A,R such that R is not well-founded on A and is not set-like
on A.

E8.2. Give an example of A,R such that R is not well-founded on A but is set-like on A.
Give one example with R and A are proper classes, and one example where they are sets.

E8.3. Give an example of A,R such that R is well-founded on A but is not set-like on A.

E8.4. Suppose that R is a class relation contained in A×A, x ∈ A, and v ∈ pred
AR∗(x).

Prove by induction on n that if n ∈ ω\1, f is a function with domain n +′ 1, ∀i <
n[(f(i), f(i+′ 1)) ∈ R] and f(n) = v, then f(0) ∈ pred

AR∗(x).

E8.5. Suppose that R is a class relation contained in A×A, (u, v) ∈ R∗, and (v, w) ∈ R∗.
Show that (u, w) ∈ R∗.

E8.6. Give an example of a proper class X which has a proper class of ∈-minimal elements.

E8.7. Give an example of a proper class relation R contained in A × A for some proper
class A, and a class function G mapping A × V into V such that R is set-like on A
but not well-founded on A and there is no class function F mapping A into V such that
F(a) = G(a,F〈predAR(a)) for all a ∈ A.

E8.8. Give an example of a proper class relation R contained in A × A for some proper
class A and a class function G mapping A × V into V such that R is set-like on A but
not well-founded on A but still there is a class function F mapping A into V such that
F(a) = G(a,F〈predAR(a)) for all a ∈ A.

86



9. Ordinals, II

Transfinite induction

The transfinite induction principles follow rather easily from the following generalization
of Theorem 7.13.

Theorem 9.1. Let A be an ordinal, or On. Then every nonempty subclass of A has a
least element.

Proof. This follows from Theorem 8.5.

There are two forms of the principle of transfinite induction, given in the following two
theorems.

Theorem 9.2. Let A be an ordinal or On. Suppose that B ⊆ A and the following
condition holds:

∀α ∈ A[α ⊆ B ⇒ α ∈ B].

Then B = A.

Proof. Suppose not, and let α be the least element of A\B. Thus α ⊆ B, so by
hypothesis α ∈ B, contradiction.

Corollary 9.3. Suppose that B is a class of ordinals and the following condition holds:

∀α[α ⊆ B ⇒ α ∈ B].

Then B = On.

Corollary 9.4. Suppose that β is an ordinal, X ⊆ β, and the following condition holds:

∀α < β[α ⊆ X ⇒ α ∈ X ].

Then X = β.

Theorem 9.5. Suppose that A is an ordinal or On, B ⊆ A, and the following conditions
hold:

(i) If 0 ∈ A, then 0 ∈ B.
(ii) If α+′ 1 ∈ A and α ∈ B, then α +′ 1 ∈ B.
(iii) If α is a limit ordinal, α ∈ A, and α ⊆ B, then α ∈ B.

Then B = A.

Proof. Suppose not, and let α be the least element of A\B. Then α 6= 0 by (i). If
α = β+′1 for some β, then β < α, so β ∈ B, and then α ∈ B by (ii), contradiction. Finally,
suppose that α is a limit ordinal. Then α ⊆ B, and so α ∈ B by (iii), conradiction.

Corollary 9.6. Suppose that B ⊆ On and the following conditions hold:

87



(i) 0 ∈ B.
(ii) If α ∈ B, then α+′ 1 ∈ B.
(iii) If α is a limit ordinal and α ⊆ B, then α ∈ B.

Then B = On.

Transfinite recursion

Theorem 9.7. Suppose that G is a class function mapping On × V into V. Then there
is a unique class function F mapping On into V such that F(α) = G(α,F ↾ α) for every
ordinal α.

Proof. We apply Theorems 8.7 and 8.8 with R = {(α, β) : α < β}.

Well-order

A partial order is a pair (P,<) such that P is a set, < is a relation contained in P × P ,
< is irreflexive (x 6< x for all x ∈ P ), and < is transitive (for all x, y, z ∈ P , x < y < z
implies that x < z). For (P,<) a partial order, we define p1 ≤ p2 iff p1 < p2 or p1 = p2.
A linear order is a partial order (P,<) such that for all x, y ∈ P , either x < y, x = y, or
y < x. A well-order is a linear order (P,<) such that for every nonempty X ⊆ P there is
an x ∈ X such that ∀y ∈ X [y 6< x]. This element x is called the <-least element of X .

Proposition 9.8. For any ordinal α, (α,<) is a well-order.

Proposition 9.9. If (P,<) is a well-order, then < is well-founded.

If (P,<) and (Q,≺) are partial orders, then a function f : P → Q is strictly increasing iff
∀p1, p2 ∈ P [p1 < p2 ⇒ f(p1) ≺ f(p2)].

Proposition 9.10. If (A,<) and (B,≺) are linearly orders and f : A → B is strictly
increasing, then ∀a0, a1 ∈ A[a0 < a1 ⇔ f(a0) ≺ f(a1)].

Proof. The direction ⇒ is given by the definition. Now suppose that it is not true
that a0 < a1. Then a1 ≤ a0, so f(a1) ≤ f(a0). So f(a0) < f(a1) is not true.

Proposition 9.11. If (A,<) is a well-ordered set and f : A → A is strictly increasing,
then x ≤ f(x) for all x ∈ A.

Proof. Suppose not. Then then set B
def
= {x ∈ A : f(x) < x} is nonempty. Let b be

the least element of B. Thus f(b) < b. Hence by the choice of b, we have f(b) ≤ f(f(b)).
Hence by Proposition 9.10, b ≤ f(b), contradiction.

Let (A,<) and (B,≺) be partial orders. An isomorphism from (A,<) onto (B,≺) is a
function f mapping A onto B such that ∀a1, a2 ∈ A[a1 < a2 iff f(a1) ≺ f(a2)].

Proposition 9.12. If (A,<) and (B,≺) are isomorphic well-orders, then there is a unique
isomorphism f mapping A onto B.
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Proof. The existence of f follows from the definition. Suppose that both f and g are
isomorphisms from A onto B. Then f−1 ◦g is a strictly increasing function from A into A,
so by Proposition 9.11 we get x ≤ (f−1 ◦ g)(x) for every x ∈ A; so f(x) ≤ g(x) for every
x ∈ A. Similarly, g(x) ≤ f(x) for every x ∈ A, so f = g.

Corollary 9.13. If α 6= β, then (α,<) and (β,<) are not isomorphic.

Proof. Suppose to the contrary that f is an isomorphism from (α,<) onto (β,<),
with β < α. Then f is a strictly increasing function mapping α into α. Hence β ≤ f(β) < β
by Proposition 9.11, contradiction.

The following theorem is fundamental. The proof is also of general interest; it can be
followed in outline form in many other situations.

Theorem 9.14. Every well-order is isomorphic to an ordinal.

Proof. Let (A,≺) be a well-order. We may assume that A 6= ∅. We define a class
function G : On × V → V as follows. For any ordinal α and set x,

G(α, x) =
{≺ -least element of A\rng(x) if x is a function and this set is nonempty,
A otherwise.

Now by Theorem 9.7 let F : On → V be such that F(β) = G(β,F ↾ β) for each ordinal β.

(1) If β < γ and F(β) = A, then F(γ) = A.

For, A\rng(F ↾ γ) ⊆ A\rng(F ↾ β), so A\rng(F ↾ β) empty implies that A\rng(F ↾ γ) is
empty, giving (1).

(2) if β < γ and F(γ) 6= A, then F(β) 6= A and F(β) ≺ F(γ).

The first assertion follows from (1). For the second assertion, note that A\rng(F ↾ γ) ⊆
A\rng(F ↾ β), hence F(γ) ∈ A\rng(F ↾ β), so F(β) � F(γ) by definition. Also F(β) ∈
rng(F ↾ γ), and F(γ) /∈ rng(F ↾ γ), so F(β) ≺ F(γ), as desired in (2).

(3) There is an ordinal γ such that F(γ) = A.

In fact, suppose not. Let B = {a ∈ A : ∃α[F(α) = a]}. Then F−1 maps B onto On, so by
the replacement axiom, On is a set, contradiction.

Choose γ minimum such that F(γ) = A. (Note that F(0) 6= A, since A is nonempty
and so has a least element.) By (2), F ↾ γ is strictly inceasing and maps onto A. Hence
F ↾ γ is the desired isomorphism, using Proposition 9.10.

Ordinal class functions

We say that F is an ordinal class function iff F is a class function whose domain is an
ordinal, or the whole class On, and whose range is contained in On. We consider three
properties of an ordinal class function F with domain A:

• F is strictly increasing iff for any ordinals α, β ∈ A, if α < β then F(α) < F(β).
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• F is continuous iff for every limit ordinal α ∈ A, F(α) =
⋃

β<α F(β).

• F is normal iff it is continuous and strictly increasing.

The following is a version of Proposition 9.11, with essentially the same proof.

Proposition 9.15. If F is a strictly increasing ordinal class function with domain A,
then α ≤ F(α) for every ordinal α ∈ A.

Proof. Suppose not, and let α be the least member of A such that F(α) < α.
Then F(F(α)) < F(α), so that F(α) is an ordinal β smaller than α such that F(β) < β,
contradiction.

Proposition 9.16. If F is a continuous ordinal class function with domain A, and
F(α) < F(α+′ 1) for every ordinal α such that α +′ 1 ∈ A, then F is strictly increasing.

Proof. Fix an ordinal γ ∈ A, and suppose that there is an ordinal δ ∈ A with γ < δ
and F(δ) ≤ F(γ); we want to get a contradiction. Take the least such δ.

Case 1. δ = θ +′ 1 for some θ. Thus γ ≤ θ. If γ = θ, then F(γ) < F(δ) by
the hypothesis of the proposition, contradicting our supposition. Hence γ < θ. Hence
F(γ) < F(θ) by the minimality of δ, and F(θ) < F(δ) by the assumption of the proposition,
so F(γ) < F(δ), contradiction.

Case 2. δ is a limit ordinal. Then there is a θ < δ with γ < θ, and so by the minimality
of δ we have

F(γ) < F(θ) ≤
⋃

ε<δ

F(ε) = F(δ),

contradiction.

Proposition 9.17. Suppose that F is a normal ordinal class function with domain A,
and ξ ∈ A is a limit ordinal. Then F(ξ) is a limit ordinal too.

Proof. Suppose that γ < F(ξ). Thus γ ∈ ⋃η<ξ F(η), so there is a η < ξ such that
γ < F(η). Now F(η) < F(ξ). Hence F(ξ) is a limit ordinal.

Proposition 9.18. Suppose that F and G are normal ordinal class functions, with do-
mains A,B respectively, and the range of F is contained in B. Then also G◦F is normal.

Proof. Clearly G◦F is strictly increasing. Now suppose that ξ ∈ A is a limit ordinal.
Then F(ξ) is a limit ordinal by Proposition 9.17.

Suppose that ρ < ξ. Then F(ρ) < F(ξ), so G(F(ρ)) ≤ ⋃

η<F(ξ) G(η) = G(F(ξ)).
Thus

(∗)
⋃

ρ<ξ

G(F(ρ)) ≤ G(F(ξ)).

Now if η < F(ξ), then by the continuity of F, η <
⋃

ρ<ξ F(ρ), and hence there is a
ρ < ξ such that η < F(ρ); so G(η) < G(F(ρ)). So for any η < F(ξ) we have G(η) ≤
⋃

ρ<ξ G(F(ρ)). Hence

G(F(ξ)) =
⋃

η<F(ξ)

G(η) ≤
⋃

ρ<ξ

G(F(ρ));
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together with (∗) this gives the continuity of G ◦ F .

Ordinal addition

We use the general recursion theorem to define ordinal addition:

Theorem 9.19. There is a unique function + mapping On × On into On such that the
following conditions hold for any α:

(i) α+ 0 = α;
(ii) α + (β +′ 1) = (α+ β) +′ 1;
(iii) α+ γ =

⋃

β<γ(α+ β) for γ a limit ordinal.

Proof. For the existence we use the main recursion theorem, Theorem 8.7. Let
A = On × On, and let R = {((α, β), (α, γ) : β < γ. Then predAR(α, β) = {α} × β, a set.
Thus R is set-like. Given a nonempty subset X of A, choose (α, γ) ∈ X , and then choose
β minimum such that (α, β) ∈ X . Clearly (α, β) is an R-minimal element of X . Thus R
is well-founded on A.

Now we define G : A × V → V. For any α, β and any set x, let

G((α, β), x) =







α if β = 0,
x(α, γ) +′ 1 if x is a function with domain {α} × β

and β = γ +′ 1,
⋃

γ<β x(α, γ) if x is a function with domain {α} × β
and β is a limit ordinal,

∅ otherwise.

Then by Theorem 8.7 let F : A → V be such that F(y) = G(y,F ↾ predAR(y)) for any
y ∈ A. Then

F(α, 0) = G((α, 0),F ↾ predAR((α, 0))) = α;

F(α, β +′ 1) = G((α, β +′ 1),F ↾ predAR((α, β +′ 1)))

= F(α, β) +′ 1;

F(α, β) = G((α, β),F ↾ pred
AR

((α, β)))

=
⋃

γ<β

F(α, γ) if β is a limit ordinal.

Thus writing α+ β instead of F(α, β) we see that F is as desired.
Now suppose that +o also satisfies the conditions of the theorem. We show that

α+ β = α+o β for all α, β, by fixing α and going by induction on β, using Corollary 9.9.
We have α+0 = α = α+oβ. Assume that α+β = α+oβ. Then α+(β+′1) = (α+β)+′1 =
(α +o β) +′ 1 = α +o (β +′ 1). Assume that β is a limit ordinal and α + γ = α +o γ for
every γ < β. Then α+ β =

⋃

γ<β α+ γ =
⋃

γ<β α +o γ = α+o β.

Proposition 9.20. α+ 1 = α+′ 1 for any ordinal α.

Proof. α+ 1 = α+ (0 +′ 1) = (α+ 0) +′ 1 = α+′ 1.
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Now we can stop using the notation α +′ 1, using α+ 1 instead.
We state the simplest properties of ordinal addition in the following theorem., Weakly

increasing means that α < β implies that F(α) ≤ F(β).

Theorem 9.21. (i) If m,n ∈ ω, then m+ n ∈ ω.
(ii) For any ordinal α, the class function F which takes each ordinal β to α + β is a

normal function.
(iii) For any ordinal β, the class function F which takes each ordinal α to α + β is

weakly increasing.
(iv) α+ (β + γ) = (α+ β) + γ.
(v) β ≤ α+ β.
(vi) 0 + α = α.
(vii) α ≤ β iff there is a δ such that α+ δ = β.
(viii) α < β iff there is a δ > 0 such that α+ δ = β.

Proof. (i): with m fixed we use induction on n, thus appealing to Theorem 7.14. We
have m+0 = m ∈ ω. Assume that n ∈ ω and m+n ∈ ω. then m+(n+1) = (m+n)+1 ∈ ω,
completing the induction.

(ii): by Proposition 9.19.
(iv): Fix α and β; we proceed by induction on γ. The case γ = 0 is obvious. Assume

that α+ (β + γ) = (α+ β) + γ. Then

α+ (β + (γ + 1)) = α+ ((β + γ) + 1)

= (α+ (β + γ)) + 1

= ((α+ β) + γ) + 1

= (α+ β) + (γ + 1).

Finally, suppose that γ is a limit ordinal and we know our result for all δ < γ. Let F,G,H
be the ordinal class functions such that, for any ordinal δ,

F(δ) = α+ δ;

G(δ) = (α+ β) + δ;

H(δ) = β + δ.

Thus according to (ii), all three of these functions are normal. Hence, using Proposition
9.18,

α+ (β + γ) = F(H(γ))

=
⋃

δ<γ

F(H(δ))

=
⋃

δ<γ

(α+ (β + δ))

=
⋃

δ<γ

((α+ β) + δ
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=
⋃

δ<γ

G(δ)

= G(γ)

= (α+ β) + γ.

(v): by (ii) and Proposition 9.15.
(vi): induction on α. 0 + 0 = 0. If 0 + α = α, then 0 + (α+ 1) = (0 + α) + 1 = α+ 1.

If α is limit and 0 + β = β for all β < α, then 0 + α =
⋃

β<α(0 + β) =
⋃

β<α β = α.
(vii): In the ⇒ direction, assume that α ≤ β. Now β ≤ α + β by (v). Let δ be

minimum such that β ≤ α + δ. Suppose that β < α + δ. If δ = ε + 1 for some ε, then
β < (α + ε) + 1 and hence β ≤ α + ε using Proposition 7.10. This contradicts the choice
of δ. A similar contradiction is reached if δ is a limit ordinal. So β = α + δ.

For the ⇐ direction, we prove that α ≤ α+δ for all δ by induction on δ. It is clear for
δ = 0. Assume that α ≤ α+ δ. Now α+ δ < (α+ δ) + 1 = α+ (δ+ 1), so α ≤ α+ (δ+ 1).
Finally, suppose that δ is a limit ordinal and α ≤ α + γ for all γ < δ. Clearly then
α ≤ ⋃γ<χ(α+ γ) = α + δ.

(viii): If α < β, choose δ by (vii) so that α + δ = β. Since α 6= β we have δ > 0. For
the other direction, if α + δ = β with δ > 0, then α = α + 0 < α+ δ = β, using (ii).

(iii): Suppose that γ < α. By (viii), choose δ > 0 such that γ+δ = α. Then β ≤ δ+β
by (v), and so by (ii) and (iv), γ + β ≤ γ + (δ + β) = (γ + δ) + β = α+ β.

Note that + is not commutative. In fact, 1 +ω = ω < ω+ 1. The ordinal class function F,
which for a fixed β takes each ordinal α to α + β, is not continuous. For example, ω + 1
is not equal to

⋃

m∈ω(m+ 1), as the latter is equal to ω.

Ordinal multiplication

Theorem 9.22. There is a unique function · mapping On × On into On such that the
following conditions hold:

α · 0 = 0;

α · (β + 1) = α · β + α;

α · β =
⋃

γ<β

(α · γ) for β limit.

Proof. The proof is very similar to the proof of Theorem 9.19. We start with A and
R as in that proof.

Now we define G : A × V → V. For any α, β and any set x, let

G((α, β), x) =







0 if β = 0,
x(α, γ) + α if x is a function with domain {α} × β

and β = γ +′ 1,
⋃

γ<β x(α, γ) if x is a function with domain {α} × β
and β is a limit ordinal,

∅ otherwise.
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Then by Theorem 8.7 let F : A → V be such that F(y) = G(y,F ↾ predAR(y)) for any
y ∈ A. Then

F(α, 0) = G((α, 0),F ↾ predAR((α, 0))) = 0;

F(α, β +′ 1) = G((α, β +′ 1),F ↾ pred
AR

((α, β +′ 1)))

= F(α, β) + α;

F(α, β) = G((α, β),F ↾ pred
AR

((α, β)))

=
⋃

γ<β

F(α, γ) if β is a limit ordinal.

Thus writing α · β instead of F(α, β) we see that F is as desired.
Now suppose that ·o also satisfies the conditions of the theorem. We show that α ·β =

α ·o β for all α, β, by fixing α and going by induction on β, using Corollary 9.9. We have
α ·0 = 0 = α ·o β. Assume that α ·β = α ·o β. Then α · (β+1) = (α ·β) +α = (α ·o β) +1 =
α ·o (β + 1). Assume that β is a limit ordinal and α · γ = α ·o γ for every γ < β. Then
α · β =

⋃

γ<β(α · γ) =
⋃

γ<β(α ·o γ) = α ·o β.

Here are some basic properties of ordinal multiplication:

Theorem 9.23. (i) If m,n ∈ ω, then m · n ∈ ω.
(ii) If α 6= 0, then α · β < α · (β + 1);
(iii) If α 6= 0, then the class function assigning to each ordinal β the product α · β is

normal.
(iv) 0 · α = 0;
(v) α · (β + γ) = (α · β) + (α · γ);
(vi) α · (β · γ) = (α · β) · γ;
(vii) If α 6= 0, then β ≤ α · β;
(viii) If α < β then α · γ ≤ β · γ;
(ix) α · 1 = α.
(x) α · 2 = α + α.
(xi) If α, β 6= 0 then α · β 6= 0.

Proof. (i): Induction on n, with m fixed. m · 0 = 0 ∈ ω. Assume that m · n ∈ ω.
Then m · (n+1) = m ·n+m; this is in ω by the inductive hypothesis and Theorem 9.21(i).

(ii): Using 9.21(ii), α · β = α · β + 0 < α · β + α = α · (β + 1).
(iii): this follows from (ii) and Proposition 9.16.
(iv): We prove this by induction on α. 0 · 0 = 0. Assuming that 0 · α = 0, we have

0 · (α+ 1) = 0 · α+ 0 = 0 + 0 = 0. Assuming that α is a limit ordinal and 0 · γ = 0 for all
γ < α, we have 0 · α =

⋃

γ<α(0 · γ) =
⋃

γ<α 0 = 0.
(v) Fix α and β. By (iv) we may assume that α 6= 0; we then proceed by induction on

γ. We define some ordinal class functions F,F′,G: for any γ, F(γ) = β+γ; F′(γ) = α·β+γ;
G(γ) = α · γ. These are normal functions by (iii) and Theorem 9.21(ii).

First of all,

α · (β + 0) = α · β = (α · β) + 0 = (α · β) + (α · 0),
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so (v) holds for γ = 0. Now assume that (v) holds for γ. Then

α · (β + (γ + 1)) = α · ((β + γ) + 1)

= α · (β + γ) + α

= (α · β) + (α · γ) + α

= (α · β) + (α · (γ + 1)),

as desired.
Finally, suppose that δ is a limit ordinal and we know (v) for all γ < δ. Then

α · (β + δ) = G(F(δ))

= (G ◦ F)(δ)

=
⋃

γ<δ

(G ◦ F)(γ)

=
⋃

γ<δ

(α · (β + γ))

=
⋃

γ<δ

((α · β) + (α · γ))

=
⋃

γ<δ

F′(G(γ))

=
⋃

γ<δ

(F′ ◦ G)(γ)

= (F′ ◦ G)(δ)

= (α · β) + (α · δ),

as desired. This completes the proof of (v).
(vi): For α = 0, 0 · (β · γ) = 0 by (iv), and by (iv) again, (0 · β) · γ = 0 · γ = 0. For

β = 0, α · (0 · γ) = α · 0 = 0 using (iv), and (α · 0) · γ = 0 · γ = 0, using (iv) again.
So we assume that α, β 6= 0. With fixed α, β we now proceed by induction on γ. Let

F and G be the class functions defined by F(δ) = β · δ and G(δ) = α · δ for all δ. These
are normal functions by (iii). Then α · (β · 0) = α · 0 = 0 = (α · β) · 0. Assuming that
α · (β · γ) = (α · β) · γ, we have

α · (β · (γ + 1)) = α · (β · γ + β)

= α · (β · γ) + α · β
= (α · β) · γ + α · β
= (α · β) · (γ + 1).

Finally, for δ limit, assuming that α · (β · γ) = (α · β) · γ for all γ < δ, we have

α · (β · δ) = G(F(δ))
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= (G ◦ F)(δ)

=
⋃

γ<δ

G(F(γ))

=
⋃

γ<δ

α · (β · γ)

=
⋃

γ<δ

(α · β) · γ

= (α · β) · δ.

(vii): follows from (ii) and Proposition 9.15.
(viii): Fix α < β. We prove that α·γ ≤ β·γ by induction on γ. We have α·0 = 0 = β·0,

so α · 0 ≤ β · 0. Suppose that α · γ ≤ β · γ. Then

α · (γ + 1) = α · γ + α

≤ β · γ + α induction hypothesis, Theorem 9.21(iii)

< β · γ + β Theorem 9.21(ii)

= β · (γ + 1).

Finally, suppose that γ is a limit ordinal and α · δ ≤ β · δ for every δ < γ. Then

α · γ =
⋃

δ<γ

(α · δ)

≤
⋃

δ<γ

(β · δ) induction hypothesis, Proposition 7.8

= β · γ.

(ix): α · 1 = α · (0 + 1) = α · 0 + α = 0 + α = α using Proposition 9.21(vi).
(x): α · 2 = α · (1 + 1) = α · 1 + α = α + α.
(xi): With α 6= 0 fixed we go by induction on β, proving that β 6= 0 implies that

α · β 6= 0. This is vacuously true for β = 0. Assume that the implication holds for β, and
assume that β + 1 6= 0. Then α · (β + 1) = α · β + α > α · β + 0 = α · β using (iii); so
α · (β + 1) 6= 0. Finally, suppose that β is a limit ordinal and the implication holds for all
γ < β. Then α · β =

⋃

γ<β(α · γ) ≥ α · 1 6= 0.

The commutative law for multiplication fails in general. For example, 2 · ω = ω while
ω · 2 = ω + ω > ω. Also the distributive law (α+ β) · γ = α · γ + β · γ fails in general. For
example, (1 + 1) · ω = 2 · ω = ω, while 1 · ω+ 1 · ω = ω+ ω > ω. Here we use the fact that
1 · ω = ω. In fact, 1 · α = α for any ordinal α, as is easily shown by induction on α.

Ordinal exponentiation

Theorem 9.24. There is a unique function mapping On × On into On such that the
following conditions hold, where we write the value of the function at an argument (α, β)
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as αβ:

α0 = 1;

αβ+1 = αβ · α;

αβ =
⋃

γ<β

(αγ) for β limit.

Proof. The proof is very similar to the proofs of Theorem 9.19 and 9.22. We start
with A and R as in those proofs.

Now we define G : A × V → V. For any α, β and any set x, let

G((α, β), x) =







1 if β = 0,
x(α, γ) · α if x is a function with domain {α} × β

and β = γ +′ 1,
⋃

γ<β x(α, γ) if x is a function with domain {α} × β
and β is a limit ordinal,

∅ otherwise.

Then by Theorem 8.7 let F : A → V be such that F(y) = G(y,F ↾ pred
AR

(y)) for any
y ∈ A. Then

F(α, 0) = G((α, 0),F ↾ pred
AR

((α, 0))) = 1;

F(α, β +′ 1) = G((α, β +′ 1),F ↾ predAR((α, β +′ 1)))

= F(α, β) · α;

F(α, β) = G((α, β),F ↾ predAR((α, β)))

=
⋃

γ<β

F(α, γ) if β is a limit ordinal.

Thus writing αβ instead of F(α, β) we see that F is as desired.
Now suppose that F′ also satisfies the conditions of the theorem. We show that

αβ = F′(α, β) for all α, β, by fixing α and going by induction on β, using Corollary 9.9.
We have α0 = 1 = F′(α, β). Assume that αβ = F′(α, β). Then αβ+1 = (αβ) · α =
F′(α, β) · α = F′(α, β + 1). Assume that β is a limit ordinal and αγ = F′(α, γ) for every
γ < β. Then αβ =

⋃

γ<β α
γ =

⋃

γ<β F′(α, γ) = F′(α, β).

Now we give the simplest properties of exponentiation.

Theorem 9.25. (i) If m,n ∈ ω, then mn ∈ ω.
(ii) 00 = 1;
(iii) 0β+1 = 0;
(iv) 0β = 1 for β a limit ordinal;
(v) 1β = 1;
(vi) If α 6= 0, then αβ 6= 0;
(vii) If α > 1 then αβ < αβ+1;
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(viii) If α > 1, then the ordinal class function assigning to each ordinal β the value
αβ is normal;

(ix) If α > 1, then β ≤ αβ;
(x) If 0 < α < β, then αγ ≤ βγ ;
(xi) For α 6= 0, αβ+γ = αβ · αγ;
(xii) For α 6= 0, (αβ)γ = αβ·γ.

Proof. (i): With m fixed we go by induction on n. m0 = 1 ∈ ω. Assume that
mn ∈ ω. Then mn+1 = mn ·m ∈ ω by the induction hypothesis and Theorem 9.23(i).

(ii): Obvious.
(iii): 0β+1 = 0β · 0 = 0.
(iv): We prove by induction on β that

0β =

{
1 if β = 0,
0 if β is a successor ordinal,
1 if β is a limit ordinal.

This is clearly true for β = 0, and if it is true for γ then it is true for γ + 1 by (iii). Now
suppose that β is a limit ordinal and it is true for all γ < β. Thus 0γ is 0 or 1 for each
γ < β, and 00 = 1 with 0 < β, so 0β =

⋃

γ<β 0γ = 1.

(v): we prove this by induction on β. 10 = 1. Assume that 1β = 1. Then 1β+1 =
1β · 1 = 1 · 1 = 1. Assume that β is a limit ordinal and 1γ = 1 for all γ < β. Then
1β =

⋃

γ<β 1γ = 1.

(vi) With α 6= 0 fixed, we go by induction on β. α0 = 1 6= 0. Assume that αβ 6= 0.
Then αβ+1 = αβ · α 6= 0 by the inductive hypothesis and Theorem 9.23(xi). Assume that
β is a limit ordinal and αγ 6= 0 for all γ < β. Then αβ =

⋃

γ<β α
γ 6= 0 by the inductive

hypothesis, since 0 < β and α0 6= 0.
(vii): We have αβ+1 = αβ · α > αβ · 1 = αβ using (vi) and Theorem 9.23(iii),(ix).
(viii): by (vii) and Theorem 9.16.
(ix): by (viii) and Theorem 9.15.
(x): With 0 < α < β, induction on γ. α0 = 1 = β0. Assume that αγ ≤ βγ . Then

αγ+1 = αγ · α ≤ βγ · α (by the inductive hypothesis and Theorem 9.23(viii)) < βγ · β (by
Theorem 9.23 (iii)) = βγ+1. Now assume that αγ ≤ αβ for all γ < δ, where δ is a limit
ordinal. Then αδ =

⋃

γ<δ α
γ ≤ ⋃γ<δ βγ = βδ, using Proposition 7.12.

(xi): By (v) we may assume that α > 1. Define F(δ) = β+δ, G(δ) = αδ, H(δ) = αβ ·δ.
These are normal functions by Theorem 9.21(ii), Theorem 9.23(iii) and (vi), and (viii).

Now we go by induction on γ. αβ+0 = αβ = αβ · 1 = αβ · α0. Assume that αβ+γ =
αβ · αγ . Then αβ+γ+1 = αβ+γ ·α = αβ ·αγ ·α+ aβ ·αγ+1. Finally, suppose that δ is limit
and αβ+γ = αβ · αγ for every γ < δ. Then

αβ+δ = G(F(δ))

=
⋃

γ<δ

G(F(γ))

=
⋃

γ<δ

αβ+γ
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=
⋃

γ<δ

(αβ · αγ)

=
⋃

γ<δ

H(γ)

= H(δ)

= αβ · αδ.

(xii): First note that it holds for β = 0, since (α0)γ = 1γ = 1 and α0·γ = α0 = 1.
Similarly, it holds for α = 1. Now assume that α > 1 and β > 0. Let F(δ) = αδ for any δ,
and G(δ) = β · δ for any δ. Then F and G are normal functions. Now we prove the result
by induction on γ. First, (αβ)0 = 1 = α0 = αβ·0. Now assume that (αβ)γ = αβ·γ . Then

(αβ)γ+1 = (αβ)γ · αβ = αβ·γ · αβ = αβ·γ+β = αβ·(γ+1).

Finally, suppose that δ is a limit ordinal and (αβ)γ = αβ·γ for all γ < δ. Then

(αβ)δ =
⋃

γ<δ

(αβ)γ

=
⋃

γ<δ

αβ·γ

=
⋃

γ<δ

F(G(γ))

= F(G(δ))

= αβ·δ

Theorem 9.26. (division algorithm) Suppose that α and β are ordinals, with β 6= 0. Then
there are unique ordinals ξ, η such that α = β · ξ + η with η < β.

Proof. First we prove the existence. Note that α < α + 1 ≤ β · (α + 1). Thus there
is an ordinal number ρ such that α < β · ρ; take the least such ρ. Obviously ρ 6= 0. If ρ is
a limit ordinal, then because β · ρ =

⋃

σ<ρ(β · σ), it follows that there is a σ < ρ such that
α < β · σ, contradicting the minimality of ρ. Thus ρ is a successor ordinal ξ + 1. By the
definition of ρ we have β · ξ ≤ α. Hence there is an ordinal η such that β · ξ + η = α. We
claim that η < β. Otherwise, α = β · ξ + η ≥ β · ξ + β = β · (ξ + 1) = β · ρ, contradicting
the definition of ρ. This finishes the proof of existence.

For uniqueness, suppose that also α = β · ξ′ + η′ with η′ < β. Suppose that ξ 6= ξ′.
By symmetry, say ξ < ξ′. Then

α = β · ξ + η < β · ξ + β = β · (ξ + 1) ≤ β · ξ′ ≤ β · ξ′ + η′ = α,

contradiction. Hence ξ = ξ′. Hence also η = η′.

Theorem 9.27. (extended division algorithm)Let α and β be ordinals, with α 6= 0 and
1 < β. Then there exist unique ordinals γ, δ, ε such that the following conditions hold:
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(i) α = βγ · δ + ε.
(ii) γ ≤ α.
(iii) 0 < δ < β,
(iv) ε < βγ .

Proof. We have α < α + 1 ≤ βα+1; so there is an ordinal ϕ such that α < βϕ. We
take the least such ϕ. Clearly ϕ is a successor ordinal γ + 1. So we have βγ ≤ α < βγ+1.
Now βγ 6= 0, since β > 1. Hence by the division algorithm there are ordinals δ, ε such that
α = βγ · δ + ε, with ε < βγ . Now δ < β; for if β ≤ δ, then

α = βγ · δ + ε ≥ βγ · β = βγ+1 > α,

contradiction. We have δ 6= 0, as otherwise α = ε < βγ , contradiction.. Also, γ ≤ α, since

α = βγ · δ + ε ≥ βγ ≥ γ.

This proves the existence of γ, δ, ε as called for in the theorem.
Suppose that γ′, δ′, ε′ also satisfy the indicated conditions; thus

(1) α = βγ
′ · δ′ + ε′,

(2) γ′ ≤ α,

(3) 0 < δ′ < β,

(4) ε′ < βγ
′

.

Suppose that γ 6= γ′; by symmetry, say that γ < γ′. Then

α = βγ · δ + ε < βγ · δ + βγ = βγ · (δ + 1) ≤ βγ · β = βγ+1 ≤ βγ
′ ≤ α,

contradiction. Hence γ = γ′. Hence by the ordinary division algorithm we also have δ = δ′

and ε = ε′.

We can obtain an interesting normal form for ordinals by re-applying Theorem 9.27 to the
“remainder” ε over and over again. That is the purpose of the following definitions and
results. This generalizes the ordinary decimal and binary systems of notation, by taking
β = 10 or β = 2 and restricting to natural numbers. For infinite ordinals it is useful to
take β = ω; this gives the Cantor normal form.

To abbreviate some long expressions, we let N(β,m, γ, δ) stand for the following state-
ment:

β is an ordinal > 1, m is a positive integer, γ and δ are sequences of ordinals each of
length m, and:

(1) γ(0) > γ(1) > · · · > γ(m− 1);

(2) 0 < δ(i) < β for each i < m.
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If N(β,m, γ, δ), then we define

k(β,m, γ, δ) = βγ(0) · δ(0) + βγ(1) · δ(1) + · · · + βγ(m−1) · δ(m− 1).

Lemma 9.28. Assume that N(β,m, γ, δ) and N(β, n, γ′, δ′). Then:
(i) k(β,m, γ, δ) ≥ γ(0).
(ii) k(β,m, γ, δ) < βγ(0) · (δ(0) + 1) ≤ βγ(0)+1.
(iii) If γ(0) 6= γ′(0), then k(β,m, γ, δ) < k(β, n, γ′, δ′) iff γ(0) < γ′(0).
(iv) If γ(0) = γ′(0) and δ(0) 6= δ′(0), then k(β,m, γ, δ) < k(β, n, γ′, δ′) iff δ(0) < δ′(0).
(v) If γ(j) = γ′(j) and δ(j) = δ′(j) for all j < i, while γ(i) 6= γ′(i), then k(β,m, γ, δ) <

k(β, n, γ′, δ′) iff γ(i) < γ′(i).
(vi) If γ(j) = γ′(j) and δ(j) = δ′(j) for all j < i, while γ(i) = γ′(i) and δ(i) 6= δ′(i),

then k(β,m, γ, δ) < k(β, n, γ′, δ′) iff δ(i) < δ′(i).
(vii) If γ ≤ γ′, δ ≤ δ′, and m < n, then k(β,m, γ, δ) < k(β, n, γ′, δ′).

Proof. (i): k(β,m, γ, δ) ≥ βγ(0) ≥ γ(0).
(ii): It is clear for m = 1. For m > 1,

βγ(0) · δ(0) + βγ(1) · δ(1) + · · · + βγ(m−1) · δ(m− 1) < βγ(0) · δ(0) + βγ(1)+1

≤ βγ(0) · δ(0) + βγ(0)

= βγ(0) · (δ(0) + 1)

≤ βγ(0) · β
= βγ(0)+1.

For (iii), assume the hypothesis, and suppose that γ(0) < γ′(0). Then

k(β,m, γ, δ) < βγ(0) · (δ(0) + 1) ≤ βγ(0)+1 by (ii)

≤ βγ
′(0)

≤ k(β, n, γ′, δ′).

By symmetry (iii) now follows.
For (iv), assume the hypothesis, and suppose that δ(0) < δ′(0). Then

k(β,m, γ, δ) < βγ(0) · (δ(0) + 1) ≤ βγ
′(0) · (δ(0) + 1) by (ii)

≤ βγ
′(0) · δ′(0)

≤ k(β, n, γ′, δ′)

By symmetry (iv) now follows.
(v) is clear from (iii), by deleting the first i summands of the sums.
(vi) is clear from (iv), by deleting the first i summands of the sums.
(vii) is clear.

Theorem 9.29. (expansion theorem) Let α and β be ordinals, with α 6= 0 and 1 < β.
Then there exist a unique m ∈ ω and finite sequences 〈γ(i) : i < m〉 and 〈δ(i) : i < m〉 of
ordinals such that the following conditions hold:
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(i) α = βγ(0) · δ(0) + βγ(1) · δ(1) + · · · + βγ(m−1) · δ(m− 1).
(ii) α ≥ γ(0) > γ(1) > · · · > γ(m− 1).
(iii) 0 < δ(i) < β for each i < m.

Proof. For the existence, with β > 1 fixed we proceed by induction on α. Assume
that the theorem holds for every α′ < α such that α′ 6= 0, and suppose that α 6= 0. By
Theorem 9.27, let ϕ, ψ, θ be such that

(1) α = βϕ · ψ + θ,

(2) ϕ ≤ α,

(3) 0 < ψ < β,

(4) θ < βϕ.

If θ = 0, then we can take our sequences to be 〈γ(0)〉 and 〈δ(0)〉, with γ(0) = ϕ and
δ(0) = ψ. Now assume that θ > 0. Then

θ < βϕ ≤ βϕ · ψ + θ = α;

so θ < α. Hence by the inductive assumption we can write

θ = βγ(0) · δ(0) + βγ(1) · δ(1) + · · · + βγ(m−1) · δ(m− 1)

with

(5) θ ≥ γ(0) > γ(1) > · · · > γ(m− 1).

(6) 0 < δ(i) < β for each i < m.

Then our desired sequences for α are

〈ϕ, γ(0), γ(1), . . . , γ(m− 1)〉 and 〈ψ, δ(0), δ(1), . . . , δ(m− 1)〉.

To prove this, we just need to show that ϕ > γ(0). If ϕ ≤ γ(0), then

βϕ ≤ βγ(0) ≤ θ,

contradiction.
This finishes the existence part of the proof.
For the uniqueness, we use the notation introduced above, and proceed by induction

on α. Suppose the uniqueness statement holds for all nonzero α′ < α, and now we have
N(β,m, γ, δ), N(β, n, γ′, δ′), and

α = k(β,m, γ, δ) = k(β, n, γ′, δ′).

We suppose that the uniqueness fails. Say m ≤ n. Then there is an i < m such that
γ(i) 6= γ′(i) or δ(i) 6= δ′(i); we take the least such i. Then we have a contradiction of
Lemma 9.28.
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Lemma 9.30. (i) If ω ≤ α, then 1 + α = α.
(ii) If δ 6= 0, then ω ≤ ωδ and 1 + ωδ = ωδ.

Proof. (i): By Theorem 9.21(vii) there is a β such that ω + β = α. Hence 1 + α =
1 + ω + β = ω + β = α.

(ii) ω = ω1 ≤ ωδ, and 1 + ωδ = ωδ by (i).

Lemma 9.31. If α < ωβ then α+ ωβ = ωβ.

Proof. First we prove

(1) If γ < β, then ωγ + ωβ = ωβ.

In fact, suppose that γ < β. Then there is a nonzero δ such that γ + δ = β. Then

ωγ + ωβ = ωγ + ωγ+δ = ωγ + ωγ · ωδ = ωγ · (1 + ωδ) = ωγ · ωδ = ωβ.

By an easy ordinary induction, we obtain from (1)

(2) If γ < β and m ∈ ω, then ωγ ·m+ ωβ = ωβ .

Now we turn to the general case. If β = 0 or α < ω, the desired conclusion is clear. So
suppose that ω ≤ α and β > 0. Then we can write α = ωγ ·m+ δ with m ∈ ω and δ < ωγ.
Then

ωβ ≤ α+ ωβ = ωγ ·m+ δ + ωβ ≤ ωγ · (m+ 1) + ωβ = ωβ

Theorem 9.32. The following conditions are equivalent:
(i) β + α = α for all β < α. (Absorption under addition)
(ii) For all β, γ < α, also β + γ < α.
(iii) α = 0, or α = ωβ for some β.

Proof. (i)⇒(ii): Assuming (i), if β, γ < α, then β + γ < β + α = α.
(ii)⇒(iii): Assume (ii). If α = 0 or α = 1, condition (iii) holds, so suppose that 2 ≤ α.

Then clearly (ii) implies that α ≥ ω. Choose β,m, γ such that m ∈ ω, α = ωβ ·m + γ,
and γ < ωβ. If γ 6= 0, then ωβ ·m < ωβ ·m+ γ = α, and also γ < ωβ < α, so that (ii) is
contradicted. So γ = 0. If m > 1, write m = n+ 1 with n 6= 0. Then

α = ωβ ·m = ωβ · (n+ 1) = ωβ · n+ ωβ,

and ωβ · n, ωβ < α, again contradicting (ii). Hence m = 1, as desired in (iii).
Finally, (iii)⇒(i) by Lemma 9.31.

Lemma 9.33. If α 6= 0 and m is a positive integer, then m · ωα = ωα.

Proof. Induction on α. It is clear for α = 1. Assuming it true for α, we have
m · ωα+1 = m · ωα · ω = ωα · ω = ωα+1. Assuming it is true for every β < α with α a limit
ordinal, we have 1 + α = α, and so m · ωα = m · ω · ωα = ω · ωα = ωα.

Theorem 9.34. The following conditions are equivalent:
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(i) For all β, if 0 < β < α then β · α = α. (absorption under multiplication)
(ii) For all β, γ < α, also β · γ < α.

(iii) α ∈ {0, 1, 2} or there is a β such that α = ω(ωβ).

Proof. (i)⇒(ii): Assume (i), and suppose that β, γ < α. If β = 0, then β ·γ = 0 < α.
If β 6= 0, then β · γ < β · α = α.

(ii)⇒(iii): Assume (ii), and suppose that α /∈ {0, 1, 2}. Clearly then ω ≤ α. Now if
β, γ < α, then β + γ < α. In fact, if β ≤ γ, then β + γ ≤ γ + γ = γ · 2 < α by (ii); and
if γ < β then β + γ < β + β = β · 2 < α. Hence by Theorem 9.32 there is a γ such that
α = ωγ . Now if δ, ε < γ, then ωδ, ωε < ωγ = α, and hence ωδ+ε = ωδ · ωε < α = ωγ , so
that δ + ε < γ. Hence by Theorem 9.32, γ = ωβ for some β.

(iii)⇒(i): Assume (iii). Clearly 0, 1, 2 satisfy (i), so assume that α = ω(ωβ). Take any
γ < α with γ 6= 0. If γ < ω, then γ · α = α by Lemma 9.33. So assume that ω ≤ γ. Write
γ = ωδ ·m+ ε with m ∈ ω and ε < ωδ. Then δ < β, and so

α = ω(ωβ) ≤ γ · ω(ωβ) = (ωδ ·m+ ε) · ω(ωβ)

≤ (ωδ ·m+ ωδ) · ω(ωβ)

= ωδ · (m+ 1) · ω(ωβ)

≤ ωδ+1 · ω(ωβ)

= ωδ+1+ωβ

= ω(ωβ)

= α

EXERCISES

E9.1. Let (A,<) be a well order. Suppose that B ⊂ A and ∀b ∈ B∀a ∈ A[a < b→ a ∈ B].
Prove that there is an element a ∈ A such that B = {b ∈ A : b < a}.

E9.2. Let (A,<) be a well order. Suppose that B ⊂ A and ∀b ∈ B∀a ∈ A[a < b→ a ∈ B].
Prove that (A,<) is not isomorphic to (B,<).

E9.3. Suppose that f is a one-one function mapping an ordinal α onto a set A. Define
a relation ≺ which is a subset of A × A such that (A,<) is a well-order and f is an
isomorphism of (α,<) onto (A,≺).

E9.4. Prove that 1 +m = m+ 1 for any m ∈ ω.

E9.5. Prove that m+ n = n+m for any m,n ∈ ω.

E9.6. Prove that ω ≤ α iff 1 + α = α.

E9.7. For any ordinals α, β let

α⊕ β = (α× {0}) ∪ (β × {1}).

We define a relation ≺ as follows. For any x, y ∈ α⊕β, x ≺ y iff one of the following three
conditions holds:
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(i) There are ξ, η < α such that x = (ξ, 0), y = (η, 0), and ξ < η.
(ii) There are ξ, η < β such that x = (ξ, 1), y = (η, 1), and ξ < η.
(ii) There are ξ < α and η < β such that x = (ξ, 0) and y = (η, 1).

Prove that (α⊕ β,≺) is a well order which is isomorphic to α + β.

E9.8. Given ordinals α, β, we define the following relation ≺ on α× β:

(ξ, η) ≺ (ξ′, η′) iff ((ξ, η) and (ξ′, η′) are in α× β and:

η < η′, or (η = η′ and ξ < ξ′).

We may say that this is the anti-dictionary or anti-lexicographic order.
Show that the set α × β under the anti-lexicographic order is a well order which is

isomorphic to α · β.

E9.9. Suppose that α and β are ordinals, with β 6= 0. We define

αβw = {f ∈ αβ : {ξ < α : f(ξ) 6= 0} is finite}.

For f, g ∈ αβw we write f ≺ g iff f 6= g and f(ξ) < g(ξ) for the greatest ξ < α for which
f(ξ) 6= g(ξ).

Prove that (αβw,≺) is a well-order which is order-isomorphic to the ordinal exponent
βα. (A set X is finite iff there is a bijection from some natural number onto X .)

E9.10. Show that for every nonzero ordinal α there are only finitely many ordinals β such
that α = γ · β for some γ.

E9.11. Prove that n(ωω) = ω(ωω) for every natural number n > 1.

E9.12 Show that the following conditions are equivalent for any ordinals α, β:
(i) α+ β = β + α.
(ii) There exist an ordinal γ and natural numbers k, l such that α = γ ·k and β = γ · l.

E9.13. Suppose that α < ωγ . Show that α+ β + ωγ = β + ωγ .

E9.14. Show that the following conditions are equivalent:
(i) α is a limit ordinal
(ii) α = ω · β for some β 6= 0.
(iii) For every m ∈ ω\1 we have m · α = α, and α 6= 0.

E9.15. Show that (α+ β) · γ ≤ α · γ + β · γ for any ordinals α, β, γ.
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10. The axiom of choice

We give a small number of equivalent forms of the axiom of choice; these forms should be
sufficient for most mathematical purposes. The axiom of choice has been investigated a
lot, and we give some references for this after proving the main theorem of this chapter.

The set of axioms of ZFC with the axiom of choice removed is denoted by ZF; so we
work in ZF in this chapter.

The two main equivalents to the axiom of choice are as follows.

Zorn’s Lemma. If (A,<) is a partial order such that A 6= ∅ and every subset of A simply
ordered by < has an upper bound, then A has a maximal element under <, i.e., an element
a such that there is no element b ∈ A such that a < b.

Well-ordering principle. For every set A there is a well-ordering of A, i.e., there is a
relation < such that (A,<) is a well-order.

In addition, the following principle, usually called the axiom of choice, is equivalent to the
actual form that we have chosen:

Choice-function principle. If A is a family of nonempty sets, then there is a function
f with domain A such that f(a) ∈ a for every a ∈ A. Such a function f is called a choice
function for A.

Lemma 10.1. Suppose that (A,<) is a partial order and a ∈ A. Then A 6< a.

Proof. Suppose to the contrary that A < a. Then (A, a) ∈<⊆ A × A, so A ∈ A,
contradicting Theorem 7.5.

Theorem 10.2. In ZF the following four statements are equivalent:
(i) the axiom of choice;
(ii) the choice-function principle;
(iii) Zorn’s lemma.
(iv) the well-ordering principle.

Proof. Axiom of choice ⇒ choice-function principle. Assume the axiom of
choice, and let A be a family of nonempty sets. Let

A = {X : ∃a ∈ A[X = {(a, x) : x ∈ a}]}.

Since each member of A is nonempty, also each member of A is nonempty. GivenX, Y ∈ A

with X 6= Y , choose a, b ∈ A such that X = {(a, x) : x ∈ a} and Y = {(b, x) : x ∈ b}.
Thus a 6= b since A 6= B. The basic property of ordered pairs then implies that A∩B = ∅.

So, by the axiom of choice, let B have exactly one element in common with each
element of A . Define f = {b ∈ B : there exist a ∈ A and x such that b = (a, x)}. Clearly
f is the desired choice function for A.

Choice-function principle ⇒ Zorn’s lemma. Assume the choice-function prin-
ciple, and also assume the hypotheses of Zorn’s lemma. Let f be a choice function for
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P(A)\{∅}. Define G : On × V → V by setting, for any ordinal α and any set x,

G(α, x) =







f({a ∈ A : x(β) < a for all β < α}) if x is a function with domain α
and this set is nonempty,

A otherwise.

Let F be obtained from G by the recursion theorem 6.7; thus for any ordinal α,

F(α) = G(α,F ↾ α) =

{
f({a ∈ A : F(β) < a for all β < α}) if this set is nonempty,
A otherwise.

(1) If α < β ∈ On and F(β) 6= A, then F(α) 6= A, and F(α) < F(β).

In fact, suppose that F(α) = A. Now by the definition of F(β), the set {a ∈ A : F(γ) < a
for all γ < β} is nonempty. Let a be a member of this set. Now α < β, so A = F(α) < a,
contradicting Lemma 10.1.

Since F(β) = f({a ∈ A : F(γ) < a for all γ < β}) and α < β, it follows that
F(α) < F(β).

(2) There is an ordinal α such that F(α) = A.

Otherwise, by (1), F is a one-one function from On into A. So by the comprehension
axioms, rng(F) is a set, and hence by the replacement axioms, On = F−1[rngF] is a set,
contradicting Theorem 7.6.

Let α be minimum such that F(α) = A. Now F[α] is linearly ordered by (1), so by the
hypothesis of Zorn’s lemma, there is an a ∈ A such that F(β) ≤ a for all β < α. Now the set
{a ∈ A : f(β) < f(0) for all β < 0} is trivially nonempty, since A is nonempty, so F(0) 6= A.
Hence α > 0. If α is a limit ordinal, then for any β < α we have F(β) < F(β + 1) ≤ a,
and hence F(α) 6= A, contradiction. Hence α is a successor ordinal β + 1, and so F(β) is
a maximal element of A.

Zorn’s lemma ⇒ well-ordering principle. Assume Zorn’s lemma, and let A be
any set. We may assume that A is nonempty. Let

P = {(B,<) : B ⊆ A and (B <) is a well-ordering structure}.

We partially order P as follows: (B,<) ≺ (C,≪) iff B ⊆ C, ∀a, b ∈ B[a < b iff a≪ b], and
∀b ∈ B∀c ∈ C\B[b≪ c]. Clearly this does partially order P . P 6= ∅, since ({a}, ∅) ∈ P for
any a ∈ A. Now suppose that Q is a nonempty subset of P simply ordered by ≺. Let

D =
⋃

(B,<)∈Q
B,

<D =
⋃

(B,<)∈Q
< .

Clearly (D,<D) is a linear order with D ⊆ A. Suppose that X is a nonempty subset of
D. Fix z ∈ X , and choose (B,<) ∈ Q such that z ∈ B. Then X ∩ B is a nonempty
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subset of B; let x be its least element under <. Suppose that y ∈ X and y <D x. Choose
(C,≪) ∈ Q such that x, y ∈ C and y ≪ x. Since Q is simply ordered by ≺, we have two
cases.

Case 1. (C,≪) � (B,<). Then y ∈ C ⊆ B and y ∈ X . so y < x, contradicting the
choice of x.

Case 2. (B,<) ≺ (C,≪). If y ∈ B, then y < x, contradicting the choice of x. So
y ∈ C\B. But then x≪ y, contradiction.

Thus we have shown that x is the <D-least element of X . So (D,<D) is the desired
upper bound for Q.

Having verified the hypotheses of Zorn’s lemma, we get a maximal element (B,<) of
P . Suppose that B 6= A. Choose any a ∈ A\B, and let

C = B ∪ {a},
<C =< ∪{(b, a) : b ∈ B}.

Clearly this gives an element (C,<C) of P such that (B,<) ≺ (C,<C), contradiction.
Well-ordering principle ⇒ Axiom of choice. Assume the well-ordering principle,

and let A be a family of pairwise disjoint nonempty sets. Let C =
⋃

A , and let ≺ be
a well-order of C. Define B = {c ∈ C : c is the ≺-least element of the P ∈ A for which
c ∈ P}. Clearly B has exactly one element in common with each member of A.

There are many statements which are equivalent to the axiom of choice on the basis of ZF.
We list some striking ones. A fairly complete list is in

Rubin, H.; Rubin, J. Equivalents of the axiom of choice. North-Holland (1963),
134pp.

(About 100 forms are listed, with proofs of equivalence.)

1. For every relation R there is a function f ⊆ R such that dmn(f) = dmn(R).

2. For any sets A,B, either there is an injection of A into B or one of B into A.

3. For any transitive relation R there is a maximal S ⊆ R which is a linear ordering.

4. Every product of compact spaces is compact.

5. Every formula having a model of size ω also has a model of any infinite size.

6. If A can be well-ordered, then so can P(A).

There are also statements which follow from the axiom of choice but do not imply it on
the basis of ZF. A fairly complete list of such statement is in

Howard, P.; Rubin, J. Consequences of the axiom of choice. Amer. Math. Soc.
(1998), 432pp.

(383 forms are listed)

Again we list some striking ones:

1. Every Boolean algebra has a maximal ideal.
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2. Any product of compact Hausdorff spaces is compact.

3. The compactness theorem of first-order logic.

4. Every commutative ring has a prime ideal.

5. Every set can be linearly ordered.

6. Every linear ordering has a cofinal well-ordered subset.

7. The Hahn-Banach theorem.

8. Every field has an algebraic closure.

9. Every family of unordered pairs has a choice function.

10. Every linearly ordered set can be well-ordered.

EXERCISES

In the first four exercises, we assume elementary background and ask for the proofs of
some standard mathematical facts that require the axiom of choice.

E10.1. Show that any vector space over a field has a basis (possibly infinite).

E10.2. A subset C of R is closed iff the following condition holds:

For every sequence f ∈ ωC, if f converges to a real number x, then x ∈ C.

Here to say that f converges to x means that

∀ε > 0∃M∀m ≥M [|fm − x| < ε].

Prove that if 〈Cm : m ∈ ω〉 is a sequence of nonempty closed subsets of R, ∀m ∈ ω∀x, y ∈
Cm[|x− y| < 1/(m+ 1)], and Cm ⊇ Cn for m < n, then

⋂

m∈ω Cm is nonempty. Hint: use
the Cauchy convergence criterion.

E10.3. Prove that every nontrivial commutative ring with identity has a maximal ideal.
Nontrivial means that 0 6= 1. Only very elementary definitions and facts are needed here;
they can be found in most abstract algebra books. Hint: use Zorn’s lemma.

E10.4. A function g : R → R is continuous at a ∈ R iff for every sequence f ∈ ωR which
converges to a, the sequence g ◦ f converges to g(a). (See Exercise E10.2.) Show that g is
continuous at a iff the following condition holds:

∀ε > 0∃δ > 0∀x ∈ R[|x− a| < δ → |g(x) − g(a)| < ε].

Hint: for →, argue by contradiction.

E10.5 Show by induction on m, without using the axiom of choice, that if m ∈ ω and
〈Ai : i ∈ m〉 is a system of nonempty sets, then there is a function f with domain m such
that f(i) ∈ Ai for all i ∈ m.
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E10.6 Using AC, prove the following, which is called the Principle of Dependent Choice
(which is also weaker than the axiom of choice, but cannot be proved in ZF). If A is a
nonempty set, R is a relation, R ⊆ A× A, and for every a ∈ A there is a b ∈ A such that
aRb, then there is a function f : ω → A such that f(i)Rf(i+ 1) for all i ∈ ω.

The remaining exercises outline proofs of some equivalents to the axiom of choice; so each
exercise states something provable in ZF. We are interested in the following statements.

(1) If < is a partial ordering and ≺ is a simple ordering which is a subset of <, then there
is a maximal (under ⊆) simple ordering ≪ such that ≺ is a subset of ≪, which in turn is
a subset of <.

(2) For any two sets A and B, either there is a one-one function mapping A into B or
there is a one-one function mapping B into A.

(3) For any two nonempty sets A and B, either there is a function mapping A onto B or
there is a function mapping B onto A.

(4) A family F of subsets of a set A has finite character if for all X ⊆ A, X ∈ F iff every
finite subset of X is in F . Principle (4) says that every family of finite character has a
maximal element under ⊆.

(5) For any relation R there is a function f ⊆ R such that dmnR = dmn f .

E10.7. Show that the axiom of choice implies (1). [Use Zorn’s lemma]

E10.8. Prove that (1) implies (2). [Given sets A and B, define f < g iff f and g are
one-one functions which are subsets of A× B, and f ⊂ g. Apply (1) to < and the empty
simple ordering.]

E10.9. Prove that (2) implies (3). [Easy]

E10.10. Show in ZF that for any set A there is an ordinal α such that there is no one-one
function mapping α into A. Hint: consider all well-orderings contained in A× A.

E10.11. Prove that (3) implies the axiom of choice. [Show that any set A can be well-
ordered, as follows. Use exercise E10.10 to find an ordinal α which cannot be mapped
one-one into P(A). Show that if f : A → α maps onto α, then 〈f−1[{β}] : β < α〉 is a
one-one function from α into P(A).

E10.12. Show that the axiom of choice implies (4). [Use Zorn’s lemma.]

E10.13. Show that (4) implies (5). [Given a relation R, let F consist of all functions
contained in R.]

E10.14. Show that (5) implies the axiom of choice. [Given a family 〈Ai : i ∈ I〉 of nonempty
sets, let R = {(i, x) : i ∈ I and x ∈ Ai}.]
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11. The Banach-Tarski paradox

The Banach-Tarski paradox is that a unit ball in Euclidean 3-space can be decomposed
into finitely many parts which can then be reassembled to form two unit balls in Euclidean
3-space (maybe some parts are not used in these reassemblings). Reassembling is done
using distance-preserving transformations. This is one of the most striking consequences
of the axiom of choice, and is good background for the study of measure theory (of course
the parts of the decomposition are not measurable). We give a proof of the theorem here
without going into any side issues. We follow Wagon, The Banach-Tarski paradox,
where variations and connections to measure theory are explained in full. The proof
involves very little set theory, only the axiom of choice. Some third semester calculus and
some linear algebra and simple group theory are used. Altogether the proof should be
accessible to a first-year graduate student who has seen some applications of the axiom of
choice.

We start with some preliminaries on geometry and linear algebra. The “reassembling”
mentioned in the Banach-Tarski paradox is entirely done by rotations and translations.
Given a line in 3-space and an angle ξ, we imagine the rotation about the given line
through the angle ξ. Mainly we will be interested in rotations about lines that go through
the origin. We indicate how to obtain the matrix representations of such rotations. First
suppose that ϕ is the rotation about the z-axis counterclockwise through the angle ξ.
Then, using polar coordinates,

ϕ





x
y
z



 = ϕ





r cos θ
r sin θ
z





=





r cos(θ + ξ)
r sin(θ + ξ)

z





=





r cos θ cos ξ − r sin θ sin ξ
r cos θ sin ξ + r sin θ cos ξ

z





=





x cos ξ − y sin ξ
x sin ξ + y cos ξ

z



 ,

which gives the matrix representation of ϕ:




cos ξ − sin ξ 0
sin ξ cos ξ 0

0 0 1



 .

Similarly, the matrix representations of rotations counterclockwise through the angle ξ
about the x- and y-axes are, respectively,





1 0 0
0 cos ξ − sin ξ
0 sin ξ cos ξ



 and





cos ξ 0 sin ξ
0 1 0

− sin ξ 0 cos ξ



 .
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Next, note that any rotation with respect to a line through the origin can be obtained
as a composition of rotations about the three axes. This is easy to see using spherical
coordinates. If l is a line through the origin and a point P different from the origin with
spherical coordinates ρ, ϕ, θ, a rotation about l through an angle ξ can be obtained as
follows: rotate about the z axis through the angle −θ, then about the y-axis through the
angle −ϕ (thereby transforming l into the z-axis), then about the z-axis through the angle
ξ, then back through ϕ about the y axis and through θ about the z-axis.

We want to connect this to linear algebra. Recall that a 3 × 3 matrix A is orthogonal
provided that it is invertible and AT = A−1. Thus the matrices above are orthogonal. A
matrix is orthogonal iff its columns form a basis for 3R consisting of mutually orthogonal
unit vectors; this is easy to see. It is easy to check that a product of orthogonal matrices
is orthogonal. Hence all of the rotations about lines through the origin are represented by
orthogonal matrices.

Lemma 11.1. If A is an orthogonal 3 × 3 real matrix and X and Y are 3 × 1 column
vectors, then (AX) · (AY ) = X · Y , where · is scalar multiplication.

Proof. This is a simple computation:

(AX) · (AY ) = (AX)T (AY ) = XTATAY = XTA−1AY = XTY = X · Y.

It follows that any rotation about a line through the origin preserves distance, because
|P −Q| =

√

(P −Q) · (P −Q) for any vectors P and Q. Such rotations have an additional
property: their matrix representations have determinant 1. This is clear from the discussion
above. It turns out that this additional property characterizes the rotations about lines
through the origin (see M. Artin, Algebra), but we do not need to prove that. The
following property of such matrices is very useful, however.

Lemma 11.2. Suppose that A is an orthogonal 3 × 3 real matrix with determinant 1, A
not the identity. Then there is a non-zero 3 × 1 matrix X such that for any 3 × 1 matrix
Y ,

AY = Y iff ∃a ∈ R[Y = aX ].

Proof. Note that AT (A− I) = I − AT = (I − A)T . Hence

−|A− I| = |I −A| = |(I − A)T | = |AT (A− I)| = |AT | |A− I| = |A− I|.

It follows that |A − I| = 0. Hence the system of equations (A− I)X = 0 has a nontrivial
solution, which gives the X we want. Namely, we then have AX = X , of course. Then
A(aX) = aAX = aX . This proves ⇐ in the equivalence of the lemma. It remains to do
the converse. We may assume that X has length 1. Now we apply the Gram-Schmidt
process to get a basis for 3R consisting of mutually orthogonal unit vectors, the first of
which is X . We put them into a matrix B as column vectors, X the first column. Note
that the first column of AB is X , since AX = X , and hence the first column of B−1AB
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is (1 0 0)T . Since B−1AB is an orthogonal matrix, it follows because its columns are
mutually orthogonal that it has the form





1 0 0
0 a b
0 c d



 .

Now suppose that AY = Y . Let B−1Y = (u e f)T . Then

(1) e = f = 0.

For, suppose that (1) fails. Now B−1ABB−1Y = B−1AY = B−1Y , while a direct compu-
tation using the above form of B−1AB yields B−1ABB−1Y = (u ae+ bf ce+ df)T . So
we get the two equations

ae+ bf = e
ce+ df = f

or
(a− 1)e+ bf = 0
ce+ (d− 1)f = 0

Since (1) fails, it follows that the determinant

∣
∣
∣
∣

a− 1 b
c d− 1

∣
∣
∣
∣

is 0. Thus ad−a−d+1−bc =

0. Now B−1AB has determinant 1, and its determinant is ad−bc, so we infer that a+d = 2.
But a2 + c2 = 1 and b2 + d2 = 1 since the columns of B−1AB are unit vectors, so |a| ≤ 1
and |d| ≤ 1. Hence a = d = 1 and b = c = 0. So B−1AB is the identity matrix, so A is
also, contradiction. Hence (1) holds after all.

From (1) we get Y = B(u 0 0)T = uX , as desired.

One more remark on geometry: any rotation preserves distance. We already said this for
rotations about lines through the origin. If l does not go through the origin, one can use
a translation to transform it into a line through the origin, do the rotation then, and then
translate back. Since translations clearly preserve distance, so arbitrary rotations preserve
distance.

The first concrete step in the proof of the Banach, Tarski theorem is to describe a very
special group of permutations of 3R. Let ϕ be the counterclockwise rotation about the
z-axis through the angle cos−1( 1

3 ), and let ρ the similar rotation about the x-axis. The
matrix representation of these rotations and their inverses is, by the above,

(1) ϕ±1 =





1
3

∓2
√

2
3

0

±2
√

2
3

1
3 0

0 0 1



 ρ±1 =





1 0 0
0 1

3 ∓2
√

2
3

0 ±2
√

2
3

1
3



 .

Let G0 be the group of permutations of 3R generated by ϕ and ρ. By a word in ϕ
and ρ we mean a finite sequence with elements in {ϕ, ϕ−1, ρ, ρ−1}. Given such a word
w = 〈σ0, . . . , σm−1〉, we let w be the composition σ0 ◦ . . . ◦ σm−1. Further, we call w
reduced if no two successive terms of w have any of the four forms 〈ϕ, ϕ−1〉, 〈ϕ−1, ϕ〉,
〈ρ, ρ−1〉, or 〈ρ−1, ρ〉.

Lemma 11.3. If w is a reduced word of positive length, then w is not the identity.
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Proof. Suppose the contrary. Since ρ ◦ w ◦ ρ−1 is also the identity, we may assume
that w ends with ρ±1 (on the right). [If w already ends with ρ±1, we do nothing. If it ends
with ϕ±1, let w′ = ρwρ−1. Then w′ is reduced, unless w has the form ρ−1w′′, in which
case w′′ρ−1 is reduced, and still w′′ρ−1 = w =the identity.]

Since obviously ρ±1 is not the identity, w must have length at least 2. Now we claim

(1) For every terminal segment w′ of w of nonzero even length the vector w′ ( 1 0 0 )
T

has the form (1/3k) ( a b
√

2 c )
T

, with a divisible by 3 and b not divisible by 3.

We prove this by induction on the length of w′. First note that, by computation,

ρϕ =
1

9





3 −6
√

2 0
2
√

2 1 −6
√

2
8 2

√
2 3



 ; ρϕ−1 =
1

9





3 6
√

2 0
−2

√
2 1 −6

√
2

−8 2
√

2 3



 ;

ρ−1ϕ =
1

9





3 −6
√

2 0
2
√

2 1 6
√

2
−8 −2

√
2 3



 ; ρ−1ϕ−1 =
1

9





3 6
√

2 0
−2

√
2 1 6

√
2

8 −2
√

2 3



 .

Now we proceed by induction. For w′ of length 2 we have

ρϕ





1
0
0



 =
1

9





3
2
√

2
8



 ; ρϕ−1





1
0
0



 =
1

9





3
−2

√
2

−8



 ;

ρ−1ϕ





1
0
0



 =
1

9





3
2
√

2
−8



 ; ρ−1ϕ−1





1
0
0



 =
1

9





3
−2

√
2

8



 ;

hence (1) holds in this case. The induction step:

ρϕ




1

3k





a
b
√

2
c







 =
1

3k+2





3a− 12b
2
√

2a+ b
√

2 − 6
√

2c
8a+ 4b+ 3c



 ;

ρϕ−1




1

3k





a
b
√

2
c







 =
1

3k+2





3a+ 12b
−2

√
2a+ b

√
2 − 6

√
2c

−8a+ 4b+ 3c



 ;

ρ−1ϕ




1

3k





a
b
√

2
c







 =
1

3k+2





3a− 12b
2
√

2a+ b
√

2 + 6
√

2c
−8a− 4b+ 3c



 ;

ρ−1ϕ−1 1

3k+2




1

3k





a
b
√

2
c







 =





3a+ 12b
−2

√
2a+ b

√
2 + 6

√
2c

8a− 4b+ 3c



 .

So, our assertion (1) is true. If w itself is of even length, then a contradiction has been
reached, since b is not divisible by 3. If w is of odd length, then the following shows that
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the second entry of w





1
0
0





T

is nonzero, still a contradiction:

ϕ




1

3k





a
b
√

2
c







 =
1

3k+1





a− 4b
2
√

2a+ b
√

2
3c



 ;

ϕ−1




1

3k





a
b
√

2
c







 =
1

3k+1





a+ 4b
−2

√
2a+ b

√
2

3c



 .

This finishes the proof of Lemma 11.3

This lemma really says that G0 is (isomorphic to) the free group on two generators. But
we do not need to go into that. We do need the following corollary, though.

Corollary 11.4. For every g ∈ G0 there is a unique reduced word w such that g = w.

Proof. Suppose that w and w′ both work, and w 6= w′. Say w = 〈σ0, . . . , σm−1〉 and
w′ = 〈τ0, . . . , τn−1〉. If one is a proper segment of the other, say by symmetry w is a proper
segment of w′, then

g = w = σ0 ◦ . . . ◦ σm−1

= w′ = τ0 ◦ . . . ◦ τn−1;

since σi = τi for all i < m, we obtain I = τm ◦ . . .◦ τn−1, I the identity. But 〈τm, . . . , τn−1〉
is reduced, contradicting 11.3.

Thus neither w nor w′ is a proper initial segment of the other. Hence there is an
i < min(m,n) such that σi 6= τi, while σj = τj for all j < i (maybe i = 0). But then we
have by cancellation σi ◦ . . . ◦ σm−1 = τi ◦ . . . ◦ τn−1, so τ−1

n−1 ◦ . . . ◦ τ−1
i σi ◦ . . . ◦ σm−1 = I.

But since σi 6= τi, the word 〈τ−1
n−1, . . . , τ

−1
i , σi, . . . , σm−1〉 is reduced, again contradicting

11.3.

If G is a group and X is a set, we say that G acts on X if there is a homomorphism from
G into the group of all permutations of X . Usually this homomorphism will be denoted
by ,̌ so that ǧ is the permutation of X corresponding to g ∈ G. (Most mathematicians
don’t even use ,̌ using the same symbol for elements of the group and for the image
under the homomorphism.) An important example is: any group G acts on itself by left
multiplication. Thus for any g ∈ G, ǧ : G→ G is defined by ǧ(h) = g · h, for all h ∈ G.

Let G act on a set X , and let E ⊆ X . Then we say that E is G-paradoxical if
there are positive integers m,n and pairwise disjoint subsets A0, . . . , Am−1, B0, . . . , Bn−1

of E, and elements 〈gi : i < m〉 and 〈hi : i < n〉 of G such that E =
⋃

i<m ǧi[Ai] and

E =
⋃

j<n ȟj [Bj]. Note that this comes close to the Banach-Tarski formulation, except
that the sets X and E are unspecified.

Lemma 11.5. G0, acting on itself by left multiplication, is G0-paradoxical.
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Proof. If σ is one of φ±1, ρ±1, we denote by W (σ) the set of all reduced words
beginning on the left with σ, and W (σ) = {w : w ∈W (σ)}. Thus, obviously,

G0 = {I} ∪W (φ) ∪W (φ−1) ∪W (ρ) ∪W (ρ−1),

where I is the identity element of G0. These five sets are pairwise disjoint by 11.4. Thus
the lemma will be proved, with m = n = 2, by proving the following two statements:

(1) G0 = W (φ) ∪ φ̌[W (φ−1)].

To see this, suppose that g ∈ G0 and g /∈W (φ). Write g = w, w a reduced word. Then w
does not start with φ. Hence φ−1w is still a reduced word, and g = φ◦φ−1◦w ∈ φ̌[W (φ−1)],
as desired.

(2) G0 = W (ρ) ∪ ρ̌[W (ρ−1)].

The proof is just like for (1).

We need two more definitions, given that G acts on a set X . For each x ∈ X , the G-orbit
of x is {ǧ(x) : g ∈ G}. The set of G-orbits forms a partition of X . We say that G is
without non-trivial fixed points if for every non-identity g ∈ G and every x ∈ X , ǧ(x) 6= x.

The following lemma is the place in the proof of the Banach-Tarski paradox where the
axiom of choice is used. Don’t jump to the conclusion that the proof is almost over; our
group G0 above has non-trivial fixed points, and so does not satisfy the hypothesis of the
lemma. Some trickery remains to be done even after this lemma. [For example, all points
on the z-axis are fixed by ϕ.]

Lemma 11.6. Suppose that G is G-paradoxical and acts on a set X without non-trivial
fixed points. Then X is G-paradoxical.

Proof. Let

A0, . . . , Am−1, B0, . . . , Bn−1, g0, . . . , gm−1, h0, . . . , hn−1

be as in the defintion of paradoxical. By AC, let M be a subset of X having exactly one
element in common with each G-orbit. Then we claim:

(1) 〈ǧ[M ] : g ∈ G〉 is a partition of X .

First of all, obviously each set ǧ[M ] is nonempty. Next, their union is X , since for any
x ∈ X there is a y ∈ M which is in the same G-orbit as x, and this yields a g ∈ G such
that x = ǧ(y) and hence x ∈ ǧ[M ]. Finally, if g and h are distinct elements of G, then
ǧ[M ] and ȟ[M ] are disjoint. In fact, otherwise let y be a common element. Say ǧ(x) = y,
x ∈M , and ȟ(z) = y, z ∈M . Then clearly x and z are in the same G-orbit, so x = z since
they are “both” in M . Then (g−1 · h)̌ (z) = z and g−1 · h is not the identity, contradicting
the no non-trivial fixed point assumption. So, (1) holds.

Now let A∗
i =

⋃

g∈Ai ǧ[M ] and B∗
j =

⋃

g∈Bj ǧ[M ], for all i < m and j < n.

(2) A∗
i ∩ A∗

k = 0 if i < k < m.
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In fact, suppose that x ∈ A∗
i ∩ A∗

k. Then we can choose g ∈ Ai and h ∈ Ak such that
x ∈ ǧ[M ] ∩ ȟ[M ]. But g 6= h since Ai ∩ Ak = 0, so this contradicts (1). Similarly the
following two conditios hold:

(3) B∗
i ∩B∗

k = 0 if i < k < n.
(4) A∗

i ∩B∗
j = 0 if i < m and j < n.

(5)
⋃

i<m ǧi[A
∗
i ] = X .

For, let x ∈ X . Say by (1) that x ∈ ǧ[M ]. Then by the choice of the Ai’s there is an i < m
such that g ∈ ǧi[Ai]. Say h ∈ Ai and g = ǧi(h) = gi · h. Since x ∈ ǧ[M ], say x = ǧ(m)
with m ∈ M . Then x = (gi · h)̌ (m) = ǧi(ȟ(m)). Now ȟ(m) ∈ ȟ[M ] ⊆ A∗

i , so x ∈ ǧi[A
∗
i ],

as desired in (5).

(6)
⋃

i<n ȟi[B
∗
i ] = X .

This is proved similarly.

Let S2 = {x ∈ 3R : |x| = 1} be the usual unit sphere. Now we can prove the first
paradoxical result leading to the Banach-Tarski paradox:

Theorem 11.7. (Hausdorff) There is a countable D ⊆ S2 such that S2\D is G0-
paradoxical.

Proof. Let D be the set of all fixed points of non-identity elements of G0. By 11.2,
D is countable. Now we claim that if σ ∈ G0, then σ[S2\D] = S2\D. For, assume that
x ∈ S2\D and σ(x) ∈ D. Say τ ∈ G0, τ not the identity, and τ(σ(x)) = σ(x). Then
σ−1τσ(x) = x. Now σ−1 ◦ τ ◦ σ is not the identity, since τ isn’t, so x ∈ D, contradiction.
This proves that σ[S2\D] ⊆ S2\D. This holds for any σ ∈ G0, in particular for σ−1, and
applying σ to that inclusion yields S2\D ⊆ σ[S2\D], so the desired equality holds.

Thus G0 acts on S2\D without non-trivial fixed points. So by 11.5 and 11.6, S2\D is
G0-paradoxical.

Let us see how far we have to go now. This theorem only looks at the sphere, not the ball.
A countable subset is ignored. Since the sphere is uncountable, this makes the result close
to what we want. But actually there is a countable subset of the sphere which is dense on
it. [Take points whose spherical coordinates are rational.]

For the next step we need a new notion. Suppose that G is a group acting on a set
X , and A,B ⊆ X . We say that A and B are finitely G-equidecomposable if A and B
can be decomposed into the same number of parts, each part of A being carried into the
corresponding part of B by an element of G. In symbols, there is a positive integer n such
that there are partitions A =

⋃

i<n Ai and B =
⋃

i<nBi and members gi ∈ G for i < n
such that ǧi[Ai] = Bi for all i < n. We then write A ∼G B.

Lemma 11.8. If G acts on a set X, then ∼G is an equivalence relation on P(X).

Proof. Obviously ∼G is reflexive on P(X) and is symmetric. Now suppose that
A ∼G B ∼G C. Then we get partitions A =

⋃

i<mAi and B =
⋃

i<mBi with elements
gi ∈ G such that ǧi[Ai] = Bi for all i < m; and partitions B =

⋃

j<nB
′
j and C =

⋃

j<n Cj
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with elements hi ∈ G such that ȟj [B
′
j] = Cj for all j < n. Now for all i < m and j < n let

Bij = Bi ∩B′
j , Aij = ǧi

−1[Bij ], and Cij = ȟj [Bij]. Then A =
⋃

i<m,j<nAij is a partition
of A, C =

⋃

i<m,j<n Cij is a partition of C, and (hj · gi)̌ [Aij ] = Cij . Some of the Bij may
be empty; eliminating the empty ones yields the desired nonemptiness of members of the
partitions.

Lemma 11.9. Suppose that G acts on X, E and E′ are finitely G-equidecomposable
subsets of X, and E is G-paradoxical. Then also E′ is G-paradoxical.

Proof. Because E is G-paradoxical, we can find pairwise disjoint subsets

A0, . . . , Am−1, B0, . . . , Bn−1

of E and corresponding elements g0, . . . , gm−1, h0, . . . , hn−1 of G such that

E =
⋃

i<m

ǧi[Ai] =
⋃

j<n

ȟj [Bi].

And because E and E′ are finitely G=equidecomposable we can find partitions E =
⋃

k<p Ck and E′ =
⋃

k<pDk with elements fi ∈ G such that f̌i[Ck] = Dk for all k < p.

Then the following sets are pairwise disjoint: Ai ∩ ǧi
−1[Ck] for i < m and k < p, and

Bj ∩ ȟj
−1

[Ck] for j < n and k < p. And

E′ =
⋃

k<p

Dk =
⋃

k<p

f̌k[Ck]

=
⋃

k<p

f̌k[Ck ∩
⋃

i<m

ǧi[Ai]]

=
⋃

k<p,i<m

f̌k[Ck ∩ ǧi[Ai]]

=
⋃

k<p,i<m

(fk · gi)̌ [Ai ∩ ǧi−1[Ck]],

and similarly

E′ =
⋃

k<p,j<n

(fk · hj )̌ [Bi ∩ ȟj
−1

[Ck]].

Lemma 11.10. Let D be a countable subset of S2. Then there is a rotation σ with respect
to a line through the origin such that if G1 is the group of transformations of 3R generated
by σ, then S2 and S2\D are G1-equidecomposable.

Proof. For each d ∈ D let f(d) be the line through the origin and d. Then f maps D
into the set L of all lines through the origin, and the range of f is countable. But L itself
is uncountable: for example, for each θ ∈ [0, π] one can take the line through the origin
and (cos θ, sin θ, 0). Hence there is a line l ∈ L not in the range of f . This means that l
does not pass through any point of D. Fix a direction in which to take rotations about l.
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Note that if P and Q are distinct points of D, then there is at most one rotation
about l which takes P to Q and is between 0 and 2π; this will be denoted by ψPQ, if
it exists. Now let A consist of all θ ∈ (0, 2π) such that there is a positive integer n and
a P ∈ D such that if σ is the rotation about l through the angle nθ, then σ(P ) ∈ D.
We claim that A is countable. For, if P,Q ∈ D, ψPQ is defined, n ∈ ω\{0}, k ∈ ω,
and 0 < 1

n
(ψPQ + 2πk) < 2π, then 1

n
(ψPQ + 2πk) ∈ A; and every member of A can

be obtained this way. [Given θ ∈ A, we have nθ = ψPQ + 2πk for some P,Q ∈ D and
n, k ∈ ω.] This really defines a function from D×D× (ω\{0})×ω onto A, so A is, indeed,
countable. We choose θ ∈ (0, 2π)\A, and take the rotation σ about l through the angle θ.
Let D =

⋃

n∈ω σ
n[D]. The choice of σ says that σn[D] ∩D = 0 for every positive integer

n. Hence if n < m < ω we have σn[D] ∩ σm[D] = 0, since

σn[D] ∩ σm[D] = σn[D ∩ σm−n[D]] = σn[0] = 0.

Note that σ[D] = D\D. Hence

S2 = D ∪ (S2\D) ∼G1
σ[D] ∪ (S2\D) = S2\D.

Now let G2 be the group of permutations of 3R generated by {ϕ, ρ, σ}. We now have the
first form of the Banach-Tarski paradox:

Theorem 11.11. (Banach, Tarski) S2 is G2-paradoxical.

One can loosely state this theorem as follows: one can decompose S2 into a finite number of
pieces, rotate some of these pieces finitely many times with respect to certain lines through
the origin to reassemble S2, and then similarly transform some of the remaining pieces to
also reassemble S2. The rotations are of three kinds: the very specific rotations ϕ and
ρ defined at the beginning of this section, and the rotation σ in the preceding proof, for
which we do not have an explicit description. One can apply the inverses of these rotations
as well. After doing the second reassembling, one can apply a translation to make that
copy of S2 disjoint from the first copy.

Finally, let B = {x ∈ 3R : |x| ≤ 1} be the unit ball in 3-space. Let G3 be the group
generated by ϕ, ρ, σ, and the rotation τ about the line determined by (0, 0, 1

2
) and (1, 0, 1

2
),

through the angle π/
√

2. Note that by the considerations at the beginning of this section,

τ consists of the translation ( x y z )
T 7→ ( x y z − 1

2 )
T

, followed by the rotation

through π√
2

about the x-axis, followed by the translation (x y z )
T 7→ (x y z + 1

2 )
T

.

Lemma 11.12. For any positive integer k,

τk





0
0
0



 =






0
1
2 sin

(
kπ√

2

)

−1
2 cos

(
kπ√

2

)

+ 1
2




 .

Hence τp ( 0 0 0 )
T 6= ( 0 0 0 )

T
for every positive integer p.
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Proof. The first equation is easily proved by induction on k. Then the second
inequality follows since for any positive integer p, the argument pπ√

2
is never equal to mπ

for any integer m, since
√

2 is irrational.

Theorem 11.13. (Banach, Tarski) B is G3-paradoxical.

Proof. By 11.11 there are pairwise disjoint subsets Ai and Bj of S2 and members gi,
hj of G2 for i < m and j < n such that S2 =

⋃

i<m gi[Ai] =
⋃

j<n hj [Bj]. For each i < m
and j < n let A′

i = {αx : x ∈ Ai, 0 < α ≤ 1} and Bj = {αx : x ∈ Bj , 0 < α ≤ 1}. Then

(1) The A′
i’s and B′

j ’s are pairwise disjoint.

For example, suppose that y ∈ A′
i ∩ B′

j . Then we can write y = αx with x ∈ Ai,
0 < α ≤ 1, and also y = βz with z ∈ Bj , and 0 < β ≤ 1. Hence |y| = α = β. Hence x = z,
contradiction.

(2) B\{0} =
⋃

i<m gi[A
′
i] =

⋃

j<n hj [B
′
j].

In fact, let y ∈ B\{0}. Let x = y/|y|. Then x ∈ S2, so there is an i < m such that
x ∈ gi[Ai]. Say that x = gi(z) with z ∈ Ai. Then |y|z ∈ A′

i, and gi(|y|z) = |y|gi(z) =
|y|x = y. So y ∈ gi[A

′
i]. This proves the first equality in (2), and the second equality is

proved similarly.
So far, we have shown that B\{0} is G2-paradoxical. Now we show that B and B\{0}

are finitely G3-equidecomposable, which will finish the proof. By lemma 11.12 we have

B = D ∪ (B\D) ∼G3
τ [D] ∪ (B\D) = B\{0}.

This proves the desired equidecomposablity.

As in the case of S2, a translation can be made if one wants one copy of B to be disjoint
from the other.
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12. Cardinals

This chapter is concerned with the basics of cardinal arithmetic.

Definition and basic properties

To abbreviate longer expressions, we say that sets A and B are equipotent iff there
is a bijection between them. A cardinal, or cardinal number, is an ordinal α which is not
equipotent with a smaller ordinal. We generally use Greek letters κ, λ, µ for cardinals.
Obviously if κ and λ are distinct cardinals, then they are not equipotent.

Proposition 12.1. For any set X there is an ordinal α equipotent with X.

Proof. By the well-ordering principle, let < be a well-ordering of X . Then X under
< is isomorphic to an ordinal.

By this proposition, any set is equipotent with a cardinal—namely the least ordinal equipo-
tent with it. This justifies the following definition. For any set X , the cardinality, or size,
or magnitude, etc. of X is the unique cardinal |X | equipotent with X . The basic property
of this definition is given in the following theorem.

Theorem 12.2. For any sets X and Y , the following conditions are equivalent:
(i) |X | = |Y |.
(ii) X and Y are equipotent.

The following proposition gives obvious facts about the particular way that we have defined
the notion of cardinality.

Proposition 12.3. (i) |α| ≤ α.
(ii) |α| = α iff α is a cardinal.

Lemma 12.4. If 0 6= m ∈ ω then there is an n ∈ ω such that m = n+ 1.

Proof. Assume that 0 6= m ∈ ω. By Theorem 7.16, m is a successor ordinal α + 1.
Since ω is transitive we have α ∈ ω.

Proposition 12.5. Every natural number is a cardinal.

Proof. We prove by ordinary induction on n that for every natural number n and
for every natural number m, if m < n then there is no bijection from n to m. This is
vacuously true for n = 0. Now assume it for n, but suppose that m is a natural number
less than n + 1 and f is a bijection from n + 1 onto m. Since n + 1 6= 0, obviously also
m 6= 0. So m = m′ +1 for some natural number m′, by Lemma 12.4. Let g be the bijection
from m onto m which interchanges m′ and f(n) and leaves fixed all other elements of m.
Then g ◦ f is a bijection from n + 1 onto m which takes n to m′. Hence (g ◦ f) ↾ n is a
bijection from n onto m′, and m′ < n, contradicting the inductive hypothesis.

Thus the natural numbers are the first cardinals, in the ordering of cardinals determined
by the fact that they are special kinds of ordinals. A set is finite iff it is equipotent with
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some natural number; otherwise it is infinite. The following general lemma helps to prove
that ω is the next cardinal.

Lemma 12.6. If (A,<) is a simple order, then every finite nonempty subset of A has a
greatest element.

Proof. We prove by induction on m ≥ 1 that if X ⊆ A and |X | = m then X has
a greatest element. For m = 1 this is obvious. Now assume the implication for m, and
suppose that X ⊆ A and |X | = m + 1. Let f be a bijection from m + 1 onto X , and let
X ′ = X\{f(m)}. So |X ′| = m, and so X ′ has a largest element x. If f(m) < x, then x is
the greatest element of X . If x < f(m), then f(m) is the greatest element of X .

Theorem 12.7. ω is a cardinal.

It is harder to find larger cardinals, but they exist; in fact the collection of cardinals is so
big that, like the collection of ordinals, it does not exist as a set. We will see this a little
bit later.

Note that a cardinal is infinite iff it is greater or equal ω. The following fact will be
useful later.

Proposition 12.8. Every infinite cardinal is a limit ordinal.

Proof. Suppose not: κ is an infinite cardinal, and κ = α+ 1. We define f : α→ κ as
follows: f(0) = α, f(m+ 1) = m for all m ∈ ω, and f(β) = β for all β ∈ α\ω. Clearly f
is one-one and maps onto κ, contradiction.

Lemma 12.9. If κ and λ are cardinals and f : κ→ λ is one-one, then κ ≤ λ.

Proof. We define α ≺ β iff α, β ∈ κ and f(α) < f(β). Clearly ≺ well-orders κ. Let g
be an isomorphism from (κ,≺) onto an ordinal γ. Thus κ ≤ γ by the definition of cardinals.
If α < β < γ, then g−1(α) ≺ g−1(β), hence by definition of ≺, f(g−1(α)) < f(g−1(β)).
Thus f ◦ g−1 : γ → λ is strictly increasing. Hence by Proposition 6.15, α ≤ (f ◦ g−1)(α)
for all α < γ, so λ 6< γ, hence γ ≤ λ. We already know that κ ≤ γ, so κ ≤ λ.

The purpose of this lemma is to prove the following basic theorem.

Theorem 12.10. If A ⊆ B, then |A| ≤ |B|.
Proof. Let κ = |A|, λ = |B|, and let f and g be one-one functions from κ onto A and

of λ onto B, respectively. Then g ◦f−1 is a one-one function from κ into λ, so κ ≤ λ.

Corollary 12.11. For any sets A and B the following conditions are equivalent:
(i) |A| ≤ |B|.
(ii) There is a one-one function mapping A into B.
(iii) A = ∅, or there is a function mapping B onto A.

Proof. Let f be a bijection from |A| to A, and g a bijection from |B| to B,
(i)⇒(ii): Assume that |A| ≤ |B|. Then |A| ⊆ |B| by Proposition 4.8, and g ◦ f−1 is a

one-one mapping from A into B.
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(ii)⇒(iii): Assume that h : A → B is one-one and A 6= ∅. Fix a ∈ A, and define
k : B → A by setting, for any b ∈ B,

k(b) =

{

h−1(b) if b ∈ rng(h),
a otherwise.

Clearly k maps B onto A.
(iii)⇒(i): Obviously A = ∅ implies that 0 = |A| ≤ |B|. Now suppose that h maps B

onto A. Then for any α < |A| there is a b ∈ B such that h(b) = f(α), and hence there is
a β < |B| such that h(g(β)) = f(α). For each α < |A| let k(α) = min{β < |B| : h(g(β)) =
f(α)}. Then h ◦ g ◦ k = f , so k is one-one. By Lemma 12.9, |A| ≤ |B|.

Corollary 12.12. If there is a one-one function from A into B and a one-one function
from B into A, then there is a one-one function from A onto B.

This corollary is called the Cantor-Bernstein, or Schröder-Bernstein theorem. Our proof,
if traced back, involves the axiom of choice. It can be proved without the axiom of choice,
and this is sometimes desirable when describing a small portion of set theory to students.
Some exercises outline such a proof.

Proposition 12.13. If m ∈ ω, A is a set with |A| = m+1, and a ∈ A, then |A\{a}| = m.

Proof. Let f : A→ m+ 1 be a bijection. Let g be a bijection from m+ 1 onto m+ 1
which interchanges m and f(a), leaving other elements fixed. Then g ◦ f is a bijection of
A onto m+ 1, and (g ◦ f)(a) = m. Hence (g ◦ f)〈(A\{a}) is a bijection from A\{a} onto
m.

Theorem 12.14. Suppose that m ∈ ω and A and B are sets of size m. Let f : A → B.
Then f is one-one iff f is onto.

Proof. We prove the statement

∀m ∈ ω∀A,B, f [(|A| = |B| = m and f : A→ B) ⇒ (f is one-one ⇔ f is onto)]

by induction on m. It is obvious for m = 0. Suppose it is true for m, and |A| = |B| = m+1
and f : A→ B.

First suppose that f is one-one. Pick a ∈ A. Then by Proposition 12.13, |A\{a}| =
|B\{f(a)}| = m. Now f ↾ (A\{a}) maps into B\{f(a)}, since if x ∈ A\{a} and f(x) =
f(a) then f being one-one is contradicted. Now f ↾ (A\{a}) is one-one, so by the inductive
hypothesis f ↾ (A\{a}) is onto. Clearly then f is onto.

Second suppose that f is onto. Let g : m + 1 → A be a bijection. Now for any
b ∈ B there is an a ∈ A such that f(a) = b, hence there is an i ∈ m + 1 such that
f(g(i)) = b. Let h(b) be the least such i. Then (f ◦ g ◦ h)(b) = b for all b ∈ B. It follows
that h : B → m + 1 is one-one. Hence by the first step above, h is onto. To show that
f is one-one, suppose that f(a0) = f(a1). Choose i0, i1 ∈ m + 1 such that g(i0) = a0

and g(i1) = a1. Since h is onto, choose b0, b1 ∈ B such that h(b0) = i0 and h(b1) = i1.
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Then b0 = f(g(h(b0))) = f(g(i0)) = f(a0) = f(a1) = f(g(i1)) = f(g(h(b1))) = b1. Hence
i0 = h(b0) = h(b1) = i1, and a0 = g(i0) = g(i1) = a1.

Theorem 12.14 does not extend to infinite sets; see the exercises.

The following simple theorem is very important and basic for the theory of cardinals. It
embodies in perhaps its simplest form the Cantor diagonal argument.

Theorem 12.15. For any set A we have |A| < |P(A)|.
Proof. The function given by a 7→ {a} is a one-one function from A into P(A), and

so |A| ≤ |P(A)|. [Saying that a 7→ {a} is giving the value of the function at the argument
a.] Suppose equality holds. Then there is a one-one function f mapping A onto P(A). Let
X = {a ∈ A : a /∈ f(a)}. Since f maps onto P(A), choose a0 ∈ A such that f(a0) = X .
Then a0 ∈ X iff a0 /∈ X , contradiction.

By this theorem, for every ordinal α there is a larger cardinal, namely |P(α)|. Hence we
can define α+ to be the least cardinal > α. Cardinals of the form κ+ are called successor
cardinals; other infinite cardinals are called limit cardinals. Is κ+ = |P(κ)|? The statement
that this is true for every infinite cardinal κ is the famous generalized continuum hypothesis
(GCH). The weaker statement that ω+ = |P(ω)| is the continuum hypothesis (CH).

It can be shown that the generalized continuum hypothesis is consistent with our
axioms. But also its negation is consistent; in fact, the negation of the weaker continuum
hypothesis is consistent. All of this under the assumption that our axioms are consistent.
(It is not possible to prove this consistency.)

Theorem 12.16. If Γ is a set of cardinals, then
⋃

Γ is also a cardinal.

Proof. We know already that
⋃

Γ is an ordinal. Suppose that κ
def
= |⋃Γ| < ⋃Γ. By

definition of
⋃

, there is a λ ∈ Γ such that κ < λ. (Membership is the same as <.) Now
λ ⊆ ⋃Γ. So λ = |λ| ≤ |⋃Γ| = κ, contradiction.

We can now define the standard sequence of infinite cardinal numbers, by transfinite re-
cursion.

Theorem 12.17. There is a class ordinal function ℵ with domain On such that the
following conditions hold.

(i) ℵ0 = ω.
(ii) ℵβ+1 = ℵ+

β for any ordinal β.
(iii) ℵβ =

⋃

γ<β ℵγ for every limit ordinal β.

Proof. We define G : On × V → V as follows. For any ordinal α and any set x,

G(α, x) =







ω if α = 0,
(x(β))+ if α = β + 1 for some ordinal β and

x is a function with domain α and x(β) is an ordinal
⋃

β<α x(β) if α is a limit ordinal and x is a function
with domain α and ordinal values

∅ otherwise.
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Now we apply Theorem 6.7 and get a function F : On → V such that F(α) = G(α,F ↾ α)
for every ordinal α. Then

F(0) = G(0,F ↾ 0) = ω;

F(β + 1) = G(β + 1,F ↾ (β + 1)) = (F(β))+

F(α) = G(α,F ↾ α) =
⋃

β<α

F(β) for α limit

For historical reasons, one sometimes writes ωα in place of ℵα. Now we get the following
two results by Propositions 9.15 and 9.16.

Lemma 12.18. If α < β, then ℵα < ℵβ.

Lemma 12.19. α ≤ ℵα for every ordinal α.

Theorem 12.20. For every infinite cardinal κ there is an ordinal α such that κ = ℵα.
Proof. Let κ be any infinite cardinal. Then κ ≤ ℵκ < ℵκ+1. Here κ + 1 refers to

ordinal addition. This shows that there is an ordinal α such that κ < ℵα; choose the least
such α. Clearly α 6= 0 and α is not a limit ordinal. Say α = β + 1. Then ℵβ ≤ κ < ℵβ+1,
so κ = ℵβ.

We can now say a little more about the continuum hypothesis. Not only is it consistent that
it fails, but it is even consistent that |P(ω)| = ℵ2, or |P(ω)| = ℵ17, or |P(ω)| = ℵω+1;
the possibilities have been spelled out in great detail. Some impossible situations are
|P(ω)| = ℵω and |P(ω)| = ℵω+ω; we will establish this later in this chapter.

Addition of cardinals

Let κ and λ be cardinals. We define

κ+ λ = |{(α, 0) : α ∈ κ} ∪ {(β, 1) : β ∈ λ}|.

The idea is to take disjoint copies κ× {0} and λ× {1} of κ and λ and count the number
of elements in their union.

Two immediate remarks should be made about this definition. First of all, this is not,
in general, the same as the ordinal sum κ + λ. We depend on the context to distinguish
the two notions of addition. For example, ω + 1 = ω in the cardinal sense, but not in
the ordinal sense. In fact, we know that ω < ω + 1 in the ordinal sense. To show that
ω+ 1 = ω in the cardinal sense, it suffices to define a one-one function from ω onto the set

{(m, 0) : m ∈ ω} ∪ {(0, 1)}.

Let f(0) = (0, 1) and f(m+ 1) = (m, 0) for any m ∈ ω.
Secondly, the definition is consistent with our definition of addition for natural num-

bers (as a special case of ordinal addition), and thus it does coincide with ordinal addition
when restricted to ω; this will be proved shortly.
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Proposition 12.21. If A ∩B = ∅, then |A ∪B| = |A| + |B|.
Proof. We have |A| + |B| = |{(α, 0) : α ∈ |A|} ∪ {(α, 1) : α ∈ |B|}|. Now let

f : A→ |A| and g : B → |B| be bijections. Define h with domain A ∪B by

h(a) = (f(a), 0) for all a ∈ A,

h(b) = (g(b), 1) for all b ∈ B.

Then it is clear that h is a bijection from A∪B onto {(α, 0) : α ∈ |A|} ∪ {(α, 1) : α ∈ |B|}.
Hence |A ∪B| = |{(α, 0) : α ∈ |A|} ∪ {(α, 1) : α ∈ |B|}| = |A| + |B|.

Proposition 12.22. If m and n are natural numbers, then addition in the ordinal sense
and in the cardinal number sense are the same.

Proof. For this proof we denote ordinal addition by +′ and cardinal addition by +.
With m ∈ ω fixed we prove that m+′n = m+n by induction on n. The case n = 0 is clear.
Now suppose that m+′n = m+n. Then m+′ (n+′1) = (m+′n)+′1 = (m+′n)∪{m+′n}.
On the other hand,

m+ (n+′ 1) = |{(i, 0) : i ∈ m} ∪ {(i, 1) : i ∈ n+′ 1}|
= |{(i, 0) : i ∈ m} ∪ {(i, 1) : i ∈ n ∪ {n}}|
= |{(i, 0) : i ∈ m} ∪ {(i, 1) : i ∈ n} ∪ {(n, 1)}|
= |{(i, 0) : i ∈ m} ∪ {(i, 1) : i ∈ n}| + 1

= (m+′ n) +′ 1 = m+′ (n+′ 1).

Aside from simple facts about addition, there is the remarkable fact that κ + κ = κ for
every infinite cardinal κ. We shall prove this as a consequence of the similar result for
multiplication.

The definition of cardinal addition can be extended to infinite sums, and very ele-
mentary properties of the binary sum are then special cases of more general results; so we
proceed with the general definition. Let 〈κi : i ∈ I〉 be a system of cardinals (this just
means that κ is a function with domain I whose values are always cardinals). Then we
define

∑

i∈I
κi =

∣
∣
∣
∣
∣

⋃

i∈I
(κi × {i})

∣
∣
∣
∣
∣
.

This is a generalization of summing two cardinals, as is immediate from the definitions:

Proposition 12.23. If 〈κi : i ∈ 2〉 is a system of cardinals (meaning that κ is a function
with domain 2 such that both κ0 and κ1 are cardinals), then

∑

i∈2 κi = κ0 + κ1.

The following is easily proved by induction on |I|:

Proposition 12.24. If 〈mi : i ∈ I〉 is a system of natural numbers, with I finite, then
∑

i∈I mi is a natural number.
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We mention some important but easy facts concerning the cardinalities of unions:

Proposition 12.25. If 〈Ai : i ∈ I〉 is a system of pairwise disjoint sets, then
∣
∣
⋃

i∈I Ai
∣
∣ =

∑

i∈I |Ai|.

Proposition 12.26. If 〈Ai : i ∈ I〉 is any system of sets, then
∣
∣
⋃

i∈I Ai
∣
∣ ≤∑i∈I |Ai|.

Proof. For each i ∈ I let fi be a bijection from |Ai| onto Ai. (We use the axiom of
choice here.) For any i ∈ I and α ∈ |Ai| let g((α, i)) = fi(α). Then g maps

⋃

i∈I(|Ai|×{i})
onto

⋃

i∈I Ai. Hence by Corollary 12.11,

∣
∣
∣
∣
∣

⋃

i∈I
Ai

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣

⋃

i∈I
(|Ai| × {i})

∣
∣
∣
∣
∣

=
∑

i∈I
|Ai|.

Corollary 12.27. If 〈κi : i ∈ I〉 is a system of cardinals, then
⋃

i∈I κi ≤
∑

i∈I κi.

Finally, we gather together some simple arithmetic of infinite sums:

Proposition 12.28. (i)
∑

i∈I 0 = 0.
(ii)

∑

i∈0 κi = 0.
(iii)

∑

i∈I κi =
∑

i∈I,κi 6=0 κi.
(iv) If I ⊆ J , then

∑

i∈I κi ≤
∑

i∈J κi.
(v) If κi ≤ λi for all i ∈ I, then

∑

i∈I κi ≤
∑

i∈I λi.
(vi)

∑

i∈I 1 = |I|.
(vii) If κ is infinite, then κ+ 1 = κ.

Proof. (i):
∑

i∈I 0 =
∣
∣
⋃

i∈I(0 × {i})
∣
∣ = |∅| = 0.

(ii):
∑

i∈0 κi =
∣
∣
⋃

i∈0(κi × {i})
∣
∣ = |∅| = 0.

(iii):
∑

i∈I κi =
∣
∣
⋃

i∈I(κi × {i})
∣
∣ =

∣
∣
∣
⋃

i∈I,κi 6=0(κi × {i}
∣
∣
∣ =

∑

i∈I,κi 6=0 κi.

(iv): Assume that I ⊆ J . Then
⋃

i∈I(κi × {i}) ⊆ ⋃

i∈J(κi × {i}) and so the desired
conclusion follows by Theorem 12.10.

(v): Assume that κi ≤ λi for all i ∈ I. Then
⋃

i∈I(κi × {i}) ⊆ ⋃

i∈I(λi × {i}), and
Theorem 12.10 applies.

(vi): We have
∑

i∈I 1 =
∣
∣
⋃

i∈I(1 × {i})
∣
∣. Now the mapping i 7→ (0, i) is a bijection

from I to
⋃

i∈I(1 × {i}), so the desired conclusion follows.
(vii) We define a function f mapping κ into {(α, 0) : α < κ} ∪ {(0, 1)} as follows. For

any α < κ,

f(α) =







(0, 1) if α = 0,
(β, 0) if α = β + 1 ∈ ω,
(α, 0) if ω ≤ α < κ.

It is clear that f is a bijection, as desired.
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Multiplication of cardinals

By definition,

κ · λ = |κ× λ|.

Again this is different from ordinal multiplication, and we depend on the context to
distinguish between them. For example, in the ordinal sense ω · 2 > ω · 1 = ω but in the
cardinal sense ω · 2 = ω. One can see the latter by using the following function f from ω
to ω × 2: f(2m) = (m, 0) and f(2m+ 1) = (m, 1) for any m ∈ ω.

The following simple result can be used in verifying many simple facts concerning
products.

Proposition 12.29. If A is equipotent with C and B is equipotent with D, then A×B is
equipotent with C ×D.

Proof. Assume the hypothesis. Say f : A → C is a bijection, and g : B → D is
a bijection. Define h : A × B → C × D by setting h(a, b) = (f(a), g(b)). Clearly h is a
bijection from A×B onto C ×D.

Proposition 12.30. (i) κ · λ = λ · κ;
(ii) κ · (λ · µ) = (κ · λ) · µ;
(iii) κ · (λ+ µ) = κ · λ+ κ · µ;
(iv) κ · 0 = 0;
(v) κ · 1 = κ;
(vi) κ · 2 = κ+ κ;
(vii)

∑

i∈I κ = κ · |I|;
(viii) If κ ≤ µ and λ ≤ ν, then κ · λ ≤ µ · ν.
Proof. (i): For any α ∈ κ and β ∈ λ let f(α, β) = (β, α). Clearly f is a bijection

from κ× λ onto λ× κ.
(ii): We have κ · (λ · µ) = |κ× (λ · µ)| = |κ× |λ× µ||. Let f be a bijection from λ · µ

onto λ × µ. Define g : κ × |λ × µ| → (κ × λ) × µ by setting, for α ∈ κ and β ∈ |λ × µ|,
g(α, β) = ((α, 1stf(β)), 2ndf(β)). Clearly g is a bijection.

We have (κ · λ) · µ = |(κ · λ) × µ| = ||κ × λ| × µ|. Now let h : κ · λ → κ × λ be a
bijection. Define k : |κ × λ| × µ → (κ × λ) × µ by setting, for α ∈ |κ × λ| and β ∈ µ,
k(α, β) = (h(α), β). Clearly h is a bijection.

Now h−1 ◦ g is a bijection from κ× |λ× µ| onto |κ× λ| × µ, as desired.
(iii): We have

κ · (λ+ µ) = |κ× (λ+ µ)|
= |κ× |(λ× {0}) ∪ (µ× {1})||
= |κ× (λ× {0}) ∪ (µ× {1})) using Proposition 12.29;

κ · λ+ κ · µ = |(κ · λ) × {0}) ∪ (κ · µ) × {1})|
= |(|κ× λ| × {0}) ∪ (|κ× µ| × {1}|.
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Take bijections g : |κ× λ| → κ× λ and h : |κ× µ| → κ× µ. Now we define

h : κ× ((λ× {0}) ∪ (µ× {1})| → (|κ× λ| × {0}) ∪ (|κ× µ| × {1}.

Let α ∈ κ, β ∈ λ and γ ∈ µ. Then we define

h((α, (β, 0))) = (g−1((α, β)), 0);

h((α, (γ, 1))) = (g−1(α, γ)), 1)

It suffices to show that h is a bijection. Clearly it is one-one. For ontoness, given α ∈ |κ×λ|
we have

h((1st(g(α), (2nd(g(α)), 0)) = (g−1((1st(g(α)), 2nd(g(α)))), 0) = (α, 0),

and similarly for α ∈ |κ× µ|.
(iv): κ · 0 = |κ× 0| = |0| = 0.
(v): κ · 1 = |κ× 1| = κ, since α 7→ (α, 0) is a bijection from κ to κ× 1.
(vi): κ · 2 = |κ× 2| and κ+ κ = |(κ× {0}) ∪ (κ× {1})| = |κ× 2|.
(vii):

∑

i∈I κ =
∣
∣
⋃

i∈I(κ · {i})
∣
∣ and κ · |I|| = |κ × |I||. Let f be a bijection from I

to |I|. For any α ∈ κ and i ∈ I let g((α, i)) = (α, f(i)). Clearly g is a bijection from
⋃

i∈I(κ · {i}) onto κ× |I|.
(viii): Assume that κ ≤ µ and λ ≤ ν. Then κ× λ ⊆ µ× ν, so the desired conclusion

follows by Theorem 12.10.

Proposition 12.31. Multiplication of natural numbers means the same in the cardinal
number sense as in ordinal sense.

Proof. For this proof we use ◦ for ordinal multiplication and · for cardinal mul-
tiplication. We prove with fixed m ∈ ω that m ◦ n = m · n for all n ∈ ω. We have
m ◦ 0 = 0 and m · 0 = |m × 0| = |0| = 0. Assume that m ◦ n = m · n. Then
m ◦ (n + 1) = m ◦ n + m = m · n + m = m · n + m · 1 = m · (n + 1) using Proposi-
tion 12.30(iii).

The basic theorem about multiplication of infinite cardinals is as follows.

Theorem 12.32. κ · κ = κ for every infinite cardinal κ.

Proof. Suppose not, and let κ be the least infinite cardinal such that κ ·κ 6= κ. Then
κ = κ ·1 ≤ κ ·κ, and so κ < κ ·κ. We now define a relation ≺ on κ×κ. For all α, β, γ, δ ∈ κ,

(α, β) ≺ (γ, δ) iff max(α, β) < max(γ, δ)

or max(α, β) = max(γ, δ) and α < γ

or max(α, β) = max(γ, δ) and α = γ and β < δ.

Clearly this is a well-order. It follows that (κ× κ,≺) is isomorphic to an ordinal α; let f
be the isomorphism. We have |α| = |κ× κ| = κ · κ > κ by the remark at the beginning of
this proof. So κ < α. Therefore there exist β, γ ∈ κ such that f(β, γ) = κ. Now

f [{(δ, ε) ∈ κ× κ : (δ, ε) ≺ (β, γ)}] = κ,
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so, with ϕ = max(β, γ)+1,

κ = |{(δ, ε) ∈ κ× κ : (δ, ε) ≺ (β, γ)}|
≤ |ϕ× ϕ| = |ϕ| · |ϕ|.

But ϕ < κ, so either ϕ is finite, and |ϕ| · |ϕ| is then also finite, or else ϕ is infinite, and
|ϕ| · |ϕ| = |ϕ| by the minimality of κ. In any case, |ϕ| · |ϕ| < κ, contradiction.

Corollary 12.33. If κ and λ are nonzero cardinals and at least one of them is infinite,
then κ+ λ = κ · λ = max(κ, λ).

Proof. Say wlog κ ≤ λ. Then κ+ λ ≤ λ+ λ = λ · 2 ≤ λ · λ = λ ≤ κ+ λ.

Corollary 12.34. If 〈Ai : i ∈ I〉 is any system of sets, then

∣
∣
∣
∣
∣

⋃

i∈I
Ai

∣
∣
∣
∣
∣
≤ |I| ·

⋃

i∈I
|Ai|.

Proof. For each i ∈ I let gi : Ai → |Ai| be a bijection (using the axiom of choice).
Moreover, let c be a choice function for nonempty subsets of I. Now we define a function f
mapping

⋃

i∈I Ai into I×⋃i∈I |Ai|. Take any a ∈ ⋃i∈I Ai, and let j = c({i ∈ I : a ∈ Ai}).
Then we set f(a) = (j, gj(a)). Clearly f is one-one, and hence

∣
∣
∣
∣
∣

⋃

i∈I
Ai

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣
I ×

⋃

i∈I
|Ai|

∣
∣
∣
∣
∣

by Corollary 12.11

=

∣
∣
∣
∣
∣
|I| ×

⋃

i∈I
|Ai|

∣
∣
∣
∣
∣

by Proposition 12.29

= |I| ·
⋃

i∈I
|Ai|.

A set A is countable if |A| ≤ ω. So another corollary is

Corollary 12.35. A countable union of countable sets is countable.

Proposition 12.36. If 〈κi : i ∈ I〉 is a system of nonzero cardinals, and either I is infinite
or some κi is infinite, then

∑

i∈I κi = |I| ·⋃i∈I κi.
Proof. We have

∑

i∈I
κi ≤

∑

i∈I

⋃

j∈I
κj by Proposition 12.28(v)

= |I| ·
⋃

j∈I
κj by Proposition 12.30(vi)
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This proves ≤ in the proposition.
Next,

⋃

i∈I κi ≤ ∑

i∈I κi by Proposition 12.27, and |I| =
∑

i∈I 1 (by Proposition
12.28(vi)) ≤ ∑

i∈I κi (by Proposition 12.28(v)). Now the direction ≥ of the proposition
follows from Corollary 12.33.

By the above results, the binary operations of addition and multiplication of cardinals are
trivial when applied to infinite cardinals; and the infinite sum is also easy to calculate.
We now introduce infinite products which, as we shall see, are not so trivial. We need the
following standard elementary notion: for 〈Ai : i ∈ I〉 a family of sets, we define

∏

i∈I
Ai = {f : f is a function, dmn(f) = I, and ∀i ∈ I[f(i) ∈ Ai]}.

This is the cartesian product of the sets Ai. Now if 〈κi : i ∈ I〉 is a system of cardinals, we
define

c∏

i∈I
κi =

∣
∣
∣
∣
∣

∏

i∈I
κi

∣
∣
∣
∣
∣
.

Some elementary properties of this notion are summarized in the following proposition.

Proposition 12.37. (i)
∣
∣
∏

i∈I Ai
∣
∣ =

∏c
i∈I |Ai|.

(ii) If κi = 0 for some i ∈ I, then
∏c
i∈I κi = 0.

(iii)
∏c
i∈0 κi = 1.

(iv)
∏c
i∈I κi =

∏c
i∈I,κi 6=1 κi.

(v)
∏c
i∈I 1 = 1.

(vi) If κi ≤ λi for all i ∈ I, then
∏c
i∈I κi ≤

∏c
i∈I λi.

(vii)
∏c
i∈2 κi = κ0 · κ1.

Proof. (i): For each i ∈ I, let fi be a one-one function mapping Ai onto |Ai. (We
are using the axiom of choice here.) Note that

∏c
i∈I |Ai| =

∣
∣
∏

i∈I |Ai|
∣
∣. Thus we want

to find a bijection from
∏

i∈I Ai onto
∏

i∈I |Ai|. For each x ∈ ∏

i∈I Ai and j ∈ I let
(g(x))j = fj(xj). Thus g :

∏

i∈I Ai →
∏

i∈I |Ai|. Suppose that g(x) = g(y). Then for any
j ∈ I we have fj(xj) = ((g(x))j = ((g(y))j = fj(yj), and hence xj = yj ; so x = y. Thus
g is one-one. Given y ∈ ∏i∈I |Ai|, define xj = f−1

j (yj) for any j ∈ I. Then x ∈ ∏i∈I Ai
and (g(x))j = fj(xj) = fj(f

−1
j (yj)) = yj ; so g(x) = y. This shows that g is onto.

(ii): If κi = 0 for some i ∈ I, then
∏

j∈I Aj = ∅, and hence
∏c
j∈I Aj =

∣
∣
∣
∏

j∈I Aj
∣
∣
∣ =

|∅| = 0.
(iii): We have

∏c
i∈0 κi =

∣
∣
∏

i∈0 κi
∣
∣ = |{∅}| = 1.

(iv): We have
∏c
i∈I κi =

∣
∣
∏

i∈I κi
∣
∣ and

∏c
i∈I,κi 6=1 κi =

∣
∣
∣
∏

i∈I,κi 6=1 κi

∣
∣
∣, so we want a

bijection from
∏

i∈I κi onto
∏

i∈I,κi 6=1 κi. For each x ∈∏i∈I κi let f(x) = x ↾ {i ∈ I : κi 6=
1}. If f(x) = f(y), then for any i ∈ I,

x(i) =

{

(f(x))(i) if κi 6= 1
0 if κ1 = 1

=

{

(f(y))(i) if κi 6= 1
0 if κ1 = 1

= y(i).
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Thus f is one-one. Clearly it is onto.
(v): We have

∏c
i∈I 1 =

∣
∣
∏

i∈I 1
∣
∣. Hence it suffices to show, using (iii), that if I 6= ∅

then
∏

i∈I 1 has only one element. This is clear.
(vi): Assume that κi ≤ λi for all i ∈ I. Then

∏

i∈I κi ⊆
∏

i∈I λi, so (vi) follows from
Theorem 12.10.

(vii): We have
∏c
i∈2 κi =

∣
∣
∏

i∈2 κi
∣
∣, and κ0 ·κ1 = |κ0×κ1|. Hence it suffices to describe

a bijection from
∏

i∈2 κi onto κ0×κ1. For each x ∈∏i∈2 κi let f(x) = (x(0), x(1)). Clearly
f is as desired.

General commutative, associative, and distributive laws hold also:

Proposition 12.38. (Commutative law) If 〈κi : i ∈ I〉 is a system of cardinals and
f : I → I is one-one and onto, then

c∏

i∈I
κi =

c∏

i∈I
κf(i).

Proof. For each x ∈ ∏

i∈I κi define g(x) ∈ ∏

i∈I κf(i) by setting (g(x))i = xf(i).
Clearly g is a bijection, and the proposition follows.

Proposition 12.39. (Associative law) If 〈κij : (i, j) ∈ I × J〉 is a system of cardinals,
then

c∏

i∈I





c∏

j∈J
κij



 =

c∏

(i,j)∈I×J
κij .

Proof. Note that
∏c
i∈I

(
∏c
j∈J κij

)

=
∣
∣
∣
∏

i∈I

∣
∣
∣
∏

j∈J κij
∣
∣
∣

∣
∣
∣. For each i ∈ I let fi be

a bijection from
∣
∣
∏

i∈J κij
∣
∣ onto

∏

i∈J κij (using the axiom of choice). Now we define g

mapping
∏

i∈I

∣
∣
∣
∏

j∈J κij
∣
∣
∣ to

∏

(i,j)∈I×J κij by setting, for any x ∈∏i∈I

∣
∣
∣
∏

j∈J κij
∣
∣
∣ and any

(i, j) ∈ I × J , (g(x))ij = (fi(xi))j . To show that g is one-one, suppose that g(x) = g(y).
Take any (i, j) ∈ I × J . Then (fi(xi))j = (g(x))ij = (g(y))ij = (fi(yi))j. Since j is
arbitrary, fi(xi) = fi(yi). Since fi is one-one, xi = yi. Since i is arbitrary, x = y. Thus g

is one-one. To show that g is onto, let z ∈ ∏(i,j)∈I×J κij . Define x ∈ ∏i∈I

∣
∣
∣
∏

j∈J κij
∣
∣
∣ by

setting xi = f−1
i (〈zij : j ∈ J〉). Then (g(x))ij = (fi(xi))j = zij ; so g(x) = z.

Proposition 12.40. (Distributive law) If 〈λi : i ∈ I〉 is a system of cardinals, then

κ ·
∑

i∈I
λi =

∑

i∈I
(κ · λi).

Proof. We have

κ ·
∑

i∈I
λi =

∣
∣
∣
∣
∣
κ×

∣
∣
∣
∣
∣

⋃

i∈I
(λi × {i})

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
;

∑

i∈I
(κ · λi) =

∣
∣
∣
∣
∣

⋃

i∈I
((κ · λi) × {i})

∣
∣
∣
∣
∣
.
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Let f be a bijection from
∣
∣
⋃

i∈I(λi × {i})
∣
∣ onto

⋃

i∈I(λi × {i}). For each i ∈ I let gi be a
bijection from κ · λi onto κ× λi (using the axiom of choice). Now we define a function

h : κ×
∣
∣
∣
∣
∣

⋃

i∈I
(λi × {i})

∣
∣
∣
∣
∣
→
⋃

i∈I
((κ · λi) × {i}).

Let (α, β) ∈ κ ×
∣
∣
⋃

i∈I(λi × {i})
∣
∣. Say f(β) = (γ, i) with i ∈ I and γ ∈ λi. Then we set

h((α, β)) = (g−1
i (α, γ), i).

To show that h is one-one, suppose that h((α, β)) = h((α′, β′)). Say f(β) = (γ, i) and
f(β′) = (γ′, j). Then

(g−1
i (α, γ), i) = h((α, β)) = h((α′, β′)) = (g−1

j (α′, γ′), j).

It follows that i = j and g−1
i (α, γ) = g−1

j (α′, γ′), hence (α, γ) = (α′, γ′). So α = α′ and
γ = γ′. Therefore f(β) = f(β′), so β = β′. We have shown that (α, β) = (α′, β′). Hence
h is one-one.

To show that h is onto, let z ∈ ⋃i∈I((κ · λi) × {i}); say i ∈ I and z = (α, i) with
α ∈ κ · λi. Let g(α) = (β, γ) with β ∈ κ and γ ∈ λi. Then (γ, i) ∈ λi × {i}. Let
δ = f−1(γ, i). Then we claim that h((β, δ)) = z. For, we have f(δ) = (γ, i), and hence
h((β, δ)) = (g−1

i (β, γ), i) = (α, i) = z.

Theorem 12.41. (König) Suppose that 〈κi : i ∈ I〉 and 〈λi : i ∈ I〉 are systems of
cardinals such that λi < κi for all i ∈ I. Then

∑

i∈I
λi <

c∏

i∈I
κi.

Proof. The proof is another instance of Cantor’s diagonal argument. Suppose that
this is not true; thus

∏c
i∈I κi ≤ ∑

i∈I λi. It follows that there is a one-one function f
mapping

∏c
i∈I κi into {(α, i) : i ∈ I, α < λi}. For each i ∈ I let

Ki = {(f−1(α, i))i : α < λi, (α, i) ∈ rng(f)}.

Clearly Ki ⊆ κi. Now |Ki| ≤ λi < κi, so we can choose xi ∈ κi\Ki (using the axiom of
choice). Say f(x) = (α, i). Then xi = (f−1(α, i))i ∈ Ki, contradiction.

Exponentiation of cardinals

We define
κλ = |λκ|.

The following simple proposition will be useful.

Proposition 12.42. If |A| = |A′| and |B| = |B′|, then |AB| = |A′

B′|.
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Proof. Let f : A → A′ and g : B → B′ be bijections. For any x ∈ AB let
F (x) = g ◦ x ◦ f−1. Thus F (x) ∈ A′

B′. If F (x) = F (y), then x = g−1 ◦ F (x) ◦ f =
g−1◦F (y)◦f = y. So F is one-one. It is onto, since given z ∈ A′

B′ we have g−1◦z◦f ∈ AB,
and F (g−1 ◦ z ◦ f) = z.

The elementary arithmetic of exponentiation is summarized in the following proposition:

Proposition 12.43. (i) κ0 = 1.
(ii) If κ 6= 0, then 0κ = 0.
(iii) κ1 = κ.
(iv) 1κ = 1.
(v) κ2 = κ · κ.
(vi) κλ · κµ = κλ+µ.
(vii) (κ · λ)µ = κµ · λµ.
(viii) (κλ)µ = κλ·µ.
(ix) If κ ≤ λ 6= 0 and µ ≤ ν, then κµ ≤ λν.
(x)

∏c
i∈I κ = κ|I|.

(xi) κ
∑

i∈I
λi =

∏c
i∈I κ

λi .

(xii)
(∏c

i∈I κi
)λ

=
∏c
i∈I κ

λ
i .

Proof. (i): κ0 = |0κ|. Now 0κ = {∅}, so κ0 = 1.
(ii): if κ 6= 0, then 0κ = |κ0| and κ0 = ∅, so κ0 = 0.
(iii): κ1 = |1κ|, and 1κ = {{(0, α)} : α < κ}. The mapping α 7→ {(0, α)} is a bijection

from κ onto {{(0, α)} : α < κ}.
(iv): 1κ = |κ1|, and κ1 has only one member, the function with domain κ and value

always 0.
(v): κ2 = |2κ| and κ · κ = |κ× κ|. For any x ∈ 2κ let f(x) = (x(0), x(1)). Clearly f is

a bijection from 2κ onto κ× κ.
(vi): κλ · κµ = ||λκ| × |µκ|| = |λκ × µκ|, using Proposition 12.29. Also, κλ+µ =

||(λ×{0})∪(µ×{1})|κ| = |(λ×{0})∪(µ×{1})κ|, using Proposition 12.42. Hence it suffices to define
a bijection from λκ×µκ to (λ×{0})∪(µ×{1})κ. If x ∈ λκ and y ∈ µκ, define (h(x, y))((α, 0)) =
x(α) for any α ∈ λ, and (h(x, y))((α, 1)) = y(α) for any α ∈ µ. To show that h is one-one,
suppose that x, x′ ∈ λκ, y, y′ ∈ µκ, and h(x, y) = h(x′, y′). To show that x = x′, take any
α ∈ λ. Then x(α) = (h(x, y))((α, 0)) = (h(x′, y′))((α, 0)) = x′(α). So x = x′. Similarly
y = y′, so h is one-one. To show that h is onto, take any z ∈ (λ×{0})∪(µ×{1})κ. Define x ∈ λκ
by setting x(α) = z((α, 0)) for any α ∈ λ, and define y ∈ µκ by setting y(α) = z((α, 1))
for any α ∈ µ. Then h(x, y) = z, since for any α ∈ λ we have (h(x, y))((α, 0)) = x(α) =
z((α, 0)) and for any α ∈ µ we have (h(x, y))((α, 1)) = y(α) = z((α, 1)).

(vii): (κ ·λ)µ = |µ|κ×λ|| = |µ(κ×λ)| using Proposition 12.42. κµ ·λµ = ||µκ|×|µλ|| =
|(µκ) × (µλ)| using Proposition 12.29. Hence it suffices to define a bijection from µ(κ× λ)
onto (µκ)×(µλ). For any x ∈ µ(κ×λ), define f(x) = (g(x), h(x)), where g(x) is the member
of µκ such that (g(x))(α) = 1st(x(α)) for any α ∈ µ, and h(x) is the member of µλ such that
(h(x))(α) = 2nd(x(α)) for any α ∈ µ. To show that f is one-one, suppose that f(x) = f(y).
Then g(x) = g(y), so for any α ∈ µ we have 1st(x(α)) = (g(x))(α) = (g(y))(α) = 1st(y(α)).
Similarly, 2nd(x(α)) = 2nd(y(α)) for any α ∈ µ. Hence x(α) = y(α) for any α ∈ µ. Thus
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x = y. So f is one-one. To show that f is onto, suppose that (u, v) ∈ (µκ) × (µλ). Define
x ∈ µ(κ × λ) by setting x(α) = (u(α), v(α)) for any α ∈ µ. Say f(x) = (g(x), h(x)).
Then (g(x))(α) = 1st(x(α)) = u(α) for any α ∈ µ; so g(x) = u. Similarly, h(x) = v. So
f(x) = (u, v), as desired.

(viii): (κλ)µ = |µ|λκ|| = |µ(λκ)|, using Proposition 12.42. κλ·µ = ||λ×µ|κ| = |λ×µκ|
using Proposition 12.42. Hence it suffices to define a bijection from µ(λκ) onto λ×µκ. For
any x ∈ µ(λκ) and any α ∈ λ and β ∈ µ, let (f(x))(α, β) = (x(α))(β). To show that f is
one-one, suppose that x, y ∈ µ(λκ) and f(x) = f(y). Take any α ∈ λ and β ∈ µ. Then
(x(α))(β) = (f(x))(α, β) = (f(y))(α, β) = (y(α))(β). This being true for all β ∈ µ, it
follows that x(α) = y(α). This is true for all α ∈ λ, so x = y.

To see that f is onto, suppose that z ∈ λ×µκ. Define x ∈ λ(µκ) by setting (x(α))(β) =
z(α, β) for any α ∈ λ and β ∈ µ. Then for any α ∈ λ and β ∈ µ we have (f(x))(α, β) =
(x(α))(β) = z(α, β). So f(x) = z.

(ix): Assume that κ ≤ λ 6= 0 and µ ≤ ν. For every x ∈ µκ let x+ ∈ νλ be an extension
of x. Then the mapping x 7→ x+ is a one-one function from µκ into νλ. So (ix) follows.

(x):
∏c
i∈I κ =

∣
∣
∏

i∈i κ
∣
∣ and κ|I| = ||I|κ| = |Iκ| using Proposition 12.42. Note that

actually
∏

i∈i κ = Iκ.

(xi): κ
∑

i∈I
λi =

∣
∣
∣
|
⋃

i∈I
(λi×{i})|

κ
∣
∣
∣ =

∣
∣
∣

⋃

i∈I
(λi×{i})

κ
∣
∣
∣, using Proposition 12.42. Also,

∏c
i∈I κ

λi = |∏i∈I |λiκ|| = |∏i∈I
λiκ|, using Proposition 12.37(i). Hence it suffices to

define a bijection from
⋃

i∈I
(λi×{i})

κ onto
∏

i∈I
λiκ. Take any x ∈

⋃

i∈I
(λi×{i})

κ, i ∈ I,
and α ∈ λi. Define (f(x))i(α) = x(α, i). Then f is one-one. For, suppose that f(x) =
f(y). Take any i ∈ I and α ∈ λi. Then x(α, i) = (f(x))i(α) = (f(y))i(α) = y(α, i).

Hence x = y. To show that f is onto, let z ∈ ∏

i∈I
λiκ. Define x ∈

⋃

i∈I
(λi×{i})

κ by
setting, for any i ∈ I and α ∈ λi, x(α, i) = (z(i))(α). Then for any i ∈ I and α ∈ λi,
(f(x))i(α) = x(α, i) = (z(i))(α). So f(x) = z.

(xii):
(∏c

i∈I κi
)λ

=
∣
∣λ
∣
∣
∏

i∈I κi
∣
∣
∣
∣ =

∣
∣λ
∏

i∈I κi
∣
∣, using Proposition 12.42. Also, we

have
∏c
i∈I κ

λ
i =

∣
∣
∏

i∈I |λκi|
∣
∣ =

∣
∣
∏

i∈I
λκi
∣
∣, using Proposition 12.37(i). Hence it suffices to

define a bijection from λ
∏

i∈I κi onto
∏

i∈I
λκi. For any x ∈ λ

∏

i∈I κi, i ∈ I, and α ∈ λ,
let (f(x))i(α) = (x(α))i. Then f is one-one. For, assume that f(x) = f(y). Then for any
α ∈ λ and i ∈ I we have (x(α))i = (f(x))i(α) = (f(y))i(α) = (y(α))i. So x = y. Also, f is
onto. For, suppose that z ∈ ∏i∈I

λκi. Define x ∈ λ
∏

i∈I κi by setting (x(α))i = zi(α) for
any α ∈ λ and i ∈ I. Then for any i ∈ I and α ∈ λ we have (f(x))i(α) = (x(α))i = zi(α).
So f(x) = z.

Proposition 12.44. If m,n ∈ ω, then mn ∈ ω, and mn has the same meaning in the
ordinal or cardinal sense.

Proof. For this proof, denote ordinal exponentiation by exp(m,n). With m fixed, we
show that mn ∈ ω and mn = exp(m,n) by induction on n. We have m0 = 1 by Proposition
12.43(i), and exp(m, 0) = 1 also. Now assume that mn ∈ ω and mn = exp(m,n). Then
mn+1 = mn ·m1 = mn ·m by Proposition 12.43(vi),(iii). We also have exp(m,n + 1) =
exp(m,n) ·m, so the inductive hypothesis gives the desired conclusion.

Proposition 12.45. |P(A)| = 2|A|.
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For each X ⊆ A define χX ∈ A2 by setting

χX(a) =
{

1 if a ∈ X ,
0 otherwise.

[This is the characteristic function of X .] It is easy to check that χ is a bijection from
P(A) onto A2.

The calculation of exponentiation is not as simple as that for addition and multiplication.
The following result gives one of the most useful facts about exponentiation, however.

Theorem 12.46. If 2 ≤ κ ≤ λ ≥ ω, then κλ = 2λ.

Proof. Note that each function f : λ→ λ is a subset of λ×λ. Hence λλ ⊆ P(λ×λ),
and so λλ ≤ |P(λ× λ)|. Therefore,

2λ ≤ κλ ≤ λλ ≤ |P(λ× λ)| = 2λ·λ = 2λ;

so all the entries in this string of inequalities are equal, and this gives κλ = 2λ.

Cofinality, and
regular and singular cardinals

Further cardinal arithmetic depends on the notion of cofinality. For later purposes we
define a rather general version of this notion. Let (P,<) be a partial order. A subset X of
P is dominating iff for every p ∈ P there is an x ∈ X such that p ≤ x. The cofinality of P
is the smallest cardinality of a dominating subset of P . We denote this cardinal by cf(P ).

A subset X of P is unbounded iff there does not exist a p ∈ P such that x ≤ p for all
x ∈ X . If P is simply ordered without largest element, then these notions—dominating
and unbounded—coincide. In fact, suppose that X is dominating but not unbounded.
Since X is not unbounded, choose p ∈ P such that x ≤ p for all x ∈ X . Since P does
not have a largest element, choose q ∈ P such that p < q. Then because X is dominating,
choose x ∈ X such that q ≤ x. Then q ≤ x ≤ p < q, contradiction. Thus X dominating
implies that X is unbounded. Now suppose that Y is unbounded but not dominating.
Since Y is not dominating, there is a p ∈ P such that p 6≤ x, for all x ∈ Y . Since P is a
simple order, it follows that x < p for all x ∈ Y . This contradicts Y being unbounded.

We apply these notions to infinite cardinals, which are simply ordered sets with no last
element. Obviously any infinite cardinal κ is a dominating subset of itself; so cf(κ) ≤ κ. A
cardinal κ is regular iff κ is infinite and cf(κ) = κ. An infinite cardinal that is not regular
is called singular.

Theorem 12.47. For every infinite cardinal κ, the cardinal κ+ is regular.

Proof. Suppose that Γ ⊆ κ+, Γ is unbounded in κ+, and |Γ| < κ+. Hence

κ+ =

∣
∣
∣
∣
∣
∣

⋃

γ∈Γ

γ

∣
∣
∣
∣
∣
∣

≤
∑

γ∈Γ

|γ| ≤
∑

γ∈Γ

κ = κ · κ = κ,
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contradiction. The first equality here holds because Γ is unbounded in κ+ and κ+ is a
limit ordinal.

This theorem almost tells the full story about when a cardinal is regular. Examples of
singular cardinals are ℵω+ω and ℵω1

. But it is conceivable that there are regular cardinals
not covered by Theorem 12.47. An uncountable regular limit cardinal is said to be weakly
inaccessible. A cardinal κ is said to be inaccessible if it is regular, uncountable, and has
the property that for any cardinal λ < κ, also 2λ < κ. Clearly every inaccessible cardinal
is also weakly inaccessible. Under GCH, the two notions coincide. If it is consistent
that there are weak inaccessibles, then it is consistent that 2ω is weakly inaccessible; but
of course it definitely is not inaccessible. It is consistent with ZFC that there are no
uncountable weak inaccessibles at all. These consistency results will be proved later in
these notes. It is reasonable to postulate the existence of inaccessibles, and they are useful
in some situations. In fact, the subject of large cardinals is one of the most studied in
contemporary set theory, with many spectacular results.

Theorem 12.48. Suppose that (A,<) is a simple order with no largest element. Then
there is a strictly increasing function f : cf(A) → A such that rng(f) is unbounded in A.

Proof. Let X be a dominating subset of A of size cf(A), and let g be a bijection from
cf(A) onto X . We define a function f : cf(A) → X by recursion, as follows. If f(β) ∈ X
has been defined for all β < α, where α < cf(A), then {f(β) : β < α} has size less than
cf(A), and hence it is not dominating. Hence there is an a ∈ A such that f(β) < a for all
β < α. We let f(α) be an element of X such that a, g(α) ≤ f(α).

Clearly f is strictly increasing. If a ∈ A, choose α < cf(A) such that a ≤ g(α). Then
a ≤ f(α).

Proposition 12.49. Suppose that (A,<) is a simple ordering with no largest element.
Then cf(cf(A)) = cf(A).

Proof. Clearly cf(α) ≤ α for any ordinal α; in particular, cf(cf(A)) ≤ cf(A). Now by
Theorem 12.48, let f : cf(A) → A be strictly increasing with rng(f) unbounded in A. Now
cf(A) is an infinite cardinal, and hence it is a limit ordinal by Proposition 12.8. Hence
Theorem 12.48 again applies, and we can let g : cf(cf(A)) → cf(A) be strictly increasing
with rng(g) unbounded in cf(A). Clearly f ◦ g : cf(cf(A)) → A is strictly increasing. We
claim that rng(f ◦ g) is unbounded in A. For, given a ∈ A, choose α < cf(A) such that
a ≤ f(α), and then choose β < cf(cf(A)) such that α ≤ g(β). Then a ≤ f(α) ≤ f(g(β)),
proving the claim. It follows that cf(A) ≤ cf(cf(A)).

Proposition 12.50. If κ is a regular cardinal, Γ ⊆ κ, and |Γ| < κ, then
⋃

Γ < κ.

Proof. Since cf(κ) = κ, from the definition of cf it follows that Γ is bounded in κ.
Hence there is an α < κ such that γ ≤ α for all γ ∈ Γ. So

⋃
Γ ≤ α < κ.

Proposition 12.51. If A is a linearly ordered set with no greatest element, κ is a regular
cardinal, and f : κ→ A is strictly increasing with rng(f) unbounded in A, then κ = cf(A).
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Proof. By the definition of cf we have cf(A) ≤ κ. Suppose that cf(A) < κ. By
Theorem 12.48 let g : cf(A) → A be strictly increasing with rng(g) unbounded in A. For
each α < cf(α) choose βα < κ such that g(α) ≤ f(βα). Then {βα : α < cf(A)} ⊆ κ and
|{βα : α < cf(A)}| < κ, so by Proposition 12.50,

⋃

α<cf(A) βα < κ. Let γ < κ be such that

βα < γ for all α < cf(A). Then f(γ) is a bound for rng(g), contradiction.

Proposition 12.52. A cardinal κ is regular iff for every system 〈λi : i ∈ I〉 of cardinals
less than κ, with |I| < κ, one also has

∑

i∈I λi < κ.

Proof. ⇒: Assume that κ is regular 〈λi : i ∈ I〉 is a system of cardinals less than κ,
and |I| < κ. We have {λi : i ∈ I} ⊆ κ and |{λi : i ∈ I}| ≤ |I|, so by Proposition 12.50,
⋃

i∈I λi < κ. Hence
∑

i∈I
λi ≤

∑

i∈I

⋃

i∈I
λi = |I| ·

⋃

i∈I
λi < κ.

⇐: Assume the indicated condition. Suppose that Γ ⊆ κ and |Γ| < κ. Then 〈|α| : α ∈ Γ〉
is a system of cardinals less than κ, and |Γ| < κ. Hence |⋃Γ| ≤ ∑

λ∈Γ |λ| < κ, so also
⋃

Γ < κ. Thus κ is regular.

Proposition 12.53. If κ is an infinite singular cardinal, then there is a strictly increasing
sequence 〈λα : α < cf(κ)〉 of infinite successor cardinals such that κ =

∑

α<cf(κ) λα.

Proof. By Theorem 12.48, let f : cf(κ) → κ be strictly increasing such that rng(f)
is unbounded in κ. We define the desired sequence by recursion. Suppose that λβ < κ
has been defined for all β < α, with α < cf(κ). Then

⋃

β<α λβ < κ by the definition of
cofinality. So also



max



f(α),
⋃

β<α

λβ









+

< κ,

and we define λα to be this cardinal.
Now f(δ) ≤∑α<cf(κ) λα for each δ < cf(κ), so

κ =
⋃

δ∈cf(κ)

f(δ) ≤
∑

α<cf(κ)

λα ≤
∑

α<cf(κ)

κ = κ · cf(κ) = κ.

The main theorem of cardinal arithmetic

Now we return to the general treatment of cardinal arithmetic.

Theorem 12.54. (König) If κ is infinite and cf(κ) ≤ λ, then κλ > κ.

Proof. If κ is regular, then κλ ≥ κκ = 2κ > κ. So, assume that κ is singular. Then
by Theorem 12.53 there is a system 〈µα : α < cf(κ)〉 of nonzero cardinals such that each
µα is less than κ, and

∑

α<cf(κ) µα = κ. Hence, using Theorem 12.41,

κ =
∑

α<cf(κ)

µα <
∏

α<cf(κ)

κ = κcf(κ) ≤ κλ.
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Corollary 12.55. For λ infinite we have cf(2λ) > λ.

Proof. Suppose that cf(2λ) ≤ λ. Then by Theorem 12.54, (2λ)λ > 2λ. But (2λ)λ =
2λ·λ = 2λ, contradiction.

We can now verify a statement made earlier about possibilities for |P(ω)|. Since |P(ω)| =
2ω, the corollary says that cf(|P(ω)) > ω. So this implies that |P(ω)| cannot be ℵω or
ℵω+ω. Here ω + ω is the ordinal sum of ω with ω. It rules out many other possibilities of
this sort.

We now prove a lemma needed for the last major theorem of this subsection, which
says how to compute exponents (in a way).

Lemma 12.56. If κ is a limit cardinal and λ ≥ cf(κ), then

κλ =






⋃

µ<κ
µ a cardinal

µλ






cf(κ)

.

Proof. By Theorem 12.48, let γ : cf(κ) → κ be strictly increasing with rng(γ)
unbounded in κ, and with 0 < γ0. We define F : λκ→ ∏

α<cf(κ)
λγα as follows. If f ∈ λκ,

α < cf(κ), and β < λ, then

((F (f))α)β =
{
f(β) if f(β) < γα,
0 otherwise.

Now F is a one-one function. For, if f, g ∈ λκ and f 6= g, say β < λ and f(β) 6= g(β).
Choose α < cfκ such that f(β) and g(β) are both less than γα. Then ((F (f))α)β = f(β) 6=
g(β) = ((F (g))α)β, from which it follows that F (f) 6= F (g). Since F is one-one,

κλ = |λκ| ≤

∣
∣
∣
∣
∣
∣

∏

α<cf(κ)

λγα

∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣
∣

∏

α<cf(κ)






⋃

µ<κ
µ a cardinal

λµ






∣
∣
∣
∣
∣
∣
∣

=






⋃

µ<κ
µ a cardinal

µλ






cf(κ)

≤ (κλ)cf(κ) = κλ·cf(κ) = κλ,

and the lemma follows.

The following theorem is not needed for the main result, but it is a classical result about
exponentiation.
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Theorem 12.57. (Hausdorff) If κ and λ are infinite cardinals, then (κ+)λ = κλ · κ+.

Proof. If κ+ ≤ λ, then both sides are equal to 2λ. Suppose that λ < κ+. Then

(κ+)λ = |λ(κ+)| =

∣
∣
∣
∣
∣

⋃

α<κ+

λα

∣
∣
∣
∣
∣

≤
∑

α<κ+

|α|λ ≤ κλ · κ+ ≤ (κ+)λ,

as desired.

Here is the promised theorem giving computation rules for exponentiation. It essentially
reduces the computation of κλ to two special cases: 2λ, and κcf(κ). Generalizations of the
results mentioned about the continuum hypothesis give a pretty good picture of what can
happen to 2λ. The case of κcf(κ is more complicated, and there is still work being done on
what the possibilities here are. Shelah used his PCF theory to prove that ℵℵ0

ω ≤ 2ℵ0 +ℵω4
.

Theorem 12.58. (main theorem of cardinal arithmetic) Let κ and λ be cardinals with
2 ≤ κ and λ ≥ ω. Then

(i) If κ ≤ λ, then κλ = 2λ.
(ii) If κ is infinite and there is a µ < κ such that µλ ≥ κ, then κλ = µλ.
(iii) Assume that κ is infinite and µλ < κ for all µ < κ. Then λ < κ, and:

(a) if cf(κ) > λ, then κλ = κ;
(b) if cf(κ) ≤ λ, then κλ = κcf(κ).

Proof. (i) has already been noted, in Theorem 12.46. Under the hypothesis of (ii),

κλ ≤ (µλ)λ = µλ ≤ κλ,

as desired.
Now assume the hypothesis of (iii). In particular, 2λ < κ, so of course λ < κ. Next,

assume the hypothesis of (iii)(a): cf(κ) > λ. Then

κλ = |λκ| =

∣
∣
∣
∣
∣

⋃

α<κ

λα

∣
∣
∣
∣
∣

(since λ < cf(κ))

≤
∑

α<κ

|α|λ ≤ κ,

giving the desired result.
Finally, assume the hypothesis of (iii)(b): cf(κ) ≤ λ. Since λ < κ, it follows that κ is

singular, so in particular it is a limit cardinal. Then by Lemma 12.56,

κλ =






⋃

µ<κ
µ a cardinal

µλ






cf(κ)

≤ κcf(κ) ≤ κλ.
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In theory one can now compute κλ for infinite κ, λ as follows. If κ ≤ λ, then κλ = 2λ.
Suppose that κ > λ. Let κ′ be minimum such that (κ′)λ = κλ. Then ∀µ < κ′[µλ < κ′]. In
fact, if µ < κ′ and µλ ≥ κ′, then (κ′)λ ≤ (µλ)λ = µλ·λ = µλ < κλ = (κ′)λ, contradiction.
Now (κ′)λ is computed by 12.58(iii).

Under the generalized continuum hypothesis the computation of exponents is very
simple:

Corollary 12.59. Assume GCH, and suppose that κ and λ are cardinals with 2 ≤ κ and
λ infinite. Then:

(i) If κ ≤ λ, then κλ = λ+.
(ii) If cf(κ) ≤ λ < κ, then κλ = κ+.
(iii) If λ < cf(κ), then κλ = κ.

Proof. (i) is immediate from Theorem 12.58(i). For (ii), assume that cf(κ) ≤ λ < κ.
Then κ is a limit cardinal, and so for each µ < κ we have µλ ≤ (max(µ, λ))+ < κ; hence by
Theorem 12.58(iii)(b) and Theorem 12.54 we have κλ = κcf(κ) > κ; since κcf(κ) ≤ κκ = κ+,
it follows that κλ = κ+. For (iii), assume that λ < cf(κ). If there is a µ < κ such that
µλ ≥ κ, then by Theorem 12.58(ii), κλ = µλ ≤ (max(λ, µ))+ ≤ κ, as desired. If µλ < κ
for all µ < κ, then κλ = κ by Theorem 12.58(iii)(a).

EXERCISES

E12.1. Define sets A,B with |A| = |B| such that there is a one-one function f : A → B
which is not onto.

E12.2. Define sets A,B with |A| = |B| such that there is an onto function f : A → B
which is not one-one.

E12.3. Show that the restriction λ 6= 0 is necessary in Proposition 12.43(ix).

The next four exercises outline a proof of the Cantor-Schröder-Bernstein theorem without
using the axiom of choice. This theorem says that if there is an injection from A into B
and one from B into A, then there is a bijection from A to B. In the development in the
text, using the axiom of choice, the hypothesis implies that |A| ≤ |B| ≤ |A|, and hence
|A| = |B|. But it is of some interest that it can be proved in an elementary way, without
using the axiom of choice or anything about ordinals and cardinals. Of course, the axiom
of choice should not be used in these four exercises.

E12.4. Let F : P(A) → P(A), and assume that for all X, Y ⊆ A, if X ⊆ Y , then
F (X) ⊆ F (Y ). Let A = {X : X ⊆ A and X ⊆ F (X)}, and set X0 =

⋃

X∈A
X . Then

X0 ⊆ F (X0).

E12.5. Under the assumptions of exercise E12.4 we actually have X0 = F (X0).

E12.6. Suppose that f : A→ B is one-one and g : B → A is also one-one. For every X ⊆ A
let F (X) = A\g[B\f [X ]]. Show that for all X, Y ⊆ A, if X ⊆ Y then F (X) ⊆ F (Y ).

E12.7. Prove the Cantor-Schröder-Bernstein theorem as follows. Assume that f and g are
as in exercise E12.6, and choose F as in that exercise. Let X0 be as in exercise E12.4.
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Show that A\X0 ⊆ rng(g). Then define h : A→ B by setting, for any a ∈ A,

h(a) =

{
f(a) if a ∈ X0,
g−1(a) if a ∈ A\X0.

Show that h is one-one and maps onto B.

E12.12. Show that if α and β are ordinals, then |α ∔ β| = |α| + |β|, where ∔ is ordinal
addition and + is cardinal addition.

E12.9. Show that if α and β are ordinals, then |α ⊙ β| = |α| · |β|, where ⊙ is ordinal
multiplication and · is cardinal multiplication.

E12.10. Show that if α and β are ordinals, 2 ≤ α, and ω ≤ β, then |·αβ | = |α| · |β|. Here
the dot to the left of the first exponent indicates that ordinal exponentiation is involved.
[This is a good exercise to keep in mind. For example, ·2ω is a countable set,
but 2ω is not.]

E12.11. Prove that if |A| ≤ |B| then |P(A)| ≤ |P(B)|.
E12.12. Prove the following general distributive law:

c∏

i∈I

∑

j∈Ji
κij =

∑

f∈P

c∏

i∈I
κi,f(i),

where P =
∏

i∈I Ji.

E12.13. Show that for any cardinal κ we have κ+ = {α : α is an ordinal and |α| ≤ κ}.

E12.14. For every infinite cardinal λ there is a cardinal κ > λ such that κλ = κ.

E12.15. For every infinite cardinal λ there is a cardinal κ > λ such that κλ > κ.

E12.16. Prove that for every n ∈ ω, and every infinite cardinal κ, ℵκn = 2κ · ℵn.

E12.17. Prove that
∏c
i∈I(κi · λi) =

∏c
i∈I κi ·

∏c
i∈I λi.

E12.112. Prove that ℵℵ1
ω = 2ℵ1 · ℵℵ0

ω .

E12.19. Prove that ℵℵ0
ω =

∏c
n∈ω ℵn.

E12.20. Prove that for any infinite cardinal κ, (κ+)κ = 2κ.

E12.21. Show that if κ is an infinite cardinal and C is the collection of all cardinals less
than κ, then |C| ≤ κ.

E12.22. Show that if κ is an infinite cardinal and C is the collection of all cardinals less
than κ, then

2κ =

(
∑

ν∈C
2ν

)cf(κ)

.

E12.23. Prove that for any limit ordinal τ ,
∏c
ξ<τ 2ℵξ = 2ℵτ .

142



E12.24. Assume that κ is an infinite cardinal, and 2λ < κ for every cardinal λ < κ. Show
that 2κ = κcf(κ).

E12.25. Suppose that λ is a singular cardinal, cf(λ) = ω, and 2κ < λ for every κ < λ.
Prove that 2λ = λω.
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13. Boolean algebras and forcing orders

To introduce the apparatus of generic extensions and forcing in a clear fashion, it is neces-
sary to go into a special set theoretic topic: Boolean algebras and their relation to certain
orders.

A Boolean algebra (BA) is a structure 〈A,+, ·,−, 0, 1〉 with two binary operations +
and ·, a unary operation −, and two distinguished elements 0 and 1 such that the following
axioms hold for all x, y, z ∈ A:

(A) x+ (y + z) = (x+ y) + z; (A′) x · (y · z) = (x · y) · z;
(C) x+ y = y + x; (C′) x · y = y · x;
(L) x+ (x · y) = x; (L′) x · (x+ y) = x;
(D) x · (y + z) = (x · y) + (x · z); (D′) x+ (y · z) = (x+ y) · (x+ z);
(K) x+ (−x) = 1; (K′) x · (−x) = 0.

The main example of a Boolean algebra is a field of sets: a set A of subsets of some set X ,
closed under union, intersection, and complementation with respect to X . The associated
Boolean algebra is 〈A,∪,∩, \, 0, X〉. Here \ is treated as a one-place operation, producing
X\a for any a ∈ A. This example is really all-encompassing—every BA is isomorphic to
one of these. We will not prove this, or use it.

As is usual in algebra, we usually denote a whole algebra 〈A,+, ·,−, 0, 1〉 just by
mentioning its universe A, everything else being implicit.

Some notations used in some treatments of Boolean algebras are: ∨ or ∪ for +; ∧ or
∩ for ·; ′ for −. These notations might be confusing if discussing logic, or elementary set
theory. Our notation might be confusing if discussing ordinary algebra.

Now we give the elementary arithmetic of Boolean algebras. We recommend that the
reader go through them, but then approach any arithmetic statement in the future from
the point of view of seeing if it works in fields of sets; if so, it should be easy to derive from
the axioms.

First we have the duality principle, which we shall not formulate carefully; our partic-
ular uses of it will be clear. Namely, notice that the axioms come in pairs, obtained from
each other by interchanging + and · and 0 and 1. This means that also if we prove some
arithmetic statement, the dual statement, obtained by this interchanging process, is also
valid.

Proposition 13.1. x+ x = x and x · x = x.

Proof.
x+ x = x+ x · (x+ x) by (L′)

= x by (L);

the second statement follows by duality.

Proposition 13.2. x+ y = y iff x · y = x.

Proof. Assume that x+ y = y. Then, by (L′),

x · y = x · (x+ y) = x.
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The converse follows by duality.

In any BA we define x ≤ y iff x + y = y. Note that the dual of x ≤ y is y ≤ x, by 13.2
and commutativity. (The dual of a defined notion is obtained by dualizing the original
notions.)

Proposition 13.3. On any BA, ≤ is reflexive, transitive, and antisymmetric; that is, the
following conditions hold:

(i) x ≤ x;
(ii) If x ≤ y and y ≤ z, then x ≤ z;
(iii) If x ≤ y and y ≤ x, then x = y.

Proof. x ≤ x means x+ x = x, which was proved in 13.1. Assume the hypothesis of
(ii). Then

x+ z = x+ (y + z)

= (x+ y) + z

= y + z

= z,

as desired. Finally, under the hypotheses of (iii),

x = x+ y = y + x = y.

Note that Proposition 13.3 says that ≤ is a partial order on the BA A. There are some
notions concerning partial orders which we need. An element z is an upper bound for a set
Y of elements of X if y ≤ z for all y ∈ Y ; similarly for lower bounds. And z is a least upper
bound for Y if it is an upper bound for Y and is ≤ any other upper bound for Y ; simlarly
for greatest lower bounds. By antisymmetry, in any partial order least upper bounds and
greatest lower bounds are unique if they exist.

Proposition 13.4. x+ y is the least upper bound of {x, y}, and x · y is the greatest lower
bound of {x, y}.

Proof. We have x + (x + y) = (x + x) + y = x + y, and similarly y + (x + y) =
y + (y + x) = (y + y) + x = y + x = x + y; so x + y is an upper bound for {x, y}. If z is
any upper bound for {x, y}, then

(x+ y) + z = (x+ (y + z) = x+ z = z,

as desired. The other part follows by duality(!).

Proposition 13.5. (i) x+ 0 = x and x · 1 = x;
(ii) x · 0 = x and x+ 1 = 1;
(iii) 0 ≤ x ≤ 1.
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Proof. By (K) and Proposition 13.4, 1 is the least upper bound of x and −x; in
particular it is an upper bound, so x ≤ 1. Everything else follows by duality, Proposition
13.2, and the definitions.

Proposition 13.6. For any x and y, y = −x iff x · y = 0 and x+ y = 1.

Proof. ⇒ holds by (K) and (K ′). Now suppose that x · y = 0 and x+ y = 1. Then

y = y · 1 = y · (x+ −x) = y · x+ y · −x = 0 + y · −x = y · −x;

−x = −x · 1 = −x · (x+ y) = −x · x+ −x · y = 0 + −x · y = −x · y = y.

Proposition 13.7. (i) −− x = x;
(ii) if −x = −y then x = y;
(iii) −0 = 1 and −1 = 0;
(iv) (DeMorgan’s laws) −(x+ y) = −x · −y and −(x · y) = −x+ −y.
Proof. If we apply Proposition 13.6 with x and y replaced respectively by −x and x,

we get −− x = x. Next, if −x = −y, then x = −− x = −− y = y. For (iii), by 13.5(iii),
0 · 1 = 0 and 0 + 1 = 1, so by 13.6, −0 = 1. Then −1 = 0 by duality. For the first part of
(iv),

(x+ y) · −x · −y = x · −x · −y + y · −x · −y
= 0 + 0 = 0,

and
(x+ y) + −x · −y = x · (y + −y) + y + −x · −y

= x · y + x · −y + y + −x · −y
= y + x · −y + −x · −y
= y + −y = 1,

so that −(x + y) = −x · −y by Proposition 13.6. Finally, the second part of (iv) follows
by duality.

Proposition 13.8. x ≤ y iff −y ≤ −x.
Proof. Assume that x ≤ y. Then x + y = y, so −x · −y = −y, i.e., −y ≤ −x. For

the converse, use the implication just proved, plus 13.7(i).

Proposition 13.9. If x ≤ x′ and y ≤ y′, then x+ y ≤ x′ + y′ and x · y ≤ x′ · y′.
Proof. Assume the hypothesis. Then

(x+ y) + (x′ + y′) = (x+ x′) + (y + y′) = x′ + y′,

and so x+ y ≤ x′ + y′; the second conclusion follows by duality.

Proposition 13.10. x ≤ y iff x · −y = 0.

146



Proof. If x ≤ y, then x = x · y and so x · −y = 0. Conversely, if x · −y = 0, then

x = x · (y + −y) = x · y + x · −y = x · y,
so that x ≤ y.

Elements x, y ∈ A are disjoint if x · y = 0. For any x, y we define

x△y = x · −y + y · −x;

this is the symmetric difference of x and y.

Proposition 13.11. (i) x = y iff x△y = 0;
(ii) x · (y△z) = (x · y)△(x · z);
(iii) x△(y△z) = (x△y)△z.
Proof. For (i), ⇒ is trivial. Now assume that x△y = 0. Then x · −y = 0 = y · −x,

so x ≤ y and y ≤ x, so x = y.
For (ii), we have

x · (y△z) = x · y · −z + x · z · −y
= (x · y) · −(x · z) + (x · z) · −(x · y)

= (x · y)△(x · z),
as desired.

Finally, for (iii),

x△(y△z) = x · −(y · −z + −y · z) + (y · −z + −y · −z) · −x
= x · (−y + z) · (y + −z) + −x · y · −z + −x · −y · z
= x · −y · −z + x · y · z + −x · y · −z + −x · −y · z;

if we apply the same argument to z△(y△x) we get

z△(y△x) = z · −y · −x+ z · y · x+ −z · y · −x+ −z · −y · x,
which is the same thing. So the obvious symmetry of △ gives the desired result.

One further useful result is that axiom (D′) is redundant:

Proposition 13.12. (D′) is redundant. (Assume all axioms except D′.)

Proof.

(x+ y) · (x+ z) = ((x+ y) · x) + ((x+ y) · z)
= (x · (x+ y)) + (z · (x+ y))

= x+ ((z · x) + (z · y))

= x+ ((x · z) + (y · z))
= (x+ (x · z)) + (y · z)
= x+ (y · z).
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Complete Boolean algebras

If M is a subset of a BA A, we denote by
∑
M its least upper bound (if it exists), and by

∏
M its greatest lower bound, if it exists. A is complete iff these always exist. Note that

frequently people use
∨
M and

∧
M instead of

∑
M and

∏
M .

Proposition 13.13. Assume that A is a complete BA.
(i) −∑i∈I ai =

∏

i∈I −ai.
(ii) −∏i∈I ai =

∑

i∈I −ai.
Proof. For (i), let a =

∑

i∈I ai; we show that −a is the greatest lower bound of
{−ai : i ∈ I}. If i ∈ I, then ai ≤ a, and hence −a ≤ −ai; thus −a is a lower bound for the
indicated set. Now suppose that x is any lower bound for this set. Then for any i ∈ I we
have x ≤ −ai, and so ai ≤ −x. So −x is an upper bound for {ai : i ∈ I}, and so a ≤ −x.
Hence x ≤ −a, as desired.

(ii) is proved similarly.

The following (possibly infinite) distributive law is frequently useful. One should be aware
of the fact that more general infinite distributive laws do not hold, in general. Since this
will not enter into our treatment, we do not go into a counterexample or further discussion
of really general distributive laws.

Proposition 13.14. If
∑

i∈I ai exists, then
∑

i∈I(b · ai) exists and

b ·
∑

i∈I
ai =

∑

i∈I
(b · ai).

Proof. Let s =
∑

i∈I ai; we shall show that b · s is the least upper bound of {b · ai :
i ∈ I}. If i ∈ I, then ai ≤ s and so b · ai ≤ b · s; so b · s is an upper bound for the indicated
set. Now suppose that x is any upper bound for this set. Then for any i ∈ I we have
b · ai ≤ x, hence b · ai · −x = 0 and so ai ≤ −(b · −x) = −b + x; so −b + x is an upper
bound for {ai : i ∈ I}. It follows that s ≤ −b + x, and hence s · b ≤ x, as desired.

Forcing orders

A forcing order is a triple P = (P,≤, 1) such that ≤ is a reflexive and transitive relation
on the nonempty set P , and ∀p ∈ P (p ≤ 1). Note that we do not assume that ≤ is
antisymmetric. Partial orders are special cases of forcing orders in which this is assumed
(but we do not assume the existence of 1 in partial orders). Note that we assume that
every forcing order has a largest element. Many set-theorists use “partial order” instead
of “forcing order”.

Frequently we use just P for a forcing order; ≤ and 1 are assumed.
We say that elements p, q ∈ P are compatible iff there is an r ≤ p, q. We write p ⊥ q

to indicate that p and q are incompatible. A set A of elements of P is an antichain iff any
two distinct members of A are incompatible. WARNING: sometimes “antichain” is used
to mean pairwise incomparable, or in the case of Boolean algebras, pairwise disjoint. A
subset Q of P is dense iff for every p ∈ P there is a q ∈ Q such that q ≤ p.
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Now we are going to describe how to embed a forcing order into a complete BA.
We take the regular open algebra of a certain topological space. We assume a very little
bit of topology. To avoid assuming any knowledge of topology we now give a minimalist
introduction to topology.

A topology on a set X is a collection O of subsets of X satisfying the following condi-
tions:

(1) X, ∅ ∈ O .

(2) O is closed under arbitrary unions.

(3) O is closed under finite intersections.

The members of O are said to be open. The interior of a subset Y ⊆ X is the union of all
open sets contained in Y ; we denote it by int(Y ).

Proposition 13.15. (i) int(∅) = ∅.
(ii) int(X) = X.
(iii) int(Y ) ⊆ Y .
(iv) int(Y ∩ Z) = int(Y ) ∩ int(Z).
(v) int(int(Y )) = int(Y ).
(vi) int(Y ) = {x ∈ X : x ∈ U ⊆ Y for some open set U}.
Proof. (i)–(iii), (v), and (vi) are obvious. For (iv), if U is an open set contained in

Y ∩ Z, then it is contained in Y ; so int(Y ∩ Z) ⊆ int(Y ). Similarly for Z, so ⊆ holds. For
⊇, note that the right side is an open set contained in Y ∩ Z. (v) holds since int(Y ) is
open.

A subset C of X is closed iff X\C is open.

Proposition 13.16. (i) ∅ and X are closed.
(ii) The collection of all closed sets is closed under finite unions and intersections of

any nonempty subcollection.

For any Y ⊆ X , the closure of Y , denoted by cl(Y ), is the intersection of all closed sets
containing Y .

Proposition 13.17. (i) cl(Y ) = X\int(X\Y ).
(ii) int(Y ) = X\cl(X\Y ).
(iii) cl(∅) = ∅.
(iv) cl(X) = X.
(v) Y ⊆ cl(Y ).
(vi) cl(Y ∪ Z) = cl(Y ) ∪ cl(Z).
(vii) cl(cl(Y )) = cl(Y ).
(viii) cl(Y ) = {x ∈ X :for every open set U , if x ∈ U then U ∩ Y 6= ∅}.
Proof. (i): int(X\Y ) is an open set contained in X\Y , so Y is a subset of the closed

set X\int(X\Y ). Hence cl(Y ) ⊆ X\int(X\Y ). Also. cl(Y ) is a closed set containing
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Y , so X\cl(Y ) is an open set contained in X\Y . Hence X\cl(Y ) ⊆ int(X\Y ). Hence
X\int(X\Y ⊆ cl(Y ). This proves (i).

(ii): Using (i),

X\cl(X\Y ) = X\(X\int(X\(X\Y ))) = int(Y ).

(iii)–(v): clear.
(vi):

cl(Y ∪ Z) = X\int(X\(Y ∪ Z)) by (i)

= X\int((X\Y ) ∩ (X\Z))

= X\(int(X\Y ) ∩ int(X\Z)) by 13.15(iv)

= [X\int(X\Y )] ∪ [X\int(X\Z)]

= cl(Y ) ∪ cl(Z).

(vii):

cl(cl(Y )) = cl(X\int(X\Y ))

= X\int(X\(X\int(X\Y )))

= X\int(int(X\Y ))

= X\int(X\Y )

= cl(Y ).

(vii): First suppose that x ∈ cl(Y ), and x ∈ U , U open. By (i) and Proposition
13.15(vi) we have U 6⊆ X\Y , i.e., U ∩ Y 6= ∅, as desired. Second, suppose that x /∈ cl(Y ).
Then by (i) and 13.15(vi) there is an open U such that x ∈ U ⊆ X\Y ; so U ∩ Y = ∅, as
desired.

Now we go beyond this minimum amount of topology and work with the notion of a regular
open set, which is not a standard part of topology courses.

We say that Y is regular open iff Y = int(cl(Y )).

Proposition 13.18. (i) If Y is open, then Y ⊆ int(cl(Y )).
(ii) If U and V are regular open, then so is U ∩ V .
(iii) int(cl(Y )) is regular open.
(iv) If U is open, then int(cl(U)) is the smallest regular open set containing U .
(v) If U is open then U ∩ cl(Y ) ⊆ cl(U ∩ Y ).
(vi) If U is open, then U ∩ int(cl(Y )) ⊆ int(cl(U ∩ Y )).
(vii) If U and V are open and U ∩ V = ∅, then int(cl(U)) ∩ V = ∅.
(viii) If U and V are open and U ∩ V = ∅, then int(cl(U)) ∩ int(cl(V )) = ∅.
(ix) For any set M of regular open sets, int(cl(

⋃
M) is the least regular open set

containing each member of M .

Proof. (i): Y ⊆ cl(Y ), and hence Y = int(Y ) ⊆ int(cl(Y )).
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(ii): U ∩V is open, and so U ∩V ⊆ int(cl(U ∩V )). For the other inclusion, int(cl(U ∩
V )) ⊆ int(cl(U)) = U , and similarly for V , so the other inclusion holds.

(iii): int(cl(X)) ⊆ cl(X), so cl(int(cl(X))) ⊆ cl(cl(X)) = cl(X); hence

int(cl(int(cl(X)))) ⊆ int(cl(X));

the other inclusion is clear.
(iv): By (iii), int(cl(U)) is a regular open set containing U . If V is any regular open

set containing U , then int(cl(U)) ⊆ int(cl(V )) = V .
(v):

U ∩ (X\(U ∩ Y )) ⊆ X\Y, hence

U ∩ int(X\(U ∩ Y )) = int(U) ∩ int(X\(U ∩ Y ))

= int(U ∩ (X\(U ∩ Y )))

⊆ int(X\Y ), hence

X\int(X\Y ) ⊆ X\(U ∩ int(X\(U ∩ Y )))

= (X\U) ∪ (X\int(X\(U ∩ Y ))), hence

U ∩ (X\int(X\Y )) ⊆ (X\int(X\(U ∩ Y ))),

and (v) follows.
(vi):

U ∩ int(cl(Y )) = int(U) ∩ int(cl(Y ))

= int(U ∩ cl(Y ))

⊆ int(cl(U ∩ Y )) by (v).

(vii): U ⊆ X\V , hence cl(U) ⊆ cl(X\V ) = X\V , hence cl(U) ∩ V = ∅, and the
conclusion of (vii) follows.

(viii): Apply (vii) twice.
(ix): If U ∈ M , then U ⊆ ⋃M ⊆ int(cl(

⋃
M). Suppose that V is regular open and

U ⊆ V for all U ∈M . Then
⋃
M ⊆ V , and so int(cl(

⋃
M)) ⊆ int(cl(V ) = V .

We let RO(X) be the collection of all regular open sets in X . We define operations on
RO(X) which will make it a Boolean algebra. For any Y, Z ∈ RO(X), let

Y + Z = int(cl(Y ∪ Z));

Y · Z = Y ∩ Z;

−Y = int(X\Y ).

Theorem 13.19. The structure

〈RO(X),+, ·,−, ∅, X〉
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is a complete BA. Moreover, the ordering ≤ coincides with ⊆.

Proof. RO(X) is closed under + by Proposition 13.18(ix), and is closed under · by
Proposition 13.18(ii). Clearly it is closed under −, and ∅, X ∈ RO(X). Now we check
the axioms. The following are completely obvious: (A′), (C′), (C). Now let unexplained
variables range over RO(X). For (A), note by 13.18(i) that U ⊆ U + V ⊆ (U + V ) +W ;
and similarly V ⊆ (U +V ) +W and W ⊆ U +V ⊆ (U +V ) +W . If U, V,W ⊆ Z, then by
13.18(iv), U + V ⊆ Z and hence (U + V ) +W ⊆ Z. Thus (U + V ) +W is the least upper
bound in RO(X) of U, V,W . This is true for all U, V,W . So U + (V +W ) = (V +W ) +U
is also the least upper bound of them; so (A) holds. For (L):

U + U · V = int(cl(U ∪ (U ∩ V ))) = int(cl(U)) = U.

(L′) holds by 13.18(i). For (D), first note that

Y · (Z +W ) = Y ∩ int(cl(Z ∪W ))

⊆ int(cl(Y ∩ (Z ∪W ))) by 13.18(vi)

= int(cl((Y ∩ Z) ∪ (Y ∩W )))

= Y · Z + Y ·W.

On the other hand, (Y ∩ Z) ∪ (Y ∩W ) = Y ∩ (Z ∪W ) ⊆ Y, Z ∪W , and hence easily

Y · Z + Y ·W = int(cl((Y ∩ Z) ∪ (Y ∩W )))

⊆ int(cl(Y ) = Y and

Y · Z + Y ·W = int(cl((Y ∩ Z) ∪ (Y ∩W )))

⊆ int(cl(Z ∪W ) = Z +W ;

so the other inclusion follows, and (D) holds.
(K): For any regular open Y , from Proposition 13.17(ii) we get −Y = int(X\Y ) =

X\cl(X\(X\Y )) = X\cl(Y ). Hence

X = cl(Y ) ∪ (X\cl(Y )) ⊆ cl(Y ) ∪ cl((X\cl(Y )) = cl(Y ∪ (X\cl(Y ))),

and hence X = Y + −Y .
(K′): Clearly ∅ = Y ∩ int(X\Y ) = Y · −Y .
Thus we have now proved that 〈RO(X),+, ·,−, ∅, X〉 is a BA. Since · is the same as ∩,

≤ is the same as ⊆. Hence by Proposition 13.18(ix), 〈RO(X),+, ·,−, ∅, X〉 is a complete
BA.

Now we return to our task of embedding a forcing order into a complete Boolean algebra.
Let P be a given forcing order. For each p ∈ P let P ↓ p = {q : q ≤ p}. Now we define

OP = {X ⊆ P : (P ↓ p) ⊆ X for every p ∈ X}.
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We check that this gives a topology on P . Clearly P, ∅ ∈ O . To show that O is closed
under arbitrary unions, suppose that X ⊆ O . Take any p ∈ ⋃

X . Choose X ∈ X

such that p ∈ X . Then (P ↓ p) ⊆ X ⊆ ⋃
X , as desired. If X, Y ∈ OP , suppose that

p ∈ X ∩ Y . Then p ∈ X , so (P ↓ p) ⊆ X . Similarly (P ↓ p) ⊆ Y , so (P ↓ p) ⊆ X ∩ Y .
Thus X ∩ Y ∈ OP , finishing the proof that OP is a topology on P .

We denote the complete BA of regular open sets in this topology by RO(P ).
Now for any p ∈ P we define

e(p) = int(cl(P ↓ p)).

Thus e maps P into RO(P ).
This is our desired embedding. Actually it is not really an embedding in general, but

it has several useful properties, and for many forcing orders it really is an embedding.
The useful properties mentioned are as follows. We say that a subset X of P is dense

below p iff for every r ≤ p there is a q ≤ r such that q ∈ X .

Theorem 13.20. Let P be a forcing order. Suppose that p, q ∈ P , F is a finite subset of
P , a, b ∈ RO(P ), and N is a subset of RO(P )

(i) e[P ] is dense in RO(P ), i.e., for any nonzero Y ∈ RO(P ) there is a p ∈ P such
that e(p) ⊆ Y .

(ii) If p ≤ q then e(p) ⊆ e(q).
(iii) p ⊥ q iff e(p) ∩ e(q) = ∅.
(iv) If e(p) ≤ e(q), then p and q are compatible.
(v) The following conditions are equivalent:

(a) e(p) ≤ e(q).
(b) {r : r ≤ p, q} is dense below p.

(vi) The following conditions are equivalent, for F nonempty:
(a) e(p) ≤∏q∈F e(q).
(b) {r : r ≤ q for all q ∈ F} is dense below p.

(vii) The following conditions are equivalent:
(a) e(p) ≤ (

∏

q∈F e(q)) ·
∑
N .

(b) {r : r ≤ q for all q ∈ F and e(r) ≤ s for some s ∈ N} is dense below p.
(viii) e(p) ≤ −a iff there is no q ≤ p such that e(q) ≤ a.
(ix) e(p) ≤ −a+ b iff for all q ≤ p, if e(q) ≤ a then e(q) ≤ b.

Proof. (i): Assume the hypothesis. By the definition of the topology and since Y is
nonempty and open, there is a p ∈ P such that P ↓ p ⊆ Y . Hence e(p) = int(cl(P ↓ p)) ⊆
int(cl(Y )) = Y .

(ii): If p ≤ q, then P ↓ p ⊆ P ↓ q, and so e(p) = int(cl(P ↓ p)) ⊆ int(cl(P ↓ q) = e(q)).
(iii): Assume that p ⊥ q. Then (P ↓ p) ∩ (P ↓ q) = ∅, and hence by Proposition

13.18(viii), e(p) ∩ e(q) = ∅.
Conversely, suppose that e(p) ∩ e(q) = ∅. Then (P ↓ p) ∩ (P ↓ q) ⊆ e(p) ∩ e(q) = ∅,

and so p ⊥ q.
(iv): If e(p) ≤ e(q), then e(p) · e(q) = e(p) 6= ∅, so p and q are compatible by (iii).
(v): For (a)⇒(b), suppose that e(p) ≤ e(q) and s ≤ p. Then e(s) ≤ e(p) ≤ e(q), so s

and q are compatible by (iv); say r ≤ s, q. Then r ≤ s ≤ p, hence r ≤ p, q, as desired.
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For (b)⇒(a), suppose that e(p) 6≤ e(q). Thus e(p) · −e(q) 6= 0. Hence there is an s
such that e(s) ⊆ e(p) · −e(q). Hence e(s) · e(q) = ∅, so s ⊥ q by (iii). Now e(s) ⊆ e(p), so s
and p are compatible by (iv); say t ≤ s, p. For any r ≤ t we have r ≤ s, and hence r ⊥ q.
So (b) fails.

(vi): We proceed by induction on |F |. The case |F | = 1 is given by (v). Now assume
the result for F , and suppose that t ∈ P\F . First suppose that e(p) ≤ ∏

q∈F e(q) · e(t).
Suppose that s ≤ p. Now e(p) ≤ ∏

q∈F e(q), so by the inductive hypothesis there is a
u ≤ s such that u ≤ q for all q ∈ F . Thus e(u) ≤ e(s) ≤ e(p) ≤ e(t), so by (iv), u and t
are compatible. Take any v ≤ u, t. then v ≤ q for any q ∈ F ∪ {t}, as desired.

Second, suppose that (b) holds for F ∪ {t}. In particular, {r : r ≤ q for all q ∈ F}
is dense below p, and so e(p) ≤ ∏

q∈F e(q) by the inductive hypothesis. But also clearly
{r : r ≤ t} is dense below p, so e(p) ≤ e(t) too, as desired.

(vii): First assume that e(p) ≤ (
∏

q∈F e(q)) ·
∑
N , and suppose that u ≤ p. By (vi),

there is a v ≤ u such that v ≤ q for each q ∈ F . Now e(v) ≤ e(u) ≤ e(p) ≤ ∑
N , so

0 6= e(v) = e(v)·∑N =
∑

s∈N (e(v)·e(s)). Hence there is an s ∈ N such that e(v)·e(s) 6= 0.
Hence by (iii), v and s are compatible; say r ≤ v, s. Clearly r is in the set described in (b).

Second, suppose that (b) holds. Clearly then {r : r ≤ q for all q ∈ F} is dense below p,
and so e(p) ≤∏q∈F e(q) by (vi). Now suppose that e(p) 6≤∑N . Then e(p) · −∑N 6= 0,
so there is a q such that e(q) ≤ e(p) ·−∑N . By (iv), q and p are compatible; say s ≤ p, q.
Then by (b) choose r ≤ s and t ∈ N such that e(r) ≤ t. Thus e(r) ≤ e(s) · t ≤ e(p) · t ≤
(−∑N) ·∑N = 0, contradiction.

(viii)⇒: Assume that e(p) ≤ −a. Suppose that q ≤ p and e(q) ≤ a. Then e(q) ≤
−a · a = 0, contradiction.

(viii)⇐: Assume that e(p) 6≤ −a. Then e(p) · a 6= 0, so there is a q such that
e(q) ≤ e(p) · a. By (vii) there is an r ≤ p, q with e(r) ≤ a, as desired.

(ix)⇒: Assume that e(p) ≤ −a+ b, q ≤ p, and e(q) ≤ a. Then e(q) ≤ a · (−a+ b) ≤ b,
as desired.

(ix)⇐: Assume the indicated condition, but suppose that e(p) 6≤ −a + b. Then
e(p) · a · −b 6= 0, so there is a q such that e(q) ≤ e(p) · a · −b. By (vii) with F = {p} and
N = {a · −b} we get q such that q ≤ p and e(q) ≤ a · −b. So q ≤ p and e(q) ≤ a, so by our
condition, e(q) ≤ b. But also e(q) ≤ −b, contradiction.

We now expand on the remarks above concerning when e really is an embedding. Note
that if P is a simple ordering, then the closure of P ↓ p is P itself, and hence P has only
two regular open subsets, namely the empty set and P itself. If the ordering on P is trivial,
meaning that no two elements are comparable, then every subset of P is regular open.

An important condition satisfied by many forcing orders is defined as follows. We say
that P is separative iff it is a partial order (thus is an antisymmetric forcing order), and
for any p, q ∈ P , if p 6≤ q then there is an r ≤ p such that r ⊥ q.

Proposition 13.21. Let P be a forcing order.
(i) cl(P ↓ p) = {q : p and q are compatible}.
(ii) e(p) = {q : for all r ≤ q, r and p are compatible}.
(iii) The following conditions are equivalent:

(a) P is separative.
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(b) e is one-one, and for all p, q ∈ P , p ≤ q iff e(p) ≤ e(q).

Proof. (i) and (ii) are clear. For (iii), (a)⇒(b), assume that P is separative. Take
any p, q ∈ P . If p ≤ q, then e(p) ≤ e(q) by 13.20(ii). Suppose that p 6≤ q. Choose r ≤ p
such that r ⊥ q. Then r ∈ e(p), while r /∈ e(q) by (ii). Thus e(p) 6≤ e(q).

Now suppose that e(p) = e(q). Then p ≤ q ≤ p by what was just shown, so p = q
since P is a partial order.

For (iii), (b)⇒(a), suppose that p ≤ q ≤ p. Then e(p) ⊆ e(q) ⊆ e(p), so e(p) = e(q),
and hence p = q. So P is a partial order. Suppose that p 6≤ q. Then e(p) 6⊆ e(q). Choose
s ∈ e(p)\e(q). Since s /∈ e(q), by (ii) we can choose t ≤ s such that t ⊥ q. Since s ∈ e(p),
it follows that t and p are compatible; choose r ≤ t, p. Clearly r ⊥ q.

Now we prove a theorem which says that the regular open algebra of a forcing order is
unique up to isomorphism.

Theorem 13.22. Let P be a forcing order, A a complete BA, and j a function mapping
P into A\{0} with the following properties:

(i) j[P ] is dense in A, i.e., for any nonzero a ∈ A there is a p ∈ P such that j(p) ⊆ a.
(ii) For all p, q ∈ P , if p ≤ q then j(p) ≤ j(q).
(iii) For any p, q ∈ P , p ⊥ q iff j(p) · j(q) = 0.

Then there is a unique isomorphism f from RO(P ) onto A such that f ◦ e = j. That is, f
is a bijection from RO(P ) onto A, and for any x, y ∈ RO(P ), x ⊆ y iff f(x) ≤ f(y); and
f ◦ e = j.

Note that since the Boolean operations are easily expressible in terms of ≤ (as least upper
bounds, etc.), the condition here implies that f preserves all of the Boolean operations
too; this includes the infinite sums and products.

Proof. Before beginning the proof, we introduce some notation in order to make the
situation more symmetric. Let B0 = RO(P ), B1 = A, k0 = e, and k1 = j. Then for each
m < 2 the following conditions hold:

(1) km[P ] is dense in Bm.

(2) For all p, q ∈ P , if p ≤ q then km(p) ≤ km(q).

(3) For all p, q ∈ P , p ⊥ q iff km(p) · km(q) = 0.

(4) For all p, q ∈ P , if km(p) ≤ km(q), then p and q are compatible.

In fact, (1)–(3) follow from 13.20 and the assumptions of the theorem. Condition (4) for
m = 0, so that km = e, follows from 13.20(iv). For m = 1, so that km = j, it follows easily
from (iii).

Now we begin the proof. For each m < 2 we define, for any x ∈ Bm,

gm(x) =
∑

{k1−m(p) : p ∈ P, km(p) ≤ x}.

The proof of the theorem now consists in checking the following, for each m ∈ 2:
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(5) If x, y ∈ Bm and x ≤ y, then gm(x) ≤ gm(y).

(6) g1−m ◦ gm is the identity on Bm.

(7) g0 ◦ k0 = k1.

In fact, suppose that (5)–(7) have been proved. If x, y ∈ RO(P ), then

x ≤ y implies that g0(x) ≤ g0(y) by (5);

g0(x) ≤ g0(y) implies that x = g1(g0(x)) ≤ g1(g0(y)) = y by (5) and (6).

Also, (6) holding for both m = 0 and m = 1 implies that g0 is a bijection from RO(P )
onto A. Moreover, by (7), g0 ◦ e = g0 ◦ k0 = k1 = j. So g0 is the desired function f of the
theorem.

Now (5) is obvious from the definition. To prove (6), assume that m ∈ 2. We first
prove

(8) For any p ∈ P and any b ∈ Bm, km(p) ≤ b iff k1−m(p) ≤ gm(b).

To prove (8), first suppose that km(p) ≤ b. Then obviously k1−m(p) ≤ gm(b). Second,
suppose that k1−m(p) ≤ gm(b) but km(p) 6≤ b. Thus km(p) · −b 6= 0, so by the denseness
of km[P ] in Bm, choose q ∈ P such that km(q) ≤ km(p) · −b. Then p and q are compatible
by (4), so let r ∈ P be such that r ≤ p, q. Hence

k1−m(r) ≤ k1−m(p) ≤ gm(b) =
∑

{k1−m(s) : s ∈ P, km(s) ≤ b}.

Hence k1−m(r) =
∑{k1−m(s) ·k1−m(r) : s ∈ P, km(s) ≤ b}, so there is an s ∈ P such that

km(s) ≤ b and k1−m(s) · k1−m(r) 6= 0. Hence s and r are compatible; say t ≤ s, r. Hence
km(t) ≤ km(r) ≤ km(q) ≤ −b, but also km(t) ≤ km(s) ≤ b, contradiction. This proves (8).

Now take any b ∈ Bm. Then

g1−m(gm(b)) =
∑

{km(p) : p ∈ P, k1−m(p) ≤ gm(b)}

=
∑

{km(p) : p ∈ P, km(p) ≤ b}
= b.

Thus (6) holds.
For (7), clearly k1(p) ≤ g0(k0(p)). Now suppose that k0(q) ≤ k0(p) but k1(q) 6≤ k1(p).

Then k1(q) · −k1(p) 6= 0, so there is an r such that k1(r) ≤ k1(q) · −k1(p). Hence q and
r are compatible, but r ⊥ p. Say s ≤ q, r. Then k0(s) ≤ k0(q) ≤ k0(p), so s and p are
compatible. Say t ≤ s, p. Then t ≤ r, p, contradiction. This proves (7).

This proves the existence of f . Now suppose that g is also an isomorphism from
RO(P ) onto A such that g ◦ e = j, but suppose that f 6= g. Then there is an X ∈ RO(P )
such that f(X) 6= g(X). By symmetry, say that f(X) · −g(X) 6= 0. By (ii), choose p ∈ P
such that j(p) ≤ f(X) · −g(X). So f(e(p)) = j(p) ≤ f(X), so e(p) ≤ X , and hence
j(p) = g(e(p)) ≤ g(X). This contradicts j(p) ≤ −g(X).
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EXERCISES

E13.1. Let (A,+, ·,−, 0, 1) be a Boolean algebra. Show that (A,△, ·, 0, 1) is a ring with
identity in which every element is idempotent. This means that x · x = x for all x.

E13.2. Let (A,+, ·, 0, 1) be a ring with identity in which every element is idempotent.
Show that A is a commutative ring, and (A,⊕, ·,−, 0, 1) is a Boolean algebra, where for
any x, y ∈ A, x⊕ y = x+ y + xy and for any x ∈ A, −x = 1 + x. Hint: expand (x+ y)2.

E13.3. Show that the processes described in exercises E13.1 and E13.2 are inverses of one
another.

E13.4. A filter in a BA A is a subset F of A with the following properties:

(1) 1 ∈ F .

(2) If a ∈ F and a ≤ b, then b ∈ F .

(3) If a, b ∈ F , then a · b ∈ F .

An ultrafilter in A is a filter F such that 0 /∈ F , and for any a ∈ A, a ∈ F or −a ∈ F .
Prove that a filter F is an ultrafilter iff F is maximal among the set of all filters G

such that 0 /∈ G.

E13.5. (Continuing exercise E13.4) Prove that for any nonzero a ∈ A there is an ultrafilter
F such that a ∈ F .

E13.6. (Continuing exercise E13.4) Prove that any BA is isomorphic to a field of sets.
(Stone’s representation theorem) Hint: given a BA A, let X be the set of all ultrafilters
on A and define f(a) = {F ∈ X : a ∈ F}.

E13.7 (Continuing exercise E13.4) Suppose that F is an ultrafilter on a BA A. Let 2 be
the two-element BA. (This is, up to isomorphism, the BA of all subsets of 1.) For any
a ∈ A let

f(a) =
{

1 if a ∈ F ,
0 if a /∈ F .

Show that f is a homomorphism of A into 2. This means that for any a, b ∈ A, the
following conditions hold:

f(a+ b) = f(a) + f(b);

f(a · b) = f(a) · f(b);

f(−a) = −f(a);

f(0) = 0;

f(1) = 1.

E13.8. (Lindenbaum-Tarski algebras; A knowledge of logic is assumed.) Suppose that L

is a first-order language and T is a set of sentences of L . Define ϕ ≡T ψ iff ϕ and ψ are
sentences of L and T |= ϕ↔ ψ. Show that this is an equivalence relation on the set S of
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all sentences of L . Let A be the collection of all equivalence classes under this equivalence
relation. Show that there are operations +, ·, − on A such that for any sentences ϕ, ψ,

[ϕ] + [ψ] = [ϕ ∨ ψ];

[ϕ] · [ψ] = [ϕ ∧ ψ];

−[ϕ] = [¬ϕ].

Finally, show that (A,+, ·,−, [∃v0(¬(v0 = v0))], [∃v0(v0 = v0)]) is a Boolean algebra.

E13.13. (A knowledge of logic is assumed.) Show that every Boolean algebra is isomorphic
to one obtained as in exercise E13.8. Hint: Let A be a Boolean algebra. Let L be the
first-order language which has a unary relation symbol Ra for each a ∈ A. Let T be the
following set of sentences of L :

∀x∀y(x = y);

∀x[R−a(x) ↔ ¬Ra(x)] for each a ∈ A;

∀x[Ra·b(x) ↔ Ra(x) ∧Rb(x)] for all a, b ∈ A;

∀xR1(x).

E13.10. Let A be the collection of all subsets X of Y
def
= {r ∈ Q : 0 ≤ r} such that there

exist an m ∈ ω and a, b ∈ m(Y ∪ {∞}) such that a0 < b0 < a1 < b1 < · · · < am−1 <
bm−1 ≤ ∞ and

X = [a0, b0) ∪ [a1, b1) ∪ . . . ∪ [am−1, bm−1).

Note that ∅ ∈ A by taking m = 0, and Y ∈ A since Y = [0,∞).
(i) Show that if X is as above, c, d ∈ Y ∪{∞} with c < d, c ≤ a0, then X ∪ [c, d) ∈ A,

and c is the first element of X ∪ [c, d).
(ii) Show that if X is as above and c, d ∈ Y ∪ {∞} with c < d, then X ∪ [c, d) ∈ A.
(iii) Show that (A,∪,∩, \, ∅, Y ) is a Boolean algebra.

E13.11. (Continuing exercise E13.10.) For each n ∈ ω let xn = [n, n + 1), an interval in
Q. Show that

∑

n∈ω x2n does not exist in A.

E13.12. Let A be the Boolean algebra of all subsets of some nonempty set X , under the
natural set-theoretic operations. Show that if 〈ai : i ∈ I〉 is a system of elements of A,
then ∏

i∈I
(ai + −ai) = 1 =

∑

ε∈I2

∏

i∈I
a
ε(i)
i ,

where for any y, y1 = y and y0 = −y.

E13.13. Let M be the set of all finite functions f ⊆ ω × 2. For each f ∈M let

Uf = {g ∈ ω2 : f ⊆ g}.

Let A consist of all finite unions of sets Uf .
(i) Show that A is a Boolean algebra under the set-theoretic operations.
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(ii) For each i ∈ ω, let xi = U{(i,1)}. Show that

ω2 =
∏

i∈ω
(xi + −xi)

while ∑

ε∈ω2

∏

i∈ω
x
ε(i)
i = ∅,

where for any y, y1 = y and y0 = −y.
This is an example of an infinite distributive law that holds in some BAs (by exercise

E13.12), but does not hold in all BAs.

E13.14. Suppose that (P,≤, 1) is a forcing order. Define

p ≡ q iff p, q ∈ P, p ≤ q, and q ≤ p.

Show that ≡ is an equivalence relation, and if Q is the collection of all ≡-classes, then
there is a relation � on Q such that for all p, q ∈ P , [p]≡ � [q]≡ iff p ≤ q. Finally,
show that (Q,�) is a partial order, i.e., � is reflexive on Q, transitive, and antisymmetric
(q1 � q2 � q1 implies that q1 = q2); moreover, q ≤ [1] for all q ∈ Q.

E13.15. We say that (P,<) is a partial order in the second sense iff < is transitive and
irreflexive. (Irreflexive means that for all p ∈ P , p 6< p.) Show that if (P,<) is a partial
order in the second sense and if we define � by p � q iff (p, q ∈ P and p < q or p = q), then

A (P,<)
def
= (P,�) is a partial order. Furthermore, show that if (P,≤) is a partial order,

and we define p ≺ q by p ≺ q iff (p, q ∈ P , p ≤ q, and p 6= q), then B(P,≤)
def
= (P,≺) is a

partial order in the second sense.
Also prove that A and B are inverses of one another.

E13.16. Show that if (P,≤, 1) is a forcing order and we define ≺ by p ≺ q iff (p, q ∈ P ,
p ≤ q and q 6≤ p), then (P,≺) is a partial order in the second sense. Give an example where
this partial order is not isomorphic to the one derived from (P,≤, 1) by the procedure of
exercise E13.14.

E13.17. Prove that if (P,�, 1) is a forcing order such that the mapping e from P into
RO(P ) is one-one, then (P,�) is a partial order. Give an example of a forcing order such
that e is not one-one. Give an example of an infinite forcing order Q such that e is not
one-one, while for any p, q ∈ Q, p ≤ q iff e(p) ⊆ e(q).

E13.18. (Continuing E13.14.) Let P = (P,≤, 1) be a forcing order, and let Q = (Q,�, [1])
be as in exercise E13.14. Show that there is an isomorphism f of RO(P) onto RO(Q) such
that f ◦ eP = eQ ◦ π, where π : P → Q is defined by π(p) = [p] for all p ∈ P .
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14. Models of set theory

In this chapter we describe the basics concerning models of set theory, ending with a proof
that if ZFC is consistent, then so is ZFC+“there are no uncountable inaccessibles”.

A set theory structure is an ordered pair A = (A,R) such that A is a non-empty set
and R is a binary relation contained in A×A. The model-theoretic notions introduced in
Chapter 2 can be applied here.

A notion similar to that of a model is relativization. Suppose that M is a class. We
associate with each formula ϕ its relativization to M, denoted by ϕM. The definition goes
by recursion on formulas:

(x = y)M is x = y
(x ∈ y)M is x ∈ y
(ϕ→ ψ)M is ϕM → ψM.
(¬ϕ)M is ¬ϕM.
(∀xϕ)M is ∀x[x ∈ M → ϕM].

The more rigorous version of this definition associates with each pair ψ, ϕ of formulas a
third formula which is called the relativization of ϕ to ψ.

We say that ϕ holds in M or is true in M, iff ϕM holds, i.e., iff ZFC ⊢ ϕM.

Theorem 14.1. Let Γ be a set of sentences, ϕ a sentence, and M a class. Let ΓM =
{χM : χ ∈ Γ}. Suppose that Γ |= ϕ. Then

ΓM |= M 6= ∅ → ϕM.

Proof. Assume the hypothesis of the theorem, let A = (A,E) be any set theory
structure, assume that A is a model of ΓM, and suppose that A ∩ M 6= ∅. We want to
show that A is a model of ϕM. To do this, we define another structure B = (B,F ) for our
language. Let B = A ∩ M, and let F = E ∩ (B ×B). Now we claim:

(*) For any formula χ and any c ∈ ωB, A |= χM[c] iff B |= χ[c].

We prove (*) by induction on χ:

A |= (vi = vj)
M[c] iff ci = cj

iff B |= (vi = vj)[c];

A |= (vi ∈ vj)
M[c] iff ciEcj

iff ciFcj

iff B |= (vi ∈ vj)[c];

A |= (¬χ)M[c] iff not[A |= χM[c]]

iff not[B |= χ[c]] (induction hypothesis)

iff B |= ¬χ[c];

A |= (χ→ θ)M[c] iff [A |= χM[c] implies that A |= θM[c]]

iff [B |= χ[c] implies that B |= θ[c]

(induction hypothesis)

iff B |= (χ→ θ)[c].
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We do the quantifier step in each direction separately. First suppose that A |= (∀viχ)M[c].
Thus A |= [∀vi[vi ∈ M → χM][c]. Take any b ∈ B. Then b ∈ M, so A |= χM[cib]. By the
inductive hypothesis, B |= χ[cib]. This proves that B |= ∀viχ[c].

Conversely, suppose that B |= ∀viχ[c]. Suppose that a ∈ A and A |= (vi ∈ M)[cia].
Then a ∈ B, so B |= χ[cia]. By the inductive hypothesis, A |= χM[cia]. So we have shown
that A |= ∀vi[vi ∈ M → χM ][c]. That is, A |= (∀viχ)M[c].

This finishes the proof of (*).
Now A is a model of ΓM, so by (*), B is a model of Γ. Hence by assumption, B is a

model of ϕ. So by (*) again, A is a model of ϕM.

This theorem gives the basic idea of consistency proofs in set theory; we express this as
follows. Remember by the completeness theorem that a set Γ of sentences is consistent iff
it has a model.

Corollary 14.2. Suppose that Γ and ∆ are collections of sentences in our language of set
theory. Suppose that M is a class, and Γ |= [M 6= ∅ and ϕM] for each ϕ ∈ ∆. Then Γ
consistent implies that ∆ is consistent.

Proof. Suppose to the contrary that ∆ does not have a model. Then trivially
∆ |= ¬(x = x). By Theorem 14.1, ∆M |= M 6= ∅ → ¬(x = x). Hence by hypothesis we
get Γ |= ¬(x = x), contradiction.

Later in this section we use this corollary with Γ = ZFC and ∆ = ZFC+“there are no
inaccessibles”; the class M is more complicated to describe, and we defer that until we are
actually ready to give the applications of the corollary.

The set-theoretical hierarchy

The hierarchy of sets is defined recursively as follows:

Theorem 14.3. There is a class function V : On → V satisfying the following conditions:
(i) V0 = ∅.
(ii) Vα+1 = P(Vα).
(iii) Vγ =

⋃

α<γ Vα for γ limit.

Proof. We apply Theorem 9.7. Define G : On × V → V as follows. For any ordinal
α and set x, let

G(α, x) =







∅ if x = ∅,
P(x(β)) if x is a function with domain α = β + 1,
⋃

β<α x(β) if x is a function with domain α, and α is a limit ordinal,
∅ otherwise.

So we apply Theorem 9.7 to obtain a class function F : On → V such that for every
ordinal α, F(α) = G(α,F ↾ α). Hence

F(0) = G(0,F ↾ 0) = G(0, ∅) = ∅;

F(β + 1) = G(β + 1,F ↾ β + 1) = P(F(β));

F(α) = G(α,F ↾ α) =
⋃

β<α

F(β) for α limit.
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V0 = ∅

V1 = {∅}

V2 = {∅, {∅}}

·

·

·

Vω

Vω+1

··
· Vω1

··
·

Recall from chapter 7 the notion of a transitive set. We have used this notion only for
defining ordinals so far. But the general notion will now play an important role in what
follows.

Theorem 14.4. For every ordinal α the following hold:
(i) Vα is transitive.
(ii) Vβ ⊆ Vα for all β < α.

Proof. We prove these statements simultaneously by induction on α. They are clear
for α = 0. Assume that both statements hold for α; we prove them for α + 1. First we
prove

(1) Vα ⊆ Vα+1.

In fact, suppose that x ∈ Vα. By (i) for α, the set Vα is transitive. Hence x ⊆ Vα, so
x ∈ P(Vα) = Vα+1. So (1) holds.

Now (ii) follows. For, suppose that β < α + 1. Then β ≤ α, so Vβ ⊆ Vα by (ii) for α
(or trivially if β = α). Hence by (1), Vβ ⊆ Vα+1.
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To prove (i) for α+1, suppose that x ∈ y ∈ Vα+1. Then y ∈ P(Vα), so y ⊆ Vα, hence
x ∈ Vα. By (1), x ∈ Vα+1, as desired.

For the final inductive step, suppose that γ is a limit ordinal and (i) and (ii) hold for
all α < γ. To prove (i) for γ, suppose that x ∈ y ∈ Vγ . Then by definition of Vγ , there is
an α < γ such that y ∈ Vα. By (i) for α we get x ∈ Vα. So x ∈ Vγ by the definition of Vγ .
Condition (ii) for γ is obvious.

A very important fact about this hierarchy is that every set is a member of some Vα. To
prove this, we need the notion of transitive closure. We introduced and used this notion
in Chapter 8, but we will prove the following independent of this.

Theorem 14.5. For any set a there is a transitive set b with the following properties:
(i) a ⊆ b.
(ii) For every transitive set c such that a ⊆ c we have b ⊆ c.

Proof. We first make a definition by recursion. Define G : On × V → V by setting,
for an α ∈ On and any x ∈ V

G(α, x) =







a if x = ∅,
x(m) ∪⋃x(m) if x is a function with domain m+ 1 with m ∈ ω,
0 otherwise

.

By Theorem 9.7 let F : On → V be such that F(α) = G(α,F ↾ α) for any α ∈ On.
Let d = F ↾ ω. Then d0 = F(0) = G(0,F ↾ 0) = G(0, ∅) = a. For any m ∈ ω we
have dm+1 = F(m + 1) = G(m + 1,F ↾ (m + 1)) = F(m) ∪ ⋃F(m) = dm ∪ ⋃ d(m).
Let b =

⋃

m∈ω dm. Then a = d0 ⊆ b. Suppose that x ∈ y ∈ b. Choose m ∈ ω such
that y ∈ dm. Then x ∈ ⋃ dm ⊆ dm+1 ⊆ b. Thus b is transitive. Now suppose that c is
a transitive set such that a ⊆ c. We show by induction that dm ⊆ c for every m ∈ ω.
First, d0 = a ⊆ c, so this is true for m = 0. Now assume that it is true for m. Then
dm+1 = dm ∪⋃ dm ⊆ c ∪⋃ c = c, completing the inductive proof.

Hence b =
⋃

m∈ω dm ⊆ c.

The set shown to exist in Theorem 14.5 is called the transitive closure of a, and is denoted
by trcl(a).

Theorem 14.6. Every set is a member of some Vα.

Proof. Suppose that this is not true, and let a be a set which is not a member of
any Vα. Let A = {x ∈ trcl(a ∪ {a}) : x is not in any of the sets Vα}. Then a ∈ A, so A
is nonempty. By the foundation axiom, choose x ∈ A such that x ∩ A = 0. Suppose that
y ∈ x. Then y ∈ trcl(a ∪ {a}), so y is a member of some Vα. Let αy be the least such α.
Let γ =

⋃

y∈x αy. Then by 13.1(ii), x ⊆ Vβ. So x ∈ Vβ+1, contradiction.

Thus by Theorem 14.6 we have V =
⋃

α∈On
Vα. An important technical consequence of

Theorem 14.6 is the following definition, known as Scott’s trick:

• Let R be a class equivalence relation on a class A. For each a ∈ A, let α be the smallest
ordinal such that there is a b ∈ Vα with (a, b) ∈ R, and define

typeR(a) = {b ∈ Vα : (a, b) ∈ R}.
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This is the “reduced” equivalence class of a. It could be that the collection of b such that
(a, b) ∈ R is a proper class, but typeR(a) is always a set.

On the basis of our hierarchy we can define the important notion of rank of sets:

• For any set x, the rank of x, denoted by rank(x), is the smallest ordinal α such that
x ∈ Vα+1.

We take α + 1 here instead of α just for technical reasons. Some of the most important
properties of ranks are given in the following theorem.

Theorem 14.7. Let x be a set and α an ordinal. Then
(i) Vα = {y : rank(y) < α}.
(ii) For all y ∈ x we have rank(y) < rank(x).
(iii) rank(y) ≤ rank(x) for every y ⊆ x.
(iv) rank(x) = supy∈x(rank(y) + 1).
(v) rank(α) = α.
(vi) Vα ∩ On = α.

Proof. (i): Suppose that y ∈ Vα. Then α 6= 0. If α is a successor ordinal β + 1, then
rank(y) ≤ β < α. If α is a limit ordinal, then y ∈ Vβ for some β < α, hence y ∈ Vβ+1 also,
so rank(y) ≤ β < α. This proves ⊆.

For ⊇, suppose that β
def
= rank(y) < α. Then y ∈ Vβ+1 ⊆ Vα, as desired.

(ii): Suppose that x ∈ y. Let rank(y) = α. Thus y ∈ Vα+1 = P(Vα), so y ⊆ Vα and
hence x ∈ Vα. Then by (i), rank(x) < α.

(iii): Let rank(x) = α. Then x ∈ Vα+1, so x ⊆ Vα. Let y ⊆ x. Then y ⊆ Vα, and so
y ∈ Vα+1. Thus rank(y) ≤ α.

(iv): Let α be the indicated sup. Then ≥ holds by (ii). Now if y ∈ x, then rank(y) <
α, and hence y ∈ Vrank(y)+1 ⊆ Vα. This shows that x ⊆ Vα, hence x ∈ Vα+1, hence
rank(x) ≤ α, finishing the proof of (iv).

(v): We prove this by transfinite induction. Suppose that it is true for all β < α.
Then by (iv),

rank(α) = sup
β<α

(rank(β) + 1) = sup
β<α

(β + 1) = α.

Finally, for (vi), using (i) and (v),

Vα ∩ On = {β ∈ On : β ∈ Vα} = {β ∈ On : rank(β) < α} = {β ∈ On : β < α} = α.

We now define a sequence of cardinals by recursion:

Theorem 14.8. There is a function i : On → V such that the following conditions hold:

i0 = ω;

iα+1 = 2iα ;

iγ =
⋃

α<γ

iα for γ limit.
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Proof. Define G : On × V → V by setting, for any ordinal α and any set x,

G(α, x) =







ω if x = ∅,
2x(β) if x is a function with domain α = β + 1 and

range a set of cardinals,
⋃

β<α x(β) if x is a function with domain a limit ordinal α.

Then we obtain F : On → V by Theorem 6.7: for any ordinal α, F(α) = G(α,F ↾ α).
Hence

F(0) = G(0,F ↾ 0) = G(0, ∅) = ω;

F(β + 1) = G(β + 1,F ↾ (β + 1)) = 2F(β);

F(α) = G(α,F ↾ α) =
⋃

β<α

F(β) for α limit.

Thus under GCH, ℵα = iα for every ordinal α; in fact, this is just a reformulation of
GCH.

Theorem 14.9. (i) n ≤ |Vn| ∈ ω for any n ∈ ω.
(ii) For any ordinal α, |Vω+α| = iα.

Proof. (i) is clear by ordinary induction on n. We prove (ii) by the three-step
transfinite induction (where γ is a limit ordinal below):

|Vω| =

∣
∣
∣
∣
∣

⋃

n∈ω
Vn

∣
∣
∣
∣
∣

= ω = i0 by (i);

|Vω+α+1 = |P(Vω+α)|
= 2|Vω+α|

= 2iα (inductive hypothesis)

= iα+1;

|Vω+γ| =

∣
∣
∣
∣
∣
∣

⋃

β<γ

Vω+β

∣
∣
∣
∣
∣
∣

≤
∑

β<γ

|Vω+β|

=
∑

β<γ

iβ (inductive hypothesis)

≤
∑

β<γ

iγ

= |γ| · iγ

= iγ .
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To finish this last inductive step, note that for each β < γ we have iβ = |Vω+β| ≤ |Vω+γ |,
and hence iγ ≤ |Vω+γ |.

Checking the axioms

Now we give some simple facts which will be useful in checking the axioms of ZFC in the
transitive classes which we will define. See Chapter 5 for the original form of the axioms.

Theorem 14.10. The extensionality axiom holds in any nonempty transitive class.

Proof. Let M be any transitive class. The relativized version of the extensionality
axiom is

∀x ∈ M∀y ∈ M[∀z ∈ M(z ∈ x↔ z ∈ y) → x = y].

To prove this, assume that x, y ∈ M, and suppose that for all z ∈ M, z ∈ x iff z ∈ y. Take
any z ∈ x. Because M is transitive, we get z ∈ M. Hence z ∈ y. Thus z ∈ x implies that
z ∈ y. The converse is similar. So x = y.

The following theorem reduces checking the comprehension axioms to checking a closure
property.

Theorem 14.11. Suppose that M is a nonempty class, and for each formula ϕ with with
free variables among x, z, w1, . . . , wn,

∀z, w1, . . . , wn ∈ M[{x ∈ z : ϕM(x, z, w1, . . . , wn)} ∈ M].

Then the comprehension axioms hold in M.

Proof. The straightforward relativization of an instance of the comprehension axioms
is

∀z ∈ M∀w1 ∈ M . . .∀wn ∈ M∃y ∈ M∀x ∈ M(x ∈ y ↔ x ∈ z ∧ ϕM).

So, we take z, w1, . . . , wn ∈ M. Let

y = {x ∈ z : ϕM(x, z, w1, . . . , wn)};

by hypothesis, we have y ∈ M. Then for any x ∈ M,

x ∈ y iff x ∈ z and ϕM(x, z, w1, . . . , wn).

The following theorems are obvious from the forms of the pairing axiom and union axioms:

Theorem 14.12. Suppose that M is a nonempty class and

∀x, y ∈ M∃z ∈ M(x ∈ z and y ∈ z).

Then the pairing axiom holds in M.
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Theorem 14.13. Suppose that M is a nonempty class and

∀x ∈ M∃z ∈ M
(⋃

x ⊆ z
)

.

Then the union axiom holds in M.

For the next result, recall that z ⊆ x is an abbreviation for ∀w(w ∈ z → w ∈ x).

Theorem 14.14. Suppose that M is a nonempty transitive class. Then the following are
equivalent:

(i) The power set axiom holds in M.
(ii) For every x ∈ M there is a y ∈ M such that P(x) ∩ M ⊆ y.

Proof. (i)⇒(ii): Assume (i). Thus

(1) ∀x ∈ M∃y ∈ M∀z ∈ M[∀w ∈ M(w ∈ z → w ∈ x) → z ∈ y].

To prove (ii), take any x ∈ M. Choose y ∈ M as in (1). Suppose that z ∈ P(x) ∩ M.
Clearly then ∀w ∈ M(w ∈ z → w ∈ x), so by (1), z ∈ y, as desired in (ii).

(ii)⇒(i): Assume (ii). This time we want to prove (1). So, suppose that x ∈ M.
Choose y ∈ M as in (ii). Now suppose that z ∈ M and ∀w ∈ M(w ∈ z → w ∈ x). Then
the transitivity of M implies that ∀w(w ∈ z → w ∈ x), i.e., z ⊆ x. So by (ii), z ∈ y, as
desired.

We defer the discussion of the infinity axiom until we talk about absoluteness.

Theorem 14.15. Suppose that M is a transitive class, and for every formula ϕ with free
variables among x, y, A, w1, . . . , wn and for any A,w1, . . . , wn ∈ M the following implica-
tion holds:

∀x ∈ A∃!y[y ∈ M ∧ ϕM(x, y, A, w1, . . . , wn)] implies that

∃Y ∈ M[{y ∈ M : ∃x ∈ AϕM(x, y, A, w1, . . . , wn)} ⊆ Y ]].

Then the replacement axioms hold in M.

Proof. Assume the hypothesis of the theorem. We write out the relativized version
of an instance of the replacement axiom in full, remembering to replace the quantifier ∃!
by its definition:

∀A ∈ M∀w1 ∈ M . . .∀wn ∈ M

[∀x ∈ M[x ∈ A→ ∃y ∈ M[ϕM(x, y, A, w1, . . . , wn) ∧ ∀u ∈ M

[ϕM(x, u, A, w1, . . . , wn) → y = u]]] →
∃Y ∈ M∀x ∈ M[x ∈ A→ ∃y ∈ M[y ∈ Y ∧ ϕM(x, y, A, w1, . . . , wn)]]].

To prove this, assume that A,w1, . . . , wn ∈ M and

∀x ∈ M[x ∈ A→ ∃y ∈ M[ϕM(x, y, A, w1, . . . , wn) ∧ ∀u ∈ M

[ϕM(x, y, A, w1, . . . , wn) → y = u]]].
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Since M is transitive, we get

∀x ∈ A∃y ∈ M[ϕM(x, y, A, w1, . . . , wn) ∧ ∀u ∈ M[ϕM(x, y, A, w1, . . . , wn) → y = u]],

so that

(1) ∀x ∈ A∃!y[y ∈ M ∧ ϕM(x, y, A, w1, . . . , wn)].

Hence by the hypothesis of the theorem we get Y ∈ M such that

(2) {y ∈ M : ∃x ∈ AϕM(x, y, A, w1, . . . , wn)} ⊆ Y.

Suppose that x ∈ M and x ∈ A. By (1) we get y ∈ M such that ϕM(x, y, A, w1, . . . , wn).
Hence by (2) we get y ∈ Y , as desired.

Theorem 14.16. If M is a transitive class, then the foundation axiom holds in M.

Proof. The foundation axiom, with the defined notion ∅ eliminated, is

∀x[∃y(y ∈ x) → ∃y[y ∈ x ∧ ∀z ∈ y(z /∈ x)]].

Hence the relativized version is

∀x ∈ M[∃y ∈ M(y ∈ x) → ∃y ∈ M[y ∈ x ∧ ∀z ∈ M[z ∈ y → z /∈ x]]].

So, take any x ∈ M, and suppose that there is a y ∈ M such that y ∈ x. Choose y ∈ x
so that y ∩ x = ∅. Then y ∈ M by transitivity. If z ∈ M and z ∈ y, then z /∈ x, as
desired.

Absoluteness

To treat the infinity axiom and more complicated statements, we need to go into the
important notion of absoluteness. Roughly speaking, a formula is absolute provided that
its meaning does not change in going from one set to a bigger one, or vice versa. The exact
definition is as follows.

• Suppose that M ⊆ N are classes and ϕ(x1, . . . , xn) is a formula of our set-theoretical
language. We say that ϕ is absolute for M,N iff

∀x1, . . . , xn ∈ M[ϕM(x1, . . . , xn) iff ϕN(x1, . . . , xn)].

An important special case of this notion occurs when N = V. Then we just say that ϕ is
absolute for M.

More formally, we associate with three formulas µ(y, w1, . . . , wm), ν(y, w1, . . . , wm),
ϕ(x1, . . . , xn) another formula “ϕ is absolute for µ, ν”, namely the following formula:

∀x1, . . . , xn




∧

1≤i≤n
µ(xi) → [ϕµ(x1, . . . , xn) ↔ ϕν(x1, . . . , xn)]



 .
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In full generality, very few formulas are absolute; for example, see Exercise E14.15. Usually
we need to assume that the sets are transitive. Then there is an important set of formulas
all of which are absolute; this class is defined as follows.

• The set of ∆0-formulas is the smallest set Γ of formulas satisfying the following conditions:
(a) Each atomic formula is in Γ.
(b) If ϕ and ψ are in Γ, then so are ¬ϕ and ϕ ∧ ψ.
(c) If ϕ is in Γ, then so are ∃x ∈ yϕ and ∀x ∈ yϕ.

Recall here that ∃x ∈ yϕ and ∀x ∈ yϕ are abbreviations for ∃x(x ∈ y ∧ ϕ) and ∀x(x ∈
y → ϕ) respectively.

Theorem 14.17. If M is transitive and ϕ is ∆0, then ϕ is absolute for M.

Proof. We show that the collection of formulas absolute for M satisfies the con-
ditions defining the set ∆0. Absoluteness is clear for atomic formulas. It is also clear
that if ϕ and ψ are absolute for M, then so are ¬ϕ and ϕ ∧ ψ. Now suppose that
ϕ is absolute for M; we show that ∃x ∈ yϕ is absolute for M. Implicitly, ϕ can in-
volve additional parameters w1, . . . , wn. Assume that y, w1, . . . , wn ∈ M. First sup-
pose that ∃x ∈ yϕ(x, y, w1, . . . , wn). Choose x ∈ y so that ϕ(x, y, w1, . . . , wn). Since
M is transitive, x ∈ M. Hence by the “inductive assumption”, ϕM(x, y, w1, . . . , wn)
holds. This shows that (∃x ∈ yϕ(x, y, w1, . . . , wn))M. Conversely suppose that (∃x ∈
yϕ(x, y, w1, . . . , wn))M. Thus ∃x ∈ M[x ∈ y ∧ ϕM(x, y, w1, . . . , wn). By the inductive
assumption, ϕ(x, y, w1, . . . , wn). So this shows that ∃x ∈ yϕ(x, y, w1, . . . , wn). The case
∀x ∈ yϕ is treated similarly.

Ordinals and special kinds of ordinals are absolute since they could have been defined using
∆0 formulas:

Theorem 14.18. The following are absolute for any transitive class:

(i) x is an ordinal (iii) x is a successor ordinal (v) x is ω
(ii) x is a limit ordinal (iv) x is a finite ordinal (vi) x is i (each i < 10)

Proof.

x is an ordinal ↔∀y ∈ x∀z ∈ y[z ∈ x] ∧ ∀y ∈ x∀z ∈ y∀w ∈ z[w ∈ y];

x is a limit ordinal ↔∃y ∈ x[y = y] ∧ x is an ordinal ∧ ∀y ∈ x∃z ∈ x(y ∈ z);

x is a successor ordinal ↔x is an ordinal ∧ x 6= ∅ ∧ x is not a limit ordinal;

x is a finite ordinal ↔∀y[y /∈ x] ∨ (x is a successor ordinal

∧ ∀y ∈ x(∀z[z /∈ y] ∨ y is a successor ordinal));

x = ω ↔x is a limit ordinal ∧ ∀y ∈ x(y is a finite ordinal);

finally, we do (vi) by induction on i. The case i = 0 is clear. Then

y = i+ 1 ↔ ∃x ∈ y[x = i ∧ ∀z ∈ y[z ∈ x ∨ z = x] ∧ ∀z ∈ x[z ∈ y] ∧ x ∈ y].

169



The following theorem, while obvious, will be very useful in what follows.

Theorem 14.19. Suppose that S is a set of sentences in our set-theoretic language, and
M and N are classes which are models of S. Suppose that

S |= ∀x1, . . . , xn[ϕ(x1, . . . , xn) ↔ ψ(x1, . . . , xn)].

Then ϕ is absolute for M,N iff ψ is.

Of course we will usually apply this when S is a subset of ZFC.
Recall that all of the many definitions that we have made in our development of set

theory are supposed to be eliminable in favor of our original language. To apply Theorem
14.19, we should note that the development of the very elementary set theory in Chapter 6
did not use the axiom of choice or the axiom of infinity. We let ZF be our axioms without
the axiom of choice, and ZF − Inf the axioms ZF without the axiom of infinity.

The status of the functions that we have defined requires some explanation. Whenever
we defined a function F of n arguments, we have implicitly assumed that there is an
associated formula ϕ whose free variables are among the first n + 1 variables, so that the
following is derivable from the axioms assumed at the time of defining the function:

∀v0, . . . , vn−1∃!vnϕ(v0, . . . , vn).

Recall that “∃!vn” means “there is exactly one vn”. Now if we have a class model M in
which this sentence holds, then we can define FM by setting, for any x0, . . . , xn−1 ∈ M,

FM(x0, . . . , xn−1) = the unique y such that ϕM(x0, . . . , xn−1, y).

In case M satisfies the indicated sentence, we say that F is defined in M. Given two class
models M ⊆ N in which F is defined, we say that F is absolute for M,N provide that ϕ
is. Note that for F to be absolute for M,N it must be defined in both of them.

Proposition 14.20. Suppose that M ⊆ N are models in which F is defined. Then the
following are equivalent:

(i) F is absolute for M,N.
(ii) For all x0, . . . , xn−1 ∈ M we have FM(x0, . . . , xn−1) = FN(x0, . . . , xn−1).

Proof. Let ϕ be as above.
Assume (i), and suppose that x0, . . . , xn−1 ∈ M. Let y = FM(x0, . . . , xn−1). Then y ∈

M, and ϕM(x0, . . . , xn−1, y), so by (i), ϕN(x0, . . . , xn−1, y). Hence FN(x0, . . . , xn−1) = y.
Assume (ii), and suppose that x0, . . . , xn−1, y ∈ M. Then

ϕM(x0, . . . , xn−1, y) iff FM(x0, . . . , xn−1) = y (definition of F)

iff FN(x0, . . . , xn−1) = y (by (ii))

iff ϕN(x0, . . . , xn−1, y) (definition of F).

The following theorem gives many explicit absoluteness results, and will be used frequently
along with some similar results below. Note that we do not need to be explicit about how
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the relations and functions were really defined in Chapter 6; in fact, we were not very
explicit about that in the first place.

Theorem 14.21. The following relations and functions were defined by formulas equiva-
lent to ∆0-formulas on the basis of ZF− Inf, and hence are absolute for all transitive class
models of ZF − Inf:

(i) x ∈ y (vi) (x, y) (xi) x ∪ {x}
(ii) x = y (vii) ∅ (xii) x is transitive
(iii) x ⊆ y (viii) x ∪ y (xiii)

⋃
x

(iv) {x, y} (ix) x ∩ y (xiv)
⋂
x (with

⋂ ∅ = ∅)
(v) {x} (x) x\y
Note here, for example, that in (iv) we really mean the 2-place function assigning to sets
x, y the unordered pair {x, y}.

Proof. (i) and (ii) are already ∆0 formulas. (iii):

x ⊆ y ↔ ∀z ∈ x(z ∈ y).

(iv):
z = {x, y} ↔ ∀w ∈ z(w = x ∨ w = y) ∧ x ∈ z ∧ y ∈ z.

(v): Similarly. (vi):

z = (x, y) ↔ ∀w ∈ z[w = {x, y} ∨ w = {x}] ∧ ∃w ∈ z[w = {x, y}] ∧ ∃w ∈ z[w = {x}].

(vii):
x = ∅ ↔ ∀y ∈ x(y 6= y).

(viii):

z = x ∪ y ↔ ∀w ∈ z(w ∈ x ∨ w ∈ y) ∧ ∀w ∈ x(w ∈ z) ∧ ∀w ∈ y(w ∈ z).

(ix):
z = x ∩ y ↔ ∀w ∈ z(w ∈ x ∧ w ∈ y) ∧ ∀w ∈ x(w ∈ y → w ∈ z).

(x):
z = x\y ↔ ∀w ∈ z(w ∈ x ∧ w /∈ y) ∧ ∀w ∈ x(x /∈ y → w ∈ z).

(xi):
y = x ∪ {x} ↔ ∀w ∈ y(w ∈ x ∨ w = x) ∧ ∀w ∈ x(w ∈ y) ∧ x ∈ y.

(xii):
x is transitive ↔ ∀y ∈ x(y ⊆ x).

(xiii):

y =
⋃

x↔ ∀w ∈ y∃z ∈ x(w ∈ z) ∧ ∀w ∈ x(w ⊆ y).
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(xiv):

y =
⋂

x↔ [x 6= ∅ ∧ ∀w ∈ y∀z ∈ x(w ∈ z)

∧ ∀w ∈ x∀t ∈ w[∀z ∈ x(t ∈ z) → t ∈ y] ∨ [x = ∅ ∧ y = ∅].

A stronger form of Theorem 14.21. For each of the indicated relations and functions,
we do not need M to be a model of all of ZF − Inf. In fact, we need only finitely many
of the axioms of ZF − Inf: enough to prove the uniqueness condition for any functions
involved, and enough to prove the equivalence of the formula with a ∆0-formula, since
∆0 formulas are absolute for any transitive class model. To be absolutely rigorous here,
one would need an explicit definition for each relation and function symbol involved, and
then an explicit proof of equivalence to a ∆0 formula; given these, a finite set of axioms
becomes clear. And since any of the relations and functions of Theorem 14.21 require only
finitely many basic relations and functcions, this can always be done. For Theorem 14.21
it is easy enough to work this all out in detail. We will be interested, however, in using
this fact for more complicated absoluteness results to come.

As an illustration, however, we do some details for the function {x, y}. The definition
involved is naturally taken to be the following:

∀x, y, z[z = {x, y} ↔ ∀w[w ∈ z ↔ w = x ∨ x = y]].

The axioms involved are the pairing axiom and one instance of the comprehension axiom:

∀x, y∃w[x ∈ w ∧ y ∈ w];

∀x, y, w∃z∀u(u ∈ z ↔ u ∈ w ∧ (u = x ∨ u = y)).

{x, y} is then absolute for any transitive class model of these three sentences, by the proof
of (iv) in Theorem 14.21, for which they are sufficient.

For further absoluteness results we will not reduce to ∆0 formulas. We need the
following extensions of the absoluteness notion.

• Suppose that M ⊆ N are classes, and ϕ(w1, . . . , wn) is a formula. Then we say
that ϕ is absolute upwards for M,N iff for all w1, . . . , wn ∈ M, if ϕM(w1, . . . , wn),
then ϕN(w1, . . . , wn). It is absolute downwards for M,N iff for all w1, . . . , wn ∈ M, if
ϕN(w1, . . . , wn), then ϕM(w1, . . . , wn). Thus ϕ is absolute for M,N iff it it is both abso-
lute upwards for M,N and absolute downwards for M,N.

Theorem 14.22. Suppose that ϕ(x1, . . . , xn, w1, . . . , wm) is absolute for M,N. Then
(i) ∃x1, . . .∃xnϕ(x1, . . . , xn, w1, . . . , wm) is absolute upwards for M,N.
(ii) ∀x1, . . .∀xnϕ(x1, . . . , xn, w1, . . . , wm) is absolute downwards for M,N.

Theorem 14.23. Absoluteness is preserved under composition. In detail: suppose that
M ⊆ N are classes, and the following are absolute for M,N:

ϕ(x1, . . . , xn);
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F, an n-ary function ;
For each i = 1, . . . , n, an m-ary function Gi.

Then the following are absolute:
(i) ϕ(G1(x1, . . . , xm), . . . ,Gn(x1, . . . , xm)).
(ii) The m-ary function assigning to x1, . . . , xm the value

F(G1(x1, . . . , xm), . . . ,Gn(x1, . . . , xm)).

Proof. We use Theorem 14.22:

ϕ(G1(x1, . . . , xm), . . . ,Gn(x1, . . . , xm)) ↔∃z1, . . .∃zn
[

ϕ(z1, . . . , zn)

∧
n∧

i=1

(zi = Gi(x1, . . . , xm))

]

;

ϕ(G1(x1, . . . , xm), . . . ,Gn(x1, . . . , xm)) ↔∀z1, . . .∀zn
[ n∧

i=1

(zi = Gi(x1, . . . , xm))

→ ϕ(z1, . . . , zn)

]

;

y = F(G1(x1, . . . , xm), . . . ,Gn(x1, . . . , xm)) ↔∃z1, . . .∃zn
[

(y = F(z1, . . . , zn))

∧
n∧

i=1

(zi = Gi(x1, . . . , xm))

]

;

y = F(G1(x1, . . . , xm), . . . ,Gn(x1, . . . , xm)) ↔∀z1, . . .∀zn
[ n∧

i=1

(zi = Gi(x1, . . . , xm))

→ (y = F(z1, . . . , zn))

]

.

Theorem 14.24. Suppose that M ⊆ N are classes, ϕ(y, x1, . . . , xm, w1, . . . , wn) is abso-
lute for M,N, and F and G are n-ary functions absolute for M,N. Then the following
are also absolute for M,N:

(i) z ∈ F(x1, . . . , xm).
(ii) F(x1, . . . , xm) ∈ z.
(iii) ∃y ∈ F(x1, . . . , xm)ϕ(y, x1, . . . , xm, w1, . . . , wn).
(iv) ∀y ∈ F(x1, . . . , xm)ϕ(y, x1, . . . , xm, w1, . . . , wn).
(v) F(x1, . . . , xm) = G(x1, . . . , xm).
(vi) F(x1, . . . , xm) ∈ G(x1, . . . , xm).

Proof.

z ∈ F(x1, . . . , xm) ↔ ∃w[z ∈ w ∧ w = F(x1, . . . , xm)];

↔ ∀w[w = F(x1, . . . , xm) → z ∈ w];

F(x1, . . . , xm) ∈ z ↔ ∃w ∈ z[w = F(x1, . . . , xm)];
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∃y ∈ F(x1, . . . , xm)ϕ(y, x1, . . . , xm, w1, . . . , wn)

↔ ∃w∃y ∈ w[w = F(x1, . . . , xm) ∧ ϕ(y, x1, . . . , xm, w1, . . . , wn)];

↔ ∀w[w = F(x1, . . . , xm) → ∃y ∈ wϕ(y, x1, . . . , xm, w1, . . . , wn)];

(iv)–(vi) are proved similarly.

We now give some more specific absoluteness results.

Theorem 14.25. The following relations and functions are absolute for all transitive class
models of ZF − Inf:

(i) x is an ordered pair (iv) dmn(R) (vii) R(x)
(ii) A×B (v) rng(R) (viii) R is a one-one function
(iii) R is a relation (vi) R is a function (ix) x is an ordinal

Note concerning (vii): This is supposed to have its natural meaning if R is a function and
x is in its domain; otherwise, R(x) = ∅.

Proof.

x is an ordered pair ↔
(

∃y ∈
⋃

x
)(

∃z ∈
⋃

x
)

[x = (y, z)];

y = A×B ↔(∀a ∈ A)(∀b ∈ B)[(a, b) ∈ y]∧
(∀z ∈ y)(∃a ∈ A)(∃b ∈ B)[z = (a, b)];

R is a relation ↔∀x ∈ R[x is an ordered pair];

x = dmn(R) ↔(∀y ∈ x)
(

∃z ∈
⋃⋃

R
)

[(x, z) ∈ R]∧
(

∀y ∈
⋃⋃

R
)(

∀z ∈
⋃⋃

R
)

[(y, z) ∈ R→ y ∈ x];

x = rng(R) ↔(∀y ∈ x)
(

∃z ∈
⋃⋃

R
)

[(z, x) ∈ R]∧
(

∀y ∈
⋃⋃

R
)(

∀z ∈
⋃⋃

R
)

[(y, z) ∈ R→ z ∈ x];

R is a function ↔R is a relation ∧
(

∀x ∈
⋃⋃

R
)(

∀y ∈
⋃⋃

R
)

(

∀z ∈
⋃⋃

R
)

[(x, y) ∈ R ∧ (x, z) ∈ R→ y = z];

y = R(x) ↔[R is a function ∧ (x, y) ∈ R]∨
[R is not a function ∧ (∀z ∈ y)(z 6= z)]∨
[x /∈ dmn(R) ∧ (∀z ∈ y)(z 6= z)];

R is a one-one function ↔R is a function∧
∀x ∈ dmn(R)∀y ∈ dmn(R)[R(x) = R(y) → x = y];

x is an ordinal ↔x is transitive ∧ (∀y ∈ x)(y is transitive).
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Theorem 14.26. Suppose that M is a transitive class model of ZF − Inf and ω ∈ M.
Then the infinity axiom holds in M.

Proof. We have
∃x ∈ M[∅ ∈ x ∧ ∀y ∈ x(y ∪ {y} ∈ x)],

so by the absoluteness of the notions here we get

[∃x[∅ ∈ x ∧ ∀y ∈ x(y ∪ {y} ∈ x)]]M,

which means that the infinity axiom holds in M.

Theorem 14.27. If M is a transitive class model of ZF, then ∅, ω ∈ M and M is closed
under the following set-theoretic operations:

(i) ∪ (iv) (a, b) 7→ {a, b} (vii)
⋃

(ii) ∩ (v) (a, b) 7→ (a, b) (viii)
⋂

(iii) (a, b) 7→ a\b (vi) x 7→ x ∪ {x}
Moreover, ω + 1 ⊆ M and [M]<ω ⊆ M.

Proof. M has elements x, y such that (x = ∅)M and (y = ω)M. So x = ∅ and y = ω
by absoluteness. (See Theorem 14.18) (i)–(viii) are all very similar, so we only treat (i).
Let a, b ∈ M. Then because M |= ZF, there is a c ∈ M such that (c = a ∪ b)M. By
absoluteness, c = a ∪ b.

Each i ∈ ω is in M by transitivity. Hence ω + 1 ⊆ M. Finally, we show by induction
on n that if x ⊆ M and |x| = n then x ∈ M. This is clear for n = 0. Now suppose
inductively that x ⊆ M and |x| = n+ 1. Let a ∈ x and set y = x\{a}. So |y| = n. Hence
y ∈ M by the inductive hypothesis. Hence x = y ∪ {a} ∈ M by previous parts of this
theorem.

Our final abstract absoluteness result concerns recursive definitions.

Theorem 14.28. Suppose that R is a class relation which is well-founded and set-like on
A, and G : A × V → V. Let F be given by Theorem 8.7: for all x ∈ A,

F(x) = G(x,F ↾ pred
AR

(x).

Let M be a transitive class model of ZF, and assume the following additional conditions
hold:

(i) G, R, and A are absolute for M.
(ii) (R is set-like on A)M.
(iii) ∀x ∈ M ∩ A[predAR(x) ⊆ M].

Conclusion: F is absolute for M.

Proof. First we claim

(1) (R is well-founded on A)M.
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In fact, by absolutenss RM = R ∩ (M × M) and AM = A ∩ M, so it follows that in
M every nonempty subset of AM has an RM-minimal element. Hence we can apply the
recursion theorem within M to define a function H : AM → M such that for all x ∈ AM,

H(x) = GM(x,H ↾ predM

AMRM(x)).

We claim that H = F ↾ AM, which will prove the theorem. In fact, suppose that x is
R-minimal such that x ∈ AM and F(x) 6= H(x). Then using absoluteness again,

H(x) = GM(x,H ↾ predM

AMRM(x)) = G(x,H ↾ predAR(x) = F(x),

contradiction.

Theorem 14.28 is needed for many deeper applications of absoluteness. We illustrate its
use by the following result.

Theorem 14.29. The following are absolute for transitive class models of ZF.
(i) α+ β (ordinal addition) (iv) rank(x)
(ii) α · β (ordinal multiplication) (v) trcl(x)
(iii) αβ (ordinal exponentiation)

Proof. In each case it is mainly a matter of identifying A,R,G to which to apply
Theorem 14.28; checking the conditions of that theorem are straightforward.

(i): A = On, R = {(α, β) : α, β ∈ On, and α ∈ β}, and G : On × V → V is defined
as follows:

G(α, f) =







α if f = ∅,
f(β) ∪ {f(β)} if f is a function with domain an ordinal β + 1,
⋃

γ∈β f(γ) if f is a function with domain a limit ordinal β,
∅ otherwise.

(ii) and (iii) are treated similarly. For (iv), take R = {(x, y) : x ∈ y}, A = V, and define
G : V × V → V by setting, for all x, f ∈ V,

G(x, f) =

{⋃

y∈x(f(y) ∪ {f(y)}) if f is a function with domain x,
∅ otherwise.

For (v), let R = {(i, j) : i, j ∈ ω and i < j}, A = ω, and define G : ω×V → V by setting,
for all m ∈ ω and f ∈ V,

G(m, f) =







x if m = 0,
f(
⋃
m) ∪⋃ f(

⋃
m) if m > 0 and f is a function with domain m,

∅ otherwise

Then the function F obtained from Theorem 14.28 is absolute for transitive class models
of ZF, and trcl(x) =

⋃

m∈ω F(m).
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Theorem 14.30. If M is a transitive model of ZF, then:
(i) PM(x) = P(x) ∩ M for any x ∈ M;
(ii) VM

α = Vα ∩ M for any α ∈ M.

Proof. (i): Assume that x ∈ M. Then for any set y,

y ∈ P
M(x) iff y ∈ M and (y ⊆ x)M

iff y ∈ M and y ⊆ x

iff y ∈ P(x) ∩ M.

(ii): Assume that α ∈ M. Then for any set x,

x ∈ VM

α iff x ∈ M and rankM(x) < α

iff x ∈ M and rank(x) < α

iff x ∈ M and rankM(x) < α

iff x ∈ Vα ∩ M

Proposition 14.31. “R well-orders A” is absolute for models of ZF.

Proof. Let M be a model of ZF. Suppose that R,A ∈ M. Clearly

(R well-orders A) iff ∃x∃f [x is an ordinal ∧ f : x→ A is a bijection

∧ ∀β, γ ∈ x[β < γ iff (f(β), f(γ)) ∈ R]].

From this and elementary absoluteness results it is clear that (R well-orders A)M implies
that (R well-orders A). Now suppose that (R well-orders A). Let x and f be such that x
is an ordinal, f : x→ A is a bijection, and ∀β, γ ∈ x[β < γ iff (f(β), f(γ)) ∈ R]. Since M
is a model of ZF, let y, g ∈ M be such that in M we have: y is an ordinal, g : y → A is a
bijection, and ∀β, γ ∈ y[β < γ iff (g(β), g(γ)) ∈ R]. By simple absoluteness results, this is
really true. Then x = y and f = g by the uniqueness conditions in 9.12–9.14.

Consistency of no inaccessibles

Theorem 14.32. If ZFC is consistent, then so is ZFC+“there do not exist uncountable
inaccessible cardinals”.

Proof. For brevity we interpret “inaccessible” to mean “uncountable and inaccessi-
ble”. Let

M = {x : ∀α[α inaccessible → x ∈ Vα]}
Thus M is a class, and M ⊆ Vα for every inaccessible α (if there are such). We claim that
M is a model of ZFC+“there do not exist uncountable inaccessible cardinals”. To prove
this, we consider two possibilities.

Case 1. M = V. Then of course M is a model of ZFC. Suppose that α is inaccessible.
Then since M = V we have V ⊆ Vα, which is not possible, since Vα is a set. Thus M is a
model of ZFC + “there do not exist uncountable inaccessible cardinals”.
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Case 2. M 6= V. Let x be a set which is not in M. Then there is an ordinal α such
that α is inaccessible and x /∈ Vα. In particular, there is an inaccessible α, and we let κ
be the least such.

(1) M = Vκ.

In fact, if x ∈ M, then x ∈ Vα for every inaccessible α, so in particular x ∈ Vκ. On the
other hand, if x ∈ Vκ, then x ∈ Vα for every α ≥ κ, so x ∈ Vα for every inaccessible α, and
so x ∈ M. So (1) holds.

Now we show that Vκ is as desired. First, we need to check all the ZFC axioms. Here
we use Theorems 14.10–14.16 and 14.26. Now Vκ is transitive, so by Theorem 14.10, the
extensionality axiom holds in Vκ.

For the comprehension axioms, we are going to apply Theorem 14.11. Suppose that ϕ
is a formula with free variables among x, z, w1, . . . , wn, and we are given z, w1, . . . , wn ∈ Vκ.
Let A = {x ∈ z : ϕVκ(x, z, w1, . . . , wn)}. Then A ⊆ z. Say z ∈ Vβ with β < κ. Then
A ⊆ z ⊆ Vβ , so A ∈ P(Vβ) = Vβ+1 ⊆ Vκ. It follows from Theorem 14.11 that the
comprehension axioms hold in Vκ.

Suppose that x, y ∈ Vκ. Say x, y ∈ Vβ with β < κ. Then {x, y} ⊆ Vβ , so {x, y} ∈
Vβ+1 ⊆ Vκ. By Theorem 14.12, the pairing axiom holds in Vκ.

Suppose that x ∈ Vκ. Say x ∈ Vβ with β < κ. Then
⋃
x ⊆ Vβ , so

⋃
x ∈ Vβ+1 ⊆ Vκ.

By Theorem 14.13, the union axiom holds in Vκ.
Suppose that x ∈ Vκ. Say x ∈ Vβ with β < κ. Then x ⊆ Vβ . Hence y ⊆ Vβ for

each y ⊆ x, so y ∈ P(Vβ) = Vβ+1 for each y ∈ P(x). This means that P(x) ⊆ Vβ+1, so
P(x) ∈ Vβ+2. By Theorem 14.14, the power set axiom holds in Vκ.

To treat the replacement axioms, we need the following fact:

(1) |Vβ| < κ for every β < κ.

We prove (1) by induction on β. We have |V0| = |ω| = ω < κ. If we have shown that
|Vβ | < κ, where β < κ, then |Vβ+1| = |P(Vβ)| = 2|Vβ| < κ. If we know that |Vγ | < κ for all
γ < β, where β < κ, then by the regularity of κ we have |Vβ| = |⋃γ<β Vγ | ≤

∑

γ<β |Vγ | <
κ.

Now for the replacement axioms, we will apply Theorem 14.15. So, suppose that ϕ is
a formula with free variables among x, y, A, w1, . . . , wn, any A,w1, . . . , wn ∈ Vκ, and

∀x ∈ A∃!y[y ∈ Vκ ∧ ϕVκ(x, y, A, w1, . . . , wn)].

For each x ∈ A, let yx be the unique set such that yx ∈ Vκ and ϕVκ(x, yx, A, w1, . . . , wn),
and let αx < κ be such that yx ∈ Vαx . Choose β < κ such that A ∈ Vβ . Then A ⊆ Vβ ,

and hence |A| ≤ |Vβ | < κ by (1). It follows that γ
def
=
⋃{αx : x ∈ A} < κ. Let

Y = {z ∈ Vγ : ∃x ∈ AϕVκ(x, z, A, w1, . . . , wn)}.

Thus Y ⊆ Vγ , so Y ∈ Vγ+1 ⊆ Vκ. Suppose that x ∈ A and z ∈ Vκ is such that
ϕVκ(x, z, A, w1, . . . , wn). Then z = yx by the above, and so z ∈ Y , as desired.

By Theorem 14.16, the foundation axiom holds in Vκ.
We have now shown that Vκ is a model of ZF − Inf.
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For the infinity axiom, note that ω ∈ Vω+1 ⊆ Vκ. Hence the infinity axiom holds in
Vκ by Theorem 14.26.

For the axiom of choice, suppose that A ∈ Vκ is a family of pairwise disjoint nonempty
sets, and let B ⊆ ⋃A have exactly one element in common with each member of A . Say
A ∈ Vα with α < κ. Then B ⊆ ⋃A ⊆ Vα, so B ∈ Vα+1 ⊆ Vκ, and the axiom of choice
thus holds in Vκ.

So Vκ is a model of ZFC.
Finally, suppose that x ∈ Vκ and (x is an inaccessible cardinal)Vκ ; we want to get

a contradiction. In particular, (x is an ordinal)Vκ , so by absoluteness, x is an ordinal.
Absoluteness clearly implies that x is infinite. We claim that x is a cardinal. For, if
f : y → x is a bijection with y < x, then clearly f ∈ Vκ, and hence by absoluteness
(f : y → x is a bijection and y < x)Vα , contradiction. Similarly, x is regular; otherwise
there is an injection f : y → x with rng(f) unbounded in x, so clearly f ∈ Vκ, and
absolutenss again yields a contradiction. Thus x is a regular cardinal. Hence, since κ is
the smallest inaccessible, there is a y ∈ x such that there is a one-one function g from x
into P(y). Again, g ∈ Vκ, and easy absoluteness results contradicts (x is an inaccessible
cardinal)Vκ .

The Mostowski collapse

We describe an important procedure for obtaining structures (A,∈) from structures (A,R)
where R is not real membership.

Theorem 14.33. Suppose that R is well-founded and set-like on A. Then there is a class
function F : A → V such that for all a ∈ A,

F(a) = {F(b) : b ∈ A and (b, a) ∈ R}.

Proof. Define G : A × V → V by setting, for any a ∈ A and x ∈ V ,

G(a, x) =

{

rng(x) if x is a function with domain predAR(a),
∅ otherwise.

Then let F be obtained by the recursion theorem 8.7: F : A → V and for any a ∈ A,
F(a) = G(a,F ↾ predAR(a)). Thus for any a ∈ A, F(a) = rng(F ↾ predAR(a)) = {F(b) :
b ∈ A and (b, a) ∈ R}.

The Mostowski collapse of A,R is defined as the range of this function F.

Proposition 14.34. Suppose that R is well-founded and set-like on A, F is the Mostowski
collapsing function for A,R, and M is the Mostowski collapse. Then

(i) For all x, y ∈ A, if (x, y) ∈ R then G(x) ∈ G(y).
(ii) M is transitive.

Proof. (i) is obvious from the definition. If a ∈ b ∈ M, choose y ∈ A such that
b = G(y). Since a ∈ b, by the definition we have a ∈ rng(G) = M. So (ii) holds.
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The Mostowski collapse is especially important for extensional relations, defined as follows.

• Let R be a class relation and A a class. We say that R is extensional on A iff the
following generalization of the extensionality axiom holds:

∀x, y ∈ A[∀z ∈ A[(z, x) ∈ R iff (z, y) ∈ R] → x = y].

Proposition 14.35. Suppose that R is well-founded and set-like on A. Let F and M be
the Mostowski collapsing function and Mostowski collapse, respectively. Then the following
conditions are equivalent:

(i) R is extensional on A.
(ii) F is one-one, and for all x, y ∈ A we have (x, y) ∈ R iff F(x) ∈ F(y).

Proof. (i)⇒(ii): Assume (i). Suppose that F is not one-one. Then the set

(∗) {x ∈ A : there is a y ∈ A such that x 6= y and F(x) = F(y)}

is nonempty, and we take an R-minimal element of this set. Also, let y ∈ A with x 6= y
and F(x) = F(y). Since both x and y are in A, and x 6= y, the extensionality condition
gives two cases.

Case 1. There is a z ∈ A such that (z, x) ∈ R and (z, y) /∈ R. Since (z, x) ∈ R, it
follows that z is not in the set (∗). Now F(z) ∈ F(x) by Proposition 14.34(i), so the fact
that F(x) = F(y) implies that F(z) ∈ F(y). Hence by definition of F we can choose w ∈ A
such that (w, y) ∈ R and F(z) = F(w). Then from z not in (∗) we infer that z = w, hence
(z, y) ∈ R, contradiction.

Case 2. There is a z ∈ A such that (z, y) ∈ R and (z, x) /∈ R. Since (z, y) ∈ R,
by Proposition 14.34(i) we get F(z) ∈ F(y) = F(x), and so there is a v ∈ A such that
(v, x) ∈ R and F(z) = F(v). Now v is not in (∗) by the minimality of x, so z = v and
(z, x) ∈ R, contradiction.

Therefore, F is one-one. Now the implication ⇒ in the second part of (ii) holds by
Proposition 14.34(i). Suppose now that F(x) ∈ F(y). Choose w ∈ A such that (w, y) ∈ R
and F(x) = F(w). Then x = w since F is one-one, so (x, y) ∈ R, as desired.

(ii)⇒(i): Assume (ii), and suppose that x, y ∈ A, and ∀z ∈ A[(z, x) ∈ R iff (z, y) ∈
R]. Take any u ∈ F(x). By the definition of F, choose z ∈ A such that (z, x) ∈ R and
u = F(z). Then also (z, y) ∈ R, so u = F(z) ∈ F(y). This shows that F(x) ⊆ F(y).
Similarly F(y) ⊆ F(x), so F(x) = F(y). Since F is one-one, it follows that x = y.

Theorem 14.36. Suppose that R is a well-founded class relation that is set-like and
extensional on a class A. Then there are unique F,M such that M is a transitive class
and F is an isomorphism from (A,R) onto (M,∈).

Note that we have formulated this in the usual fashion for isomorphism of structures,
but of course we cannot form the ordered pairs (A,R) and (M,∈) if A,R,M are proper
classes. So we understand the above as an abbreviation for a longer statement, that F is
a bijection from A onto M, etc.
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Proof of 14.36: The existence of F and M is immediate from Propositions 14.33
and 14.35. Now suppose that F′ and M′ also work. Since M is the range of F and M′

is the range of F′, it suffices to show that F = F′. Suppose not. Let a be R-minimal
such that F(a) 6= F′(a). Take any x ∈ F(a). Then since M is transitive and F(a) ∈ M,
it follows that x ∈ M. And since F maps onto M, it then follows that there is a b ∈ A
such that F(b) = x. So F(b) ∈ F(a) so, by the isomorphism property, (b, a) ∈ R. Then
the minimality of a yields That F′(b) = F(b) ∈ F(a). But also (b, a) ∈ R implies that
F′(b) ∈ F′(a) by the isomorphism property, so x = F(b) ∈ F′(a). Thus we have proved
that F(a) ⊆ F′(a). By symmetry F′(a) ⊆ F(a), so F(a) = F′(a), contradiction.

Reflection theorems

We now want to consider to what extent sentences can reflect to proper subclasses of V;
this is a natural extension of our considerations for absoluteness.

Lemma 14.37. Suppose that M and N are classes with M ⊆ N. Let ϕ0, . . . , ϕn be a list
of formulas such that if i ≤ n and ψ is a subformula of ϕi, then there is a j ≤ n such that
ϕj is ψ. Then the following conditions are equivalent:

(i) Each ϕi is absolute for M,N.
(ii) If i ≤ n and ϕi has the form ∀xϕj(x, y1, . . . , yt) with x, y1, . . . , yt exactly all the

free variables of ϕj, then

∀y1, . . . , yt ∈ M[∀x ∈ MϕN

j (x, y1, . . . , yt) → ∀x ∈ NϕN

j (x, y1, . . . , yt)].

Proof. (i)⇒(ii): Assume (i) and the hypothesis of (ii). Suppose that y1, . . . , yt ∈ M
and ∀x ∈ MϕN

j (x, y1, . . . , yt). Thus by absoluteness ∀x ∈ MϕM
j (x, y1, . . . , yt). Hence by

absoluteness again, ∀x ∈ NϕN
j (x, y1, . . . , yt)).

(ii)⇒(i): Assume (ii). We prove that ϕi is absolute for M,N by induction on the
length of ϕi. This is clear if ϕi is atomic, and it easily follows inductively if ϕi has the
form ¬ϕj or ϕj → ϕk. Now suppose that ϕi is ∀xϕj(x, y1, . . . , yt), and y1, . . . , yt ∈ M.
then

ϕM

i (y1, . . . , yt) ↔∀x ∈ MϕM

j (x, y1, . . . , yt) (definition of relativization)

↔∀x ∈ MϕN

j (x, y1, . . . , yt) (induction hypothesis)

↔∀x ∈ NϕN

j (x, y1, . . . , yt) (by (ii)

↔ϕN

i (y1, . . . , yt) (definition of relativization)

Theorem 14.38. Suppose that Z(α) is a set for every ordinal α, and the following
conditions hold:

(i) If α < β, then Z(α) ⊆ Z(β).
(ii) If γ is a limit ordinal, then Z(γ) =

⋃

α<γ Z(α).

Let Z =
⋃

α∈On
Z(α). Then for any formulas ϕ0, . . . , ϕn−1,

∀α∃β > α[ϕ0, . . . , ϕn−1 are absolute for Z(β),Z].
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Proof. Assume the hypothesis, and let an ordinal α be given. We are going to apply
Lemma 14.37 with N = Z, and we need to find an appropriate β > α so that we can take
M = Z(β) in 14.37.

We may assume that ϕ0, . . . , ϕn−1 is subformula-closed; i.e., if i < n, then every
subformula of ϕi is in the list. Let A be the set of all i < n such that ϕi begins with a
universal quantifier. Suppose that i ∈ A and ϕi is the formula ∀xϕj(x, y1, . . . , yt), where
x, y1, . . . , yt are exactly all the free variables of ϕj . We now define a class function Gi as
follows. For any sets y1, . . . , yt,

Gi(y1, . . . , yt) =

{

the least η such that ∃x ∈ Z(η)¬ϕZ
j (x, y1, . . . , yt) if there is such,

0 otherwise.

Then for each ordinal ξ we define

Fi(ξ) = sup{Gi(y1, . . . , yt) : y1, . . . , yt ∈ Z(ξ)};

note that this supremum exists by the replacement axiom.
Now we define a sequence γ0, . . . , γp, . . . of ordinals by induction on n ∈ ω. Let

γ0 = α+ 1. Having defined γp, let

γp+1 = max(γp+1, sup{Fi(ξ) : i ∈ A, ξ ≤ γp} + 1).

Finally, let β = supp∈ω γp. Clearly α < β and β is a limit ordinal.

(1) If i ∈ A, y1, . . . , yt ∈ Z(β), and ∃x ∈ Z¬ϕZ
i (x, y1, . . . , yt), then there is an x ∈ Z(β)

such that ¬ϕZ
i (x, y1, . . . , yt).

In fact, choose p such that y1, . . . , yt ∈ Z(γp). Then Gi(y1, . . . , yt) ≤ Fi(γp) < γp+1.
Hence an x as in (1) exists, with x ∈ Z(γp+1).

(1) clearly gives the desired conclusion.

Corollary 14.39. (The reflection theorem) For any formulas ϕ1, . . . , ϕn,

ZF |= ∀α∃β > α[ϕ1, . . . , ϕn are absolute for Vβ ].

Theorem 14.40. Suppose that Z is a class and ϕ1, . . . , ϕn are formulas. Then

∀X ⊆ Z∃A[X ⊆ A ⊆ Z and ϕ1, . . . , ϕn are absolute

for A,Z and |A| ≤ max(ω, |X |)].

Proof. We may assume that ϕ1, . . . , ϕn is subformula closed. For each ordinal α let
Z(α) = Z ∩ Vα. Clearly there is an ordinal α such that X ⊆ Vα, and hence X ⊆ Z(α).
Now we apply Theorem 14.38 to obtain an ordinal β > α such that

(1) ϕ1, . . . , ϕn are absolute for Z(β),Z.
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Let ≺ be a well-order of Z(β). Let B be the set of all i < n such that ϕi begins with a
universal quantifier. Suppose that i ∈ B and ϕi is the formula ∀xϕj(x, y1, . . . , yt), where
x, y1, . . . , yt are exactly all the free variables of ϕj . We now define a function Hi for each
i ∈ B as follows. For any sets y1, . . . , yt ∈ Z(β),

Hi(y1, . . . , yt) =

{

the ≺-least x ∈ Z(β) such that ¬ϕZ(β)
i (x, y1, . . . , yt) if there is such,

the ≺-least element of Z(β) otherwise.

Let A ⊆ Z(β) be closed under each function Hi, with X ⊆ A. We claim that A is as
desired. To prove the absoluteness, it suffices by Lemma 14.37 to take any formula ϕi with
i ∈ A, with notation as above, assume that y1, . . . , yt ∈ A and ∃x ∈ Z¬ϕZ

j (x, y1, . . . , yt),

and find x ∈ A such that ¬ϕZ
j (x, y1, . . . , yt). By (1) in the proof of Lemma 4.37, there is

an x ∈ Z(β) such that ¬ϕZ
j (x, y1, . . . , yt). Hence Hi(y1, . . . , yt) is an element of A such

that ¬ϕZ
j (Hi(y1, . . . , yt), y1, . . . , yt), as desired.

It remains only to check the cardinality estimate. This is elementary.

Lemma 14.41. Suppose that F is a bijection from A onto M, and for any a, b ∈ A we
have a ∈ b iff F(a) ∈ F(b). Then for any formula ϕ(x1, . . . , xn) and any x1, . . . , xn ∈ A,

ϕA(x1, . . . , xn) ↔ ϕM(F(x1), . . . ,F(xn)).

Proof. An easy induction on ϕ.

Theorem 14.42. Suppose that Z is a transitive class and ϕ0, . . . , ϕm−1 are sentences.
Suppose that X is a transitive subset of Z. Then there is a transitive set M such that
X ⊆M , |M | ≤ max(ω, |X |), and for every i < m, ϕMi ↔ ϕZ

i .

Proof. We may assume that the extensionality axiom is one of the ϕi’s. Now we
apply Theorem 14.40 to get a set A as indicated there. By Proposition 14.35, there is
a transitive set M and a bijection G from A onto M such that for any a, b ∈ A, a ∈ b
iff G(a) ∈ G(b). Hence all of the desired conditions are clear, except possibly X ⊆ M .
We show that G[X ] = X by proving that G(x) = x for all x ∈ X . In fact, suppose that
G(x) 6= x for some x ∈ X , and by the foundation axiom choose y such that G(y) 6= y while
G(z) = z for all z ∈ y. Then if z ∈ y we have z, y ∈ X ⊆ A, and hence z = G(z) ∈ G(y).
So y ⊆ G(y). If w ∈ G(y), then w ∈ M = rng(G), so we can choose z ∈ A such that
w = G(z). Then G(z) ∈ G(y), so z ∈ y. Hence w = G(z) = z and so w ∈ y. This gives
G(y) ⊆ y, and finishes the proof.

Corollary 14.43. Suppose that S is a set of sentences containing ZFC. Suppose also that
ϕ0, . . . , ϕn−1 ∈ S. Then

S |= ∃M
(

M is transitive, |M | = ω, and
∧

i<n

ϕMi

)

.

Proof. Take Z = V and X = ω in Theorem 14.42.
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The following corollary can be taken as a basis for working with countable transitive models
of ZFC.

Theorem 14.44. Suppose that S is a consistent set of sentences containing ZFC. Expand
the basic set-theoretic language by adding an individual constant M. Then the following
set of sentences is consistent:

S ∪ {M is transitive} ∪ {|M| = ω} ∪ {ϕM : ϕ ∈ S}.

Proof. Suppose that the indicated set is not consistent. Then there are ϕ0, . . . , ϕm−1

in S such that
S |= M is transitive and |M| = ω → ¬

∧

i<n

ϕM

i ;

it follows that

S |= ¬∃M

(

M is transitive, |M| = ω, and
∧

i<n

ϕM

i

)

,

contradicting Corollary 14.43.

EXERCISES

E14.1. Write out all the elements of Vα for α = 0, 1, 2, 3, 4.

E14.2. Define by recursion

S(α) =
⋃

β<α

P(S(β))

for every ordinal α. Prove that Vα = S(α) for every ordinal α.

E14.3. Determine exactly the ranks of the following sets in terms of the ranks of the sets
entering into their definitions. In some cases the rank is not completely determined by the
ranks of the constituents; in such cases, describe all possibilities.

(i) {x} (iv) x ∪ y (vii)
⋃
x (x) R−1

(ii) {x, y} (v) x ∩ y (viii) dmn(R)
(iii) (x, y) (vi) x\y (ix) P(x)

E14.4. Define xRy iff (x, 1) ∈ y. Show that R is well-founded and set-like on V.

E14.5. (Continuing E14.4) By recursion let y̌ = {(x̌, 1) : x ∈ y} for any set y. Let F be the
Mostowski collapsing function for R,V in exercise E14.4. Prove that F(y̌) = y for every
set y.

E14.6. Define xRy iff x ∈ trcl(y). Show that R is well-founded and set like on V.

E14.7. (Continuing exercise E14.6) Let F be the Mostowski collapsing function for R,V.
Show that F(x) = rank(x) for every set x.

E14.8. Prove that if a is transitive, then {rank(b) : b ∈ a} is an ordinal.
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E14.9. Show that for any set a we have rank(trcl(a)) = rank(a).

E14.10. For any infinite cardinal κ, let H(κ) be the set of all x such that |trcl(x)| < κ.
Prove that Vω = H(ω). (H(ω) is the collection of all hereditarily finite sets.) Hint:
Vω ⊆ H(ω) is easy. For the other direction, suppose that x ∈ H(ω), let t = trcl(x), and
let S = {rank(y) : y ∈ t}. Show that S is an ordinal.

E14.11. Which axioms of ZFC are true in On?

E14.12. Show that the power set operation is absolute for Vα for α limit.

E14.13. Let M be a countable transitive model of ZFC. Show that the power set operation
is not absolute for M .

E14.14. Show that Vω is a model of ZFC − Inf.

E14.15. Show that the formula ∃x(x ∈ y) is not absolute for all nonempty sets, but it is
absolute for all nonempty transitive sets.

E14.16. Show that the formula ∃z(x ∈ z) is not absolute for every nonempty transitive
set.

E14.17. A formula is Σ1 iff it has the form ∃xϕ with ϕ a ∆0 formula; it is Π1 iff it has
the form ∀xϕ with ϕ a ∆0 formula.

(i) Show that “X is countable” is equivalent on the basis of ZF to a Σ1 formula.
(ii) Show that “α is a cardinal” is equivalent on the basis of ZF to a Π1 formula.

E14.18. Prove that if κ is an infinite cardinal, then H(κ) ⊆ Vκ.

E14.19. Prove that for κ regular, H(κ) = Vκ iff κ = ω or κ is inaccessible.

E14.20. Assume that κ is an infinite cardinal. Prove the following:
(a) H(κ) is transitive.
(b) H(κ) ∩ On = κ.
(c) If x ∈ H(κ), then

⋃
x ∈ H(κ).

(d) If x, y ∈ H(κ), then {x, y} ∈ H(κ).
(e) If y ⊆ x ∈ H(κ), then y ∈ H(κ).
(f) If κ is regular and x is any set, then x ∈ H(κ) iff x ⊆ H(κ) and |x| < κ.

E14.21. Show that if κ is regular and uncountable, then H(κ) is a model of all of the ZFC
axioms except possibly the power set axiom.
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15. Generic extensions and forcing

In this chapter we give the basic definitions and facts about generic extensions and forcing.
Uses of these things will occupy much of remainder of these notes. We use “c.t.m.” for
“countable transitive model”; see Theorem 14.44.

Let P = (P,≤, 1) be a forcing order. A filter on P is a subset G of P such that the
following conditions hold:

(1) For all p, q ∈ G there is an r ∈ G such that r ≤ p and r ≤ q.

(2) For all p ∈ G and q ∈ P , if p ≤ q then q ∈ G.

Now let M be a c.t.m. of ZFC and let P = (P,≤, 1) ∈M be a forcing order. We say that
G is P-generic over M provided that the following conditions hold:

(3) G is a filter on P.

(4) For every dense D ⊆ P such that D ∈M we have G ∩D 6= ∅.

The definition of generic filter just given embodies a choice between two intuitive options.
The option chosen corresponds to thinking of stronger conditions—those containing more
information—as smaller in the forcing order. This may seen counter-intuitive, but it fits
nicely with the embedding of forcing orders into Boolean algebras, as we will see. Many
authors take the oppositite approach, considering stronger conditions as the greater ones.
Of course this requires a corresponding change in the definition of generic filter (and
denseness).

The following is the basic existence lemma for generic filters.

Lemma 15.1. If M is a c.t.m. of ZFC, P = (P,≤, 1) ∈M is a forcing order, and p ∈ P ,
then there is a G which is P-generic over M and p ∈ G.

Proof. Let 〈Dn : n ∈ ω〉 enumerate all of the dense subsets of P which are in M . We
now define a sequence 〈qn : n ∈ ω〉 by recursion. Let q0 = p. If qn ∈ P has been defined,
choose qn+1 ∈ Dn with qn+1 ≤ qn. Thus p = q0 ≥ q1 ≥ · · ·. Now we define

G = {r ∈ P : qn ≤ r for some n ∈ ω}.

We check that G is as desired. For (1), suppose that r, s ∈ G. Say m,n ∈ ω with qm ≤ r
and qn ≤ s. By symmetry, say m ≤ n. Then qn ≤ r, s, and qn ∈ G, as desired.

Condition (2) is clear. Hence (3) holds.
For (4), let n ∈ ω. Then qn+1 ∈ G ∩Dn, as desired.

It is important to realize that usually generic filters are not in the ground model M ; this
is expressed in the following lemma.

Lemma 15.2. Suppose that M is a c.t.m. of ZFC and P = (P,≤, 1) ∈ M is a forcing
order. Assume the following:

(1) For every p ∈ P there are q, r ∈ P such that q ≤ p, r ≤ p, and q ⊥ r.

Also suppose that G is P-generic over M .
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Then G /∈M .

Proof. Suppose to the contrary that G ∈ M . Then also P\G ∈ M , since M is a
model of ZFC and by absoluteness. We claim that P\G is dense. In fact, given p ∈ P ,
choose q, r as in (1). Then q, r cannot both be in G, by the definition of filter. So one
at least is in P\G, as desired. Since P\G is dense and in M , we contradict G being
generic.

Most forcing orders used in forcing arguments satisfy the condition of Lemma 15.2; for
more details on this lemma, see the exercises.

If P is a forcing order, a subset E of P is predense iff every p ∈ P is compatible with
some member of E.

The following elementary proposition gives six equivalent ways to define generic filters.

Proposition 15.3. Suppose that M is a c.t.m. of ZFC and P is a forcing order in M .
Suppose that G ⊆ P satisfies condition (2), i.e., if p ∈ G and p ≤ q, then q ∈ G. Then the
following conditions are equivalent:

(i) G ∩D 6= ∅ whenever D ∈M and D is dense in P.
(ii) G ∩A 6= ∅ whenever A ∈M and A is a maximal antichain of P.
(iii) G ∩ E 6= ∅ whenever E ∈M and E is predense in P.

Moreover, suppose that G satisfies (2) and one, hence all, of the conditions (i)–(iii). Then
G is P-generic over M iff the following condition holds:

(iv) For all p, q ∈ G, p and q are compatible.

Proof. (i)⇒(ii): Assume (i), and suppose that A ∈ M is a maximal antichain of P.
Let D = {p ∈ P : p ≤ q for some q ∈ A}. We claim that D is dense. Suppose that r is
arbitrary. Choose q ∈ A such that r and q are compatible. Say p ≤ r, q. Thus p ∈ D.
So, indeed, D is dense. Clearly D ∈ M , since A ∈ M . By (i), choose p ∈ D ∩ G. Say
p ≤ q ∈ A. Then q ∈ G ∩A, as desired.

(ii)⇒(iii): Assume (ii), and suppose that E is as in (iii). By Zorn’s lemma, let A be
a maximal member of

(1) {B ⊆ P : B is an antichain, and for every p ∈ B there is a q ∈ E such that p ≤ q}.

We claim that A is a maximal antichain. For, suppose that p ⊥ q for all q ∈ A. Choose
s ∈ E such that p and s are compatible. Say r ≤ p, s. Hence r ⊥ q for all q ∈ A, so r /∈ A.
Thus A ∪ {r} is a member of (1), contradiction.

Clearly A ∈M , since E ∈M . So, since A is a maximal antichain, choose p ∈ A ∩G.
Then choose q ∈ E such that p ≤ q. So q ∈ E ∩G, as desired.

(iii)⇒(i): Obvious.
Now we assume (2) in the definition, and (i)–(iii).
If G is P-generic over M , clearly (iv) holds.
Now asume that (i)–(iv) hold, and suppose that p, q ∈ G; we want to find r ∈ G such

that r ≤ p, q. Let

D = {r : r ⊥ p or r ⊥ q or r ≤ p, q}.
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We claim that D is dense in P. For, let s ∈ P be arbitrary. If s ⊥ p, then s ≤ s and s ∈ D,
as desired. So suppose that s and p are compatible; say t ≤ s, p. If t ⊥ q, then t ≤ s and
t ∈ D, as desired. So suppose that t and q are compatible. Say r ≤ t, q. Then r ≤ t ≤ p
and r ≤ t ≤ s, so r ≤ s and r ≤ p, q, hence r ∈ D, as desired. This proves that D is dense.

Now by (i) choose r ∈ D ∩ G. By (iv), r is compatible with p and r is compatible
with q. So r ≤ p, q, as desired.

We are going to define the generic extension M [G] by first defining names in M , and then
producing the elements of M [G] by using those names. The notion of a name is defined
by recursion, using the following theorem.

Theorem 15.4. Let P be any set. Then there is a function F : V → V such that for any
set τ ,

F(τ) =







1 if τ is a relation and for all σ, p
if (σ, p) ∈ τ then p ∈ P and F(σ) = 1,

0 otherwise.

Proof. Let R = {(σ, τ) : ∃p ∈ P [(σ, p) ∈ τ ]}. Then R is well-founded on V. In fact,
let X be any nonempty set, and choose τ ∈ X of smallest rank. If σRτ , then there is
a p ∈ P such that (σ, p) ∈ τ , and then σ ∈ {σ} ∈ {{σ}, {σ, p}} = (σ, p) ∈ τ , and hence
rank(σ) < rank(τ). It follows that σ /∈ X , as desired.

Also, R is set-like on V. In fact, for any set τ we have

pred
VR

(τ) = {σ : ∃p ∈ P [(σ, p) ∈ τ ]} =
{

σ ∈
⋃⋃

τ : ∃p ∈ P [(σ, p) ∈ τ ]
}

.

Now we define G : V × V → V by setting

G(τ, f) =

{
1 if τ is a relation, f is a function with domain

pred
VR

(τ), and f(σ) = 1 for all σ ∈ pred
VR

(τ)
0 otherwise.

Now we obtain F by Theorem 5.7: for any set τ ,

F(τ) = G(τ,F ↾ predVR(τ))

=







1 if τ is a relation and F(σ) = 1
for all σ ∈ pred

VR
(τ)

0 otherwise,

=

{
1 if τ is a relation and for all σ and p ∈ P , if

(σ, p) ∈ τ then F(σ) = 1,
0 otherwise

Now with F as in this theorem, a P name is a set τ such that F(τ) = 1.

Corollary 15.5. Let P be any set. Then τ is a P -name iff τ is a relation and for all
(σ, p) ∈ τ [σ is a P -name and p ∈ P ].

188



Proof. ⇒: suppose that τ is a P -name. Thus F(τ) = 1, so τ is a relation, and for
all (σ, p) ∈ τ , F(σ) = 1 and p ∈ P . Hence for all (σ, p) ∈ τ [σ is a P -name and p ∈ P ].

Conversely, suppose that τ is a relation and for all (σ, p) ∈ τ [σ is a P -name and p ∈ P ].
Then τ is a relation and for all (σ, p) ∈ τ [F(σ) = 1 and p ∈ P ]. Hence F(τ) = 1, so τ is a
P -name.

Note that “τ is a P -name” is absolute.
For any set P , we denote by VP the (proper) class of all P -names. If M is a c.t.m.

of ZFC, then we let MP = VP ∩M . Note by absoluteness that

MP = {τ ∈M : (τ is a P -name)M}.

If G ⊆ P , we define val(τ, G) by recursion.

Theorem 15.6. If G ⊆ P then there is a function val such that for any set τ ,

val(τ, G) = {val(σ,G) : ∃p ∈ G[(σ, p) ∈ τ ]}.

Proof. Let R be as in the proof of Theorem 15.4. Now we define G : V × V → V
by setting

G(τ, f) =

{ {f(σ) : ∃p ∈ G[(σ, p) ∈ τ ]} if f is a function
with domain predVR(τ),

0 otherwise.

Now we obtain F by Theorem 5.7; for any set τ ,

F(τ) = G(τ,F ↾ predVR(τ))

= {F(σ) : ∃p ∈ G[(σ, p) ∈ τ ]}

We also write τG in place of val(τ, G). Notice that val is absolute for c.t.m. of ZFC.
Finally, if M is a c.t.m. of ZFC and G ⊆ P ∈M , we define

M [G] = {τG : τ ∈MP }.

Note that MP ⊆M , and hence MP is countable. Hence by the replacement axiom, M [G]
is also countable.

Now we can sketch the goals of chapters 15 and 16. We start with a c.t.m. M , and
take κ ∈ M such that κ is regular and greater than ω1 (in the sense of M). Then we
let P be the forcing order (P,⊇, ∅), where P is the set of all finite functions contained in
κ × 2. Let G be any generic filter over P. Then we show that M [G] is a model of ZFC,
in M [G] we have 2ω = κ, and cardinals in M and in M [G] are the same. This shows the
consistency of ¬CH.

On the other hand, starting with a c.t.m. M , we let P be the forcing order (P,⊇, ∅)
with P the set of all countable functions contained in ω1 × 2. Then we show that M [G]
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is a model of ZFC, in M [G] we have 2ω = ω1, and ω1 is the same in M and M [G]. This
proves the consistency of CH.

Lemma 15.7. If M is a c.t.m. of ZFC, P ∈M is a forcing order, and G is a filter on P,
then M [G] is transitive.

Proof. Suppose that x ∈ y ∈M [G]. Then there is a τ ∈MP such that y = τG. Since
x ∈ τG, there is a σ ∈MP such that x = σG. So x ∈M [G].

The following Lemma says that M [G] is the smallest c.t.m. of ZFC which contains M as
a subset and G as a member, once we show that it really is a model of ZFC. This lemma
will be extremely useful in what follows.

Lemma 15.8. Suppose that M is a c.t.m. of ZFC, P ∈M is a forcing order, G is a filter
on P, N is a c.t.m. of ZFC, M ⊆ N , and G ∈ N . Then M [G] ⊆ N .

Proof. Take any x ∈ M [G]. Say x = val(σ,G) with σ ∈ MP. Then σ,G ∈ N , so by
absoluteness, x = (val(σ,G))N ∈ N .

To show that M is a subset of M [G], we need a functionˇmapping M into the collection
of all P -names. Again the definition is by recursion.

Theorem 15.9. Suppose that (P,≤, 1) is a forcing order. Then there is a function
F : V → V such that for every set x, F(x) = {(F(y), 1) : y ∈ x}.

Proof. Let R = {(y, x) : y ∈ x}. Clearly R is well-founded and set-like on V. Define
G : V × V → V by

G(x, f) =

{

{(f(y), 1) : y ∈ x} if f is a function with domain x,
∅ otherwise.

Let F be obtained from G by Theorem 5.7. Then for any set x,

F(x) = G(x,F ↾ predVR(x)) = {(F(y), 1) : y ∈ x}.

We denote F(x) by x̌. Thus for any set x,

x̌ = {(y̌, 1) : y ∈ x}.

Note that this depends on P; we could denote it by check(P, x) to bring this out, if necessary.
Again this function is absolute for transitive models of ZFC.

Lemma 15.10. Suppose that M is a transitive model of ZFC, P ∈ M is a forcing order,
and G is a non-empty filter on P . Then

(i) For all x ∈M , x̌ ∈MP and val(x̌, G) = x.
(ii) M ⊆M [G].
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Proof. Absoluteness implies that x̌ ∈ MP for all x ∈ M . To prove val(x̌, G) = x
for all x, suppose that this is not true, and by the foundation axiom take x such that
val(x̌, G) = x while val(y̌, G) = y for all y ∈ x. (See Theorem 5.5.) Then

val(x̌, G) = {val(σ,G) : (σ, 1) ∈ x̌}
= {val(y̌, G) : y ∈ x}
= {y : y ∈ x}
= x,

contradiction.
Finally (ii) is immediate from (i).

Next, for any partial order P we define a P -name Γ. It depends on P and could be defined
as ΓP to bring this out.

Γ = {(p̌, p) : p ∈ P}.

Lemma 15.11. Suppose that M is a transitive model of ZFC, P ∈ M is a forcing order,
and G is a non-empty filter on P . Then ΓG = G. Hence G ∈M [G].

Proof. ΓG = {p̌G : p ∈ G} = {p : p ∈ G} = G.

Lemma 15.12. Suppose that M is a transitive model of ZFC, P ∈ M is a forcing order,
and G is a non-empty filter on P . Then rank(τG) ≤ rank(τ) for all τ ∈MP .

Proof. We prove this by induction on τ . Suppose that it is true for all σ ∈ dmn(τ).
If x ∈ τG, then there is a (σ, p) ∈ τ such that p ∈ G and x = σG. Hence by the inductive
assumption, rank(x) ≤ rank(σ). Hence

rank(τG) = sup
x∈τG

(rank(x) + 1) ≤ rank(τ).

Note by absoluteness of the rank function that rank(τ) is the same within M or M [G].

Lemma 15.13. Suppose that M is a transitive model of ZFC, P ∈ M is a forcing order,
and G is a non-empty filter on P. Then M and M [G] have the same ordinals.

Proof. Since M ⊆M [G], every ordinal of M is an ordinal of M [G]. Now suppose that
α is any ordinal of M [G]. Write α = τG, where τ ∈MP . Now rank(τ) = rankM (τ) ∈ M .
So by Lemma 15.12, α = rank(α) = rank(τG) ≤ rank(τ) ∈M , so α ∈M .

The following lemma will be used often.

Lemma 15.14. Suppose that M is a transitive model of ZFC, P ∈ M is a forcing order,
E ⊆ P , E ∈M , and G is a P-generic filter over M . Then:

(i) Either G ∩ E 6= ∅, or there is a q ∈ G such that r ⊥ q for all r ∈ E.
(ii) If E is dense below p and q ≤ p, then E is dense below q.
(iii) If p ∈ G and E is dense below p, then G ∩E 6= ∅.
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Proof. Let

D = {p : p ≤ r for some r ∈ E} ∪ {q : q ⊥ r for all r ∈ E}.

We claim that D is dense. For, suppose that q ∈ P . We may assume that q /∈ D. So q
is not in the second set defining D, and so there is an r ∈ E which is compatible with q.
Take p with p ≤ q, r. then p ∈ D and p ≤ q, as desired.

Since D is dense, we can choose s ∈ G∩D. Now to prove (i), suppose that G∩E = ∅.
Then s is not in the first set defining D, so it is in the second set, as desired.

(ii) is clear.
For (iii), suppose that G ∩ E = ∅, and by (i) choose q ∈ G such that q ⊥ r for every

r ∈ E. By the definition of filter, there is a t ∈ G with t ≤ p, q. Since E is dense below
p, there is then a u ∈ E with u ≤ t. Thus u ≤ q, so it is not the case that u ⊥ q,
contradiction.

Proposition 15.15. Suppose that M is a transitive model of ZFC, P ∈ M is a forcing
order, and G is a P-generic filter over M . Suppose that p ∈ P and p is compatible with
each member of G. Then p ∈ G.

Proof. The set {q ∈ P : q ≤ p or q ⊥ p} is clearly dense in P.

Now we introduce the idea of forcing. Recall that the logical primitive notions are ¬, →,
∀, and =.

With each formula ϕ(v0, . . . , vm−1) of the language of set theory we define another
formula

p P,M ϕ(σ0, . . . , σm−1),

which we read as “p forces ϕ(σ0, . . . , σm−1) with respect to P and M”; it is the statement

P is a forcing order, P ∈ M , σ0, . . . , σm−1 ∈ MP , p ∈ P , and for every G which is P-
generic over M , if p ∈ G, then the relativization of ϕ to M [G] holds for the elements
σ0G, . . . , σ(m−1)G.

Note that since G in general is not in the model M , this definition cannot be given in M .
The main aim of the next part of this chapter is to show that the definition is equivalent
to one which is definable in any countable transitive model of ZFC. We do this by defining
a notion ∗ in M , and then proving the equivalence of ∗ with . For the definition we
first define a function to take care of atomic ϕ.

To understand the following theorem, see the definition and corollary following its
proof.

Theorem 15.16. Let P be a forcing order and e the embedding of P into RO(P). Then
there is a class function F mapping 2×VP ×VP into RO(P) such that for any σ, τ ∈ VP ,

F (0, σ, τ) =
∏

(ξ,p)∈τ
[−e(p) + F (1, ξ, σ)] ·

∏

(η,q)∈σ
[−e(q) + F (1, η, τ)]

F (1, σ, τ) =
∑

(ξ,p)∈τ
[e(p) · F (0, σ, ξ)].

192



Proof. We are going to apply the recursion theorem 5.7. Let A = 2×VP ×VP . Let

(δ′, σ′, τ ′)R(δ, σ, τ) iff (δ′, σ′, τ ′), (δ, σ, τ) ∈ A, and

[δ′ = 1, δ = 0, τ ′ = σ and rank(σ′) < rank(τ)] or

[δ′ = 1, δ = 0, τ ′ = τ and rank(σ′) < rank(σ)] or

[δ′ = 0, δ = 1, σ′ = σ and rank(τ ′) < rank(τ)]

We claim that R is well-founded on A. In fact, note that if (0, σ′′, τ ′′)R(1, σ′, τ ′)R(0, σ, τ),
then

σ′′ = σ′, rank(τ ′′) < rank(τ ′) and

[(τ ′ = σ and rank(σ′) < rank(τ))

or (τ ′ = τ and rank(σ′) < rank(σ))].

Hence one of the following two conditions holds:

(1) τ ′ = σ, rank(σ′) < rank(τ), σ′′ = σ′, and rank(τ ′′) < rank(τ ′).

(2) τ ′ = τ , rank(σ′) < rank(τ), σ′′ = σ′, and rank(τ ′′) < rank(τ ′).

In either case we clearly have max(rank(σ′′), rank(τ ′′)) < max(rank(σ), rank(τ). Hence
there does not exist a sequence · · ·a2Ra1Ra0. Hence R is well-founded on A.

Next we claim that R is set-like on A. For, let (δ, σ, τ) ∈ A. Say σ ∈ Vα and τ ∈ Vβ .
Then if δ = 0 we have

pred
AR

(0, σ, τ) = {(1, σ′, τ ′) ∈ 2 × V P × V P : [τ ′ = σ and rank(σ′) < rank(τ)] or

[τ ′ = τ and rank(σ′) < rank(σ)]}
= {(δ′, σ′, τ ′) ∈ 2 × Vβ × {σ} : δ′ = 1 and σ′ ∈ V P

and rank(σ′) < rank(τ)}∪
{(δ′, σ′, τ ′) ∈ 2 × Vα × {τ} : δ′ = 1 and σ′ ∈ V P

and rank(σ′) < rank(σ)}.
If δ = 1, then

predAR(1, σ, τ) = {(0, σ′, τ ′) : σ′ = σ and rank(τ ′) < rank(τ)}
= {(δ′, σ′, τ ′) ∈ 2 × {σ} × Vβ : δ′ = 0 and τ ′ ∈ V P

and rank(τ ′) < rank(σ)}.
This proves the claim.

Now we define G : 2×VP ×VP → V. Let δ ∈ 2, σ ∈ VP , τ ∈ VP , and suppose that
f is a function mapping predAR(δ, σ, τ) into RO(P). Then we set

for δ = 0 : G(0, σ, τ, f) =
∏

(ξ,p)∈τ
[−e(p) + f(1, ξ, σ)] ·

∏

(η,q)∈σ
[−e(q) + f(1, η, τ)];

for δ = 1 : G(1, σ, τ, f) =
∑

(ξ,p)∈τ
[e(p) · f(0, σ, ξ)].
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Note that this makes sense, since (ξ, p) ∈ τ implies that (1, ξ, σ)R(0, σ, τ), (1, η, τ)R(0, σ, τ)
and (0, σ, ξ)R(1, σ, , τ).

For any other f ∈ V let G(δ, σ, τ, f) = ∅.
Now let F be obtained by Theorem 5.7: F(δ, σ, τ) = G(δ, σ, τ,F ↾ pred

AR
(δ, σ, τ)).

Then we have

F(0, σ, τ) = G(0, σ, τ,F ↾ pred
AR

(0, σ, τ))

=
∏

(ξ,p)∈τ
[−e(p) + F(1, ξ, σ)] ·

∏

(η,q)∈σ
[−e(q) + F(1, η, τ)];

F(1, σ, τ) = G(1, σ, τ,F ↾ pred
AR

(1, σ, τ))

=
∑

(ξ,p)∈τ
[e(p) · F(0, σ, ξ)].

Now with F as in this theorem, we define [[σ = τ ]] = F(0, σ, τ) and [[σ ∈ τ ]] = F(1, σ, τ).

Corollary 15.17. With P a forcing order and σ, τ ∈ VP we have

[[σ = τ ]] =
∏

(ξ,p)∈τ
[−e(p) + [[ξ ∈ σ]]] ·

∏

(η,q)∈σ
[−e(q) + [[η ∈ τ ]]];

[[σ ∈ τ ]] =
∑

(ξ,p)∈τ
[e(p) · [[σ = ξ]]].

Thus we are defining [[σ = τ ]] to mean, in a sense, that every element of σ is an element
of τ and every element of τ is an element of σ. And we define [[σ ∈ τ ]] to mean, in a sense,
that there is some element of τ to which σ is equal. We now extend the definition of
Boolean values to arbitrary formulas.

[[¬ϕ(σ0, . . . , σm−1)]] = −[[ϕ(σ0, . . . , σm−1)]];

[[ϕ(σ0, . . . , σm−1) → ψ(σ0, . . . , σm−1)]] = −[[ϕ(σ0, . . . , σm−1)]] + [[ψ(σ0, . . . , σm−1)]];

[[∀xϕ(σ0, . . . , σm−1, x)]] =
∏

τ∈VP

[[ϕ(σ0, . . . , σm−1, τ)]].

Note that the last big product has index set which is a proper class in general. But the
values are all in the Boolean algebra RO(P), so this makes sense. Namely, this part of the
definition can be rewritten as follows:

[[∀xϕ(σ0, . . . , σm−1, x)]] =
∏

{a ∈ RO(P) : ∃τ ∈ VP (a = [[ϕ(σ0, . . . , σm−1, τ)]])}.

Lemma 15.18.

[[ϕ(σ0, . . . , σm−1) ∨ ψ(σ0, . . . , σm−1)]] = [[ϕ(σ0, . . . , σm−1)]] + [[ϕ(σ0, . . . , σm−1)]];

[[ϕ(σ0, . . . , σm−1) ∧ ψ(σ0, . . . , σm−1)]] = [[ϕ(σ0, . . . , σm−1)]] · [[ϕ(σ0, . . . , σm−1)]];

[[∃xϕ(σ0, . . . , σm−1, x)]] =
∑

τ∈VP

[[ϕ(σ0, . . . , σm−1, τ)]].
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Proof. Recall from Chapter 2 the definitions of ∨, ∧, ∃. We omit the parameters
σ0, . . . , σm−1.

[[ϕ ∨ ψ]] = [[¬ϕ→ ψ)]]

= −− [[ϕ]] + [[ψ]])

= [[ϕ]] + [[ψ]];

[[ϕ ∧ ψ) = [[¬(ϕ→ ¬ψ)]]

= −(−[[ϕ]] + −[[ψ]])

= [[ϕ]] · [[ψ]];

[[∃viϕ]] = [[¬∀vi¬ϕ]]

= −
∏

τ∈VP

−[[ϕ(τ)]]

=
∑

τ∈VP

[[ϕ(τ)]].

Now we can give our alternate definition of forcing:

p ∗ ϕ(σ0, . . . , σm−1) iff e(p) ≤ [[ϕ(σ0, . . . , σm−1)]].

It is important that Boolean values and ∗ are definable in a c.t.m. M of ZFC. Note
that the discussion of Boolean values and of ∗ has taken place in our usual framework
of set theory. The complete BA RO(P) is in general uncountable. Given a c.t.m. M of
ZFC, the definitions can take place within M , and while M may be a model of “RO(P)
is uncountable”, actually RO(P)M is countable. Thus even if σ0, . . . , σm−1 are members
of MP , the statements p ∗ ϕ(σ0, . . . , σm−1) and (p ∗ ϕ(σ0, . . . , σm−1))M are much
different, since the products and sums involved in the definition of the former range over
a possibly uncountable complete BA, while those in the latter range only over a countable
BA (which is actually incomplete if it is infinite).

Now we prove the fundamental theorem connecting the notion ∗ in a c.t.m. M with
the notion , whose definition takes place outside M .

Theorem 15.19. (The Forcing Theorem) Suppose that M is a c.t.m. of ZFC, P ∈ M is
a forcing order, and G is P-generic over M . Then the following conditions are equivalent:

(i) There is a p ∈ G such that (p ∗ ϕ(σ0, . . . , σm−1))M .
(ii) ϕ(σ0G, . . . , σ(m−1)G) holds in M [G].

Proof. First we prove the equivalence for σ = τ and σ ∈ τ by induction on the
well-founded relation R given in the proof of Theorem 15.16. For (i)⇒(ii), suppose that
p ∈ G and (p ∗ σ = τ)M . We want to show that σG = τG. Suppose that a ∈ σG. Then
there is an (η, q) ∈ σ such that q ∈ G and a = ηG. Now e(p) ≤ −e(q) + [[η ∈ τ ]], so
e(p) · e(q) ≤ [[η ∈ τ ]]. Since p, q ∈ G, choose r ∈ G with r ≤ p, q. Then e(r) ≤ [[η ∈ τ ]].
So (r ∗ η ∈ τ)M , so by the inductive hypothesis a = ηG ∈ τG. So we have shown that
σG ⊆ τG. Similarly, τG ⊆ σG. So we have shown that (i)⇒(ii) for σ = τ .
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Now suppose that p ∈ G and (p ∗ σ ∈ τ)M . Thus e(p) ≤ ∑

(ξ,s)∈τ [e(s) · [[σ = ξ]].
Now we claim

(1) {q : ∃(ξ, s) ∈ τ [q ≤ s and e(q) ≤ [[σ = ξ]]]} is dense below p.

For, suppose that r ≤ p. Then e(r) ≤∑(ξ,s)∈τ [e(s) · [[σ = ξ]], and hence

e(r) = e(r) ·
∑

(ξ,s)∈τ
[e(s) · [[σ = ξ]] =

∑

(ξ,s)∈τ
[e(r) · e(s) · [[σ = ξ]].

It follows that there is a (ξ, s) ∈ τ such that e(r) · e(s) · [[σ = ξ]] 6= 0. By Theorem 13.20(i)
choose t so that e(t) ≤ e(r) · e(s) · [[σ = ξ]]. By Theorem 13.20(iii), t and r are compatible.
Say u ≤ t, r. Also, e(u) ≤ e(t) ≤ e(s), so u and s are compatible. Say v ≤ u, s. Then
e(v) ≤ e(u) ≤ e(t) ≤ [[σ = ξ]], so v is in the set of (1). So (1) holds.

Now by (1) and Theorem 15.14(iii), there exist a q ∈ G with q ≤ p and (ξ, s) ∈ τ such
that e(q) ≤ [[σ = ξ]] and q ≤ s. So (q ∗ σ = ξ)M , and by the inductive hypothesis we
have σG = ξG. Now q ≤ s implies that s ∈ G, and so (ξ, s) ∈ τ yields ξG ∈ τG (by the
definition of val). This proves (i)⇒(ii) for σ ∈ τ .

Now for (ii)⇒(i), suppose that σG = τG. Let

D ={r : (r ∗ σ = τ)M or ∃(ξ, p) ∈ τ [r ≤ p and e(r) ≤ −[[ξ ∈ σ]]] or

∃(η, q) ∈ σ[r ≤ q and e(r) ≤ −[[η ∈ τ ]]]}.

We claim that D is dense. For, suppose that s ∈ P . Assume that (s 6∗ σ = τ)M . Thus
e(s) 6≤ [[σ = τ ]], so

0 6= e(s) · −[[σ = τ ]]

= e(s) ·
(
∑

(ξ,p)∈τ
(e(p) · −[[ξ ∈ σ[[) +

∑

(η,q)∈σ
(e(q) · −[[η ∈ τ ]])

)

.

It follows that one of the following conditions holds:

(2) There is a (ξ, p) ∈ τ such that e(s) · e(p) · −[[ξ ∈ σ]] 6= 0.

(3) There is a (η, q) ∈ σ such that e(s) · e(q) · −[[ξ ∈ τ ]] 6= 0.

Suppose that (2) holds, with (ξ, p) as indicated. By Theorem 13.20(i) choose t such that
e(t) ≤ e(s) · e(p) · −[[ξ ∈ σ]]. Since e(t) ≤ e(p), by Theorem 13.20(iv) we get u ≤ t, p.
Then e(u) ≤ e(t) ≤ e(s), so again by Theorem 13.20(iv) we get v such that v ≤ u, s. Then
v ≤ u ≤ p and e(v) ≤ e(u) ≤ e(t) ≤ −[[ξ ∈ σ]]. Thus v ∈ D, as desired.

By a similar argument, (3) gives an element of D below s. Hence D is dense.
Choose r ∈ G ∩ D. We claim that (r ∗ σ = τ)M . Otherwise one of the following

conditions holds:

(4) ∃(ξ, p) ∈ τ [r ≤ p and e(r) ≤ −[[ξ ∈ σ]]].

(5) ∃(η, q) ∈ σ[r ≤ q and e(r) ≤ −[[η ∈ τ ]]].
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Suppose that (4) holds, with (ξ, p) as indicated. Now e(r) 6= 0, so e(r) 6≤ [[ξ ∈ σ]]. Thus
(r 6∗ ξ ∈ σ)M . Hence by the inductive hypothesis, ξG /∈ σG. But r ≤ p, so p ∈ G, and
hence ξG ∈ τG. This contradicts our assumption that σG = τG.

(5) leads to a contradiction similarly. Hence our claim holds, and we have proved
(ii)⇒(i) for σ = τ .

For (ii)⇒(i) for σ ∈ τ , assume that σG ∈ τG. Then there is a (ξ, p) ∈ τ such that
p ∈ G and σG = ξG. By the inductive hypothesis there is a q ∈ G such that (q ∗ σ = ξ)M .
Choose r ∈ G with r ≤ p, q. Then e(r) ≤ e(p) · [[σ = ξ]], and so e(r) ≤ [[σ ∈ τ ]]. Thus
(r ∗ σ ∈ τ)M .

Thus now the atomic cases are finished.
In the inductive steps we omit the parameters σ0, . . . , σm−1. Suppose that the equiv-

alence holds for ϕ; we prove it for ¬ϕ. For (i)⇒(ii), suppose that p ∈ G and (p ∗ ¬ϕ)M .
We want to show that ¬ϕ holds in M [G]. Suppose to the contrary that ϕ holds in M [G].
Then by the equivalence for ϕ, choose q ∈ G such that (q ∗ ϕ)M . Choose r ∈ G with
r ≤ p, q. Then (r ∗ ¬ϕ)M and (r ∗ ϕ)M , contradiction.

For (ii)⇒(i), suppose that ¬ϕ holds in M [G]. We claim that D
def
= {p : (p ∗ ϕ)M

or (p ∗ ¬ϕ)M} is dense. For, suppose that q is arbitrary. If (q ∗ ϕ)M , then q ∈ D.
Suppose that (q 6∗ ϕ)M . Then e(q) 6≤ [[ϕ]], so e(q) ·−[[ϕ]] 6= 0. By Theorem 13.20(i) choose
p so that e(p) ≤ e(q) · −[[ϕ]] 6= 0. By Theorem 13.20(iv) choose r ≤ p, q. Then r ≤ q and
e(r) ≤ e(p) ≤ −[[ϕ]] = [[¬ϕ]]. Hence (r  ¬ϕ)M . This shows that r ∈ D. Thus D is dense.
Choose p ∈ D ∩G. If (p ∗ ϕ)M , then ϕM [G], contradiction. Hence (p ∗ ¬ϕ)M .

For →, suppose that p ∈ G, (p ∗ ϕ → ψ)M , and ϕ holds in M [G]. By the inductive
hypothesis, choose q ∈ G so that (q ∗ ϕ)M . Choose r ∈ G with r ≤ p, q. Then

e(r) ≤ e(p) · e(q) ≤ [[ϕ→ ψ]] · [[ϕ]] = (−[[ϕ]] + [[ψ]]) · [[ϕ]] ≤ [[ψ]].

Thus (r ∗ ψ)M , so by the inductive hypothesis, ψ holds in M [G]. So we have shown that
ϕ→ ψ holds in M [G].

Conversely, suppose that ϕ→ ψ holds in M [G].
Case 1. ϕ holds in M [G]. Then also ψ holds in M [G]. By the inductive hypothesis we

get p ∈ G such that and (p ∗ ψ)M . Thus e(p) ≤ [[ψ]], so e(p) ≤ −[[ϕ]] + [[ψ]] = [[ϕ → ψ]],
hence (p ∗ ϕ→ ψ)M .

Case 2. ϕ does not hold in M [G]. By the case for ¬, there is a p ∈ G such that
(p ∗ ¬ϕ)M . Hence e(p) ≤ −[[ϕ]] ≤ −[[ϕ]] + [[ψ]] = [[ϕ→ ψ]], hence (p ∗ ϕ→ ψ)M .

Finally, we deal with the formula ∀xϕ(x). For (i)⇒(ii), suppose that ∀xϕ(x) does not
hold in M [G]. Then there is a name σ such that ϕ(σG) does not hold. By the case for ¬
it follows that there is a p ∈ G such that (p ∗ ¬ϕ(σ))M , so that e(p) ≤ −[[ϕ(σ)]]. Thus
e(p) ≤ −∏τ∈V P [[ϕ(τ)]] and so, since e(p) 6= 0, e(p) 6≤ ∏τ∈V P [[ϕ(τ)]], so that it is not true
that (p ∗ ∀xϕ(x))M .

For (ii)⇒(i), suppose that (p ∗ ∀xϕ(x))M , and suppose that σ is any name. Then
e(p) ≤ [[ϕ(σ)]], hence (p ∗ ϕ(σ))M , so ϕ(σG) holds in M [G], as desired.

Corollary 15.20. If M is a c.t.m. of ZFC, P is a forcing order in M , p ∈ P , and
ϕ(τ1, . . . , τm) is a formula, then

p  ϕ(τ1, . . . , τm) iff (p ∗ ϕ(τ1, . . . , τm))M .
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Proof. Again we omit the parameters τ1, . . . , τm. ⇒: Assume that p  ϕ, but
suppose that (p 6∗ ϕ)M . Thus e(p) 6≤ [[ϕ]], so e(p) · −[[ϕ]] 6= 0. By Theorem 13.20(i)
choose q such that e(q) ≤ e(p) · −[[ϕ]]. By Theorem 13.20(iv) choose r ≤ p, q. Then
e(r) ≤ e(q) ≤ −[[ϕ]] = [[¬ϕ]]. Hence (r  ¬ϕ)M . Let G be P-generic over M with
r ∈ G. Then by Theorem 15.19, ¬ϕM [G]. But r ≤ p, so by the definition of , ϕM [G],
contradiction.

⇐: Assume that (p ∗ ϕ)M . Suppose that G is P-generic over M and p ∈ G. Then
by Theorem 15.19. ϕM [G], as desired.

Corollary 15.21. Let M be a c.t.m. of ZFC, P ∈ M a forcing order, and G ⊆ M a
P-generic filter over M . Then

ϕ(τ1G, . . . , τmG)M [G] iff ∃p ∈ G[p  ϕ(τ1, . . . , τm)].

Proof. ⇒: Assume ϕ(τ1G, . . . , τmG)M [G]. By Theorem 15.19, choose p ∈ G such that
(p ∗ ϕ(τ1, . . . , τm))M . By Corollary 15.20 we have p  ϕ(τ1, . . . , τm).

⇐: by the definition of .

Now if σ and τ are names, we define

up(σ, τ) = {(σ, 1), (τ, 1)};

op(σ, τ) = up(up(σ, σ), up(σ, τ)).

Lemma 15.22. (i) (up(σ, τ))G = {σG, τG}.
(ii) (op(σ, τ))G = (σG, τG).

Theorem 15.23. Let M be a c.t.m. of ZFC, P ∈ M a forcing order, G ⊆ P , and G
P-generic over M . Then M [G] is a model of ZFC.

Proof. We will apply theorems from Chapter 14. Recall from Lemma 15.7 that M [G]
is transitive. Hence extensionality and foundation hold in M [G] by Theorems 14.10 and
14.16. For pairing, suppose that x, y ∈ M [G]. Say x = σG and y = τG. By Lemma 15.22
and Theorem 14.12, pairing holds. For union, suppose that x ∈ M [G]. Choose σ such

that x = σG. Note that dmn(σ) is a set of P-names, and hence so is τ
def
=
⋃

dmn(σ). We
claim that

⋃
x ⊆ τG; by Theorem 14.13 this will prove the union axiom. Let y ∈ ⋃x.

Say y ∈ z ∈ x. Then there exist (ρ, r), (ξ, s) such that y = ρG, r ∈ G, (ρ, r) ∈ ξ, z = ξG,
s ∈ G, and (ξ, s) ∈ σ. So ξ ∈ dmn(σ), and hence (ρ, r) ∈ ⋃ dmn(σ) = τ . It follows that
y = ρG ∈ τG, as desired.

To check comprehension, we apply Theorem 14.11. So, suppose ϕ(x, z, w1, . . . , wn) is
a formula with the indicated free variables, and σ, τ1, . . . , τn are P names. Let

y = {x ∈ σG : ϕM [G](x, σG, τ1G, . . . , τnG)};
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we want to show that y ∈M [G]. Let

ρ = {(π, p) ∈ dmn(σ) × P : (p ∗ (π ∈ σ ∧ ϕ(π, σ, τ1, . . . , τn))M}.

Thus ρ ∈ MP . We claim that ρG = y, as desired. Suppose that x ∈ ρG. Then there is a
(π, p) ∈ dmn(σ)×P such that p ∈ G, x = πG, and (p ∗ (π ∈ σ∧ϕ(π, σ, τ1, . . . , τn))M . By
Corollary 15.20, p  (π ∈ σ ∧ ϕ(π, σ, τ1, . . . , τn)). Hence by definition of , πG ∈ σG and
ϕM [G](πG, σG, τ1G, . . . , τnG). Thus x ∈ y. Conversely, suppose that x ∈ y. Thus x ∈ σG
and ϕM [G](x, σG, τ1G, . . . , τnG). Choose (π, p) ∈ σ such that x = πG and p ∈ G. Thus
(πG ∈ σG ∧ ϕM [G](πG, σG, τ1G, . . . , τnG))M [G], so by Corollary 15.21 there is a q ∈ G such
that q  π ∈ σ ∧ ϕ(π, σ, τ1, . . . , τn). Thus by Theorem 15.20 again we have (π, q) ∈ ρ,
hence x = πG ∈ ρG, as desired.

For the power set axiom, we will apply Theorem 14.14. Let σ be a P -name. It suffices
to find another P -name ρ such that P(σG) ∩M [G] ⊆ ρG. Let ρ = S × {1}, where

S = {τ ∈MP : dmn(τ) ⊆ dmn(σ)}.

Suppose that µ ∈MP and µG ⊆ σG; we want to show that µG ∈ ρG. Let

τ = {(π, p) : π ∈ dmn(σ) and p  π ∈ µ}.

Thus dmn(τ) ⊆ dmn(σ), so τG ∈ ρG. It suffices now to show that τG = µG. First suppose
that x ∈ µG. Since µG ⊆ σG, there is a (π, q) ∈ σ such that q ∈ G and x = πG. Thus
πG ∈ σG, so by Theorem 15.21 there is a p ∈ G such that p  π ∈ σ. Hence (π, p) ∈ τ ,
and so x = πG ∈ τG. Second, suppose that x ∈ τG. Choose (π, p) ∈ τ such that p ∈ G
and x = πG. By definition of τ we have π ∈ dmn(σ) and p  π ∈ µ. By definition of ,
x = πG ∈ µG. Hence we have shown that τG = µG, as desired.

For replacement, we apply Theorem 14.15. Let ϕ be a formula with free variables
among x, y, A, w1, . . . , wn, suppose that σ, τ1, . . . , τn ∈MP and the following holds:

(1) (∀x ∈ σG∃!y[ϕ(x, y, σG, τ1G, . . . , τ1G)])M [G].

We want to find ρ ∈MP such that

(∀y∃x ∈ σGϕ(x, y, σG, τ1G, . . . , τnG) → y ∈ ρG)M [G].

In view of the uniqueness condition in (1) it suffices to find ρ ∈MP such that

(2) ∀x ∈ σG∃y ∈ ρG(ϕ(x, y, σG, τ1G, . . . , τnG)M [G].

In fact, if (2) holds, y ∈M [G], x ∈ σG, and (ϕ(x, y, σG, τ1G, . . . , τnG))M [G]. by (2) choose
z ∈ ρG such that (ϕ(x, z, σG, τ1G, . . . , τnG)M [G]. Then by (1) we have y = z, and so y ∈ ρG.

Now we claim

(3) There is an S ∈M with S ⊆MP such that

∀π ∈ dmn(σ)∀p ∈ P [∃µ ∈MP [(p ∗ ϕ(π, µ, σ, τ1, . . . , τn))M ]

→ ∃µ ∈ S[(p ∗ ϕ(π, µ, σ, τ1, . . . , τn))M ]].
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To prove the claim, we make the following argument in M . For each π ∈ dmn(σ) and
p ∈ P , if there is a µ ∈ MP such that (p ∗ ϕ(π, µ, σ, τ1, . . . , τn))M , let α(π, p) be the
least ordinal such that such a µ is in Vα(π,p), while α(π, p) = 0 if there is no such ordinal.
Let β = sup{α(π, p) : π ∈ dmn(α), p ∈ P}. Then

S = {µ ∈ Vβ : ∃π ∈ dmn(σ)∃p ∈ P [(p ∗ ϕ(π, µ, σ, τ1, . . . , τn))M ]}.

Clearly S is as desired in the claim.
Let ρ = S × {1}. To show that ρ satisfies (2), let x ∈ σG. say x = πG with (π, p) ∈ ρ

and p ∈ G. Then by (1) there is a µ ∈ MP such that ϕM [G](πG, µG, σG, τ1G, . . . , τmG).
By Corollary 15.21 choose q ∈ G such that q  ϕ(π, µ, σ, τ1, . . . , τm). By Corollary 15.20,
(q ∗ ϕ(π, µ, σ, τ1, . . . , τm))M . Hence by (3) we may assume that µ ∈ S. Hence µG ∈ ρG,
as desired.

For the infinity axiom, note that ω = ω̌G by Lemma 15.15. Hence the infinity axiom
holds by Theorem 14.26.

Finally we consider the axiom of choice. We show that there is a choice function
for any family A of nonempty sets, where A ∈ M [G]. By Theorem 14.27,

⋃
A ∈ M [G].

Say
⋃
A = σG. Let f be a bijection from some cardinal κ onto dmn(σ) (in M). Define

τ = {op(α̌, f(α)) : α < κ} × {1}. Thus τG = {(op(α̌, f(α)))G = {(α, (f(α))G) : α < κ}.
So τG is a function with domain κ. Each x ∈ A is nonempty, and if y ∈ x then y ∈ ⋃A,
and hence we can write y = τG with (τ, p) ∈ σ and p ∈ G. So there is an α < κ such that
f(α) = τ ; so τG(α) = (f(α))G = τg = y. This shows that for each x ∈ A there is an ordinal
α < κ such that τG(α) ∈ x; we let αx be the least such ordinal. Define g(x) = τG(αx) for
all x ∈ A. Then g(x) ∈ x.

Parts of the following theorem will be used later without reference.

Theorem 15.24. (i) [[σ = τ ]] = [[τ = σ]].
(ii)

[[σ = τ ]] =




∏

(ξ,p)∈τ
(−e(p) + [[ξ ∈ σ]])



 ·




∏

(ρ,q)∈σ
(−e(q) + [[ρ ∈ τ ]])



 .

(iii) [[σ = σ]] = 1.
(iv) If (ρ, r) ∈ σ, then e(r) ≤ [[ρ ∈ σ]], and hence r ∗ ρ ∈ σ.
(v) p ∗ σ ∈ τ iff the set

{q : ∃(π, s) ∈ τ(q ≤ s and q ∗ σ = π)}

is dense below p.
(vi) p ∗ σ = τ iff the following two conditions hold:

(a) For all (π, s) ∈ σ, the set

{q ≤ p : if q ≤ s, then there is a (ρ, u) ∈ τ such that q ≤ u and q ∗ π = ρ}
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is dense below p;
(b) For all (ρ, u) ∈ τ , the set

{q ≤ p : if q ≤ u, then there is a (π, s) ∈ σ such that q ≤ s and q ∗ π = ρ}

is dense below p.
(vii)

p ∗ ϕ(σ0, . . . , σn−1) ∧ ψ(σ0, . . . , σn−1) iff

p ∗ ϕ(σ0, . . . , σn−1) and p ∗ ψ(σ0, . . . , σn−1).

(viii) p ∗ ϕ(σ0, . . . , σn−1) ∨ ψ(σ0, . . . , σn−1) iff for all q ≤ p there is an r ≤ q such
that r ∗ ϕ(σ0, . . . , σn−1) or r ∗ ψ(σ0, . . . , σn−1).

(ix) p ∗ ¬ϕ(σ0, . . . , σn−1) iff for all q ≤ p, q 6∗ ϕ(σ0, . . . , σn−1).
(x) {p : p ∗ ϕ(σ0, . . . , σn−1) or p ∗ ¬ϕ(σ0, . . . , σn−1)} is dense.
(xi) p ∗ ∃xϕ(x, σ0, . . . , σn−1) iff the set

{r ≤ p : there is a τ ∈ VP such that r ∗ ϕ(τ, σ0, . . . , σn−1)}

is dense below p.
(xii) p ∗ ∀xϕ(x, σ0, . . . , σm−1) iff for all τ ∈ VP , p ∗ ϕ(τ, σ0, . . . , σm−1).
(xiiii) The following are equivalent:

(a) p ∗ ϕ(σ0, . . . , σm−1).
(b) For every r ≤ p, r ∗ ϕ(σ0, . . . , σm−1).
(c) {r : r ∗ ϕ(σ0, . . . , σm−1)} is dense below p.

(xiv) p ∗ ϕ(σ0, . . . , σm−1) → ψ(σ0, . . . , σm−1) iff the set

{q : q ∗ ¬ϕ(σ0, . . . , σm−1) or q ∗ ψ(σ0, . . . , σm−1)}

is dense below p.
(xv) If p ∗ ¬∀xϕ(x, σ0, . . . , σm−1), then the set

{q : there is a τ ∈ VP such that q  ¬ϕ(τ, σ0, . . . , σm−1)}

is dense below p.
(xvi) If p ∗ ϕ(σ0, . . . , σm−1) and p ∗ ϕ(σ0, . . . , σm−1) → ψ(σ0, . . . , σm−1), then

p ∗ ψ(σ0, . . . , σm−1).

Proof.
(i): By induction:

[[σ = τ ]] =
∏

(ξ,p)∈τ



−e(p) +
∑

(ρ,q)∈σ
(e(q) · [[ρ = ξ]])





·
∏

(ρ,q)∈σ



−e(q) +
∑

(ξ,p)∈τ
(e(p) · [[ρ = ξ]])
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=
∏

(ρ,q)∈σ



−e(q) +
∑

(ξ,p)∈τ
(e(p) · [[ρ = ξ]])





·
∏

(ξ,p)∈τ



−e(p) +
∑

(ρ,q)∈σ
(e(q) · [[ρ = ξ]])





=
∏

(ρ,q)∈σ



−e(q) +
∑

(ξ,p)∈τ
(e(p) · [[ξ = ρ]])





·
∏

(ξ,p)∈τ



−e(p) +
∑

(ρ,q)∈σ
(e(q) · [[ξ = ρ]])





= [[τ = σ]].

(ii):

[[σ = τ ]] =
∏

(ξ,p)∈τ



−e(p) +
∑

(ρ,q)∈σ
(e(q) · [[ρ = ξ]])





·
∏

(ρ,q)∈σ



−e(q) +
∑

(ξ,p)∈τ
(e(p) · [[ρ = ξ]])





=
∏

(ξ,p)∈τ



−e(p) +
∑

(ρ,q)∈σ
(e(q) · [[ξ = ρ]])





·
∏

(ρ,q)∈σ



−e(q) +
∑

(ξ,p)∈τ
(e(p) · [[ρ = ξ]])





=




∏

(ξ,p)∈τ
(−e(p) + [[ξ ∈ σ]])



 ·




∏

(ρ,q)∈σ
(−e(q) + [[ρ ∈ τ ]])



 .

We prove (iii) and (iv) simultaneously by induction on the rank of σ; so suppose that they
hold for all σ′ of rank less than σ. Assume that (ρ, r) ∈ σ. Then by the definition of
[[ρ ∈ σ]],

[[ρ ∈ σ]] =
∑

(µ,s)∈σ
(e(s) · [[ρ = µ]]) ≥ e(r) · [[ρ = ρ]] = e(r),

as desired in (iv). Using this and (ii),

[[σ = σ]] =
∏

(ρ,r)∈σ
(−e(r) + [[ρ ∈ σ]]) = 1,

as desired in (iii).
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We now use Theorem 13.20(vii) in several of our arguments.
(v):

p ∗ σ ∈ τ iff e(p) ≤ [[σ ∈ τ ]]

iff e(p) ≤
∑

(π,s)∈τ
(e(s) · [[σ = π]])

iff {q : ∃(π, s) ∈ τ [e(q) ≤ e(s) · [[σ = π]]]} is dense below p.

We claim that the last statement here is equivalent to

(∗) {q : ∃(π, s) ∈ τ [q ≤ s and e(s) ≤ [[σ = π]]]} is dense below p.

In fact clearly (∗) implies the above statement. Now suppose that

{q : ∃(π, s) ∈ τ [e(q) ≤ e(s) · [[σ = π]]]} is dense below p.

Take any r ≤ p, and choose q ≤ r and (π, x) ∈ τ such that e(q) ≤ e(s) · [[σ = π]]. Then q
and s are compatible; say t ≤ q, s. Then t ≤ q ≤ r and e(t) ≤ e(q) ≤ e(s) · [[σ = π]]. Thus
(∗) holds.

Now (∗) is clearly equivalent to

{q : ∃(π, s) ∈ τ [q ≤ s and s ∗ σ = π]} is dense below p.

(vi): Assume that p ∗ σ = τ .
For (a), suppose that (π, s) ∈ σ and r ≤ p. If r 6≤ s, then r itself is in the desired set;

so suppose that r ≤ s. Then

e(r) ≤ e(s) · e(p) ≤ e(s) ·



−e(s) +
∑

(ρ,u)∈τ
(e(u) · [[π = ρ]])



 = e(s) ·
∑

(ρ,u)∈τ
(e(u) · [[π = ρ]]).

Hence there is a (ρ, u) ∈ τ such that e(r) · e(s) · e(u) · [[π = ρ]] 6= 0. Hence there exists a
v ≤ r, s such that e(v) ≤ e(u) · [[π = ρ]]. (See the argument for (v)). It follows that there
is a q ≤ v, u with e(q) ≤ [[π = ρ]]. So q ∗ π = ρ, and q is in the desired set.

(b) is treated similarly.
Now assume that (a) and (b) hold. We want to show that p ∗ σ = τ , i.e., that

e(p) ≤ [[σ = τ ]]. To show that e(p) is below the first big product in the definition of
[[σ = τ ]], take any (ξ, q) ∈ τ ; we want to show that

e(p) ≤ −e(q) +
∑

(ρ,r)∈σ
(e(r) · [[ρ = ξ]]),

i.e., that

e(p) · e(q) ≤
∑

(ρ,r)∈σ
(e(r) · [[ρ = ξ]]).
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Suppose that this is not the case. Then there is an s such that

e(s) ≤ e(p) · e(q) · −
∑

(ρ,r)∈σ
(e(r) · [[ρ = ξ]]) = e(p) · e(q) ·

∏

(ρ,r)∈σ
(−e(r) + −[[ρ = ξ]]).

Hence there is a u ≤ s, p, q. By (b) choose v ≤ u and (ρ, r) ∈ σ such that v ≤ r and
v ∗ ρ = ξ. Then e(v) ≤ e(r) · [[ρ = ξ]], and also e(v) ≤ −e(r) + −[[ρ = ξ]]), contradiction.

Similarly, e(p) is below the second big product in the definition of [[σ = τ ]].

(vii): Clear.

(viii): Since

p ∗ ϕ(σ0, . . . , σn−1) ∨ ψ(σ0, . . . , σn−1) iff e(p) ≤ [[ϕ(σ0, . . . , σn−1) ∨ ψ(σ0, . . . , σn−1)]],

this is immediate from Theorem 16.20(vii).
(ix) ⇒: if p ∗ ¬ϕ(σ0, . . . , σn−1) and q ≤ p, then

e(q) ≤ e(p) ≤ [[¬ϕ(σ0, . . . , σn−1)]] = −[[ϕ(σ0, . . . , σn−1)]],

and hence e(q) 6≤ [[ϕ(σ0, . . . , σn−1)]], since e(q) 6= 0. Thus q 6∗ ϕ(σ0, . . . , σn−1).
⇐: suppose that p 6∗ ¬ϕ(σ0, . . . , σn−1). Then

e(p) 6≤ [[¬ϕ(σ0, . . . , σn−1)]] = −[[ϕ(σ0, . . . , σn−1)]],

and hence
e(p) · [[ϕ(σ0, . . . , σn−1)]] 6= 0,

so we can choose r such that

e(r) ≤ e(p) · [[ϕ(σ0, . . . , σn−1)]],

hence there is a q ≤ p, r, and so q ∗ ϕ(σ0, . . . , σn−1).
(x): Let q be given. If e(q) · [[ϕ(σ0, . . . , σn−1)]] 6= 0, choose r such that e(r) ≤ e(q) ·

[[ϕ(σ0, . . . , σn−1)]], and then choose p ≤ q, r. Thus p ∗ ϕ(σ0, . . . , σn−1), as desired. If
e(q) · [[ϕ(σ0, . . . , σn−1)]] = 0, then q ∗ ¬ϕ(σ0, . . . , σn−1).

(xi): Suppose that p ∗ ∃xϕ(x, σ0, . . . , σn−1), and suppose that q ≤ p. Then e(q) ≤
∑

τ∈MP [[ϕ(τ, σ0, . . . , σn−1)]], and so there is a τ ∈MP such that e(q)·[[ϕ(τ, σ0, . . . , σn−1)]] 6=
0; hence we easily get r ≤ q such that e(r) ≤ [[ϕ(τ, σ0, . . . , σn−1)]]. This implies that
r ∗ ϕ(τ, σ0, . . . , σn−1), as desired.

Conversely, suppose that the set

{r ≤ p : there is a τ ∈ VP such that r ∗ ϕ(τ, σ0, . . . , σn−1)}

is dense below p, while p 6∗ ∃xϕ(x, σ0, . . . , σn−1). Thus e(p) 6≤ [[∃xϕ(x, σ0, . . . , σn−1)]], so

e(p) ·
∏

τ∈MP

−[[ϕ(τ, σ0, . . . , σn−1)]] 6= 0.
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Then we easily get q ≤ p such that

(4) e(q) ≤
∏

τ∈MP

−[[ϕ(τ, σ0, . . . , σn−1)]].

By assumption, choose r ≤ q and τ ∈ MP such that r ∗ ϕ(τ, σ0, . . . , σn−1). Thus
e(r) ≤ [[ϕ(τ, σ0, . . . , σn−1)]]. This clearly contradicts (4).

(xii): Clear.
(xiii): Clearly (a)⇒(b)⇒(c). Now assume (c). Suppose that p 6∗ ϕ(σ0, . . . , σm−1).

Thus e(p) 6≤ [[ϕ(σ0, . . . , σm−1)]], so we easily get q ≤ p such that

(5) e(q) ≤ −[[ϕ(σ0, . . . , σm−1)]].

By (c), choose r ≤ q such that r ∗ ϕ(σ0, . . . , σm−1). Clearly this contradicts (5).
(xiv): First suppose that p ∗ ϕ(σ0, . . . , σm−1) → ψ(σ0, . . . , σm−1). Thus by the

definition of → we have p ∗ ¬ϕ(σ0, . . . , σm−1) ∨ ψ(σ0, . . . , σm−1). Hence the desired
conclusion follows by (viii). The converse follows by reversing these steps.

(xv): This is very similar to part of the proof of (xi), but we give it anyway. We have

i(p) ≤ [[¬∀xϕ(x, σ0, . . . , σm−1)]]

=
∑

τ∈MP

−[[ϕ(τ, σ0, . . . , σm−1)]].

Now suppose that q ≤ p. Then e(q) is ≤ the sum here, so we easily get r ≤ q and τ ∈MP

such that e(r) ≤ [[¬ϕ(τ, σ0, . . . , σm−1)]]. Hence r ∗ ¬ϕ(τ, σ0, . . . , σm−1), as desired.
(xvi): The hypotheses yield

e(p) ≤ [[ϕ(σ0, . . . , σm−1)]] and

e(p) ≤ −[[ϕ(σ0, . . . , σm−1)]] + [[ψ(σ0, . . . , σm−1)]],

so e(p) ≤ [[ψ(σ0, . . . , σm−1)]] and hence p ∗ ψ(σ0, . . . , σm−1)]].

Exercises

E15.1. Let I and J be sets with I infinite and |J | > 1, and let P = (P,≤, ∅), where P is
the collection of all finite functions contained in I × J and ≤ is ⊇ restricted to P . Show
that P satisfies the condition of Lemma 15.2.

E15.2. Show that if the condition in the hypothesis of Lemma 15.2 fails, then there is a
P-generic filter G over M such that G ∈M , and G intersects every dense subset of P (not
only those in M). [Cf. Lemma 15.1.]

E15.3. Assume the hypothesis of Lemma 15.2. Show that there does not exist a P-generic
filter over M which intersects every dense subset of P (not only those which are in M).
Hint: Take G generic, and show that {p ∈ P : p /∈ G} is dense. Thus in the definition of
generic filter, the condition on dense sets being in M is necessary.
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E15.4. Show that if P satisfies the condition of Lemma 15.2, then it has uncountably many
dense subsets.

E15.5. Assume the hypothesis of Lemma 15.2. Show that there are 2ω filters which are
P-generic over M .

E15.6. Let P = ({1},≤, 1). Prove that the collection of all P-names is a proper class.

E15.7. Show that p  σ = τ iff the following two conditions hold.
(i) For every (ξ, q) ∈ σ and every r ≤ p, q one has r  ξ ∈ τ .
(ii) For every (ξ, q) ∈ τ and every r ≤ p, q one has r  ξ ∈ σ.

E15.8. Assume that P ∈ M , p, q ∈ P , and p ⊥ q. Show that {τ ∈ MP : (p  τ = ∅̌)M} is
a proper class in M .

E15.9. Recall that forcing order is separative iff it is antisymmetric (p ≤ q ≤ p implies
that p = q), and for all p, q, if p 6≤ q then there is an r ≤ p such that r ⊥ q. Show that the
forcing order of exercise E15.1 is separative.

E15.10. Assume that P ∈ M is separative and p, q, r ∈ P . Prove that the following two
conditions are equivalent:

(i) (p  {({(∅, q)}, r)} = 1̌)M .
(ii) p ≤ r and p ⊥ q.

E15.11. Suppose that f : A →M with f ∈ M [G]. Show that there is a B ∈M such that
f : A→ B. Hint: let f = τG and B = {b : ∃p ∈ P [(p  b̌ ∈ rng(τ))M ]}.

E15.12. Assume that P ∈M and α is a cardinal of M . Then for any P-generic G over M
the following conditions are equivalent:

(1) For all B ∈M , αB ∩M = αB ∩M [G].
(2) αM ∩M = αM ∩M [G].

E15.13. Suppose that P ∈ M is a forcing order satisfying the condition of Lemma 15.2.
Assume that

M = M0 ⊆M1 ⊆M2 ⊆ · · · ⊆Mn ⊆ · · · (n ∈ ω),

where Mn+1 = Mn[Gn] for some Gn which is P-generic over Mn, for each n ∈ ω. Show
that the power set axiom fails in

⋃

n∈ωMn.

E15.14. Prove that the following conditions are equivalent:

[[ϕ(σ0, . . . , σm−1) ↔ ψ(σ0, . . . , σm−1)]] = 1

[[ϕ(σ0, . . . , σm−1)]] = [[ψ(σ0, . . . , σm−1)]].

E15.15. Prove that [[σ = τ ]] · [[τ = ρ]] ≤ [[σ = ρ]].

E15.16. Prove that if ZFC |= ϕ then [[ϕ]] = 1, for any sentence ϕ.
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16. Independence of CH

The forcing orders used in this chapter are special cases of the following. For sets I, J and
for λ an infinite cardinal,

Fn(I, J, λ) = ({f : f is a function contained in I × J and |f | < λ},⊇, ∅).

We first show that ¬CH is consistent. The main part of the proof is given in the following
theorem.

Theorem 16.1. (Cohen) Let M be a c.t.m. of ZFC. Suppose that κ is any infinite cardinal
of M . Let G be Fn(κ, 2, ω)-generic over M . Then 2ω ≥ κ in M [G].

Proof. Let g =
⋃
G. Since any two members of G are compatible, g is a function.

(1) For each α ∈ κ, the set {f ∈ Fn(κ, 2, ω) : α ∈ dmn(f)} is dense in Fn(κ, 2, ω) (and it
is a member of M).

In fact, given f ∈ Fn(κ, 2, ω), either f is already in the above set, or else α /∈ dmn(f) and
then f ∪ {(α, 0)} is an extension of f which is in that set. So (1) holds.

Since G intersects each set (1), it follows that g maps κ into 2. Let (in M) h : κ×ω → κ
be a bijection. For each α < κ let aα = {m ∈ ω : g(h(α,m)) = 1}. We claim that aα 6= aβ
for distinct α, β; this will give our result. In fact, for distinct α, β < κ, the set

{f ∈ Fn(κ, 2, ω) : there is an m ∈ ω such that

h(α,m), h(β,m) ∈ dmn(f) and f(h(α,m)) 6= f(h(α,m))}

is dense in Fn(κ, 2, ω) (and it is in M). In fact, let distinct α and β be given, and suppose
that f ∈ Fn(κ, 2, ω). Now {m : h(α,m) ∈ f or h(β,m) ∈ f} is finite, so choose m ∈ ω not
in this set. Thus h(α,m), h(β,m) /∈ f . Let h = f ∪ {(h(α,m), 0), (h(β,m), 1)}. Then h
extends f and is in the above set, as desired.

It follows that G contains a member of this set. Hence aα 6= aβ.

By taking κ > ω1 in M , it would appear that we have shown the consistency of ¬CH. But
there is a major detail that we have to take care of. Possibly ω1 means something different
in M [G] than it does in M ; maybe we have accidentally introduced a bijection from the
ω1 of M onto ω. Since M is countable, this is conceivable.

To illustrate this problem, let P be the forcing order consisting of all finite functions
mapping a subset of ω into ω1, ordered by ⊇, with ∅ as “largest” element. Suppose that
G is P-generic over M . Now the following sets are dense:

Am
def
= {f ∈ P : m ∈ dmn(f)} for each m ∈ ω,

Bα
def
= {f ∈ P : α ∈ rng(f)} for each α ∈ ωM1 .

In fact, given any g ∈ P , if m ∈ ω\dmn(g), then g ∪ {(m, 0)} is a member of P which
in Am and contains g; and given any g ∈ P and α < ωM1 , choose m ∈ ω\dmn(g); then
g ∪ {(m,α)} is a member of P which in Bα and contains g. Now if G is P-generic over M
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and intersects all of the sets Am and Bα, then clearly
⋃
G, which is a member of M [G], is

a function mapping ω onto ωM1 . So ωM1 gets “collapsed” to a countable ordinal in M [G].
Note that ωM = ωM [G] by absoluteness.

Thus to finish the proof of consistency of ¬CH we need to study the preservation of
cardinals in the passage from M to M [G].

P preserves cardinals ≥ κ iff for every G which is P-generic over M and every ordinal
α ≥ κ in M , α is a cardinal in M iff α is a cardinal in M [G].

P preserves cofinalities ≥ κ iff for every G which is P-generic over M and every limit
ordinal α in M such that (cf(α))M ≥ κ, (cf(α))M = (cf(α))M [G].

P preserves regular cardinals ≥ κ iff for every G which is P-generic over M and every
ordinal α ≥ κ which is a regular cardinal of M , α is also a regular cardinal of M [G].

If κ = ω, we say simply that P preserves cardinals, cofinalities, or regular cardinals.
In these definitions, if we replace “≥” by “≤” we obtain new definitions which will be

used below also.
The relationship between these notions that we want to give uses the following fact.

Lemma 16.2. Suppose that α is a limit ordinal, κ and λ are regular cardinals, f : κ→ α
is strictly increasing with rng(f) cofinal in α, and g : λ → α is strictly increasing with
rng(g) cofinal in α. Then κ = λ.

Proof. Suppose not; say by symmetry κ < λ. For each ξ < κ choose ηξ < λ such
that f(ξ) < g(ηξ). Let ρ = supξ<κ ηξ. Thus ρ < λ by the regularity of λ. But then
f(ξ) < g(ρ) < α for all ξ < κ, contradiction.

Proposition 16.3. Let M be a c.t.m. of ZFC, P ∈ M be a forcing order, and κ be a
cardinal of M .

(i) If P preserves regular cardinals ≥ κ, then it preserves cofinalities ≥ κ.
(ii) If P preserves cofinalities ≥ κ, and κ is regular, then P preserves cardinals ≥ κ.

Proof. (i): Let α be a limit ordinal of M with (cf(α))M ≥ κ. Then (cf(α))M is a
regular cardinal of M which is ≥ κ and hence is also a regular cardinal of M [G]. Now we
can apply Lemma 16.2 within M [G] to κ = (cf(α))M and λ = (cf(α))M [G] to infer that
(cf(α))M = (cf(α))M [G].

(ii): Suppose that cardinals ≥ κ are not preserved, and let λ be the least cardinal of
M which is ≥ κ but which is not a cardinal of M [G]. If λ is regular in M , then

λ = (cf(λ))M = (cf(λ))M [G],

and so λ is a regular cardinal in M [G], contradiction. If λ is singular in M , then it is
greater than κ since κ is regular in M , and so by the minimality of λ it is the supremum
of cardinals in M [G], and so it is a cardinal in M [G], contradiction.

We can replace “≥” by “≤” in this proposition and its proof; call this new statement
Proposition 16.3 ′. The very last part of the proof of 16.3 can be simplified for ≤, and
actually one does not need to assume that κ is regular in this case.
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A forcing order P satisfies the κ-chain condition, abbreviated κ-c.c., iff every antichain in
P has size less than κ.

The following theorem is very useful in forcing arguments.

Theorem 16.4. Let M be a c.t.m. of ZFC, P ∈M be a forcing order, κ be a cardinal of
M , G be P-generic over M , and suppose that P satisfies the κ-c.c. Suppose that f ∈M [G],
A,B ∈M , and f : A→ B. Then there is an F : A→ P(B) with F ∈M such that:

(i) f(a) ∈ F (a) for all a ∈ A.
(ii) (|F (a)| < κ)M for all a ∈ A.

Proof. Let τ ∈ MP be such that τG = f . Thus the statement “τG : A → B” holds
in M [G]. Hence by Theorem 15.21 there is a p ∈ G such that

p  τ : Ǎ→ B̌.

Now for each a ∈ A let

F (a) = {b ∈ B : there is a q ≤ p such that q  op(ǎ, b̌) ∈ τ}.

To prove (i), suppose that a ∈ A. Let b = f(a). Thus (a, b) ∈ f , so by Theorem 15.21
there is an r ∈ G such that r  op(ǎ, b̌) ∈ τ . Let q ∈ G with q ≤ p, r. Then q shows that
b ∈ F (a).

To prove (ii), again suppose that a ∈ A. By the axiom of choice in M , there is a
function Q : F (a) → P such that for any b ∈ F (a), Q(b) ≤ p and Q(b)  op(ǎ, b̌) ∈ τ .

(1) If b, b′ ∈ F (a) and b 6= b′, then Q(b) ⊥ Q(b′).

In fact, suppose that r ≤ Q(b), Q(b′). Then

(2) r  op(ǎ, b̌) ∈ τ ∧ op(ǎ, b̌′) ∈ τ ;

but also r ≤ Q(b) ≤ p, so r  τ : Ǎ→ B̌, hence

r  ∀x, y, z[op(x, y) ∧ op(x, z) → y = z]

and hence

(3) r  op(ǎ, b̌) ∈ τ ∧ op(ǎ, b̌′) ∈ τ → b̌ = b̌′.

Now let H be P-generic over M with r ∈ H. By the definition of forcing and (2) we have
(a, b) = (op(ǎ, b̌))G ∈ τG and (a, b′) = (op(ǎ, b̌′) ∈ τG. By (3) and the definition of forcing
it follows that b = b′. Thus (1) holds.

By (1), 〈Q(b) : b ∈ F (a)〉 is a one-one function onto an antichain of P . Hence
(|F (a)| < κ)M by the κ-cc.

Proposition 16.5. If M is a c.t.m. of ZFC, κ is a cardinal of M , and P ∈ M satisfies
κ-cc in M , then P preserves regular cardinals ≥ κ, and also preserves cofinalities ≥ κ. If
also κ is regular in M , then P preserves cardinals ≥ κ.
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Proof. First we want to show that if λ ≥ κ is regular in M then also λ is regular in
M [G] (and hence is a cardinal of M [G]). Suppose that this is not the case. Hence in M [G]
there is an α < λ and a function f : α→ λ such that the range of f is cofinal in λ. Recall
from Lemma 15.13 that M and M [G] have the same ordinals. Thus α ∈M . By Theorem
16.4, let F : α → P(λ) be such that f(ξ) ∈ F (ξ) and (|F (ξ)| < λ)M for all ξ < α. Let
S =

⋃

ξ<α F (ξ). Then S is a subset of λ which is cofinal in λ and has size less than λ,
contradiction.

The rest of the proposition follows from Proposition 16.3.

To proceed we need an important theorem from infinite combinatorics. A collection A of
sets forms a ∆-system iff there is a set r (called the root or kernel of the ∆-system) such
that A ∩B = r for any two distinct A,B ∈ A . This is illustrated as follows:

root







· · ·

The existence theorem for ∆-systems that is most often used is as follows.

Theorem 16.6. (∆-system theorem) If κ is an uncountable regular cardinal and A is a
collection of finite sets with |A | ≥ κ, then there is a B ∈ [A ]κ such that B is a ∆-system.

Proof. First we prove the following special case of the theorem.

(∗) If A is a collection of finite sets each of size m ∈ ω, with |A | = κ, then there is a
B ∈ [A ]κ such that B is a ∆-system.

We prove this by induction on m. The hypothesis implies that m > 0. If m = 1, then
each member of A is a singleton, and so A is a collection of pairwise disjoint sets; hence
it is a ∆-system with root ∅. Now assume that (∗) holds for m, and suppose that A is a
collection of finite sets each of size m + 1, with |A | = κ, and with m > 0. We consider
two cases.

Case 1. There is an element x such that C
def
= {A ∈ A : x ∈ A} has size κ. Let

D = {A\{x} : A ∈ C }. Then D is a collection of finite sets each of size m, and |D | = κ.
Hence by the inductive assumption there is an E ∈ [D ]κ which is a ∆-system, say with
kernel r. Then {A ∪ {x} : A ∈ E} ∈ [A ]κ and it is a ∆-system with kernel r ∪ {x}.
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Case 2. Case 1 does not hold. Let 〈Aα : α < κ〉 be a one-one enumeration of A .
Then from the assumption that Case 1 does not hold we get:

(∗∗) For every x, the set {α < κ : x ∈ Aα} has size less than κ.

We now define a sequence 〈α(β) : β < κ〉 of ordinals less than κ by recursion. Suppose

that α(β) has been defined for all β < γ, where γ < κ. Then Γ
def
=
⋃

β<γ Aα(β) has size
less than κ, and so by (∗∗), so does the set

⋃

x∈Γ

{δ < κ : x ∈ Aδ}.

Thus we can choose α(γ) < κ such that for all x ∈ Γ we have x /∈ Aα(γ). This implies
that Aα(γ) ∩ Aα(β) = ∅ for all β < γ. Thus we have produced a pairwise disjoint system
〈Aα(β) : β < κ〉, as desired. (The root is ∅ again.)

This finishes the inductive proof of (∗)
Now the theorem itself is proved as follows. Let A ′ be a subset of A of size κ. Then

A
′ =

⋃

m∈ω
{A ∈ A

′ : |A| = m}.

Hence there is an m ∈ ω such that {A ∈ A ′ : |A| = m} has size κ. So (∗) applies to give
the desired conclusion.

By the countable chain condition, abbreviated ccc, we mean the ω1-chain condition.

Lemma 16.7. If κ is an infinite cardinal, then Fn(κ, 2, ω) satisfies ccc.

Proof. Suppose that F ⊆ Fn(κ, 2, ω) is uncountable. Since for each finite F ⊆ κ there
are only finitely many members of F with domain F , it is clear that {dmn(f) : f ∈ F} is
an uncountable collection of finite sets. By the ∆-system lemma, let G be an uncountable
subset of this collection which forms a ∆-system, say with root R. Then

G =
⋃

k∈R2

{f ∈ G : f ↾ R = k};

since R2 is finite, there is a k ∈ R2 such that

H
def
= {f ∈ G : f ↾ R = k}

is uncountable. Clearly f and g are compatible for any f, g ∈ H .

Theorem 16.8. (Cohen) Let M be a c.t.m. of ZFC. Suppose that κ is any cardinal of M .
Let G be Fn(κ, 2, ω)-generic over M . Then M [G] has the same cofinalities and cardinals
as M , and 2ω ≥ κ in M [G].

Proof. By Theorems 16.1, 16.5, and 16.7, also using the fact that ω is absolute.
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The method of proof of Theorem 16.8 is called Cohen forcing.

Theorem 16.9. (Cohen) If ZFC is consistent, then so is ZFC + ¬CH.

Proof. Apply Theorem 16.8 with κ a cardinal of M greater than ωM1 .

We now turn to the proof of consistency of CH. This depends on a new notion which is
important in its own right.

Let λ be an infinite cardinal. A forcing order P = (P,≤, 1) is λ-closed iff for all γ < λ
and every system 〈pξ : ξ < γ〉 of elements of P such that pη ≤ pξ whenever ξ < η < γ,
there is a q ∈ P such that q ≤ pξ for all ξ < γ.

The importance of this notion for generic extensions comes about because of the
following theorem, which is similar to Theorem 16.4.

Theorem 16.10. Suppose that M is a c.t.m. of ZFC, P ∈ M is a forcing order, λ is a
cardinal of M , P is λ-closed, A,B ∈ M , and |A| < λ. Suppose that G is P-generic over
M and f ∈M [G] with f : A→ B. Then f ∈M .

Proof. It suffices to prove this when A is an ordinal. For, suppose that this special
case has been shown, and now suppose that A is arbitrary. In M , let j be a bijection from

α
def
= |A|M onto A. Then f ◦ j : α→ B, so f ◦ j ∈M by the special case. Hence f ∈M .

So now we assume that A = α, an ordinal less than λ. Let K = (αB)M . Let f = τG.
We want to show that f ∈ K, for then f ∈M . Suppose not. Now τG : α→ B and τG ∈ K.
Hence by Theorem 15.21 there is a p ∈ G such that

(1) p  τ : α̌→ B̌ ∧ τ /∈ Ǩ.

For a while we work entirely in M . We will define sequences 〈pη : η ≤ α〉 of elements of P
and 〈zη : η < α〉 of elements of B by recursion, so that the following conditions hold:

(2) p0 = p.
(3) pη ≤ pξ if ξ < η.
(4) pη+1  τ(η̌) = žη.

Of course we start out by defining p0 = p, so that (2) holds. Now suppose that pη has been
defined so that (2)–(4) hold; we define pη+1. In fact, we claim that there exist a pη+1 ≤ pη
and a zη ∈ B such that pη+1 ≤ pη and pη+1  τ(η̌) = žη. To prove this claim, suppose
that pη ∈ H where H is P-generic over M . Then by (1), τH : α → B and τH /∈ K. Hence
τH(η) ∈ B; say τH(η) = zη. By Theorem 15.21, there is a q ∈ H such that q  τ(η̌) = žη.
Let pη+1 ∈ H with pη+1 ≤ pη, q. This proves the claim. Thus (2)–(4) holds.

For η limit, pη is given by the definition of λ-closed.
Note that the function z defined in this way is in K.
This finishes our argument within M . Now let H be P-generic over M with pα ∈ H.

Then τH(η) = zη for each η < α by (4), so that τH = z ∈ K. This contradicts (1), since
pα ≤ p.

Proposition 16.11. Suppose that M is a c.t.m. of ZFC. P ∈M is a forcing order, λ is a
regular cardinal of M , and P is λ-closed. Then P preserves cofinalities and cardinals ≤ λ.
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Proof. Otherwise, by Proposition 16.3′ there is a regular cardinal κ ≤ λ of M which
is not regular in M [G]. Thus there exist in M [G] an ordinal α < κ and a function f : α→ κ
such that rng(f) is cofinal in κ. By Theorem 16.10, f ∈M , contradiction.

Theoerem 16.12. Let M be a c.t.m. of ZFC, and let G be F(ω1, 2, ω1)-generic over M .

Then CH holds in M [G], and ωM1 = ω
M [G]
1 .

First we show that F(ω1, 2, ω1) is ω1-closed. Let 〈fξ : ξ < α〉 be a sequence of members of
F(ω1, 2, ω1) such that α < ω1 and ∀ξ, η[ξ < η < α → fη ⊇ fξ]. Then clearly

⋃

ξ<α fξ ∈
F(ω1, 2, ω1) and

⋃

ξ<α fξ ⊇ fη for each η < ξ. Now it follows from Proposition 16.11 that

ωM1 = ω
M [G]
1 .

By Theorem 16.10 we have (ω2)M [G] ⊆ M . Let F : ω1 × ω → ω1 be a bijection. For
each f ∈ ω2 let

Df = {g ∈ Fn(ω1, 2, ω1) : ∃α < ω1∀n ∈ ω[F (α, n) ∈ dmn(g) and g(F (α, n)) = f(n)]}}.

Clearly Df is dense in Fn(ω1, 2, ω1). Define h : ωM1 → ω2 in M [G] by: (h(α))(n) =
(
⋃
G)(F (α, n)). Then h maps onto ω2 by the denseness of the Df ’s, as desired.

Theorem 16.13. (Gödel) If ZFC is consistent, then so is ZFC + CH.

Gödel also showed that if ZF is consistent, then so is ZFC + GCH. For this he introduced
the notion of constructible sets.

In conclusion we give some elementary facts about forcing which will be used later.

Theorem 16.14. p  ǎ ∈ b̌ iff a ∈ b.

Theorem 16.15. p  ∃xϕ(x, σ0, . . . , σm−1) iff the set

{r ≤ p : there is a τ ∈MP [r  ϕ(τ, σ0, . . . , σm−1)]}

is dense below p.

Proof. ⇒: Assume that p  ∃xϕ(x, σ0, . . . , σm−1), and q ≤ p. Let G be P-generic
over M with q ∈ G. Then also p ∈ G, so (∃xϕ(σ0, . . . , σm−1))M [G]. Hence there is
a τ ∈ MP such that ϕM [G](τG, σ0G, . . . , σ(m−1)G) holds. Choose s ∈ G such that s 

ϕ(τ, σ0, . . . , σm−1). Then choose r ∈ G with r ≤ q, s. Thus r is in the indicated set, as
desired.

⇐: Assume the indicated condition, and suppose that p ∈ G with G P-generic over M .
Then there is an r ∈ G with r in the indicated set. Hence ϕM [G](τG, σ0G, . . . , σ(m−1)G),

and so also ∃xϕM [G](x, σ0G, . . . , σ(m−1)G), as desired.

Proposition 16.16. If p  ∃x ∈ ǎϕ(x), then there exist a q ≤ p and a b ∈ a such that
q  ϕ(b̌).
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Proof. We have p  ∃x[x ∈ ǎ and ϕ(x)]. Hence by Theorem 16.15, choose q ≤ p and
b ∈ a such that q  b̌ ∈ ǎ and ϕ(b̌)]. So q  ϕ(b̌).

EXERCISES

E16.1. Show that Fn(ω1, 2, ω1) preserves cardinals ≥ ω2.

E16.2. A system 〈Ai : i ∈ I〉 of sets is an indexed ∆-system iff there is a set r (again called
the root such that Ai ∩ Aj = r for all distinct i, j ∈ I. Note that in an indexed system
〈Ai : i ∈ I〉 it is possible to have distinct i, j ∈ I such that Ai = Aj; in fact, all of the Ai’s
could be equal, in which case the system is already an indexed ∆-system.

Prove that if κ is an uncountable regular cardinal and 〈Ai : i ∈ I〉 is a system of finite
sets with |I| ≥ κ, then there is a J ∈ [I]κ such that 〈Ai : i ∈ J〉 is an indexed ∆-system.

E16.3. Here we work only in ZFC (or in a fixed model of it). Suppose that (X,<) is a linear
order. Let P be the set of all pairs (p, n) such that n ∈ ω and p ⊆ X×n is a finite function.
Define (p, n) ≤ (q,m) iff m ≤ n, dmn(q) ⊆ dmn(p), ∀x ∈ dmn(q)[p(x) ∩m = q(x), and

∀x, y ∈ dmn(q), if x < y then p(x)\p(y) ⊆ m.

Show that P has ccc.

E16.4. Continuing exercise E16.3, suppose that we are working in a c.t.m. M of ZFC. Let
G be P-generic over M . For each x ∈ X let

ax =
⋃

{p(x) : (p, n) ∈ G for some n ∈ ω, with x ∈ dmn(p)}.

Thus ax ⊆ ω. Show that if x < y, then ax\ay is finite.

E16.5. Continuing exercises E16.3 and E16.4, show that if x < y, then ay\ax is infinite.
Hint: for each i < ω let

Ei = {(p, n) : x, y ∈ dmn(p) and |p(y)\p(x)| ≥ i},

and show that Ei is dense.

E16.6. Define a set A of finite sets with |A | = ω while there is no ∆-system B ∈ [A ]ω.

E16.7. Let κ be singular. Define a set A of finite sets with |A | = κ while there is no
∆-system B ∈ [A ]κ.
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17. Linear orders

In this chapter we prove some results about linear orders which form a useful background
in much of set theory. Among these facts are: any two denumerable densely ordered sets
are isomorphic, the existence of ηα sets, the existence of completions, a discussion of Suslin
lines, and a proof of a very useful theorem of Hausdorff.

A linear order (A,<) is densely ordered iff |A| > 1, and for any a < b in A there is a
c ∈ A such that a < c < b. A subset X of a linearly ordered set L is dense in L iff for any
two elements a < b in L there is an x ∈ X such that a < x < b. Note that if X is dense in
L and L has at least two elements, then L itself is dense.

Theorem 17.1. If L is a dense linear order, then L is the disjoint union of two dense
subsets.

Proof. Let 〈aα : α < κ〉 be a well-order of L, with κ = |L|. We put each aα in A
or B by recursion, as follows. Suppose that we have already done this for all β < α. Let
C = {aβ : β < α and aβ < aα}, and let D = {aβ : β < α and aβ > aα}. We take two
possibilities.

Case 1. C has a largest element aβ , D has a smallest element aγ , and aβ, aγ ∈ A.
Then we put aα in B.

Case 2. Otherwise, we put aα in A.
Now we want to see that this works. So, suppose that elements aξ < aη of L are given.

Let aβ < aγ be the elements of L with smallest indices which are in the interval (aξ, aη).
If one of these is in A and the other in B, this gives elements of A and B in (aξ, aη). So,
suppose that they are both in A, or both in B. Let aν be the member of L with smallest
index that is in (aβ, aγ). Thus aξ < aβ < aν < aγ < aη, so by the minimality of β and γ
we have β, γ < ν. Thus β < ν and aβ < aν .

(1) aβ is the largest element of {aρ : ρ < ν, aρ < aν}.

In fact, aβ is in this set, as just observed. If aβ < aρ, ρ < ν, and aρ < aν , then also
aρ < aγ since aν < aγ , so the definition of ν is contradicted. Hence (1) holds.

(2) aγ is the smallest element of {aρ : ρ < ν, aρ > aν}.

In fact, γ < ν as observed just before (1), and aγ > aν by the definition of aν . If aρ < aγ,
ρ < ν, and aρ > aν , then also aρ > aβ since aν > aβ, so the definition of ν is contradicted.
Hence (2) holds.

So by construction, if aβ, aγ ∈ A then aν ∈ B, while if aβ , aγ ∈ B, then aν ∈ A. So
again we have found elements of both A and B which are in (aξ, aη).

The proof of the following result uses the important back-and-forth argument.

Theorem 17.2. Any two denumerable densely ordered sets without first and last elements
are order-isomorphic.

Proof. Let (A,<) and (B,≺) be denumerable densely ordered sets without first and
last elements. Write A = {ai : i ∈ ω} and B = {bi : i ∈ ω}. We now define by recursion
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sequences 〈ci : i ∈ ω〉 of elements of A and 〈di : i ∈ ω〉 of elements of B. Let c0 = a0 and
d0 = b0.

Now suppose that c2m and d2m have been defined so that the following condition hold:

(*) For all i, j ≤ 2m, ci < cj iff di < dj .

(Note that then a similar equivalence holds for = and for >.) We let c2m+1 = am+1. Now
we consider several cases.

Case 1. am+1 = ci for some i ≤ 2m. Take the least such i, and let d2m+1 = di.
Case 2. am+1 < ci for all i ≤ 2m. Let d2m+1 be any element of B less than each di,

i ≤ 2m.
Case 3. ci < am+1 for all i ≤ 2m. Let d2m+1 be any element of B greater than each

di, i ≤ 2m.
Case 4. Case 1 fails, and there exist i, j ≤ 2m such that ci < am+1 < cj . Let d2m+1

be any element b of B such that di < b < dj whenever ci < am+1 < cj ; such an element b
exists by (*).

This finishes the definition of d2m+1. d2m+2 and c2m+2 are defined similarly. Namely,
we let d2m+2 = bm+1 and then define c2m+2 similarly to the above, with a, b interchanged
and c, d interchanged.

Note that each ai appears in the sequence of ci’s, namely c0 = a0 and c2i+1 = ai+1,
and similarly each bi appears in the sequence of di’s. Hence it is clear that {(ci, di) : i ∈ ω}
is the desired order-isomorphism.

Theorem 17.3. If L is an infinite linear order, then there is a subset M of L which is
order isomorphic to (ω,<), or to (ω,>).

Proof. Suppose that L does not have a subset order isomorphic to (ω,>). We claim
then that L is well-ordered, and therefore is isomorphic to an infinite ordinal and hence
has a subset isomorphic to (ω,<). To prove this claim, suppose it is not true. So L has
some nonempty subset P with no least element. We now define a sequence 〈ai : i ∈ ω〉 of
elements of P by recursion. Let a0 be any element of P . If ai ∈ P has been defined, then
it is not the least element of P and so there is an ai+1 ∈ P with ai+1 < ai. This finishes
the construction. Thus we have essentially produced a subset of L order isomorphic to
(ω,>), contradiction.

It would be natural to conjecture that Theorem 17.3 generalizes in the following way: for
any infinite cardinal κ and any linear order L of size κ, there is a subset M of L order
isomorphic to (κ,<) or to (κ,>). This is clearly false, as the real numbers under their
usual order form a counterexample. (Given a set of real numbers order isomorphic to
2ω, one could choose rationals between successive members of the set, and produce 2ω

rationals, contradiction.) We want to give an example that works for many cardinals. The
construction we use is very important for later purposes too.

The following definitions apply to any infinite ordinal γ.

• If f and g are distinct elements of γ2, we define

χ(f, g) = min{α < γ : f(α) 6= g(α)}.
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• Let f < g iff f and g are distinct elements of γ2 and f(χ(f, g)) < g(χ(f, g)). (Thus
f(χ(f, g)) = 0 and g(χ(f, g)) = 1.) Clearly (γ2, <) is a linear order; this is called the
lexicographic order.

We also need some general set-theoretic notation. If A is any set and κ any cardinal, then

[A]κ = {X ⊆ A : |X | = κ};

[A]<κ = {X ⊆ A : |X | < κ};

[A]≤κ = {X ⊆ A : |X | ≤ κ}.

Theorem 17.4. For any infinite cardinal κ, the linear order κ2 does not contain a subset
order isomorphic to κ+ or to (κ+, >).

Proof. The two assertions are proved in a very similar way, so we give details only for
the first assertion. In fact, we assume that 〈fα : α < κ+〉 is a strictly increasing sequence
of members of κ2, and try to get a contradiction. The contradiction will follow rather
easily from the following statement:

(1) If γ ≤ κ, Γ ∈ [κ+]κ
+

, and fα ↾ γ < fβ ↾ γ for any α, β ∈ Γ such that α < β, then there

exist δ < γ and ∆ ∈ [Γ]κ
+

such that fα ↾ δ < fβ ↾ δ for any α, β ∈ ∆ such that α < β.

To prove this, assume the hypothesis. For each α ∈ Γ let f ′
α = fα ↾ γ. Clearly Γ does not

have a largest element. For each α ∈ Γ let α′ be the least member of Γ which is greater
than α. Then

Γ =
⋃

ξ<γ

{α ∈ Γ : χ(f ′
α, f

′
α′) = ξ}.

Since |Γ| = κ+, it follows that there are δ < γ and ∆ ∈ [Γ]κ
+

such that χ(f ′
α, f

′
α′) = δ for

all α ∈ ∆. We claim now that f ′
α ↾ δ < f ′

β ↾ δ for any two α, β ∈ ∆ such that α < β, as
desired in (1). For, take any such α, β. Suppose that f ′

α ↾ δ = f ′
β ↾ δ. (Note that we must

have f ′
α ↾ δ ≤ f ′

β ↾ δ.) Now from χ(f ′
α, f

′
α′) = δ we get f ′

α′(δ) = 1, and from χ(f ′
β , f

′
β′) = δ

we get f ′
β(δ) = 0. Now f ′

α′ ↾ δ = f ′
α ↾ δ = f ′

β ↾ δ, so we get f ′
β < f ′

α′ ≤ f ′
β , contradiction.

This proves (1).
Clearly from (1) we can construct an infinite decreasing sequence κ > γ1 > γ2 > · · ·

of ordinals, contradiction.

Now we give some more definitions, leading to a kind of generalization of Theorem 17.2.

• If (L,<) is a linear order and A,B ⊆ L, we write A < B iff ∀x ∈ A∀y ∈ B[x < y]. If
A = {a} here, we write a < B; similarly for A < b.

• Intervals in linear orders are defined in the usual way. For example, [a, b) = {c : a ≤ c <
b}.

• An ηα-set is a linear order (L,<) such that if A,B ⊆ L, A < B, and |A|, |B| < ℵα, then
there is a c ∈ L such that A < c < B. Taking A = ∅ and B = {a} for some a ∈ L, we
see that ηα-sets do not have first elements; similarly they do not have last elements. Note
that an η0-set is just a densely ordered set without first or last elements.
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• For any ordinal α, we define

Hα = {f ∈ ℵα2 : there is a ξ < ℵα such that f(ξ) = 1 and f(η) = 0 for all η ∈ (ξ,ℵα)}.

We take the order on Hα induced by that on ℵα2: f < g in Hα iff f < g as members of
ℵα2.

Theorem 17.5. Let α be an ordinal, and let cf(ℵα) = ℵγ. Then the following conditions
hold:

(i) Hα is an ηγ-set.
(ii) cf(Hα, <) = ℵγ.
(iii) cf(Hα, >) = ℵγ.
(iv) |H0| = ℵ0, and for α > 0, |Hα| =

∑

β<α 2ℵβ .

Proof. For each f ∈ Hα let ζf < ℵα be such that f(ζf) = 1 and f(η) = 0 for all
η ∈ (ζf ,ℵα).

For (i), suppose that A,B ⊆ Hα with A < B and |A|, |B| < ℵγ . Obviously we may
assume that one of A,B is nonempty. Then there are three possibilities:

Case 1. A 6= ∅ 6= B. Let

ξ = sup{ζf : f ∈ A};

ρ = max(ξ + 1, sup{ζf : f ∈ B}).

Thus ξ, ρ < ℵα since |A|, |B| < ℵγ = cf(ℵα). We now define g ∈ ℵα2 by setting, for each
η < ℵα,

g(η) =







1 if η ≤ ξ and ∃f ∈ A(f ↾ η = g ↾ η and f(η) = 1);
0 if η ≤ ξ and there is no such f ;
0 if ξ < η ≤ ρ;
1 if η = ρ+ 1;
0 if ρ+ 1 < η < ℵα.

Clearly g ∈ Hα. We claim that A < g < B. Note that g /∈ A ∪B since g(ρ+ 1) = 1 while
f(ρ+ 1) = 0 for any f ∈ A ∪B.

To prove the claim first suppose that f ∈ A. Assume that g < f ; we will get a
contradiction. Let η = χ(g, f). Then g(η) = 0 and f(η) = 1. It follows that η ≤ ξ and
g ↾ η = f ↾ η, contradicting the definition of g(η).

Second, suppose that f ∈ B. Assume that f < g; we will get a contradiction. Let
η = χ(f, g). Thus f(η) = 0 and g(η) = 1. We claim that η = ρ + 1. For, otherwise since
g(η) = 1 we must have η ≤ ξ, and then there is an h ∈ A such that h ↾ η = g ↾ η and
h(η) = 1. So f ↾ η = g ↾ η = h ↾ η, f(η) = 0, and h(η) = 1, so f < h. But f ∈ B and
h ∈ A, contradiction. This proves our claim that η = ρ+ 1.

Now clearly ζf ≤ ρ. Since

g ↾ (ρ+ 1) = g ↾ η = f ↾ η = f ↾ (ρ+ 1),

it follows that g(ζf) = 1. So from ζf ≤ ρ we infer that ζf ≤ ξ. Thus since g(ζf) = 1, it
follows that there is a k ∈ A such that k ↾ ζf = g ↾ ζf and k(ζf ) = 1. But now we have
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k ↾ (ζf + 1) = g ↾ (ζf + 1) = f ↾ (ζf + 1) and f(σ) = 0 for all σ ∈ (ζf ,ℵα). Hence f ≤ k,
which contradicts f ∈ B and k ∈ A.

This finishes the proof of (i) in Case 1.

Case 2. A = ∅ 6= B. Let

ρ = sup{ζf : f ∈ B}.

Define g ∈ Hα by setting, for each ξ < ℵα,

g(ξ) =

{
0 if ξ ≤ ρ,
1 if ξ = ρ+ 1,
0 if ρ+ 1 < ξ.

Clearly g < B, as desired.

Case 3. A 6= ∅ = B. Let ξ be as in Case 1. Define g ∈ Hα by setting, for each η < ℵα,

g(η) =

{
1 if η ≤ ξ + 1,
0 if ξ + 1 < η.

Clearly A < g, as desired.

This finishes the proof of (i).

For (ii), let 〈δξ : ξ < ℵγ〉 be a strictly increasing sequence of ordinals with supremum
ℵα. For each ξ < ℵγ define fξ ∈ Hα by setting, for each η < ℵα,

fξ(η) =

{
1 if η ≤ δξ,
0 if δξ < η.

Clearly 〈fξ : ξ < ℵγ〉 is a strictly increasing sequence of members of Hα and {fξ : ξ < ℵγ}
is cofinal in Hα. So (ii) holds.

For (iii), take 〈δξ : ξ < ℵγ〉 as in the proof of (ii). For each ξ < αγ define fξ ∈ Hα by
setting, for each η < ℵα,

fξ(η) =







0 if η < δξ,
1 if η = δξ,
0 if δξ < η.

Clearly 〈fξ : ξ < ℵγ is a strictly decreasing sequence of members of Hα and {fξ : ξ < ℵγ}
is cofinal in (Hα, >). So (iii) holds.

Finally, for (iv), for each δ < ℵα let

Lδ = {f ∈ Hα : f(δ) = 1 and f(ε) = 0 for all ε ∈ (δ,ℵα)}.

Clearly these sets are pairwise disjoint, and their union is Hα. For α = 0,

|Hα| =
∑

δ<ω

|Lδ| =
∑

δ<ω

2|δ| = ℵ0.
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For α > 0,

|Hα| =
∑

δ<ℵα
|Lδ|

=
∑

δ<ω

|Lδ| +
∑

ω≤δ<ℵα
|Lδ|

= ℵ0 +
∑

ω≤δ<ℵα
2|δ|

= ℵ0 +
∑

β<α

(
2ℵβ · |{δ < ℵα : |δ| = ℵβ}|

)

= ℵ0 +
∑

β<α

(
2ℵβ · ℵβ+1

)

=
∑

β<ℵα
2ℵβ .

Corollary 17.6. If ℵα is regular, then
(i) Hα is an ηα-set.
(ii) cf(Hα, <) = ℵα.
(iii) cf(Hα, >) = ℵα.
(iv) |H0| = ℵ0, and for α > 0, |Hα| =

∑

β<α 2ℵβ .

Corollary 17.7. For each regular cardinal ℵα there is an ηα-set.

Corollary 17.8. For each ordinal α there is an ηα+1-set of size 2ℵα .

Corollary 17.9. (GCH) For each regular cardinal ℵα there is an ηα-set of size ℵα.
One of the most useful facts about ηα-sets is their universality, expressed in the following
theorem.

Theorem 17.10. Suppose that ℵα is regular. If K is an ηα-set, then any linearly ordered
set of size ≤ ℵα can be isomorphically embedded in K.

Proof. Let L be a linearly ordered set of size at most ℵα, and write L = {aξ : ξ < ℵα}.
We define a sequence 〈fξ : ξ < ℵα〉 of functions by recursion. Suppose that fη has been
defined for all η < ξ so that it is a strictly increasing function mapping a subset of L of
size less than ℵα into K, and such that fρ ⊆ fη whenever ρ < η < ξ. Let g =

⋃

η<ξ fη.
Then g is still a strictly increasing function mapping a subset of L of size less than ℵα into
K. If aξ ∈ dmn(g), we set fξ = g. Suppose that aξ /∈ dmn(g). Let

A = {g(b) : b ∈ dmn(g) and b < aξ};

B = {g(b) : b ∈ dmn(g) and aξ < b}.
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Then A < B, and |A|, |B| < ℵα. So by the ηα-property, there is an element c of K such
that A < c < B. We let fξ = g ∪ {(aξ, c)} for such an element c. (AC is used.)

This finishes the construction, and clearly
⋃

ξ<ℵα fξ is as desired.

Given a linearly ordered set L, a subset X of L, and an element a of L, we call a an upper
bound for X iff x ≤ a for all x ∈ X . Thus every element of L is an upper bound of the
empty set. We say that a is a least upper bound for X iff a is an upper bound for X and
is ≤ any upper bound for X . Clearly a least upper bound for X is unique if it exists. If
a is the least upper bound of the empty set, then a is the smallest element of L. We use
lub or sup to abbreviate least upper bound. Also “supremum” is synonymous with “least
upper bound”.

Similarly one defines lower bound and greatest lower bound. Any element is a lower
bound of the empty set, and if a is the greatest lower bound of the empty set, then a is
the largest element of L. We use glb or inf to abbreviate greatest lower bound. “infimum”
is synonymous with “greatest lower bound”.

A linear order L is complete iff every subset of L has a greatest lower bound and a
least upper bound.

Proposition 17.11. For any linear order L the following conditions are equivalent:
(i) L is complete.
(ii) Every subset of L has a least upper bound.
(iii) Every subset of L has a greatest lower bound.

Proof. (i)⇒(ii): obvious. (ii)⇒(iii). Assume that every subset of L has a least upper
bound, and let X ⊆ L; we want to show that X has a greatest lower bound. Let Y be the
set of all lower bounds of X . Then let a be a least upper bound for Y . Take any x ∈ X .
Then ∀y ∈ Y [y ≤ x], so a ≤ x since a is the lub of Y . This shows that a is a lower bound
for X . Suppose that y is any lower bound for X . Then y ∈ Y , and hence y ≤ a since a is
an upper bound for Y .

(iii)⇒(i) is treated similarly.

Let (L,<) be a linear order. We say that a linear order (M,≺) is a completion of L iff the
following conditions hold:

(C1) L ⊆M , and for any a, b ∈ L, a < b iff a ≺ b.

(C2) M is complete.

(C3) Every element of M is the lub of a set of elements of L.

(C4) If a ∈ L is the lub in L of a subset X of L, then a is the lub of X in M .

Theorem 17.12. Any linear order has a completion.

Proof. Let (L,<) be a linear order. We let M ′ be the collection of all X ⊆ L such
that the following conditions hold:

(1) For all a, b ∈ L, if a < b ∈ X then a ∈ X .

(2) If X has a lub a in L, then a ∈ X .
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We consider the structure (M ′,⊂). It is clearly a partial order; we claim that it is a linear
order. (Up to isomorphism it is the completion that we are after.) Suppose that X, Y ∈M ′

and X 6= Y ; we want to show that X ⊂ Y or Y ⊂ X . By symmetry take a ∈ X\Y . Then
we claim that Y ⊆ X (hence Y ⊂ X). For, take any b ∈ Y . If a < b, then a ∈ Y by (1),
contradiction. Hence b ≤ a, and so b ∈ X by (1), as desired. This proves the claim.

Next we claim that (M ′,⊂) is complete. For, suppose that X ⊆ M ′. Then
⋃

X

satisfies (1). In fact, suppose that c < d ∈ ⋃X . Choose X ∈ X such that d ∈ X . Then
c ∈ X by (1) for X , and so c ∈ ⋃X . Now we consider two cases.

Case 1.
⋃

X does not have a lub in L. Then
⋃

X ∈M ′, and it is clearly the lub of
X .

Case 2.
⋃

X has a lub in L; say a is its lub. Then

(3)
⋃

X ∪ {a} = (−∞, a].

In fact, ⊆ is clear. Suppose that b < a. Then b is not an upper bound for
⋃

X , so we can
choose c ∈ ⋃X such that b < c. Then b ∈ ⋃X since

⋃
X satisfies (1). This proves (3).

Clearly (−∞, a] ∈M ′. We claim that it is the lub of X . Clearly it is an upper bound.
Now suppose that Z is any upper bound. Then

⋃
X ⊆ Z. If a /∈ Z, then

⋃
X = Z,

contradicting (2) for Z. So a ∈ Z and hence (−∞, a] ⊆ Z.
Hence we have shown that (M ′,⊂) is complete.
Now for each a ∈ L let f(a) = {b ∈ L : b ≤ a}. Clearly f(a) ∈M ′.

(4) For any a, b ∈ L we have a < b iff f(a) ⊂ f(b).

For, suppose that a, b ∈ L. If a < b, clearly f(a) ⊆ f(b), and even f(a) ⊂ f(b) since
b ∈ f(b)\f(a). The other implication in (4) follows easily from this implication by assuming
that b ≤ a.

(5) Every element of M ′ is a lub of elements of f [L].

For, suppose that X ∈M ′, and let X = {f(a) : a ∈ X}; we claim that X is the lub of X .
Clearly f(a) ⊆ X for all a ∈ X , so X is an upper bound of X . Suppose that Y ∈ M ′ is
any upper bound for X . If a ∈ X , then a ∈ f(a) ⊆ Y , so a ∈ Y . Thus X ⊆ Y , as desired.
So (5) holds.

(6) If a ∈ L is the lub in L of X ⊆ L, then f(a) is the lub in M ′ of f [X ].

For, assume that a ∈ L is the lub in L of X ⊆ L. If x ∈ X , then x ≤ a, so f(x) ⊆ f(a).
Thus f(a) is an upper bound for f [X ] in M ′. Now suppose that Y ∈ M ′ and Y is an
upper bound for f [X ]. If b ∈ L and b < a, then since a is the lub of X , there is a d ∈ X
such that b < d ≤ a. So f(d) ⊆ Y , and hence d ∈ Y . Since b < d, we also have b ∈ Y .
This shows that f(a)\{a} ⊆ Y . If a ∈ X , then f(a) ∈ f [X ] and so f(a) ⊆ Y , as desired.
Assume that a /∈ X . Since a is the lub of X in L, there is no largest member of L which
is less than a. Now suppose that a /∈ Y . If u ∈ Y , then u < a, as otherwise a ≤ u and so
a ∈ Y , contradiction. It follows that Y = {u ∈ L : u < a}. Clearly then a is the lub of Y .
This contradicts (2). So (6) holds.

Thus M ′ is as desired, up to isomorphism.
Finally, we need to take care of the “up to isomorphism” business. Non-rigorously,

we just identify a with f(a) for each a ∈ L. This is the way things are done in similar
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contexts in mathematics. Rigorously we proceed as follows; and a similar method can be
used in other contexts. Let A be a set disjoint from L such that |A| = |M ′\f [L]|. For
example, we could take A = {(L,X) : X ∈ M ′\f [L]}; this set is clearly of the same size
as M ′\f [L], and it is disjoint from L by the foundation axiom. Let g be a bijection from
A onto M ′\f [L]. Now let N = L ∪ A, and define h : N →M ′ by setting, for any x ∈ N ,

h(x) =

{
f(x) if x ∈ L,
g(x) if x ∈ A.

Thus h is a bijection from N to M ′, and it extends f . We now define x ≪ y iff x, y ∈ N
and h(x) ⊂ h(y). We claim that (N,≪) really is a completion of L. (Not just up to
isomorphism.) We check the conditions for this. Obviously L ⊆ N . Suppose that a, b ∈ L.
Then a < b iff f(a) ⊂ f(b) iff h(a) ⊂ h(b) iff a ≪ b. Now h is obviously an order-
isomorphism from (N ⊂) onto (M ′ ⊂), so N is complete. Now take any element a of N .
Then by (5), h(a) is the lub of a set f [X ] with X ⊆ L. By the isomorphism property, a is
the lub of X . Finally, suppose that a ∈ L is the lub of X ⊆ L. Then by (6), f(a) is the
lub of f [X ] in M ′, i.e., h(a) is the lub of h[X ] in M ′. By the isomorphism property, a is
the lub of X in N .

Theorem 17.13. If L is a linear order and M,N are completions of L, then there is an
isomorphism f of M onto N such that f ↾ L is the identity.

Proof. It suffices to show that if N is a completion of L and M ′, f are as in the proof
of Theorem 17.12, then there is an isomorphism g from N onto M ′ such that g ↾ L = f .

For any x ∈ N let g(x) = {a ∈ L : a ≤N x}. We claim that g(x) ∈ M ′. Clearly
condition (1) holds. Now suppose that g(x) has a lub b in L. By (C4) for N , b is the lub
of g(x) in N . But obviously x is the lub of g(x) in N , so b = x ∈ g(x). So (2) holds for
g(x), and so g(x) ∈M ′.

If x <N y, clearly g(x) ≤ g(y). By (C3) for N and y, there is an a ∈ L such that
x <N a ≤N y. So a ∈ g(y)\g(x). Hence g(x) ⊂ g(y). Hence by Proposition 4.14, x <N y
iff g(x) ⊂ g(y), for any x, y ∈ N .

It remains only to show that g is a surjection. Let X ∈ M ′. Set x = supNX . If
a ∈ X , then a ≤N x and so a ∈ g(x). Thus X ⊆ g(x). Now suppose that a ∈ g(x). So
a ≤N x. If a <N x, then there is a y ∈ X such that a <N y ≤N x. It follows that a ∈ X .
If a = x, then a ∈ X by (2). So g(x) ⊆ X , showing that g(x) = X .

Corollary 17.14. Suppose that L is a dense linear order, and M is a linear order. Then
the following conditions are equivalent:

(i) M is the completion of L.
(ii) (a) L ⊆M

(b) M is complete.
(c) For any a, b ∈ L, a <L b iff a <M b.
(d) For any x, y ∈M , if x <M y then there is an a ∈ L such that x <M a <M y.

Proof. (i)⇒(ii): Assume that M is the completion of L. then (a)–(c) are clear.
Suppose that x, y ∈ M and x <M y. By (C3), choose b ∈ L such that x <M b ≤M y. If
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x ∈ L, then choose a ∈ L such that x <L a <L b; so x <M a <M y, as desired. Assume
that x /∈ L. Then by (C4), b is not the lub in L of {u ∈ L : u <M x}, so there is some
a ∈ L such that a <L b and a is an upper bound of {u ∈ L : u <M x}. Since by (C3) x is
the lub of {u ∈ L : u <M x}, it follows that x <M a <M b ≤M y, as desired.

(ii)⇒(i): Assume (ii). Then (C1) and (C2) are clear. For (C3), let x ∈ M , and let
X = {a ∈ L : a < x}. Then x is an upper bound for X , and (ii)(d) clearly implies that
it is the lub of X . For (C4), suppose that a ∈ L is the lub in L of a set X of elements of
L. Suppose that x ∈ M is an upper bound for X and x < a. Then by (ii)(d) there is an
element b ∈ L such that x < b < a. Then there is an element c ∈ X such that b < c ≤ a.
It follows that c ≤ x, contradiction.

Note from this corollary that the completion of a dense linear order is also dense.

We now take up a special topic, Suslin lines.

• A subset U of a linear order L is open iff U is a union of open intervals (a, b) or (−∞, a)
or (a,∞). Here (−∞, a) = {b ∈ L : b < a} and (a,∞) = {b ∈ L : a < b}. L itself is also
counted as open. (If L has at least two elements, this follows from the other parts of this
definition.) Note that if L has a largest element a, then (a,∞) = ∅; similarly for smallest
elements.

• An antichain in a linear order L is a collection of pairwise disjoint open sets.

• A linear order L has the countable chain condition, abbreviated ccc, iff every antichain
in L is countable.

• A subset D of a linear order L is topologically dense in L iff D ∩ U 6= ∅ for every
nonempty open subset U of L. Then dense in the sense at the beginning of the chapter
implies topologically dense. In fact, if D is dense in the original sense and U is a nonempty
open set, take some non-empty open interval (a, b) contained in U . There is a d ∈ D with
a < d < b, so D∩U 6= ∅. If ∅ 6= (a,∞) ⊆ U for some a, choose b ∈ (a,∞), and then choose
d ∈ D such that a < d < b. Then again D ∩ U 6= ∅. Similarly if (−∞, a) ⊆ U for some a.

Conversely, if L itself is dense, then topological denseness implies dense in the order
sense; this is clear. On the other hand, take for example the ordered set ω; ω itself is
topologically dense in ω, but ω is not dense in ω in the order sense.

• A linear order L is separable iff there is a countable subset C of L which is topologically
dense in L. Note that if L is separable and (a, b) is a nonempty open interval of L, then
(a, b), with the order induced by L (x < y for x, y ∈ (a, b) iff x < y in L) is separable.
In fact, if C is countable and topologically dense in L clearly C ∩ (a, b) is countable and
topologically dense in (a, b). Similarly, [a, b] is separable, taking (C ∩ [a, b]) ∪ {a, b}. This
remark will be used shortly.

• A Suslin line is a linear ordered set (S,<) satisfying the following conditions:

(i) S has ccc.
(ii) S is not separable.

• Suslin’s Hypothesis (SH) is the statement that there do not exist Suslin lines.
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Later in these notes we will prove that MA+¬CH implies SH. Here MA is Martin’s axiom,
which we will define and discuss later. The consistency of MA + ¬CH requires iterated
forcing, and will be proven much later in these notes. Also later in these notes we will
prove that ♦ implies ¬SH, and still later we will prove that ♦ is consistent with ZFC,
namely it follows from V = L. Both ♦ and L are defined later.

For now we want to connect our notion of Suslin line with more familiar mathematics,
and with the original conjecture of Suslin. The following is a theorem of elementary set
theory.

Theorem 17.15. For any linear order (L,≺) the following conditions are equivalent:
(i) (L,≺) is isomorphic to (R, <).
(ii) The following conditions hold:

(a) L has no first or last elements.
(b) L is dense.
(c) Every nonempty subset of L which is bounded above has a least upper bound.
(d) L is separable.

Proof. (i)⇒(ii): standard facts about real numbers.
(ii)⇒(i): By (d), let C be a countable subset of L such that (a, b) ∩ C 6= ∅ whenever

a < b in L. Clearly C is infinite, is dense, and has no first or last element. By Theorem
17.2, let f be an isomorphism from (C,<) onto (Q, <). We now apply the procedure used
at the end of the proof of 17.12. Let P be a set disjoint from Q such that |L\C| = |P |,
and let R = Q ∪ P . Let g be a bijection from L\C onto P , and define h = f ∪ g. Define
x ≺ y iff x, y ∈ R and h−1(x) <L h

−1(y). This makes R into a linearly ordered set with
h an isomorphism from L onto R. Now we adjoin first and last elements aR, bR to R and
similarly aR, bR for R; call the resulting linearly ordered sets R′ and R′. Then R′ and
R′ are both completions of Q according to Corollary 17.14. Hence (i) holds by Theorem
17.13.

Originally, Suslin made the conjecture that separability in Theorem 17.15 can be replaced
by the condition that every family of pairwise disjoint open intervals is countable. The
following theorem shows that this conjecture and our statement of Suslin’s hypothesis are
equivalent.

Theorem 17.16. The following conditions are equivalent:
(i) There is a Suslin line.
(ii) There is a linearly ordered set (L,<) satisfying the following conditions:

(a) L has no first or last elements.
(b) L is dense.
(c) Every nonempty subset of L which is bounded above has a least upper bound.
(d) No nonempty open subset of L is separable.
(e) L is ccc.

Proof. Obviously (ii) implies (i). Now suppose that (i) holds, and let S be a Suslin
line. We obtain (ii) in two steps: first taking care of denseness, and then taking the
completion to finish up.
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We define a relation ∼ on S as follows: for any a, b ∈ S,

a ∼ b iff a = b,

or a < b and [a, b] is separable,

or b < a and [b, a] is separable.

Clearly ∼ is an equivalence relation on S. Let L be the collection of all equivalence classes
under ∼.

(1) If I ∈ L, then I is convex, i.e., if a < c < b with a, b ∈ I, then also c ∈ I.

For, [a, b] is separable, so [a, c] is separable too, and hence a ∼ c; so c ∈ I.

(2) If I ∈ L, then I is separable.

For, this is clear if I has only one or two elements. Suppose that I has at least three
elements. Then there exist a, b ∈ I with a < b and (a, b) 6= ∅. Let M be a maximal
pairwise disjoint set of such intervals. Then M is countable. Say M = {(xn, yn) : n ∈ ω}.
Since xn ∼ yn, the interval [xn, yn] is separable, so we can let Dn be a countable dense
subset of it. We claim that the following countable set E is dense in I:

E =
⋃

n∈ω
Dn ∪ {e : e is the largest element of I}

∪ {a : a is the smallest element of I}.

Thus e and a are added only if they exist. To show that E is dense in I, first suppose
that a, b ∈ I, a < b, and (a, b) 6= ∅. Then by the maximality of M , there is an n ∈ ω such
that (a, b) ∩ (xn, yn) 6= ∅. Choose c ∈ (a, b) ∩ (xn, yn). Then max(a, xn) < c < min(b, yn),
so there is a d ∈ Dn ∩ (max(a, xn),min(b, yn)) ⊆ (a, b), as desired. Second, suppose that
a ∈ I and (a,∞) 6= ∅; here (a,∞) = {x ∈ I : a < x}. We want to find d ∈ E with a < d. If
I has a largest element e, then e is as desired. Otherwise, there are b, c ∈ I with a < b < c,
and then an element of (a, c)∩E, already shown to exist, is as desired. Similarly one deals
with −∞. Thus we have proved (2).

Now we define a relation < on L by setting I < J iff I 6= J and a < b for some a ∈ I
and b ∈ J . By (1) this is equivalent to saying that I < J iff I 6= J and a < b for all a ∈ I
and b ∈ J . In fact, suppose that a ∈ I and b ∈ J and a < b, and also c ∈ I and d ∈ J ,
while d ≤ c. If d ≤ a, then d ≤ a < b with d, b ∈ J implies that a ∈ J , contradiction.
Hence a < d. Since also d ≤ c this gives d ∈ I, contradiction.

Clearly < makes L into a simply ordered set. Except for not being complete in the
sense of (c), L is close to the linear order we want.

To see that L is dense, suppose that I < J but (I, J) = ∅. Take any a ∈ I and b ∈ J .
Then (a, b) ⊆ I ∪ J , and I ∪ J is separable by (2), so a ∼ b, contradiction.

For (d), by a remark in the definition of separable it suffices to show that no open
interval (I, J) is separable. Suppose to the contrary that (I, J) is separable. Let A be a
countable dense subset of (I, J). Also, let B = {K ∈ L : I < K < J and |K| > 2}. Any
two distinct members of B are disjoint, and hence by ccc B is countable. In fact, each
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K ∈ B has the form (a, b), [a, b), (a, b], or [a, b]. since |K| > 2, in each case the open
interval (a, b) is nonempty. So ccc applies.

Define C = A ∪B∪{I, J}. By (2), each member of C is separable, so for each K ∈ C

we can let DK be a countable dense subset of K. Let E =
⋃

K∈C
DK . So E is a countable

set. Fix a ∈ I and b ∈ J . We claim that E ∩ (a, b) is dense in (a, b). (Hence a ∼ b and so
I = J , contradiction.) For, suppose that a ≤ c < d ≤ b with (c, d) 6= ∅.

Case 1. [c]∼ = [d]∼ = I. Then DI ∩ (c, d) 6= ∅, so E ∩ (c, d) 6= ∅, as desired.

Case 2. [c]∼ = [d]∼ = J . Similarly.

Case 3. I < [c]∼ = [d]∼ < J . Then [c]∼ ∈ B ⊆ C , so the desired result follows again.

Case 4. [c]∼ < [d]∼. Choose K ∈ A such that [c]∼ < K < [d]∼. Hence c < e < d for
any e ∈ DK , as desired.

Thus we have obtained a contradiction, which proves that (I, J) is not separable.

Next, we claim that L has ccc. In fact, suppose that A is an uncountable family of
pairwise disjoint open intervals. Let B be the collection of all endpoints of members of
A , and for each I ∈ B choose aI ∈ I. Then

{(aI , aJ) : (I, J) ∈ A }

is an uncountable collection of pairwise disjoint nonempty open intervals in S, contradic-
tion. In fact, given (I, J) ∈ A , choose K with I < K < J . then aK ∈ (aI , aJ). So
(aI , aJ) 6= ∅. Suppose that (I, J), (I ′, J ′) are distinct members of A . Wlog J ≤ I ′. Then
aJ ≤ aI′ , and it follows that (aI , aJ) ∩ (aI′ , aJ ′) = ∅.

This finishes the first part of the proof. We have verified that L satisfies (b), (d), and
(e). Now let M be the completion of L, and let N be M without its first and last elements.
We claim that N finally satisfies all of the conditions in (ii). Clearly N is dense, it has no
first or last elements, and every nonempty subset of it bounded above has a least upper
bound. Next, suppose that a < b in N and C is a countable subset of (a, b) which is dense
in (a, b). Choose c, d ∈ L such that a < c < d < b. For any u, v ∈ C with c < u < v < d
choose euv ∈ L such that u < euv < v; such an element exists by Corollary 17.14. We
claim that {euv : u, v ∈ C, u < v} is dense in (c, d) in L, which is a contradiction. For,
given x, y such that c < x < y < d in L, by the definition of denseness we can find u, v ∈ C
such that x < u < v < y; and then x < euv < y, as desired.

It remains only to prove that N has ccc. Suppose that A is an uncountable collection
of nonempty open intervals of N . By Corollary 17.14, for each (a, b) ∈ A we can find
c, d ∈ L such that a < c < d < b. So this gives an uncountable collection of nonempty
open intervals in L, contradiction.

In the rest of this chapter we prove a very useful theorem on characters of points and gaps
in linearly ordered sets due to Hausdorff.

For any cardinal κ, the order type which is the reverse of κ is denoted by κ∗. Reg is
the class of all regular cardinals. We define regular so that every regular cardinal is infinite.
If κ < λ are cardinals, then [κ, λ]reg is the collection of all regular cardinals in the interval
[κ, λ]; similarly for half-open and open intervals.
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Let R ⊆ Reg × Reg. We define

χleft(R) = the least cardinal greater than each member of dmn(R);

χright(R) = the least cardinal greater than each member of rng(R).

Let L be a linear order, and let x ∈ L. If x is the first element of L, then its left character
is 0. If x has an immediate predecessor, then its left character is 1. Finally, suppose that
x is not the first element of L and does not have an immediate predecessor. Then the left
character of x is the smallest cardinal κ such that there is a strictly increasing sequence
of elements of L with supremum x. This cardinal κ is then regular. Similarly, if x is the
last element of L, then its right character is 0. If x has an immediate successor, then its
right character is 1. Finally, suppose that x is not the last element of L and it does not
have an immediate successor. Then the right character of x is the smallest cardinal λ such
that there is a strictly decreasing sequence of elements of L with infimum x. The character
of x is the pair (κ, λ∗) where κ is the left character and λ is the right character. The
point-character set of L is the collection of all characters of points of L; we denote it by
Pchar(L). Note that Pchar(L) 6= ∅.

A gap of L is an ordered pair (M,N) such that M 6= ∅ 6= N , L = M ∪N , M has no
largest element, N has no smallest element, and ∀x ∈M∀y ∈ N(x < y). The definitions of
left and right characters of a gap are similar to the above definitions for points; but they
are always infinite regular cardinals. Again, the character of (M,N) is the pair (κ, λ∗)
where κ is the left character and λ is the right character. The gap-character set of L is
the collection of all characters of gaps of L; we denote it by Gchar(L). We say that L
is Dedekind complete iff every nonempty subset of L which is bounded above has a least
upper bound. For L dense this is equivalent to saying that Gchar(L) = ∅.

The full character set of L is the pair (Pchar(L),Gchar(L)).
If L does not have a first element, then the coinitiality of L is the least cardinal κ

such that there is a strictly decreasing sequence 〈aα : α < κ〉 of elements of L such that
∀x ∈ L∃α < κ[aα < x]; we denote this cardinal by ci(L). Similarly for the right end, if L
does not have a greatest element then we define the cofinality of L, denoted by cf(L).

L is irreducible iff it has no first or last elements, and the full character set of (x, y)
is the same as the full character set of L for any two elements x, y ∈ L with x < y.

Now a complete character system is a set R ⊆ Reg×Reg with the following properties:

(C1) dmn(R) = [ω, χleft(R))reg.

(C2) rng(R) = [ω, χright(R))reg.

(C3) There is a κ such that (κ, κ) ∈ R.

Note these conditions do not mention orderings.

Proposition 17.17. If L is an irreducible infinite Dedekind complete dense linear order,
then Pchar(L) is a complete character system. Moreover, ci(L) ≤ χright(Pchar(L)) and
cf(L) ≤ χleft(Pchar(L)).

Proof. Let R = Pchar(L). (C1): the inclusion ⊆ is obvious. Now suppose that
κ ∈ [ω, χleft(R))reg. Then there is a point x of L with character (µ, ν) such that κ ≤ µ.

228



Let 〈aξ : ξ < µ〉 be a strictly increasing sequence of elements of L with supremum x. Let
y = supξ<κ aξ. Clearly y has left character κ, as desired.

(C2): symmetric to (C1).
(C3): By a straightforward transfinite construction one gets (for some ordinal α) a

strictly increasing sequence 〈xξ : ξ < α〉 and a strictly decreasing sequence 〈yξ : ξ < α〉 such
that xξ < yη for all ξ, η < α, and such that there is exactly one point z with xξ < z < yη
for all ξ, η < α. Then α is a limit ordinal, and z has character (cf(α), cf(α)), as desired.

Finally, suppose that cf(L) > χleft(R). Then by the argument for (C1), L has a point
with left character χleft(R), contradiction. A similar argument works for ci.

We shall use the sum construction for linear orders. If 〈Li : i ∈ I〉 is a system of linear
orders, and I itself is an ordered set, then by

∑

i∈I Li we mean the set

{(i, a) : i ∈ I, a ∈ Li}

ordered lexicographically.
The following lemma is probably well-known.

Lemma 17.18. If 〈Li : i ∈ I〉 is a system of complete linear orders, and I is a complete
linear order, then

∑

i∈I Li is also complete.

Proof. Suppose that C is a nonempty subset of
∑

i∈I Li. Let i0 = sup{i ∈ I : (i, a) ∈
C for some a ∈ Li}. We consider two cases.

Case 1. There is an a ∈ Li0 such that (i0, a) ∈ C. Then we let a0 = sup{a ∈ Li0 :
(i0, a) ∈ C}. Clearly (i0, a0) is the supremum of C.

Case 2. There is no a ∈ Li0 such that (i0, a) ∈ C. Then the supremum of C is (i0, a),
where a is the first element of Li0 .

Another construction we shall use is the infinite product. Suppose that I is a well-ordered
set and 〈Li : i ∈ I〉 is a system of linear orders. Then we make

∏

i∈I Li into a linear order
by defining, for f, g ∈∏i∈I Li,

f < g iff f 6= g and f(i) < g(i),

where i = f.d.(f, g), and f.d.(f, g) is the first i ∈ I such that f(i) 6= g(i).
Given such an infinite product, and given a strictly increasing sequence x = 〈xα : α <

λ〉 of members of it, with λ a limit ordinal, we call x of argument type if the following two
conditions hold:

(A1) 〈f.d.(xα, xα+1) : α < λ〉 is strictly increasing

(A2) For each α < λ, the sequence 〈f.d.(xα, xβ) : α < β < κ〉 is a constant sequence.

On the other hand, x is of basis type iff there is an i ∈ I such that f.d.(xα, xβ) = i for all
distinct α, β < κ.

Lemma 17.19. Let 〈Mi : i ∈ I〉 be a system of ordered sets, with I well-ordered. If
x < y < z in

∏

i∈IMi, then f.d.(x, z) = min{f.d.(x, y), f.d.(y, z)}.
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Proof. Let i = min{f.d.(x, y), f.d.(y, z)}.
Case 1. i = f.d.(x, y) = f.d.(y, z). Then x ↾ i = y ↾ i = z ↾ i and x(i) < y(i) < z(i), so

f.d.(x, z) = i.
Case 2. i = f.d.(x, y) < f.d.(y, z). Then x ↾ i = y ↾ i = z ↾ i and x(i) < y(i) = z(i), so

f.d.(x, z) = i.
Case 3. i = f.d.(y, z) < f.d.(x, y). Then x ↾ i = y ↾ i = z ↾ i and x(i) = y(i) < z(i), so

f.d.(x, z) = i.

The following is Satz XIV in Hausdorff [1908].

Theorem 17.20. Let 〈Mi : i ∈ I〉 be a system of ordered sets, with I well-ordered. Suppose
that κ is regular and 〈xα : α < κ〉 is a strictly increasing sequence of elements of

∏

i∈IMi.
Then this sequence has a subsequence of length κ which is either of argument type or of
basis type.

Proof. First we claim

(1) For every α < κ there is a β > α and an i ∈ I such that f.d.(xα, xγ) = i for all γ ≥ β.

This is true because, by Lemma 17.19, if α < β < γ < κ, then f.d.(xα, xβ) ≥ f.d.(xα, xγ);
hence

f.d.(xα, xα+1) ≥ f.d.(xα, xα+2) ≥ · · · ≥ f.d.(xα, xα+β) ≥ · · ·

for all β < κ; so this sequence of elements of I has a minimum, and (1) holds.
Now for each α < κ, let ϕ(α) be the least β > α so that an i as in (1) exists, and let

i(α) be such an i. Thus

(2) For each α < κ we have α < ϕ(α), and for all γ ≥ ϕ(α) we have f.d.(xα, xγ) = i(α).

Now we define a function α ∈ κκ by setting

α(0) = 0;

α(ξ + 1) = ϕ(α(ξ));

α(η) = sup
ξ<η

α(ξ) for η limit

Then we clearly have

(3) α is a strictly increasing function, and f.d.(xα(ξ), xα(η)) = i(α(ξ)) for all ξ, η < κ with
ξ < η.

Moreover,

(4) If ξ < η < θ < κ, then i(α(ξ)) = f.d.(xα(ξ), xα(θ)) ≤ f.d.(xα(η), xα(θ)) = i(α(η)).

In fact, this is clear by Lemma 17.19.
Now we consider two cases.
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Case 1. ∀ξ < κ∃η < κ[ξ < η and i(α(ξ)) < i(α(η))]. Then there is a strictly increasing
β ∈ κκ such that for all ξ, η ∈ κ, if ξ < η then i(α(β(ξ))) < i(α(β(η))). Hence for ξ < η < κ
we have

f.d.(xα(β(ξ)), xα(β(ξ+1))) = i(α(β(ξ))) < i(α(β(η))) = f.d.(xα(β(η)), xα(β(η+1)));

moreover, if ξ < η < κ, then f.d.(xα(β(ξ)), xα(β(η))) = i(α(β(ξ))); so 〈xα(β(ξ)) : ξ < κ〉 is of
argument type.

Case 2. ∃ξ < κ∀η < κ[ξ < η implies that i(α(ξ)) = i(α(η))]. Hence 〈xα(ξ+η) : η < κ〉
is of basis type.

A variant of the product construction will be useful. Let κ be an infinite regular cardinal.
A κ-system is a pair (T,M) with the following properties:

(V1) For each α < κ and each x ∈ Tα, Mxα is a linear order.

(V2) T0 = {∅}.

(V3) For each α < κ we have

Tα+1 = {f : dmn(f) = α+ 1, (f ↾ α) ∈ Tα, f(α) ∈M(f↾α)α}

(V4) If β ≤ κ is a limit ordinal ≤ κ, then Tβ = {f : dmn(f) = β and ∀α < β[f ↾ α ∈ Tα]}.

We define a relation < on Tκ by setting, for any x, y ∈ Tκ, x < y iff x 6= y, and x(ξ) < y(ξ),
where ξ = f.d.(x, y). Here the second < relation is that of M(x↾ξ)ξ .

Lemma 17.21. Under the above assumptions, < is a linear order on Tκ.

Proof. Clearly < is irreflexive, and ∀x, y ∈ Tκ[x < y or x = y or y < x]. For
transitivity, suppose that x < y < z. Let ξ =f.d.(x, y), η =f.d.(y, z), and θ =f.d.(x, z).

Case 1. ξ < η. Then ξ = θ and x(θ) = x(ξ) < y(ξ) = z(ξ), so x < z.

• • •x y z

Case 2. ξ = η. Then ξ = θ and x(θ) = x(ξ) < y(ξ) = y(η) < z(η) = z(θ).
Case 3. η < ξ. Then θ = η and x(θ) = y(θ) = y(η) < z(η) = z(θ).
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• • •x y z

The idea is that this is a variable product: not all functions in a cartesian product are
allowed. If x ∈ Tκ, then for each α < κ the value x(α) lies in an ordered set M(x↾α)α which
depends on x ↾ α. Thus the linear order has a tree-like property.

Theorem 17.22. Assume the above notation. For each γ < κ let M ′
γ = {(x, y) : x ∈

Tγ , y ∈ Mxγ}. Let M ′
γ have the lexicographic ordering. Then there is an isomorphism of

Tκ into
∏

γ<κM
′
γ.

Namely, for each x ∈ Tκ define f(x) by (f(x))γ = (x ↾ γ, x(γ)) for any γ < κ.
Then f is the indicated isomorphism. Moreover, for all x, y ∈ Tκ we have f.d.(x, y) =
f.d.(f(x), f(y)).

Proof. Clearly f maps Tκ into
∏

γ<κM
′
γ . Suppose that x, y ∈ Tκ and x < y.

Choose α minimum such that x(α) 6= y(α); so x(α) < y(α). Hence (x ↾ α, x(α)) < (x ↾
α, y(α)) = (y ↾ α, y(α)). If β < α, then (x ↾ β, x(β)) = (y ↾ β, y(β)). Hence f(x) < f(y)
and f.d.(x, y) = f.d.(f(x), f(y)). On the other hand, suppose that f(x) < f(y). Let
α = f.d.(f(x), f(y)). If β < α, then (f(x))β = (f(y))β, i.e., (x ↾ β, x(β)) = (y ↾ β, y(β)).
Hence x ↾ α = y ↾ α. Since (f(x))α < (f(y))α, we have (x ↾ α, x(α)) < (y ↾ α, y(α)).
Hence x(α) < y(α). It follows that x < y.

Theorem 17.23. If (T,M) is a κ-system on a regular cardinal κ and each linear order
Mxα is complete, then Tκ is complete.

Proof. It suffices to take any regular cardinal ν, suppose that x = 〈xθ : θ < ν〉 is a
strictly increasing sequence in Tκ, and show that it has a supremum. By Theorems 17.20
and 17.22 let 〈f(xθ(ξ)) : ξ < ν〉 be a subsequence of 〈f(xθ) : θ < ν〉 which is of basis type
or argument type.

Case 1. 〈f(xθ(ξ)) : ξ < ν〉 is of basis type. Say γ < κ and f.d.(f(xθ(ξ)), f(xθ(η))) = γ
for all distinct ξ, η < ν. Thus by Theorem 17.22, f.d.(xθ(ξ), xθ(η)) = γ for all distinct
ξ, η < ν. Let a = sup{xθ(ξ)(γ) : ξ < ν}. Now define y ∈ Tκ by setting

y ↾ γ = xθ(0) ↾ γ;

y(γ) = (y ↾ γ) ∪ {(γ, a)};

y(δ + 1) = (y ↾ δ) ∪ {(δ, b)} with b the least element of M(y↾δ)δ) for γ ≤ δ;

y(ψ) =
⋃

δ<ψ

(y ↾ δ) for ψ limit > γ.

Clearly y is an upper bound for 〈xθ : θ < ν〉. Now suppose that z ∈ Tκ is any upper
bound. If ξ < ν, ϕ < γ, and xθ(ξ)(ϕ) 6= z(ϕ), let ρ = f.d.(xθ(ξ), z). Then ρ < γ and
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xθ(ξ)(ρ) < z(ρ). Clearly then f.d.(xθ(η), z) = ρ for all η < ν, and y < z. Thus we may
assume that xθ(ξ)(ϕ) = z(ϕ) for all ξ < ν and ϕ < γ. It follows that a ≤ z(γ). If a < z(γ),
clearly y < z. Suppose that a = z(γ). Then again clearly y ≤ z. So y is the least upper
bound for 〈xθ : θ < ν〉.

Case 2. 〈f(xθ(ξ)) : ξ < ν〉 is of argument type. By (A1), 〈f.d.(xθ(ξ), xθ(ξ+1) : ξ < ν〉
is strictly increasing. Thus ν ≤ κ. Let β = sup{f.d.(xθ(ξ), xθ(ξ+1)) : ξ < ν}. Thus β ≤ κ.
Let yξ = xθ(ξ) ↾ f.d.(xθ(ξ), xθ(ξ+1)) for each ξ < ν. Hence yξ ∈ Tf.d.(xθ(ξ),xθ(ξ+1)). Now

(1) yξ ⊆ yη if ξ < η < ν.

In fact, suppose that this is not true; say that ξ < η < ν but yξ 6⊆ yη. So there is an α <
f.d.(xθ(ξ), xθ(ξ+1)) such that yξ(α) 6= yη(α). Thus xθ(ξ)(α) 6= xθ(η)(α); so f.d.(xθ(ξ)xθ(η)) ≤
α < f.d.(xθ(ξ), xθ(ξ+1)), contradicting (A2).

From (1), clearly

(2) yξ ⊂ yη if ξ < η < ν.

Now consider the function z
def
=
⋃

ξ<ν yξ. We consider two cases.
Case 1. ν = κ. Then z ∈ Tκ and β = κ. We claim that z is the supremum of x

in this case. If ξ < ν, let α = f.d.(xθ(ξ), xθ(ξ+1)). Then z ↾ α = yξ = xθ(ξ) ↾ α. Now
α = f.d.(xθ(ξ), xθ(ξ+1)) < f.d.(xθ(ξ+1), xθ(ξ+2)) by (A1) in the definition of argument type.
So x(θ(ξ)(α) < xθ(ξ+1)(α) = yξ+1(α) ≤ z(α). Thus xθ(ξ) < z. Now suppose that w < z.
Let ξ = f.d.(w, z). Since β = κ, choose η < ν such that ξ < f.d.(xθ(η), xθ(η+1)). Then
w ↾ ξ = z ↾ ξ = yη ↾ ξ, and w(ξ) < z(ξ) = yη(ξ). So w < yη, as desired.

Case 2. ν < κ. Then also β < κ. Also, z ∈ Tβ . We define an extension v ∈ Tκ
of z by recursion. Let w0 = z. If wα has been defined as a member of Tβ+α, with
β + α < κ, let a(α) be the least member of Mwαα, and set wα+1 = wα ∪ {(α, a(α))}. So
wα+1 ∈ Tβ+α+1. If γ is limit and wα has been defined as a member of Tβ+α for all α < γ,
and if β + γ < κ, let wγ =

⋃

α<γ wα. Finally, let v =
⋃

α<κwα. So v ∈ Tκ and it is an
extension of z. We claim that it is the l.u.b. of 〈xα : α < ν〉. First suppose that ξ < ν.
Then xθ(ξ) ↾ f.d.(xθ(ξ), xθ(ξ+1)) = yξ = z ↾ f.d.(xθ(ξ), xθ(ξ+1)), and

xθ(ξ)(f.d.(xθ(ξ), xθ(ξ+1))) < xθ(ξ+1)(f.d.(xθ(ξ), xθ(ξ+1)))

= yξ+1(f.d.(xθ(ξ), xθ(ξ+1)))

= z(f.d.(xθ(ξ), xθ(ξ+1))).

Thus xθ(ξ) < v. Now suppose that t < v. Then α
def
= f.d.(t, v) is less than β by construction,

so t ↾ α = z ↾ α and t(α) < z(α). By the definition of z this gives a ξ < ν such that
t ↾ α = xθ(ξ) ↾ α and t(α) < xθ(ξ)(α). So t < xθ(ξ), as desired.

Our main theorem is as follows; it is Satz XVII of Hausdorff [1908].

Theorem 17.24. Suppose that R is a complete character system, and κ, λ are regular
cardinals with κ ≤ χright(R) and λ ≤ χleft(R), and χleft(R) and χright(R) are succes-
sor cardinals. Then there is an irreducible Dedekind complete dense order L such that
Pchar(L) = R, with ci(L) = λ and cf(L) = κ.
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Proof. We may assume that χleft(R) ≥ χright(R); otherwise we replace R by

R−1 def
= {(κ, λ) : (λ, κ) ∈ R}, and replace the final order by its reverse. Let R be or-

dered lexicographically. Note by hypothesis that R has a largest element. We define some
important orders which are components of the final order L. Let α and β be regular
cardinals. Now we define

ϕαβ = α+ 1 + β∗;

Φ =
∑

(α,β)∈R
ϕαβ ;

µ(α, β) = 1 + α∗ + Φ + β + 1.

The symmetry of this definition will enable us to shorten several proofs below. Since we are
using the standard notation for sums of order types, and some order types are repeated,
it is good to have an exact notation for the indicated orders. m, f, l are new elements
standing for “middle”, “first”, and “last” respectively. We suppose that with each ordinal
ξ we associate a new element ξ′, used in forming things like β∗. Thus more precisely,

ϕαβ = α ∪ {m} ∪ {ξ′ : ξ < β};

the ordering here is: α has its natural order; for ξ, η < β, we define ξ′ < η′ iff η < ξ; ξ < m
for each ξ < α; m < ξ′ for each ξ < β; and transitivity gives the rest.

Φ = {((α, β), a) : (α, β) ∈ R, a ∈ ϕαβ} with lexicographic order;

µ(α, β) = {f} ∪ {ξ′ : ξ < α} ∪ Φ ∪ β ∪ {l};

the ordering should be obvious on the basis of the above remarks. We implicitly assume
the distinctness of the various objects making up µ(α, β).

(1) µ(α, β) is a complete linear order, for any regular cardinals α, β.

This is clear on the basis of Lemma 17.18.

(2) If α ≤ χright(R) is regular and β ≤ χleft(R) is regular, then:
(a) the right character of the left end point of µ(α, β) is α;
(b) the left character of the right end point of µ(α, β) is β;
(c) if a ∈ µ(α, β) is not an end point, and its character is (γ, δ∗), then γ < χleft(R)

and δ < χright(R).

In fact, (a) and (b) are clear. Now suppose that a ∈ µ(α, β) is not an end point. If a is
in the α∗ portion but not equal to 0′, or it is in the β portion but is not the first element
of β, the conclusion of (c) is clear. The character of 0′ is (1, 1). The character of the first
element of β is (1, 1) since R has a largest element. If a is within some ϕαβ but is not the
first or last element of ϕαβ , clearly the conclusion of (c) holds.

Now suppose that a is the first element of ϕαβ . If (α, β) is the first element of R, then
the character of a is (1,1). If (α, β) has an immediate predecessor in R, then the character of
a is (1,1). If (α, β) is not the first element of R but does not have an immediate predecessor,
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then the character of a is (γ, 1), where γ is the cofinality of the set of predecessors of (α, β)
in R. Clearly γ < χleft(R).

Next suppose that a is the last element of ϕαβ. If (α, β) is the last element of R,
then the character of a is (1, 1). If (α, β) is not the last element of R then, since R is
well-ordered, it has an immediate successor, and again the character of a is (1, 1).

Let p be a new element, not appearing in any of the above orders. Let σ be the least
regular cardinal such that (σ, σ) ∈ R; it exists by condition (C3) in the definition of a
complete character system. For each regular α < χleft(R), let ξα be the least cardinal such
that (α, ξα) ∈ R; it exists by (C1) in the definition of complete character set. Similarly,
for each regular α ∈ χright(R) let ηα be the least cardinal such that (ηα, α) ∈ R.

Now we define by recursion a σ-system (T,M). Let T0 = {∅} and M∅0 = µ(λ, κ). Now
except for M∅0, Mxα will have the form {p} or µ(ρ, σ) with ρ < χleft(R) and σ < χright(R).

Suppose that γ ≤ σ is a limit ordinal. We let Tγ be the set of all x with domain γ
such that x ↾ α ∈ Tα for all α < γ. Now suppose that γ < σ, still with γ a limit ordinal.
Now if x ∈ Tγ and |M(x↾α)α| > 1 for all α < γ, we set

Mxγ = µ(ξcf(γ), ηcf(γ)).

On the other hand, if |M(x↾α)α| = 1 for some α < γ, we set Mxγ = {p}.
Now suppose that γ = β + 1. Then we set

Tγ = {x⌢〈b〉 : x ∈ Tβ and b ∈Mxβ}.

Now we define Mxγ for each x ∈ Tγ .

(3) If x(β) = p, then Mxγ = {p}.

(4) If x(β) is an endpoint of M(x↾β)β or has no immediate neighbors, then Mxγ = {p}.

(5) If x(β) has a right neighbor but no left neighbor, and the left character of x(β) in
M(x↾β)β is α, then Mxγ = µ(ξα, σ). Note that α < χleft(R).

(6) If x(β) has a left neighbor but no right neighbor, and the right character of x(β) in
M(x↾β)β is α, then Mxγ = µ(σ, ηα). Note that α < χright(R).

(7) If x(β) has both a left and a right neighbor, then Mxγ = µ(σ, σ).

This finishes the definition of (T,M). The linear order Tσ is close to the order we are after.
The following two facts are clear from the construction:

(8) If x ∈ Tσ, α < β < σ, and x(α) = p, then x(β) = p.

(9) If x ∈ Tσ and α < σ, then either M(x↾α)α = {p} or M(x↾α)α = µ(θ, ϕ) for some θ, ϕ;
except for M∅0 we have θ < χleft(R) and ϕ < χright(R).

From Theorem 17.23 we know that Tσ is complete. Now we find the characters of the
elements of Tσ.

(10) The smallest element of Tσ has character (0, λ∗).
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To prove this, note that the smallest element of Tσ is x
def
= 〈f, p, p, . . .〉, where f is the first

element of M∅ = µ(λ, κ). For each α < λ let yα = 〈(α + 1)′, f, p, p, . . .〉. Clearly x < yα
for each α < λ, and yβ < yα if α < β < λ. Now suppose that x < w. Hence w(0) 6= f . If
w(0) is not in the λ∗ part, clearly yα < w for every α < λ. If w(0) = β′ for some β < λ,
then yβ+1 < w. This proves (10).

(11) The largest element of Tσ has character (κ, 0).

In fact, the largest element of Tσ is x
def
= 〈l, p, p, . . .〉. For each α < κ let yα = 〈α, l, p, p, . . .〉.

Clearly yα < x for each α < κ. Now suppose that w < x. Clearly then w(0) < l. If w(0)
is not in the κ part, clearly w < yα for all α < κ. If w(0) = α < κ, then w < yα+1. This
proves (11).

Let a be the first element of Tσ, and b the last element.

(12) If a < x < b and |Mx↾α| > 1 for every α < σ, then x has character (σ, σ).

For, by symmetry it suffices to show that x has left character σ. For each α < σ let

yα = (x ↾ α)⌢〈f, p, p, . . .〉.

Clearly yα < x for all α < σ, and 〈yα : α < σ〉 is strictly increasing. Now suppose that
z ∈ Tσ and z < x. Let α = f.d.(z, x). Then clearly z < yα+1, as desired. So (12) holds.

Now suppose that a < x < b and x(α) = p for some α < σ, and let α be minimum
with this property. Then by construction, α is a successor ordinal γ + 1, and x(γ) is an
endpoint of M(x↾γ)γ or is an element of M(x↾γ)γ with no neighbor.

Case 1. x(γ) is an element of M(x↾γ)γ with no neighbor. Then by definition, there is
a (ρ, ξ) ∈ R such that x(γ) = ((ρ, ξ), m), i.e., x(γ) is the middle element of ϕρξ. We claim
that x has character (ρ, ξ∗). To see this, for each α < ρ let

yα = (x ↾ γ)⌢〈((ρ, ξ), α+ 1), f, p, p, . . .〉.

Then yα < x, the sequence 〈yα : α < ρ〉 is strictly increasing, and x is its supremum. So
the left character of x is ρ, and similarly the right character of x is ξ.

Case 2. x(γ) is the endpoint f of M(x↾γ)γ . We now consider three subcases.
Subcase 2.1. γ = 0. This would imply that x = a, contradiction.
Subcase 2.2. γ is a limit ordinal. Then cf(γ) < σ. So by construction, M(x↾γ)γ

is µ(ξcf(γ), ηcf(γ)). For each δ < γ let yδ = (x ↾ δ)⌢〈f, p, p, . . .〉. Clearly 〈yδ : δ < γ〉 is
strictly increasing with limit x. Hence x has character (cf(γ), ξcf(γ)) ∈ R.

Subcase 2.3. γ = β + 1 for some β. Then

x = (x ↾ β)⌢〈x(β), f, p, p, . . .〉.

Clearly then one of (5)–(7) holds for x(β).
Subsubcase 2.3.1. (5) holds for x(β). So x(β) has a right neighbor, but no

left neighbor. Say the left character of x(β) is α. Then by (5), M(x↾γ)γ is µ(ξα, σ). We
claim that x has character (α, ξα). To see this, let 〈αθ : θ < α〉 be strictly increasing with
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supremum x(β). Then for each θ < α let yθ be any element of N such that x ↾ β = yθ ↾ β
and yθ(β) = αθ. So clearly yθ < x and 〈yθ : θ < α〉 is strictly increasing. Now suppose
that z ∈ N and z < x. If f.d.(z, x) < β, then z < y0. Suppose that f.d.(z, x) = β. Then
z(β) < x(β), so z(β) < αθ for some θ < α, and hence z < yθ. Clearly by the form of x,
one of these possibilities for z must hold. Hence the left character of x is α. Clearly its
right character is ξα.

Subsubcase 2.3.2. (6) holds for x(β). So x(β) has a left neighbor ε, but no right
neighbor. Hence ε has a right neighbor, and hence (5) or (7) holds for (x ↾ β)⌢〈ε〉 in place
of x and β in place of γ. Hence M(x↾β)⌢〈ε〉,β+1 is µ(ξα, σ) for some α, or µ(σ, σ). Now

(13) y
def
= (x ↾ β)⌢〈ε, l, p, p, . . .〉 is the immediate predecessor of x.

In fact, clearly y < x. Suppose that z < x. Clearly f.d.(z, x) ≤ β. If f.d.(z, x) < β,
obviously z < y. If f.d.(z, x) = β, then z(β) ≤ ε. If z(β) < ε, then z < y. If z(β) = ε, then
z(γ) ≤ l, and so z ≤ y. So (13) holds.

Clearly the left character of y is σ. Now Mx↾γ,γ is µ(σ, ηα) for some α, and so it is
clear that the right character of x is also σ.

Subsubcase 2.3.3. (7) holds for x(β). So x(β) has a left neighbor ε and a right
neighbor ρ. Then y as above is the immediate predecessor of x, and it has left character
σ. Since M(x↾γ)γ is µ(σ, σ), it is clear that the right character of x is σ.

Case 3. x(γ) is the endpoint l of M(x↾γ)γ . We now consider three subcases.
Subcase 3.1. γ = 0. This would imply that x = b, contradiction.
Subcase 3.2. γ is a limit ordinal. Then cf(γ) < σ. So by construction, M(x↾γ)γ is

µ(ξcf(γ), ηcf(γ)). Clearly the left character of x is ηcf(γ). Now for each δ < γ let yδ = (x ↾

δ)⌢〈l, p, p, . . .〉. Thus x < yδ and 〈yδ : δ < γ is strictly decreasing. Suppose that x < z.
Then there is a δ < γ such that x ↾ δ = z ↾ δ and x(δ) < z(δ). Then yδ+1 < z. This shows
that the right character of x is cf(γ). So the character of x is (ηcf(γ), cf(γ)).

Subcase 3.3. γ = β + 1 for some β. Then

x = (x ↾ β)⌢〈x(β), l, p, p, . . .〉.
Clearly then one of (5)–(7) holds for x(β).

Subsubcase 3.3.1. (5) holds for x(β). So x(β) has a right neighbor, but no left
neighbor. M(x↾γ)γ is µ(ξα, σ) for some α, so the left character of x is σ. Let ε be the right
neighbor of x(β), and set y = (x ↾ β)⌢〈ε, f, p, p, . . .〉. Then y is the right neighbor of x. y
has a left neighbor, so one of (6),(7) holds, and hence the right character of y is σ.

Subsubcase 3.3.2. (6) holds for x(β). So x(β) has a left neighbor ε, but no right
neighbor. Let the right character of x(β) be α, and let 〈δξ : ξ < α〉 be strictly decreasing
with limit x(β). For each ξ < α let

yξ = (x ↾ β)⌢〈δξ, l, p, p, . . .〉.
It is clear that 〈yξ : ξ < α〉 is strictly decreasing with limit x. So the right character of x
is α. Now xx↾γ,γ is µ(σ, ηα), so the left character of x is ηα. Thus x has character (ηα, α).

Subsubcase 3.3.3. (7) holds for x(β). So x ↾ β has a right neighbor ρ. Moreover,
Mx↾γ,γ is µ(σ, σ), so the left character of x is σ. Now let

y = (x ↾ β)⌢〈ρ, f, p, p, . . .〉.
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Then y is the right neighbor of x. Since ρ, M(x↾β)⌢〈ρ〉,γ is µ(σ, ηα) for some α, or it is
µ(σ, σ). Hence the right character of y is σ.

Summarizing our investigation of characters of elements of Tσ, we have:

(14) If a < x < b, then one of the following holds:
(a) x has no neighbors, and its character is in R.
(b) x has an immediate predecessor y, and the characters of x, y are (1, σ) and

(σ, 1) respectively.
(c) x has an immediate successor y, and the characters of x, y are (σ, 1) and (1, σ)

respectively.

Now we show that if x < y in Lσ and y is not the immediate successor of x, then for
every (ξ, η) ∈ R there is a z ∈ (x, y) with character (ξ, η). Let α be minimum such that
x(α) 6= y(α). Then x(α) 6= p, as otherwise Mx↾α,α = {p} and so also y(α) = p. Now we
consider two cases.

Case I. y(α) is not the immediate successor of x(α). Choose z with x(α) < z < y(α).
Say M(x↾α)⌢〈z〉 = µ(τ, ρ). In the Φ portion of µ(τ, ρ) take the middle element ((ξ, η), m)
of ϕ(ξ, η). Let

w = (x ↾ α)⌢〈z〉⌢〈((ξ, η), m)〉, p, p, . . .〉.

Then x < w < y and w has character (ξ, η).
Case II. y(α) is the immediate successor of x(α). Then

x ≤ (x ↾ α)⌢〈x(α)〉⌢〈l, p, p, . . .〉
< (x ↾ α)⌢〈y(α)〉⌢〈f, p, p, . . .〉
≤ y.

Since y is not the immediate successor of x, one of the ≤s here is really <.
Case IIa. x < (x ↾ α)⌢〈x(α)〉⌢〈l, p, p, . . .〉. Then α + 1 is the first argument

where these two sequences differ. Let M(x↾(α+1)),α+1 = µ(τ, ρ). Then x(α + 1) is not
the immediate predecessor of l, and so the argument in Case I gives an element w with
character (ξ, η) such that

x < w < (x ↾ α)⌢〈x(α)〉⌢〈l, p, p, . . .〉 ≤ y.

Case IIb. (x ↾ α)⌢〈y(α)〉⌢〈f, p, p, . . .〉y. This is similar to Case IIa.

Now let L be obtained from Tσ by deleting the second element of any pair (x, y) of elements
of Tσ such that y is the immediate successor of x. Clearly L is as desired in the theorem.

Theorem 17.25. Suppose that R is a complete character system and κ and λ are regular
cardinals with κ ≤ χright(R) and λ ≤ χleft(R), and χright(R) and χleft(R) are successor
cardinals. Also suppose that R = R0 ∪R1 with R0 6= ∅. Then there is an irreducible dense
linear order M such that Pchar(M) = R0, Gchar(M) = R1, ci(M) = λ, and cf(M) = κ.
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Proof. Let L be given by Theorem 17.23. For each (α, β) ∈ R let Mαβ = {x ∈ L :
the character of x is (α, β). Note that Mαβ is dense in L. For each (α, β) ∈ R0 ∩R1 write
Mαβ = Pαβ ∪Qαβ with Pαβ ∩Qαβ = ∅ and both dense in Mαβ. Now we define

N =
⋃

(α,β)∈R0∩R1

Pαβ ∪
⋃

(α,β)∈R0\R1

Mαβ.

We claim that N is as desired. Take any x < y in N . If z ∈ (x, y) ∩N , then z ∈Mαβ for
some (α, β) ∈ R0, and so z has character (aα, β). If (α, β) ∈ R0 ∩ R1, take any z ∈ Pαβ
such that x < z < y. Then z ∈ N and it has character (α, β). Similarly, there is an
element of (x, y)∩N whose character is a given member of R0\R1. Thus Pchar(N) = R0.
The elements of L that are omitted in N are all the members of

⋃

(α,β)∈R0∩R1

Qαβ ∪
⋃

(α,β)∈R1\R0

Mαβ .

It follows that Gchar(N) = R1.

EXERCISES

E17.1. Show that Theorem 17.2 does not extend to ω1. Hint: consider ω1 ×Q and ω∗
1 ×Q,

both with the lexicographic order, where ω∗
1 is ω1 under the reverse order (α <∗ β iff

β < α). Given two linear orders L and M , the lexicographic order on L×M is defined by:
(a, b) < (c, d) iff a < c, or a = c and b < d.

E17.2. For any infinite cardinal κ, consider κ2 under the lexicographic order, as for Hα.
Show that it is a complete linear order.

E17.3. Suppose that κ and λ are cardinals, with ω ≤ λ ≤ κ. Let µ be minimum such that
κ < λµ. Take the lexicographic order on µλ, as for Hα. Show that this gives a dense linear
order of size λµ with a dense subset of size κ.

E17.4. Show that P(ω) under ⊆ contains a chain of size 2ω. Hint: remember that
|ω| = |Q|.
E17.5. A subset S of a linear order L is weakly dense iff for all a, b ∈ L, if a < b then there
is an s ∈ S such that a ≤ s ≤ b. Show that the following conditions are equivalent for any
cardinals κ, λ such that ω ≤ κ ≤ λ:

(i) There is a linear order of size λ with a weakly dense subset of size κ.
(ii) P(κ) has a chain of size λ.

E17.6. Suppose that Li is a linear order with at least two elements, for each i ∈ ω. Let
∏

i∈ω Li have the lexicographic order. Show that it is not a well-order.

E17.7. Suppose that L is a ccc dense linear order. Show that L has a dense subset of size
≤ ω1. Hint: let ≺ be a well-order of L, and let

N = {p ∈ L : there is an open set U in L such that p is the ≺-first element of U},
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and show that N is dense in L and has size at most ω1.

E17.8. Let 〈Li : i ∈ I〉 be a system of linear orders, with I itself an ordered set. Show that
if each Li is dense without first or last elements, then also

∑

i∈I Li is dense without first
or last elements. Here

∑

i∈I Li =
⋃

i∈I({i} × Li), and (i, a) < (j, b) iff i < j, or i = j and
a < b.

E17.9. Let κ be any infinite cardinal number. Let L0 be a linear order similar to ω∗+ω+1;
specifically, let it consist of a copy of Z followed by one element a greater than every integer,
and let L1 be a linear order similar to ω∗ + ω + 2; say it consists of a copy of Z followed
by two elements a < b greater than every integer. For any f ∈ κ2 let

Mf =
∑

α<κ

Lf(α).

Show that if f, g ∈ κ2 then Mf and Mg are not isomorphic.
Conclude that there are exactly 2κ linear orders of size κ up to isomorphism.

E17.10. Let κ be an uncountable cardinal. Let L0 be a linear order similar to η+1+η ·ω∗
1 ;

specifically consisting of a copy of the rational numbers in the interval (0, 1] followed by
Q × ω1, where Q × ω1 is ordered as follows: (r, α) < (s, β) iff α > β, or α = β and r < s.
Let L1 be a linear order similar to η · ω1 + 1 + η · ω∗

1 ; specifically, we take L1 to be the set

{(q, α, 0) : q ∈ Q, α < ω1} ∪ {(0, 0, 1)} ∪ {(q, α, 2) : q ∈ Q, α < ω1},

with the following ordering:

(q, α, 0) < (r, β, 0) iff α < β, or α = β and q < r;

(q, α, 0) < (0, 0, 1) < (r, β, 2) for all relevant q, r, α, β;

(q, α, 2) < (r, β, 2) iff α > β, or α = β and q < r.

For each f ∈ κ2 let

Mf =
∑

α<κ

Lf(α).

Show that each Mf is a dense linear order without first or last elements, and if f, g ∈ κ2
and f 6= g, then Mf and Mg are not isomorphic.

Conclude that for κ uncountable there are exactly 2κ dense linear orders without first
or last elements, of size κ, up to isomorphism.
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18. Trees

In this chapter we study infinite trees. The main things we look at are König’s tree
theorem, Aronszajn trees, and Suslin trees.

A tree is a partially ordered set (T,<) such that for each t ∈ T , the set {s ∈ T : s < t}
is well-ordered by the relation <. Thus every ordinal is a tree, but that is not so interesting
in the present context. We introduce some standard terminology concerning trees.

• For each t ∈ T , the order type of {s ∈ T : s < t} is called the height of t, and is denoted
by ht(t, T ) or simply ht(t) if T is understood.

• A root of a tree T is an element of T of height 0, i.e., it is an element of T with no
elements of T below it. Frequently we will assume that there is only one root.

• For each ordinal α, the α-th level of T , denoted by Levα(T ), is the set of all elements of
T of height α.

• The height of T itself is the least ordinal greater than the height of each element of T ; it
is denoted by ht(T ).

• A chain in T is a subset of T linearly ordered by <.

• A branch of T is a maximal chain of T .

Note that chains and branches of T are actually well-ordered, and so we may talk about
their lengths.

Some further terminology concerning trees will be introduced later. A typical tree is
<ω2, which is by definition the set of all finite sequences of 0s and 1s, with ⊂ as the partial
order. More generally, one can consider <α2 for any ordinal α.

Theorem 18.1. (König) Every tree of height ω in which every level is finite has an infinite
branch.

Proof. Let T be a tree of height ω in which every level is finite. We define a sequence
〈tm : m ∈ ω〉 of elements of T by recursion. Clearly T =

⋃

r a root{s ∈ T : r ≤ s}, and
the index set is finite, so we can choose a root t0 such that {s ∈ T : t0 ≤ s} is infinite.
Suppose now that we have defined an element tm of height m such that {s ∈ T : tm ≤ s}
is infinite. Let S = {u ∈ T : tm < u and u has height ht(tm) + 1}. Clearly

{s ∈ T : tm ≤ s} = {tm} ∪
⋃

u∈S
{s ∈ T : u ≤ s}

and the index set of the big union is finite, so we can choose tm+1 of height ht(tm) + 1
such that {s ∈ T : tm+1 ≤ s} is infinite.

This finishes the construction. Clearly {tm : m ∈ ω} is an infinite branch of T .

In attempting to generalize König’s theorem, one is naturally led to Aronszajn trees and
Suslin trees. For the following definitions, let κ be any infinite cardinal.

• A tree (T,<) is a κ-tree iff it has height κ and every level has size less than κ.
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• A κ-Aronszajn tree is a κ-tree which has no chain of size κ.

• A subset X of a tree T is an antichain iff any two distinct members ofX are incomparable.
Note that each set Levα(T ) is an antichain. This notion is different from antichains as
introduced in Chapters 13 and 17.

• A κ-Suslin tree is a tree of height κ which has no chains or antichains of size κ.

• An Aronszajn tree is an ω1-Aronszajn tree, and a Suslin tree is an ω1-Suslin tree.

It is natural to guess that Aronszajn trees and Suslin trees are the same thing, since the
definition of κ-tree implies that all levels have size less than κ, and a guess is that this
implies that all antichains are of size less than κ. This guess is not right though. Even our
simplest example of a tree, <ω2, forms a counterexample. This tree has all levels finite,
but it has infinite antichains, for example

{〈0〉, 〈1, 0〉, 〈1, 1, 0〉, 〈1, 1, 1, 0〉, . . .}.
In the rest of this chapter we investigate these notions, and state some consistency results,
some of which will be proved later. There is also one difficult natural open problem which
we will formulate.

First we consider Aronszajn trees. Note that Theorem 18.1 can be rephrased as saying
that there does not exist an ω-Aronszajn tree. As far as existence of Aronszajn trees is
concerned, the following theorem takes care of the case of singular κ:

Theorem 18.2. If κ is singular, then there is a κ-Aronszajn tree.

Proof. Let 〈λα : α < cf(κ)〉 be a strictly increasing sequence of infinite cardinals with
supremum κ. Consider the tree which has a single root, and above the root has disjoint
chains which are copies of the λα’s. Clearly this tree is a κ-Aronszajn tree. We picture
this tree here:

· · · · · · · · ·

λ0 λ1 λ2 λα λα+1

· · · · · ·

Very rigorously, we could define T to be the set {0} ∪ {(α, β) : α < cf(κ) and β < λα},
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with the ordering 0 < (α, β) for all α < cf(κ) and β < λα, and (α, β) < (α′, β′) iff α = α′

and β < β′.

Turning to regular κ, we first prove

Theorem 18.3. There is an Aronszajn tree.

Proof. We start with the tree

T = {s ∈ <ω1ω : s is one-one}.

under ⊂. This tree clearly does not have a chain of size ω1. But all of its infinite levels
are uncountable, so it is not an ω1-Aronszajn tree. We will define a subset of it that is the
desired tree. We define a system 〈Sα : α < ω1〉 of subsets of T by recursion; these will be
the levels in the new tree.

Let S0 = {∅}. Now suppose that α > 0 and Sβ has been constructed for all β < α so
that the following conditions hold for all β < α:

(1β) Sβ ⊆ βω ∩ T .

(2β) ω\rng(s) is infinite, for every s ∈ Sβ .

(3β) For all γ < β, if s ∈ Sγ , then there is a t ∈ Sβ such that s ⊂ t.

(4β) |Sβ | ≤ ω.

(5β) If s ∈ Sβ , t ∈ T , and {γ < β : s(γ) 6= t(γ)} is finite, then t ∈ Sβ .

(6β) If s ∈ Sβ and γ < β, then s ↾ γ ∈ Sγ .

(Vacuously these conditions hold for all β < 0.) If α is a successor ordinal ε+ 1, we simply
take

Sα = {s ∪ {(ε, n)} : s ∈ Sε and n /∈ rng(s)}.
Clearly (1β)–(6β) hold for all β < α+ 1.

Now suppose that α is a limit ordinal less than ω1 and (1β)–(6β) hold for all β < α.
Since α is a countable limit ordinal, it follows that cf(α) = ω. Let 〈δn : n ∈ ω〉 be a strictly
increasing sequence of ordinals with supremum α. Now let U =

⋃

β<α Sβ . Take any s ∈ U ;
we want to define an element ts ∈ αω ∩ T which extends s. Let β = dmn(s).

Choose n minimum such that β ≤ δn. Now we define a sequence 〈ui : i ∈ ω〉 of
members of U ; ui will be a member of Sδn+i

. By (3δn), let u0 be a member of Sδn such
that s ⊆ u0. Having defined a member ui of Sδn+i

, use (3δn+i+1
) to get a member ui+1

of Sδn+i+1
such that ui ⊆ ui+1. This finishes the construction. Let v =

⋃

i∈ω ui. Thus
s ⊆ v ∈ αω ∩ T . Unfortunately, condition (2) may not hold for v, so this is not quite the
element ts that we are after. We define ts ∈ αω as follows. Let γ < α. Then

ts(γ) =

{
v(δ2n+2i) if γ = δn+i for some i ∈ ω,
v(γ) if γ /∈ {δn+i : i ∈ ω}.

Clearly ts ∈ αω ∩ T . Since v(δ2n+2i+1) /∈ rng(ts) for all i ∈ ω, it follows that ω\rng(ts) is
infinite.
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We now define

Sα =
⋃

s∈U
{w ∈ αω ∩ T : {ε < α : w(ε) 6= ts(ε)} is finite}.

Now we want to check that (1α)–(6α) hold. Conditions (1α) and (3α) are very clear.
For (2α), suppose that w ∈ Sα. Then w ∈ αω ∩ T and there is an s ∈ U such that
{ε < α : w(ε) 6= ts(ε)} is finite. Since ω\rng(ts) is infinite, clearly ω\rng(w) is infinite. For
(4α), note that U is countable by the assumption that (4β) holds for every β < α, while
for each s ∈ U the set

{w ∈ αω ∩ T : {ε < α : w(ε) 6= ts(ε)} is finite}

is also countable. So (4α) holds. For (5α), suppose that w ∈ Sα, x ∈ T , and {γ < α :
w(γ) 6= x(γ)} is finite. Choose s ∈ U such that {ε < α : w(ε) 6= ts(ε)} is finite. Then of
course also {ε < α : x(ε) 6= ts(ε)} is finite. So x ∈ Sα, and (5α) holds. Finally, for (6α),
suppose that w ∈ Sα and γ < α; we want to show that w ↾ γ ∈ Sγ . Choose s ∈ U such
that {ε < α : w(ε) 6= ts(ε)} is finite. Assume the notation introduced above when defining
ts (n, β, u, v). Choose i ∈ ω such that γ ≤ δn+i. Then

{ε < δn+i : w(ε) 6= ui(ε)} = {ε < δn+i : w(ε) 6= v(ε)}
⊆ {ε < δn+i : w(ε) 6= ts(δ)} ∪ {δn+j : j < i},

and the last union is clearly finite. It follows from (5δn+1
) that w ∈ Sγ . So (6α) holds.

This finishes the construction. Clearly
⋃

α<ω1
Sα is the desired Aronszajn tree.

We defer a discussion of possible generalizations of Theorem 18.3 until we discuss the
closely related notion of a Suslin tree.

The proof of Theorem 18.2 gives

Theorem 18.4. If κ is singular, then there is a κ-Suslin tree.

Note also that Theorem 18.1 implies that there are no ω-Suslin trees. There do not
exist ZFC results about existence or non-existence of κ-Suslin trees for κ uncountable and
regular. We limit ourselves at this point to some simple facts about Suslin trees.

Proposition 18.5. If T is a κ-Suslin tree with κ uncountable and regular, then T is a
κ-tree.

Proposition 18.6. For any infinite cardinal κ, every κ-Suslin tree is a κ-Aronszajn
tree.

This is a good place to notice that the construction of an ω1-Aronszajn tree given in the
proof of Theorem 18.3 does not give an ω1-Suslin tree. In fact, assume the notation of
that proof, and for each n ∈ ω let

An =
⋃

α<ω1

{s ∈ Sα+1 : s(α) = n}.
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Clearly An is an antichain in
⋃

α<ω1
Sα, and

⋃

n∈ω An =
⋃

α<ω1
Sα+1. Hence

∣
∣
⋃

n∈ω An
∣
∣ =

ω1. It follows that some An is uncountable, so that
⋃

α<ω1
Sα is not a Suslin tree.

We now introduce some notions that are useful in talking about κ-trees; these conditions
were implicit in part of the proof of Theorem 18.3.

• A well-pruned κ-tree is a κ-tree T with exactly one root such that for all α < β < ht(T )
and for all x ∈ Levα(T ) there is a y ∈ Levβ(T ) such that x < y.

• A normal subtree of a tree (T,<) is a tree (S,≺) satisfying the following conditions:
(i) S ⊆ T .
(ii) For any s1, s2 ∈ S, s1 ≺ s2 iff s1 < s2.
(iii) For any s, t ∈ T , if s < t and t ∈ S, then s ∈ S.

Note that each level of a normal subtree is a subset of the corresponding level of T . Clearly
a normal subtree of height κ of a κ-Aronszajn tree is a κ-Aronszajn tree; similarly for κ-
Suslin trees.

• A tree T is eventually branching iff for all t ∈ T , the set {s ∈ T : t ≤ s} is not a chain.

Clearly a well-pruned κ-Aronszajn tree is eventually branching; similarly for κ-Suslin trees.

Theorem 18.7. If κ is regular, then any κ-tree T has a normal subtree T ′ which is a
well-pruned κ-tree. Moreover, if x ∈ T and |{y ∈ T : x ≤ y}| = κ then we may assume
that x ∈ T ′.

Proof. Let κ be regular, and let T be a κ-tree. We define

S = {t ∈ T : |{s ∈ T : t ≤ s}| = κ}.

Clearly S is a normal subtree of T , although it may contain more than one root of T . Now
we claim

(1) Some root of T is in S.

In fact, Lev0(T ) has size less than κ, and

T =
⋃

s∈Lev0(T )

{t ∈ T : s ≤ t},

so there is some s ∈ Lev0(T ) such that |{t ∈ T : s ≤ t}| = κ. This element s is in S, as
desired in (1).

We now take an s as indicated. To satisfy the second condition in the Theorem, we
can take s below the element x of that condition.

Now we let S′ = {t ∈ S : s ≤ t}. We claim that S′ is as desired. Clearly it is a normal
subtree of T , and it has exactly one root, namely s. To show that it has height κ and is
well-pruned, it suffices now to prove

(2) If u ∈ S′, α < β < κ, and ht(u, S′) = α, then there is a v ∈ S′ ∩ Levβ(T ) such that
u < v.
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In fact,

{t ∈ T : u ≤ t} =
⋃

α≤γ<β
{t ∈ Levγ(T ) : u ≤ t} ∪

⋃

v∈Levβ(T )

u<v

{t ∈ T : v ≤ t},

and the first big union here is the union of fewer than κ sets, each of size less than κ.
Hence there is a v ∈ Levβ(T ) such that u < v and |{t ∈ T : v ≤ t}| = κ. So v ∈ S′ and
u < v, as desired.

Proposition 18.8. Let κ be an uncountable regular cardinal. If T is an eventually branch-
ing κ-tree in which every antichain has size less than κ, then T is a Suslin tree.

Proof. Suppose to the contrary that C is a chain of length κ. We may assume that
C is maximal, so that it has elements of each level less than κ. For each t ∈ T choose
f(t) ∈ T such that t < f(t) /∈ C; this is possible by the eventually branching hypothesis.
Now we define 〈sα : α < κ〉 by recursion, choosing

sα ∈
{

t ∈ C : sup
β<α

ht(f(sβ), T ) < ht(t, T )

}

;

this is possible since κ is regular. Now 〈f(sα) : α < κ〉 is an antichain. In fact, if β < α
and f(sβ) and f(sα) are comparable, then by construction ht(f(sβ), T ) < ht(sα, T ) <
ht(f(sα), T ), and so f(sβ) < f(sα). But then the tree property yields that f(sβ) < sα and
so f(sβ) ∈ C, contradiction.

Thus we have an antichain of size κ, contradiction.

One of the main motivations for the notion of a Suslin tree comes from a correspondence
between linear orders and trees. Under this correspondence, Suslin trees correspond to
Suslin lines, and the existence of Suslin trees is equivalent to the existence of Suslin lines.

First we show how to go from a tree to a line, in a fairly general setting. Suppose that
T is a well-pruned κ-tree, and let ≺ be a linear order of T . Here ≺ may have nothing to
do with the order of the tree. Note that every branch of T has limit ordinal length. For
each branch B of T , let len(B) be its length, and let 〈bBα : α < len(B)〉 be an enumeration
of B in increasing order. For distinct branches B1, B2, neither is included in the other,
and so we can let d(B1, B2) be the smallest ordinal α < min(len(B1), len(B2)) such that
bB1(α) 6= bB2(α). We define the ≺-branch linear order of T , denoted by B(T,≺), to be
the collection of all branches of T , where the order < on B(T,≺) is defined as follows: for
any two distinct branches B1, B2,

B1 < B2 iff bB1(d(B1, B2)) ≺ bB2(d(B1, B2)).

This is a kind of lexicographic ordering of the branches. Clearly this is an irreflexive
relation, and clearly any two branches are comparable. The following lemma gives that it
is transitive.
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Lemma 18.9. Assume that B1 < B2 < B3. Then exactly one of the following holds:
(i) d(B1, B3) = d(B1, B2) < d(B2, B3).
(ii) d(B1, B3) = d(B1, B2) = d(B2, B3).
(iii) d(B1, B3) = d(B2, B3) < d(B1, B2).

In any case B1 < B3.

Clearly at most one of (i)–(iii) holds. These three conditions are illustrated as follows:

B1

B2 B3

B1 B2 B3

B1 B2

B3

Case 1. d(B1, B2) < d(B2, B3). Then, we claim, d(B1, B3) = d(B1, B2). In fact, if
α < d(B1, B2), then

bB1(α) = bB2(α) = bB3(α),

while
bB1(d(B1, B2) ≺ bB2(d(B1, B2)) = bB3(d(B1, B2)).

Hence the claim holds, and B1 < B3.
Case 2. d(B1, B2) = d(B2, B3). Then, we claim, d(B1, B3) = d(B1, B2). In fact, if

α < d(B1, B2), then
bB1(α) = bB2(α) = bB3(α),

while
bB1(d(B1, B2) ≺ bB2(d(B1, B2)) ≺ bB3(d(B1, B2)).

This proves the claim, and B1 < B3.
Case 3. d(B1, B2) > d(B2, B3). Then, we claim, d(B1, B3) = d(B2, B3). In fact, if

α < d(B2, B3), then
bB1(α) = bB2(α) = bB3(α),

while
bB1(d(B2, B3) = bB2(d(B2, B3)) ≺ bB3(d(B2, B3)).

This proves the claim, and B1 < B3.

Thus the construction gives a linear order.

Theorem 18.10. If there is a Suslin tree then there is a Suslin line.

Proof. By Theorem 18.7 we may assume that T is well-pruned. Take any linear
order ≺ of T . To show that B(T,≺) is ccc, suppose that A is an uncountable collection
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of nonempty pairwise disjoint open intervals in B(T,≺). For each (B,C) ∈ A choose
E(B,C) ∈ (B,C). Remembering that each branch has limit length, we can also select an
ordinal α(B,C) such that

d(B,E(B,C)), d(E(B,C), C) < α(B,C) < len(E(B,C))

We claim that 〈bE(B,C)(α(B,C)) : (B,C) ∈ A 〉 is a system of pairwise incomparable ele-
ments of T , which contradicts the definition of a Suslin tree. In fact, suppose that (B,C)
and (B′, C′) are distinct elements of A and bE(B,C)(α(B,C)) ≤ bE(B′,C′)(α(B′,C′)). It
follows that α(B,C) ≤ α(B′,C′) and

(1) bE(B,C)(β) = bE(B′,C′)(β) for all β ≤ α(B,C).

Hence

(2) If β < d(B,E(B,C)), then β < α(B,C), and so bB(β) = bE(B,C)(β) = bE(B′,C′)(β).

Now recall that d(B,E(B,C)) < α(B,C). Hence

bB(d(B,E(B,C))) ≺ bE(B,C)(d(B,E(B,C))) = bE(B′,C′)(d(B,E(B,C))),

and so B < E(B′,C′). Similarly, E(B′,C′) < C, as follows:

(3) If β < d(C,E(B,C)), then β < α(B,C), and so bC(β) = bE(B,C)(β) = bE(B′,C′)(β).

Now recall that d(C,E(B,C)) < α(B,C). Hence

bC(d(C,E(B,C))) ≻ bE(B,C)(d(C,E(B,C))) = bE(B′,C′)(d(C,E(B,C))),

and so C > E(B′,C′). Hence E(B′,C′) ∈ (B,C). But also E(B′,C′) ∈ (B′, C′), contradiction.
To show that B(T,≺) is not separable, it suffices to show that for each δ < ω1 the

set {B ∈ B(T,≺) : len(B) < δ} is not dense in B(T,≺). Take any x ∈ T of height δ.
Since {y : y > x} has elements of every level greater than δ, it cannot be a chain, as
this would give a chain of size ω1. So there exist incomparable y, z > x. Similarly, there
exist incomparable u, v > y. Let B,C,D be branches containing u, v, z respectively. By
symmetry say B < C. Illustration:

u,B v, C

z,Dy

x

(4) ht(y) < d(B,C)

This holds since y ∈ B ∩ C.
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(5) d(B,D) ≤ ht(y) and d(C,D) ≤ ht(y); hence d(B,D) < d(B,C) and d(C,D) < d(B,C).

In fact, y ∈ B\D, so d(B,D) ≤ ht(y) follows. Similarly d(C,D) ≤ ht(y). Now the rest
follows by (4).

(6) d(B,D) = d(C,D).

For, if d(B,D) < d(C,D), then bC(d(B,D)) = bD(d(B,D)) 6= bB(d(B,D)), contradicting
d(B,D) < d(B,C), part of (5). If d(C,D) < d(B,D), then bB(d(C,D)) = bD(d(C,D)) 6=
bC(d(C,D)), contradicting d(C,D) < d(B,C), part of (5).

By (6) we have B,C < D, or D < B,C. Since we are assuming that B < C, it follows
that

(7) B < C < D or D < B < C.

Case 1. B < C < D. Thus (B,D) is a nonempty open interval. Suppose that there is
some branch E with len(E) < δ and B < E < D. Then d(B,E), d(E,D)< δ. By Lemma
18.9 one of the following holds: d(B,D) = d(B,E) < d(E,D); d(B,D) = d(B,E) =
d(E,D); d(B,D) = d(E,D) < d(B,E). Hence d(B,D) < δ. Since x ∈ B ∩D and x has
height δ, this is a contradiction.

Case 2. D < B < C. Thus (D,C) is a nonempty open interval. Suppose that there is
some branch E with len(E) < δ and D < E < C. Then d(D,E), d(E,C) < δ. By Lemma
18.9 one of the following holds: d(D,C) = d(D,E) < d(E,C); d(D,C) = d(D,E) =
d(E,C); d(D,C) = d(E,D) < d(D,E); hence d(D,C) < δ. Since x ∈ C ∩D and x is of
height δ, this is a contradiction.

In the other direction, we prove:

Theorem 18.11. If there is a Suslin line, then there is a Suslin tree.

Proof. Assume that there is a Suslin line. Then by Theorem 17.16 we may assume
that we have a linear order L satisfying the following conditions:

(1) L is dense, with no first or last elements.

(2) No nonempty open subset of L is separable.

(3) L is ccc.

(We do not need the other condition given in Theorem 17.16.) Let I be the collection of
all open intervals (a, b) with a < b in L. So by denseness, each such interval is nonempty.
We are now going to define a sequence 〈Jα : α < ω1〉 of subsets of I. Let J0 be a maximal
disjoint subset of I. Now suppose that 0 < β < ω1 and we have defined Jα for all α < β
so that the following conditions hold:

(4α) The elements of Jα are pairwise disjoint.

(5α)
⋃

Jα is dense in L.

(6α) If γ < α, I ∈ Jγ , and J ∈ Jα, then either I ∩ J = ∅, or else J ⊆ I.

(7α) If γ < α and I ∈ Jγ , then there are at least two J ∈ Jα such that J ⊆ I.
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Note that (40)–(70) hold: (60) and (70) trivially hold, (40) holds by definition, and (50)
holds by the maximality of J0.

First suppose that β is a successor ordinal δ + 1. For each M ∈ Jδ, choose disjoint
members I1, I2 of I such that I1 ∪ I2 ⊆M , and let KM be a maximal disjoint subset of

{K ∈ I : K ⊆M}

such that I1, I2 ∈ KM . The existence of I1 and I2 is clear by denseness. Then let Jβ =
⋃

M∈Jδ
KM . Clearly (4β) holds.

For (5β), suppose that a, b ∈ L and a < b. By (5δ), choose c ∈ ⋃
Jδ such that

a < c < b. Say c ∈ (d, e) ∈ Jδ. Thus max(a, d) < c < min(b, e). We claim:

(8) There is a K ∈ K(d,e) such that (max(a, d),min(b, e)) ∩K 6= ∅.

For, suppose that (8) fails. Choose u, v with max(a, d) < u < v < min(b, e). Then
(u, v) ∩K = ∅ for all K ∈ K(d,e) and (u, v) ⊆ (d, e). This contradicts the maximality of
K(d,e). So (8) holds.

Choose K as in (8). It follows that
⋃

Jβ ∩ (a, b) 6= ∅, as desired for (5β).
For (6β), suppose that γ ≤ δ, I ∈ Jγ , and J ∈ Jβ. Choose M ∈ Jδ such that J ∈ KM .

Now we consider two cases.
Case 1. γ = δ. Then by (4δ), either I ∩M = ∅ or I = M . If I ∩M = ∅, then I ∩J = ∅

since J ⊆M , as desired in (6β). If I = M , then J ⊆ I by definition.
Case 2. γ < δ. In this case, by (6δ) we have two further possibilities. If I ∩M = ∅,

then also I ∩ J = ∅, as desired in (6β). Otherwise we have M ⊆ I and clearly also J ⊆ I.
(7β) is clear by construction.
Second, suppose that β is a limit ordinal. Let

K = {K ∈ I : for all α < β and all I ∈ Jα[I ∩K = ∅ or K ⊆ I]}.

Before defining Jβ, we need to know that K is nonempty. This follows from the following
stronger statement.

(9) If a, b ∈ L and a < b, then there is a K ∈ K such that K ⊆ (a, b).

To prove this, suppose that a, b ∈ L and a < b. Let E be the collection of all endpoints
of the intervals in

⋃

γ<β Jγ . Since β is countable and each Jγ is countable by virtue of
(4γ) and the ccc for L, it follows that E is countable. Since (a, b) is not separable, there
are c, d ∈ L such that a < c < d < b and E ∩ (c, d) = ∅. For every I ∈ ⋃γ<β Jγ, the
interval (c, d) does not contain either of the endpoints of I, so it follows that I ∩ (c, d) = ∅
or (c, d) ⊆ I. Hence (c, d) ∈ K and (c, d) ⊆ (a, b), as desired in (9)

Now let Jβ be a maximal pairwise disjoint subset of K. So (4β) holds, and also (6β)
is clear.

Now to prove (5β), take any a, b ∈ L with a < b, and choose K ∈ K such that
K ⊆ (a, b), as given in (9). By the maximality of Jβ , there is an L ∈ Jβ such that
K ∩ L 6= ∅. Hence (a, b) ∩⋃ Jβ 6= ∅, as desired in (5β).

Finally, for (7β), let I ∈ Jγ where γ < β. By (7γ+1), there are two distinct J,K ∈ Jγ+1

such that J,K ⊆ I, and then the construction gives J ′ ⊆ J and K ′ ⊆ K with J ′, K ′ ∈ Jβ,
as desired.
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This finishes the construction. Let T =
⋃

β<ω1
Jβ , with the ordering ⊃. So this gives

a partial order.

(10) If I ∈ T , then there is a unique α < ω1 such that I ∈ Jα.

For, by definition there is some α < ω1 such that I ∈ Jα. Suppose that also I ∈ Jγ , with
α 6= γ. By symmetry, say that γ < α. This contradicts (7α).

We denote the α given by (10) by αI .

(11) If I ∈ T and γ < αI , then there is a unique J ∈ Jγ such that I ⊂ J .

In fact, by (5γ) there is a J ∈ Jγ such that I ∩ J 6= ∅. Then by (6αI ), I ⊂ J . Hence by
(4αI ), also J is unique.

Let I ∈ T . For each γ < αI , let f(γ) be the unique J given by (11). Then f is an
order-isomorphism from αI onto {J ∈ T : I ⊂ J} under ⊃. In fact, if γ < δ < αI , then
I ⊂ f(γ) ∩ f(δ), and so (6γ) and 6(δ) imply that f(δ) ⊂ f(γ). The function f maps onto,
since if I ⊂ J with J ∈ Jβ , then β < α by (6αI ), and so f(β) = J .

It follows that T is a tree, and each I ∈ T has level αI . So T is a tree of height ω1. If
A is an antichain in T , then it is also an antichain in L, in the ordered set sense by (6α),
and so it is countable.

By Proposition 18.8, T is a Suslin tree.

We mention without proof a result for higher cardinals. Assuming V = L, for each
uncountable regular cardinal κ, there is a κ-Suslin tree iff κ is not weakly compact. (Weakly
compact cardinals will be discussed later; they are inaccessible) It is a probably difficult
open problem to show that it is consistent (relative to ZFC or even ZFC plus some large
cardinals) that for each uncountable cardinal κ there is no κ+-Aronszajn tree.

EXERCISES

E18.1. Let κ be an uncountable regular cardinal, and suppose that there is a κ-Aronszajn
tree. Show that there is one which is a normal subtree of <κ2. Hint: for each α < κ let gα
be an injection of Levα(T ) into |Levα(T )|2 and glue these maps together.

E18.2. Do exercise E18.1 for κ-Suslin trees.

E18.3. Suppose that T and T ′ are κ-Aronszajn trees. Define an order < on T × T ′ by
(s, s′) < (t, t′) iff s < t and s′ < t′. Show that T × T ′ is not a tree.

E18.4. Suppose that T and T ′ are κ-Aronszajn trees. Let

T ×′ T ′ =
⋃

α<κ

Levα(T ) × Levα(T ′);

(s, s′) < (t, t′) iff (s, s′), (t, t′) ∈ T ×′ T ′, s < t, and s′ < t′;

Show that (T ×′ T ′, <) is a κ-Aronszajn tree.

E18.5. Assume that κ is regular and uncountable. Suppose that T is a κ-Suslin tree. With
the order on T ×′ T given in exercise E18.4, show that T ×′ T is not a κ-Suslin tree. Hint:
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first show that for every α < κ there is an element s of T at level α such that there are
incomparable t, u > s.

E18.6. A tree T is everywhere branching iff every t ∈ T has at least two immediate
successors. Show that every everywhere branching tree has at least 2ω branches.

E18.7. Show that the hypothesis that all levels are finite is necessary in König’s theorem.

E18.18. Show that if κ is singular with cf(κ) = ω, then there is no κ-Aronszajn tree with
all levels finite.

E18.9. Prove that if κ is singular and there is a cf(κ)-Aronszajn tree, then there is a
κ-Aronszajn tree with all levels of power less than cf(κ).

E18.10. Show that for every infinite cardinal κ there is an eventually branching tree T of
height κ such that for every subset S of T , if S is a tree under the order induced by T and
every element of S has at least two immediate successors, then S has height ω.

E18.11. Show that if κ is an uncountable regular cardinal and T is a κ-Aronszajn tree, then
T has a subset S such that under the order induced by T , S is a well-pruned κ-Aronszajn
tree in which every element has at least two immediate successors.

Reference

Todorčević, S. Trees and linearly ordered sets. In Handbook of set-theoretic topology.
North-Holland 1984, 235–293.
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19. Clubs and stationary sets

Here we introduce the important notions of clubs and stationary sets. A basic result here
is Fodor’s theorem. We also give a combinatorial principle ♦, later proved consistent with
ZFC, and use ♦ to construct a Suslin tree.

A subset Γ of an ordinal is unbounded iff for every β < α there is a γ ∈ Γ such that
β ≤ γ. A subset C of α is closed in α provided that for every limit ordinal β < α, if C ∩ β
is unbounded in β then β ∈ C. Closed and unbounded subsets of α are called clubs of α.

The following simple fact about ordinals will be used below.

Lemma 19.1. If α is an ordinal and Γ ⊆ α, then o.t.(Γ) ≤ α.

Proof. Let β = o.t.(Γ), and let f be the isomorphism of β onto Γ. For all γ < β we
have γ ≤ f(γ) < α, so β ⊆ α and hence β ≤ α.

Note that ∅ is club in 0. If α = β + 1, then {β} is club in α. We are mainly interested in
limit ordinals α. Then an equivalent way of looking at clubs is as follows.

Theorem 19.2. Let α be a limit ordinal.
(i) If C is club in α, then there exist an ordinal β and a normal function f : β → α

such that rng(f) = C.
(ii) If β is an ordinal and f : β → α is a normal function such that rng(f) is unbounded

in α, then rng(f) is club in α.

Proof. (i): Let β be the order type of C, and let f : β → C be the isomorphism of β
onto C. Thus f : β → α, and f is strictly increasing. To show that f is continuous, suppose
that γ < β is a limit ordinal; we want to show that f(γ) =

⋃

δ<γ f(δ). Let ε =
⋃

δ<γ f(δ).
Clearly ε is a limit ordinal. Now C ∩ ε is unbounded in ε. For, suppose that ϕ < ε. Then
there is a δ < γ such that ϕ < f(δ). Since δ + 1 < γ and f(δ) < f(δ + 1), we thus have
f(δ) ∈ C ∩ ε. So, as claimed, C ∩ ε is unbounded in ε. Hence ε ∈ C. Since ε is the lub of
f [γ], it follows that f(γ) = ε, as desired. This proves (i).

(ii): Let C = rng(f). We just need to show that C is closed in α. Suppose that γ < α

is a limit ordinal, and C ∩ γ is unbounded in γ. We are going to show that ψ
def
=
⋃
f−1[γ]

is a limit ordinal less than β and f(ψ) = γ, thereby proving that γ ∈ C.
Choose δ ∈ C such that γ < δ. Say f(ϕ) = δ. Then f−1[γ] ⊆ ϕ, since for every

ordinal ε, if ε ∈ f−1[γ] then f(ε) ∈ γ < δ = f(ϕ) and so ε < ϕ. It follows that also
⋃
f−1[γ] ≤ ϕ < β.

Next,
⋃
f−1[γ] is a limit ordinal. For, if β <

⋃
f−1[γ], choose ε ∈ f−1[γ] such that

β ∈ ε. Thus f(ε) < γ. Since γ is a limit ordinal and C ∩ γ is unbounded in γ, there is
a θ such that f(ε) < f(θ) < γ. Hence ε < θ ∈ f−1[γ], so ε ∈ ⋃ f−1[γ]. This shows that
⋃
f−1[γ] is a limit ordinal.

We have f(ψ) =
⋃

β<ψ f(β) by continuity. If β < ψ, choose ε ∈ f−1[γ] such that
β < ε. then f(β) < f(ε) ∈ γ. This shows that f(ψ) ≤ γ.

Finally, suppose that δ < γ. Since C ∩ γ is unbounded in γ, choose θ such that
δ < f(θ) < γ. Then θ ∈ f−1[γ], so δ ∈ ⋃ f−1[γ], i.e., δ < ψ. Since ψ is a limit ordinal,
say that δ < ϕ < ψ. Then δ < ϕ ≤ f(ϕ) ≤ f(ψ). This shows that γ ⊆ f(ψ), hence
f(ψ) = γ.
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Corollary 19.3. If κ is a regular cardinal and C ⊆ κ, then the following conditions are
equivalent:

(i) C is club in κ.

(ii) There is a normal function f : κ→ κ such that rng(f) = C.

Proof. (i)⇒(ii): Suppose that C is club in κ. By Theorem 19.2(i) let β be an ordinal
and f : β → κ a normal function with rng(f) = C. Thus β is the order type of C, and so
by Lemma 19.1, β ≤ κ. The regularity of κ together with C being unbounded in κ imply
that β = κ. Thus (ii) holds.

(ii)⇒(i): Suppose that f : κ → κ is a normal function such that rng(f) = C. Then
by Theorem 19.2(i), C is club in κ.

Corollary 19.4. If α is a limit ordinal, then there is club of α with order type cf(α).

Proof. By Theorem 8.48, let f : cf(α) → α be a strictly increasing function with
rng(f) unbounded in α. Define g : cf(α) → α by recursion, as follows:

g(ξ) =







0 if ξ = 0,
max(f(η), g(η) + 1) if ξ = η + 1 for some η,
supη<ξ g(η) if ξ is a limit ordinal.

Clearly then g is a normal function from cf(α) into α, with rng(g) unbounded in α. By
Theorem 19.2(ii), the existence of the desired set C follows.

If cf(α) = ω, then Corollary 19.4 yields a strictly increasing function f : ω → α with
rng(f) unbounded in α. Then rng(f) is club in α. The condition on limit ordinals in
the definition of club is trivial in this case. Most of our results concern limit ordinals of
uncountable cofinality.

If α is any limit ordinal and β < α, then the interval [β, α) is a club of α. Another
simple fact about clubs is that if C is club in a limit ordinal α of uncountable cofinality, then
the set D of all limit ordinals which are in C is also club in α. (We need α of uncountable
cofinality in order to have D unbounded.) Also, if C is club in α with cf(α) > ω, then
the set E of all limit points of members of C is also club in α. This set E is defined to be
{β < α : β is a limit ordinal and C ∩ β is unbounded in β}; clearly E ⊆ C.

Now we give the first major fact about clubs.

Theorem 19.5. If α is a limit ordinal with cf(α) > ω, then the intersection of fewer than
cf(α) clubs of α is again a club.

Proof. Suppose that β < cf(α) and 〈Cξ : ξ < β〉 is a system of clubs of α. Let
D =

⋂

ξ<β Cξ. First we show that D is closed. To this end, suppose that γ < α is a limit
ordinal, and D ∩ γ is unbounded in γ. Then for each ξ < β, the set Cξ is unbounded in γ,
and hence γ ∈ Cξ since Cξ is closed in α. Therefore γ ∈ D.

To show that D is unbounded in α, take any γ < α; we want to find δ > γ such that
δ ∈ D. We make a simple recursive construction of a sequence 〈εn : n ∈ ω〉 of ordinals
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less than α. Let ε0 = γ. Suppose that εn has been defined. Using the fact that each Cξ is
unbounded in α, for each ξ < β choose θn,ξ ∈ Cξ such that εn < θn,ξ. Then let

εn+1 = sup
ξ<β

θn,ξ;

we have εn+1 < α since β < cf(α). This finishes the recursive construction. Let δ =
supn∈ω εn. Then δ < α since cf(α) > ω. Clearly Cξ ∩ δ is unbounded in δ for each ξ < β,
and hence δ ∈ Cξ. So δ ∈ D, as desired.

Again let α be any limit ordinal, and suppose that 〈Cξ : ξ < α〉 is a system of subsets of
α. We define the diagonal intersection of this system:

△ξ<αCξ = {β ∈ α : ∀ξ < β(β ∈ Cξ)}.

This construction is used often in discussion of clubs, in particular in the definition of
some of the large cardinals.

Theorem 19.6. Suppose that cf(α) > ω. Assume that 〈Cξ : ξ < α〉 is a system of clubs
of α.

(i) If
⋂

ξ<β Cξ is unbounded in α for each β < α, then △ξ<αCξ is club in α.
(ii) If α is regular, then △ξ<αCξ is club in α.

Proof. Clearly (ii) follows from (i) (using Theorem 19.5 to verify the hypothesis of
(i)), so it suffices to prove (i). Assume the hypothesis of (i).

For brevity set D = △ξ<αCξ First we show that D is closed in α. So, assume that β
is a limit ordinal less than α, and D∩β is unbounded in β. To show that β ∈ D, take any
ξ < β; we show that β ∈ Cξ. Let E = {γ ∈ D ∩ β : ξ < γ}. Then E is unbounded in β,
and for each γ ∈ E we have γ ∈ Cξ, by the definition of D. So β ∈ Cξ since Cξ is closed.

Second we show that D is unbounded in α. So, take any β < α. We define a sequence
〈γi : i < ω〉 of ordinals less than α by recursion. Let γ0 = β. If γi has been defined, by
the hypothesis of (i) let γi+1 be a member of

⋂

ξ<γi
Cξ which is greater than γi. Finally,

let δ = supi∈ω γi. So δ < α since cf(α) > ω. We claim that δ ∈ D. To see this, take any
ξ < δ. Choose i ∈ ω such that ξ < γi. Then γj ∈ Cξ for all j ≥ i, and hence Cξ ∩ δ is
unbounded in δ, so δ ∈ Cξ. This argument shows that δ ∈ D.

We give one more general fact about closed and unbounded sets; this one is frequently
useful in showing that specific sets are closed and unbounded.

A finitary partial operation on a set A is a nonempty function whose domain is a
subset of mA for some positive integer m and whose range is a subset of A. We say that a
subset B of A is closed under such an operation iff for every a ∈ (mB) ∩ dmn(f) we have
f(a) ∈ B.

Theorem 19.7. Suppose that κ is an uncountable regular cardinal, X ∈ [κ]<κ, and F is
a collection of finitary partial operations on κ, with |F | < κ. Then {α < κ : X ⊆ α and α
is closed under each f ∈ F} is club in κ.
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Proof. Denote the indicated set by C. To show that it is closed, suppose that α is a
limit ordinal less than κ, and C∩α is unbounded in α. To show that α is closed under any
partial operation f ∈ F , suppose that dmn(f) ⊆ mκ and a ∈ (mα) ∩ dmn(f). For each

i < m choose βi < α such that ai ∈ βi. Since α is a limit ordinal, the ordinal γ
def
=
⋃

i<m βi
is still less than α. Since C ∩α is unbounded in α, choose δ ∈ C∩α such that γ < δ. Then
a ∈ mδ so, since δ ∈ C, we have f(a) ∈ δ ⊆ α. Thus α is closed under f . Hence α ∈ C; so
C is closed in κ.

To show that C is unbounded in κ, take any α < κ. We now define a sequence
〈βn : n ∈ ω〉 by recursion. Let β0 = α. Having defined βi < κ, consider the set

{f(a) : f ∈ F , a ∈ dmn(f), and each aj is in βi}.

This set clearly has fewer than κ members. Hence we can take βi+1 to be some ordinal
less than κ and greater than each member of this set. This finishes the construction.

Let γ =
⋃

i∈ω βi. We claim that γ ∈ C, as desired. For, suppose that f ∈ F , f
has domain ⊆ nκ, and a ∈ (nγ) ∩ dmn(f). Then for each i < n choose mi ∈ ω such
that ai ∈ βmi . Let p be the maximum of all the βi’s. Then a ∈ (nβp) ∩ dmn(f), so by
construction f(a) ∈ βp+1 ⊆ γ.

Let α be a limit ordinal. A subset S of α is stationary iff S intersects every club of
α. There are some obvious but useful facts about this notion. Assume that cf(α) > ω.
Then any club in α is stationary. An intersection of a stationary set with a club is again
stationary. Any superset of a stationary set is again stationary. The union of fewer than
cf(α) nonstationary sets is again nonstationary. Every stationary set is unbounded in α.
The following important fact is not quite so obvious:

Proposition 19.8. If α is a limit ordinal and κ is a regular cardinal less than cf(α), then
the set

S
def
= {β < α : cf(β) = κ}

is stationary in α.

Proof. Let C be club in α. Let f : cf(α) → α be strictly increasing, continuous, and
with range cofinal in α. We define g : cf(α) → C by recursion. Let g(0) be any member
of C. For β a limit ordinal less than cf(α), let g(β) =

⋃

γ<β g(γ). If β < cf(α) and g(β)
has been defined, let g(β+ 1) be a member of C greater than both g(β) and f(β). Clearly
g is a strictly increasing continuous function mapping cf(α) into C, and the range of g is
cofinal in α. Thus rng(g) is club in α. Now g(κ) ∈ C ∩ S, as desired.

Let S be a set of ordinals. A function f ∈ SOn is regressive iff f(γ) < γ for every
γ ∈ S\{0}. This is a natural notion, and leads to an important fact which is used in many
of the deeper applications of stationary sets.

Theorem 19.9. (Fodor; also called the pressing down lemma) Suppose that α is a
limit ordinal of uncountable cofinality, S is a stationary subset of α, and f : S → α is
regressive. Then there is an β < α such that f−1[β] is stationary in α.

In case α is regular, there is a γ < α such that f−1[{γ}] is stationary.
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Proof. Assume the hypothesis of the first part of the theorem, but suppose that there
is no β of the type indicated. So for every β < α we can choose a club Cβ in α such that
Cβ ∩ f−1[β] = ∅. Let D be a club in α of order type cf(α). Now for each β < α let τ(β)
be the least member of D greater than β. For each β < α we define

Eβ =
⋂

γ∈D∩(τ(β)+1)

Cγ .

We claim then that for every β < α,

(1) Eβ ∩ f−1[β] = ∅.

In fact, β < τ(β) ∈ D ∩ (τ(β) + 1), so Eβ ∩ f−1[β] ⊆ Cτ(β) ∩ f−1[τ(β)] = ∅. So (1) holds.
Now by Theorem 19.5, each set Eβ is club in α. Moreover, clearly Eβ ⊇ Eδ if

β < δ < α. Hence we can apply Theorem 19.6(i) to infer that F
def
= △β<αEβ is club in α.

Hence also the set G of all limit ordinals which are in F is club in α. Choose δ ∈ G ∩ S.
Now f(δ) < δ; since δ is a limit ordinal, choose ξ < δ such that f(δ) < ξ. But δ ∈ G ⊆ F ,
so it follows by the definition of diagonal intersection that δ ∈ Eξ. From (1) we then see
that δ /∈ f−1[ξ]. This contradicts f(δ) < ξ.

For the second part of the theorem, assume that α is regular. Note that, with β as
in the first part, f−1[β] =

⋃

γ<β f
−1[{γ}]. Hence the second part follows from the fact

mentioned above that a union of fewer than α nonstationary sets is nonstationary.

To illustrate the use of Fodor’s theorem we give the following result about Aronszajn trees
which answers a natural question.

Theorem 19.10. Suppose that κ is an uncountable regular cardinal, T is a κ-Aronszajn
tree, and λ is an infinite cardinal less than κ. Further, suppose that x ∈ T and |{y ∈ T :
x < y}| = κ. Then there is an α > ht(x) such that

|{y ∈ Levα(T ) : x < y}| ≥ λ.

Proof. By Theorem 18.7 we may assume that T is well-pruned, and by taking {y ∈
T : x ≤ y} we may assume that x is the root of T . So now we want to find a level α such
that |Levα(T )| ≥ λ. We assume that this is not the case. So |Levα(T )| < λ for all α < κ.

Suppose that λ is singular. Then

κ =
⋃

µ<λ
µ a cardinal

{α < κ : |Levα(T )| < µ+},

so there is a µ < λ such that Γ
def
= {α < κ : |Levα(T )| < µ+} has power κ. Because T is

well-pruned, we have |Levα(T )| ≤ |Levβ(T ) whenever α < β. It follows that |Levα(T )| <
µ+ for all α < κ, since Γ is clearly unbounded in κ. Thus we may assume that λ is regular.

For each s ∈ T and each β < ht(s) let sβ be the unique element of height β less than
s.
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Let ∆ = {α < κ : cf(α) = λ}. So ∆ is stationary in κ. Now we claim

(1) For every α ∈ ∆ and every s ∈ Levα(T ) there is a β < α such that the set {t ∈ T :
sβ ≤ t, β ≤ ht(t) < α} is a chain.

To prove this, suppose not. Thus we can choose α ∈ ∆ and s ∈ Levα(T ) such that

(2) For all β < α there is a γ ∈ [β, α) and a t ∈ Levα(T ) such that sγ < t 6= s and sγ+1 6≤ t.

Now we use (2) to construct by recursion two sequences 〈γξ : ξ < λ〉 and 〈tξ : ξ < λ〉.
Suppose that these have been defined for all ξ < η, where η < λ, so that each γξ < α. Let
δ =

⋃

ξ<η γξ. So δ < α since cf(α) = λ. By (2), choose γη ∈ [δ + 1, α) and tη ∈ Levα(T )
such that sγη < tη 6= s and sγη+1 6≤ tη. Since Levα(T ) has size less than λ, there exist ξ, η
with ξ < η and tξ = tη. Then sγξ+1 ≤ sγη < tη = tξ, contradiction. Hence (1) holds.

(3) For every α ∈ ∆ there is a β < α such that for each s ∈ Levα(T ) the set {t ∈ T : sβ ≤
t, β ≤ ht(t) < α} is a chain.

To prove this, let α ∈ ∆. By (1), for each s ∈ Levα(T ) choose γs < α such tha the set
{t ∈ T : sγs ≤ t, γs ≤ ht(t) < α} is a chain. Let β = supht(s)=α γs. Clearly β is as desired
in (3).

Now for each α ∈ ∆ choose f(α) to be a β as in (3). So f is a regressive function
defined on the stationary set ∆. Hence there is a β < α such that f−1[{β}] is stationary,
and hence of size κ. So T does not branch beyond β, and hence has a branch of size κ
because it is well-pruned, contradiction.

For the next result we need another important construction. Suppose that λ is an infinite
cardinal, f = 〈fρ : ρ < λ+〉 is a family of injections fρ : ρ→ λ, and S is a cofinal subset of
λ+. The (λ, f, S)-Ulam matrix is the function A : λ × λ+ → P(κ) defined for any ξ < λ
and α < λ+ by

Aξα = {ρ ∈ S\(α+ 1) : fρ(α) = ξ}.

Theorem 19.11. (Ulam) Let λ be an infinite cardinal, S is a stationary subset of λ+,
and I a collection of subsets of λ+ having the following properties:

(i) ∅ ∈ I.
(ii) If X ∈ [I]≤λ, then

⋃
X ∈ I.

(iii) If Y ⊆ X ∈ I, then Y ∈ I.
(iv) If α < λ+, then {α} ∈ I.
(v) S /∈ I.

Then there is a system 〈Xα : α < λ+〉 of subsets of S such that Xα ∩Xβ = ∅ for distinct
α, β < λ+, and Xα /∈ I for all α < λ+.

Proof. Let f = 〈fρ : ρ < λ+〉 be a family of injections fρ : ρ → λ, and let A be the

(λ, f, S)-Ulam matrix. If ξ < λ, then for distinct α, β < λ+ we have Aξα ∩ Aξβ = ∅, since

the functions fρ are one-one. Moreover, for any α < λ+ we have

S\
⋃

ξ<λ

Aξα ⊆ S ∩ (α+ 1) ∈ I
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by (ii)–(iv). By conditions (ii) and (v) it then follows that for each α < λ+ there is

an h(α) < λ such that A
h(α)
α /∈ I. Thus h : λ+ → λ, so there is a ξ < λ such that

|h−1[{ξ}]| = λ+. Hence {Aξα : α < λ+, h(α) = ξ} is as desired in the theorem.

Theorem 19.12. (i) If λ is an infinite cardinal and S is a stationary subset of λ+, then
we can partition S into λ+-many stationary subsets.

(ii) If κ is weakly inaccessible, then κ can be partitioned into κ many stationary
subsets.

Proof. (i): Let I be the collection of all nonstationary subsets of λ+. The conditions
of Theorem 19.11 are all clear, and so by it we get a system 〈Xα : α < λ+〉 of subsets of S
such that Xα ∩Xβ = ∅ for distinct α, β < λ+, and Xα /∈ I for all α < λ+. We can union
S\⋃α<λ+ Xα with X0 to get the desired partition of S.

(ii) For each regular cardinal λ < κ, let Sλ = {α < κ : cf(α) = λ}. Thus Sλ is
stationary by Proposition 19.8. By induction it is clear that if α < κ, then ℵα+1 < κ.
Hence there are κ regular cardinals less than κ. Thus we have κ many pairwise disjoint
stationary subsets of κ, and these can be extended to a partition of κ as in the proof of
(i).

The first part of Theorem 19.12 can actually be extended to weak inaccessibles too, but
the proof is longer.

Next we introduce an important combinatorial principle and show that it implies the
existence of Suslin trees. ♦ is the following statement:

There exists a sequence 〈Aα : α < ω1〉 of sets with the following properties:
(i) Aα ⊆ α for each α < ω1.
(ii) For every subset A of ω1, the set {α < ω1 : A ∩ α = Aα} is stationary in ω1.

A sequence as in ♦ is called a ♦-sequence. Such a sequence in a sense captures all subsets
of ω1 in a sequence of length ω1. Later in these notes we will show that ♦ follows from
V = L.

Theorem 19.14. ♦ ⇒ CH.

Proof. Let 〈Aα : α < ω1〉 be a ♦-sequence. Then for every A ⊆ ω the set {α < ω1 :
A ∩ α = Aα} is stationary in ω1, and hence it has an infinite member; for such a member
α we have A = Aα. So we can let f(A) be the least α < ω1 such that A = Aα, and we
thus define an injection of P(ω) into ω1.

Since ♦ is formulated in terms of subsets of ω1, to construct a Suslin tree using ♦ it is
natural to let the tree be ω1 with some tree-order. The following lemma will be useful in
doing the construction.

Lemma 19.15. Suppose that T = (ω1,≺) is an ω1-tree and A is a maximal antichain in
T . Then

{α < ω1 : (T ↾ α) = α and A ∩ α is a maximal antichain in Tα}
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is club in ω1.

Proof. Let C be the indicated set. For each α < ω1 let T ↾ α = {t ∈ T : ht(t, T ) < α}.
Suppose that A ⊆ ω1 is a maximal antichain in T . To see that C is closed in ω1, let α < ω1

be a limit ordinal, and suppose that C ∩α is unbounded in α. If β ∈ (T ↾ α), then there is
a γ < α such that β ∈ (T ↾ γ). Choose δ ∈ (C ∩α) such that γ < δ. Then β ∈ (T ↾ δ) = δ,
so also β ∈ α. This shows that (T ↾ α) ⊆ α. Conversely, suppose that β ∈ α. Choose
γ ∈ C ∩ α such that β < γ. Then τ ∈ T ↑ γ ⊆ T ↑ α. Thus (T ↑ α) = α.

To show that A ∩ α is a maximal antichain in T ↾ α, note first that at least it is an
antichain. Now take any β ∈ (T ↾ α); we show that β is comparable under ≺ to some
member of A∩α, which will show that A∩α is a maximal antichain in T ↾ α. Choose γ < α
such that β ∈ (T ↾ γ), and then choose δ ∈ (C ∩ α) such that γ < δ. Thus β ∈ (T ↾ δ).
Now A ∩ δ is a maximal antichain in T ↾ δ since δ ∈ C, so β is comparable with some
ε ∈ (A ∩ δ) ⊆ (A ∩ α), as desired.

To show that C is unbounded in κ we will apply Theorem 19.7 to the following three
functions f, g, h : κ→ κ:

f(β) = ht(β, T );

g(β) = sup(Levβ(T ));

h(β) = some member of A comparable with β under ≺ .

By Theorem 19.7, the set D of all α < κ which are closed under each of f, g, h is club in
κ. We now show that D ⊆ C, which will prove that C is unbounded in κ. So, suppose
that α ∈ D. If β ∈ (T ↾ α), let γ = ht(β, T ). Then γ < α and β ∈ Levγ(T ), and so
β ≤ g(γ) < α. Thus (T ↾ α) ⊆ α. Conversely, suppose that β < α. Then f(β) < α, i.e.,
ht(β, T ) < α, so β ∈ (T ↾ α). Therefore (T ↾ α) = α. Now suppose that β ∈ (T ↾ α); we
want to show that β is comparable with some member of A ∩ α, as this will prove that
A ∩ α is a maximal antichain in T ↾ α. Since β ∈ α by what has already been shown, we
have h(β) < α, and so the element h(β) is as desired.

Another crucial lemma for the construction is as follows.

Lemma 19.16. Let T = (ω1,≺) be an eventually branching ω1-tree and let 〈Aα : α < ω1〉
be a ♦-sequence. Assume that for every limit α < ω1, if T ↾ α = α and Aα is a maximal
antichain in T ↾ α, then for every x ∈ Levα(T ) there is a y ∈ Aα such that y ≺ x.

Then T is a Suslin tree.

Proof. By Proposition 18.8 it suffices to show that every maximal antichain A of T
is countable. By Lemma 19.15, the set

C
def
= {α < ω1 : (T ↾ α) = α and A ∩ α is a maximal antichain in Tα}

is club in ω1. Now by the definition of the ♦-sequence, the set {α < ω1 : A ∩ α = Aα} is
stationary, so we can choose α ∈ C such that A∩α = Aα. Now if β ∈ T and ht(β, T ) ≥ α,
then there is a γ ∈ Lev(α, T ) such that γ � β, and the hypothesis of the lemma further
yields a δ ∈ Aα such that δ ≺ γ. Since δ ≺ β, it follows that β /∈ A. So we have shown
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that for all β ∈ T , if ht(β, T ) ≥ α then β /∈ A. Hence for any β ∈ T , if β ∈ A then
β ∈ (T ↾ α) = α. So A ⊆ α and hence A = Aα, so that A is countable.

Theorem 19.17. ♦ implies that there is a Suslin tree.

Proof. Assume ♦, and let 〈Aα : α < ω1〉 be a ♦-sequence. We are going to construct
a Suslin tree of the form (ω1,≺) in which for each α < ω1 the α-th level is the set
{ω · α + m : m ∈ ω}. We will do the construction by completely defining the tree up to
heights α < ω1 by recursion. Thus we define by recursion trees (ω · α,≺α), so that really
we are just defining the partial orders ≺α by recursion.

We let ≺0=≺1= ∅. Now suppose that β > 1 and ≺α has been defined for all α < β
so that the following conditions hold whenever 0 < α < β:

(1) (ω · α,≺α) is a tree, denoted by Tα for brevity.

(2) If γ < α and ξ, η ∈ Tγ , then ξ ≺γ η iff ξ ≺α η.

(3) For each γ < α, Levγ(Tα) = {ω · γ +m : m ∈ ω}.

(4) If γ < δ < α and m ∈ ω, then there is an n ∈ ω such that ω · γ +m ≺α ω · δ + n.

(5) If δ < α, δ is a limit ordinal, ω · δ = δ, and Aδ is a maximal antichain in Tδ, then for
every x ∈ Levδ(Tα) there is a y ∈ Aδ such that y ≺α x.

Note that conditions (1)–(3) just say that the trees constructed have the special form
indicated at the beginning, and are an increasing chain of trees. Condition (4) is to assure
that the final tree is well-pruned. Condition (5) is connected to Lemma 19.16, which will
be applied after the construction to verify that our tree is Suslin. Conditions (1)–(5) imply
that if x ∈ Tα, then it has the form ω · β +m for some β < α, and then x ∈ Levβ(Tα) and
for each γ < β there is a unique element ω · γ + n in Tα such that ω · γ + n ≺α x.

If β is a limit ordinal, let ≺β=
⋃

α<β ≺α. Conditions (1)–(5) are then clear for any
α ≤ β.

Next suppose that β = γ + 2 for some ordinal γ. Then we define

≺β=≺γ+1 ∪ {(ξ, ω · (γ + 1) + 2m) : ξ ≤γ+1 ω · γ +m, m ∈ ω}
∪ {(ξ, ω · (γ + 1) + 2m+ 1) : ξ ≤γ+1 ω · γ +m, m ∈ ω}.

Clearly (1)–(5) hold for all α < β.
The most important case is β = γ + 1 for some limit ordinal γ. To treat this case, we

first associate with each x ∈ Tγ a chain B(x) in Tγ , and to do this we define by recursion
a sequence 〈yxn : n ∈ ω〉 of elements of Tγ . To define yx0 we consider two cases.

Case 1. ω · γ = γ and Aγ is a maximal antichain in Tγ . Then x is comparable with
some member z of Aγ , and we let yx0 be some element of Tγ such that x, z ≺γ yx0 .

Case 2. Otherwise, we just let yx0 = x.
Now let 〈ξm : m ∈ ω〉 be a strictly increasing sequence of ordinals less than γ such that
ξ0 = ht(yx0 , Tγ) and supm∈ω ξm = γ. Now if yxi has been defined of height ξi, by (4) let
yxi+1 be an element of height ξi+1 such that yxi ≺γ yxi+1. Then we define

B(x) = {z ∈ ω · γ : z ≺γ yxi for some i ∈ ω}.
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Finally, let 〈x(n) : n ∈ ω〉 be a one-one enumeration of ω · γ, and set

≺β=≺γ ∪{(z, ω · γ + n) : n ∈ ω, z ∈ B(xn)}.

Clearly (1)–(3) hold with γ in place of α. For (4), suppose that δ < γ and m ∈ ω. Let
z = ω · δ + m. Thus z ∈ ω · γ, and hence there is an n ∈ ω such that z = x(n). Hence
z ∈ B(x(n)) and z ≺β ω · γ + n, as desired.

For (5), suppose that ω · γ = γ, and Aγ is a maximal antichain in Tγ . Suppose that

w ∈ Levγ(Tβ). Choose n so that w = ω ·γ+n. Then there is an s ∈ Aγ such that s < y
x(n)
0 .

So s ∈ B(x(n)) and s ≺β ω · γ + n = w, as desired.

Thus the construction is finished. Now we let ≺=
⋃

α<ω1
≺α. Clearly T

def
= (ω1,≺) is

an ω1-tree. It is eventually branching by (4) and the β = γ + 2 step in the construction.
The hypothesis of Lemma 19.16 holds by the step β = γ + 1, γ limit, in the construction.
Therefore T is a Suslin tree by Lemma 19.16.

We now introduce a generalization of clubs and stationary sets. Suppose that κ is an
uncountable regular cardinal and A is a set such that |A| ≥ κ. Then a subset X of [A]<κ

is closed iff for every system 〈aξ : ξ < α〉 of elements of X , with α < κ and with aξ ⊆ aη
for all ξ < η < α, also the union

⋃

ξ<α aξ is in X . And we say that X is unbounded in

[A]<κ iff for every x ∈ [A]<κ there is a y ∈ X such that x ⊆ y. Club means closed and
unbounded.

Theorem 19.18. Suppose that κ is an uncountable regular cardinal, |A| ≥ κ, and a ∈
[A]<κ. Then {x ∈ [A]<κ : a ⊆ x} is club in [A]<κ.

Proof. Let C be the indicated set. Clearly C is closed. To show that it is unbounded,
suppose that y ∈ [A]<κ. Then y ⊆ a ∪ y ∈ C, as desired.

Theorem 19.19. Suppose that κ is an regular cardinal > ℵ1 and |A| ≥ κ. Then {x ∈
[A]<κ : |x| ≥ ℵ1} is club in [A]<κ.

Proof. Let C be the indicated set. For closure, suppose that 〈aξ : ξ < α〉 is a system
of members of C, with α < κ and aξ ⊆ aη if ξ < η < α. Since each aξ has size at least ℵ1,
so does

⋃

ξ<α aξ, and so
⋃

ξ<α aξ ∈ C. So C is closed. Given x ∈ [A]<κ, let y be a subset

of A of size ℵ1. Then x ⊆ x ∪ y ∈ C. So C is club in [A]<κ.

Theorem 19.20. Suppose that κ is an uncountable regular cardinal and λ is a cardinal >
κ. Then {x ∈ [λ]<κ : x ∩ κ ∈ κ} is club in [λ]<κ.

Proof. Let C be the indicated set. To show that C is closed, suppose that 〈aξ : ξ < α〉
is a system of members of C, with α < κ and aξ ⊆ aη if ξ < η < α. Then aξ ∩ κ is an
ordinal βξ < κ for every ξ < α. Since α < κ and κ is regular, it follows that




⋃

ξ<α

aξ



 ∩ κ =
⋃

ξ<α

(aξ ∩ κ) =
⋃

ξ<α

βξ
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is an ordinal less than κ. So
⋃

ξ<α aξ ∈ C. Thus C is closed. To show that it is unbounded,

let y ∈ [λ]<κ. Let x = (y\κ) ∪ (
⋃

(y ∩ κ) + 1). Since κ is regular and |y| < κ, we have
|⋃(y ∩ κ)| < κ, and hence |x| < κ. Clearly x ∩ κ =

⋃
(y ∩ κ) + 1 ∈ κ. So y ⊆ x ∈ C, as

desired.

Theorem 19.21. Suppose that κ is an uncountable regular cardinal and |A| ≥ κ. Then
the intersection of two clubs of [A]<κ is a club.

Proof. Let C and D be club in [A]<κ. Clearly C ∩ D is closed. To show that it
is unbounded, take any x ∈ [A]<κ. We define a sequence 〈yi : i ∈ ω〉 of members of
[A]<κ by recursion. Let y0 = x. Having defined y2i, choose y2i+1 such that y2i+1 ∈ C
and y2i ⊆ y2i+1; and then choose y2i+2 such that y2i+2 ∈ D and y2i+1 ⊆ y2i+2. Then
x ⊆ ⋃i∈ω yi ∈ C ∩D.

Theorem 19.22. Suppose that κ is an uncountable regular cardinal and |A| ≥ κ. Then
the intersection of fewer than κ clubs of [A]<κ is a club.

Proof. Let 〈Cα : α < λ〉 be a system of clubs in κ, with λ < κ. We may assume that
λ is an infinite cardinal. Clearly

⋂

α<λ Cα is closed in [A]<κ. To show that it is unbounded,
suppose that x ∈ [A]<κ. We define a sequence 〈yα : α < λ · ω〉 by recursion, where · is
ordinal multiplication. Let y0 = x. Suppose that yα has been defined for all α < β, with
β < λ · ω, such that if α < γ < β then yα ⊆ yγ ∈ [A]<κ. If β is a successor ordinal
λ · i+ γ + 1 with i ∈ ω and γ < λ, choose yβ ∈ Cγ with yγ ⊆ yβ . If β is a limit ordinal, let
yβ =

⋃

α<β yα; so yβ ∈ [A]<κ by the regularity of κ. Finally, let z =
⋃

α<λ·ω yα. We claim
that x ⊆ z ∈ ⋂α<λ Cα. Clearly x ⊆ z. Take any γ < λ. To show that z ∈ Cγ , it suffices
to prove the following two things:

(1) yλ·i+γ+1 ∈ Cγ for all i ∈ ω.

This is clear by construction.

(2) z =
⋃

i∈ω yλ·i+γ+1.

Since {λ · i+ γ + 1 : i ∈ ω} is cofinal in λ · ω, this is clear too.

If κ is an uncountable regular cardinal, |A| ≥ κ, and 〈Xa : a ∈ A〉 is a system of subsets of
[A]<κ, then the diagonal intersection of this system is the set

△a∈AXa
def
=

{

x ∈ [A]<κ : x ∈
⋂

a∈x
Xa

}

.

Theorem 19.23. Suppose that κ is an uncountable regular cardinal, |A| ≥ κ, and 〈Xa :
a ∈ A〉 is a system of clubs of [A]<κ. Then △a∈AXa is club in [A]<κ.

Proof. For brevity let D = △a∈AXa. To show that D is closed, suppose that
〈xα : α < γ〉 is a system of members of D, with γ < κ, such that xα ⊆ xβ if α < β < γ.

We want to show that b
def
=
⋃

α<γ xα is in D. To do this, by the definition of diagonal
intersection we need to take any a ∈ b and show that b ∈ Xa. Say a ∈ xβ with β < γ. Then
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for any δ ∈ [β, γ) we have a ∈ xδ, and hence, since xδ ∈ D, by definition we get xδ ∈ Xa.
Say β + τ = γ. Then 〈xβ+ε : ε < τ〉 is a system of elements of Xa, and xβ+ε ⊆ xβ+ξ if
ε < ξ < τ . So because Xa is closed, we get

b =
⋃

ε<τ

xβ+ε ∈ Xa.

So D is closed.
To show that D is unbounded, let x ∈ [A]<κ be given. We now define a sequence

〈yi : i ∈ ω〉 by recursion. Let y0 = x. Having defined yi ∈ [A]<κ, by Theorem 19.22 the set
⋂

a∈yi Xa is club in [A]<κ. Hence we can choose yi+1 in this set such that yi ⊆ yi+1. This
finishes the construction. Now let z =

⋃

i∈ω yi. We claim that x ⊆ z ∈ D, as desired. For,
clearly x ⊆ z. Now suppose that a ∈ z; we want to show that z ∈ Xa. Choose i ∈ ω so
that a ∈ yi. Then for any j ≥ i we have a ∈ yj, and so by construction yj+1 ∈ Xa. Hence
z =

⋃

i≤j yj ∈ Xa, as desired.

Given an uncountable regular cardinal κ and a set A with |A| ≥ κ, we say that a subset
X of [A]<κ is stationary iff it intersects every club of [A]<κ.

Theorem 19.24. Suppose that κ is an uncountable regular cardinal, |A| ≥ κ, S is a
stationary subset of [A]<κ, and f is a function with domain S such that f(x) ∈ x for every
nonempty x ∈ S. Then there exist a stationary subset T of S and an element a ∈ A such
that f(x) = a for all x ∈ T .

Proof. It suffices to show that there is an a ∈ A such that f−1[{a}] is stationary.
Suppose to the contrary that for each a ∈ A there is a club Ca in [A]<κ such that Ca ∩
f−1[{a}] = ∅. By Theorem 19.23 choose x ∈ S ∩ △a∈ACa. Thus x ∈ ⋂

a∈x Ca. In
particular, x ∈ Cf(x). So x ∈ Cf(x) ∩ f−1[{f(x)}], contradiction.

Theorem 19.25. Suppose that λ is regular, κ+ ≤ λ, and S ⊆ [λ]<κ
+

is stationary. Then
S is the disjoint union of λ stationary sets.

Proof. For each nonempty P ∈ [λ]<κ
+

write P = {αPξ : ξ < κ}.

(1) There is an η < κ such that for all β < λ the set {P ∈ S : αPη ≥ β} is stationary.

Otherwise for every η < κ there is a βη < λ such that {P ∈ S : αPη ≥ βη} is non-stationary.

So there is a club Cη such that Cη ∩ {P ∈ S : αPη ≥ βη} = ∅. Let γ = supη<κ βη and
D =

⋂

η<κCη. Note that D is club by Theorem 19.22. For all P ∈ D∩S and η < κ we have

αPη < βη ≤ γ, so P ⊆ γ. Now by Theorem 19.18 the set E
def
= {P ∈ [λ]<κ

+

: γ + 1 ⊆ P} is
club. So E ∩D ∩ S = ∅, contradicting S stationary. So (1) holds.

Take η < κ as in (1). For each P ∈ S let f(P ) = αPη . Now for each β < λ the set

Tβ
def
= {P ∈ S : αPη ≥ β} is stationary. For P ∈ Tβ we have f(P ) ∈ P , so by Theorem

19.24 there is a stationary subset Uβ of Tβ and a δβ < λ such that f(P ) = δβ for all
P ∈ Uβ . Let Vβ = {P ∈ S : f(P ) = δβ}. So Uβ ⊆ Vβ, hence Uβ is stationary. We now
define 〈εξ : ξ < λ〉 by recursion. Suppose defined for all ξ < η. Let β = supξ<η(δεξ + 1),
and set εη = δβ . Clearly Uεξ ∩ Uεη = ∅ for ξ 6= η.
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Theorem 19.26. Let κ be an uncountable regular cardinal. Thus κ ⊆ [κ]<κ. Suppose that
C ⊆ [κ]<κ is club. Then C ∩ κ is club in the usual sense.

Proof. To show that C∩κ is closed, suppose that α < κ and C∩κ is unbounded in α
in the usual sense. Let 〈βξ : ξ < cf(α)〉 be a system of elements of C∩κ with supremum α.
Thus α =

⋃

ξ<cf(α) βξ ∈ C since X is closed. This union is also in κ because κ is regular.
To show that C ∩ κ is unbounded in the usual sense, suppose that α < κ. Since C is

unbounded, choose y0 ∈ C such that α ⊆ y0. Now y0 ∈ [κ]<κ, so β0
def
=
⋃
y0 < κ. Then

choose y1 ∈ C such that β0 ⊆ y1. Continuing, we obtain α ⊆ y0 ⊆ β0 ⊆ y1 ⊆ β1 ⊆ . . ..
The union of this sequence is in C since C is closed, and it is an ordinal < κ since κ is
regular, as desired.

Theorem 19.27. Let κ be an uncountable regular cardinal, and let C ⊆ κ be club in the
old sense. Then {X ∈ [κ]<κ :

⋃
X ∈ C} is club in the new sense.

Proof. Let C′ = {X ∈ [κ]<κ :
⋃
X ∈ C}. Suppose that 〈Xξ : ξ < α〉 is an increasing

sequence of members of C′, with α < κ. Then 〈⋃Xξ : ξ < α〉 is an increasing sequence of
members of C, and so

⋃⋃

ξ<αXξ ∈ C. It follows that
⋃

ξ<αXξ ∈ C′.
Suppose that X ∈ [κ]<κ. Then

⋃
X is an ordinal less than κ, and so there is a limit

ordinal α ∈ C such that
⋃
X < α. Hence X ⊆ α =

⋃
α. So α ∈ C′ is as desired.

Theorem 19.28. Let κ be an uncountable regular cardinal, and let S ⊆ [κ]<κ be stationary
in the new sense. Then {⋃X : X ∈ S} is stationary in the old sense.

Proof. Let S′ = {⋃X : X ∈ S}. Let C be a club in the old sense. With C′ as in the
proof of Theorem 19.27, choose X ∈ S ∩ C′. Then

⋃
X ∈ S′ ∩ C, as desired.

Theorem 19.29. Let κ be an uncountable regular cardinal, and S ⊆ κ be stationary in
the old sense. Then S is stationary as a subset of [κ]<κ.

Proof. Let X ⊆ [κ]<κ be club. Then by Theorem 19.26, X ∩ κ is club in the old
sense. Hence S ∩X ∩ κ 6= ∅.

EXERCISES

E19.1. Assume that κ is an uncountable regular cardinal and 〈Aα : α < κ〉 is a sequence
of subsets of κ. Let D = △α<κAα. Prove the following:

(i) For all α < κ, the set D\Aα is nonstationary.
(ii) Suppose that E ⊆ κ and for every α < κ, the set E\Aα is nonstationary. Show

that E\D is nonstationary.

E19.2. Let κ > ω be regular. Show that there is a sequence 〈Sα : α < κ〉 of stationary
subsets of κ such that Sβ ⊆ Sα whenever α < β < κ, and △α<κSα = {0}. Hint: use
Theorem 19.12.

E19.3. Suppose that κ is uncountable and regular, and for each limit ordinal α < κ we are
given a function fα ∈ ωα. Suppose that S is a stationary subset of κ. Let n ∈ ω. Show
that there exist a t ∈ nκ and a stationary S′ ⊆ S such that for all α ∈ S′, fα ↾ n = t.
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E19.4. Suppose that cf(κ) > ω, C ⊆ κ is club of order type cf(κ), and 〈cβ : β < cf(κ)〉 is
the strictly increasing enumeration of C. Let X ⊆ κ. Show that X is stationary in κ iff
{β < cf(κ) : cβ ∈ X} is stationary in cf(κ).

E19.5. Suppose that κ is regular and uncountable, and S ⊆ κ is stationary. Also, suppose
that every α ∈ S is an uncountable regular cardinal. Show that

T
def
= {α ∈ S : S ∩ α is non-stationary in α}

is stationary in κ. Hint: given a club C in κ, let C′ be the set of all limit points of C and
let α be the least element of C′ ∩ S; show that α ∈ T ∩ C.

E19.6. Suppose that κ is uncountable and regular, and κ ≤ |A|. Suppose that C is a
closed subset of [A]<κ and D is a directed subset of C with |D| < κ. (Directed means that
if x, y ∈ D then there is a z ∈ D such that x ∪ y ⊆ z.) Show that

⋃
D ∈ C. Hint: use

induction on |D|.
E19.7. Let κ be uncountable and regular, and κ ≤ |A|. If f : [A]<ω → [A]<κ let Cf =
{x ∈ [A]<κ : ∀s ∈ [x]<ω[f(s) ⊆ x]}. Show that Cf is club in [A]<κ.

E19.8. (Continuing Exercise E19.7) Let κ be uncountable and regular, and κ ≤ |A|. Let D
be club in [A]<κ. Show that there is an f : [A]<ω → [A]<κ such that Cf ⊆ D. Hint: show
that there is an f : [A]<ω → C such that ∀e ∈ [A]<ω[e ⊆ f(e)] and ∀e1, e2 ∈ [A]<ω[e1 ⊆
e2 → f(e1) ⊆ f(e2)].

E19.9. Let κ be uncountable and regular, κ ≤ |A|, and A ⊆ B. If Y ∈ [A]<κ, let
Y B = {x ∈ [B]<κ : x∩A ∈ Y }. Show that if Y is club in [A]<κ, then Y B is club in [B]<κ.

E19.10. Let κ be uncountable and regular, κ ≤ |A|, and A ⊆ B. If Y ∈ [B]<κ, let
Y ↾ A = {y ∩ A : y ∈ Y }. Show that if Y is stationary in [B]<κ then Y ↾ A is stationary
in [A]<κ.

E19.11. With κ,A,B as in exercise E19.9, suppose that f : [B]<ω → [B]<κ. For each
e ∈ [A]<ω define

x0(e) = e;

xn+1(e) = xn(e) ∪ {f(s) : s ∈ [xn(e)]<ω};

w(e) =
⋃

n∈ω
xn(e).

Also, for each y ∈ [A]<κ let v(y) =
⋃{w(e) : e ∈ [y]<ω}.

Prove that w(e) ∈ Cf for all e ∈ [A]<ω and v(y) ∈ Cf for all y ∈ [A]<κ.

E19.12. With κ,A,B as in exercise E19.9, suppose that S is stationary in [A]<κ. Show
that SB is stationary in [B]<κ. Hint: use exercises E19.8 and E19.11.

Reference

Jech, T. Stationary sets. Chapter in Handbook of set theory.
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20. Infinite combinatorics

In this chapter we survey the most useful theorems of infinite combinatorics; the best
known of them is the infinite Ramsey theorem. We derive from it the finite Ramsey
theorem.

Two sets A,B are almost disjoint iff |A| = |B| while |A ∩B| < |A|. Of course we are
mainly interested in this notion if A and B are infinite.

Theorem 20.1. There is a family of 2ω pairwise almost disjoint infinite sets of natural
numbers.

Proof. Let X =
⋃

n∈ω
n2. Then |X | = ω, since X is clearly infinite, while

|X | ≤
∑

n∈ω
2n ≤ ω · ω = ω.

Let f be a bijection from ω onto X . Then for each g ∈ ω2 let xg = {g ↾ n : n ∈ ω}.
So xg is an infinite subset of X . If g, h ∈ ω2 and g 6= h, choose n so that g(n) 6= h(n).
Then clearly xg ∩ xh ⊆ {g ↾ i : i ≤ n}, and so this intersection is finite. Thus we have
produced 2ω pairwise almost disjoint infinite subsets of X . That carries over to ω. Namely,
{f−1[xg] : g ∈ ω2} is a family of 2ω pairwise almost disjoint infinite subsets of ω, as is
easily checked.

Let X be an infinite set. A collection A of subsets of X is independent iff for any two
finite disjoint subsets B,C of A we have

(
⋂

Y ∈B

Y

)

∩
(
⋂

Z∈C

(X\Z)

)

6= ∅.

Theorem 20.2. (Fichtenholz, Kantorovitch, Hausdorff) For any infinite cardinal κ there
is an independent family A of subsets of κ such that each member of A has size κ and
|A | = 2κ; moreover, each of the above intersections has size κ.

Proof. Let F be the family of all finite subsets of κ; thus |F | = κ. Let Φ be the set
of all finite subsets of F ; thus also |Φ| = κ. It suffices now to work with F × Φ rather
than κ itself.

For each Γ ⊆ κ let

bΓ = {(∆, ϕ) ∈ F × Φ : ∆ ∩ Γ ∈ ϕ}.

Note that each bΓ has size κ; for example, (∅, {∅, {α}}) ∈ bΓ for every α < κ. So to finish
the proof it suffices to take any two finite disjoint subsets H and K of P(κ) and show
that

(∗)

(
⋂

A∈H
bA

)

∩
(
⋂

B∈K
((F × Φ)\bB)

)
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has size κ. For distinct A,B ∈ H ∪ K pick αAB ∈ A△B, and let ∆ = {αAB : A,B ∈
H∪K, A 6= B}. Now it suffices to show that if β ∈ κ\∆ and ϕ = {∆∩A : A ∈ H}∪{{β}},
then (∆, ϕ) is a member of (∗). If A ∈ H, then ∆ ∩ A ∈ ϕ, and so (∆, ϕ) ∈ bA. Now
suppose, to get a contradiction, that B ∈ K and (∆, ϕ) ∈ bB. Then ∆ ∩ B ∈ ϕ. Since
β /∈ ∆, it follows that there is an A ∈ H such that ∆ ∩B = ∆∩A. Since A 6= B, we have
αAB ∈ A△B and αAB ∈ ∆, contradiction.

We now give a generalization of the ∆-system theorem.

Theorem 20.3. Suppose that κ and λ are cardinals, ω ≤ κ < λ, λ is regular, and for all
α < λ, |[α]<κ| < λ. Suppose that A is a collection of sets, with each A ∈ A of size less
than κ, and with |A | ≥ λ. Then there is a B ∈ [A ]λ which is a ∆-system.

Proof.

(1) There is a regular cardinal µ such that κ ≤ µ < λ.

In fact, if κ is regular, we may take µ = κ. If κ is singular, then κ+ ≤ |[κ]<κ| < λ, so we
may take µ = κ+.

We take µ as in (1). Let S = {α < λ : α is a limit ordinal and cf(α) = µ}. Then S is
a stationary subset of λ.

Let A0 be a subset of A of size λ. Now
∣
∣
⋃

A∈A0
A
∣
∣ ≤ λ since κ < λ. Let a be an

injection of
⋃

A∈A0
A into λ, and let A be a bijection of λ onto A0. Set bα = a[Aα] for

each α < λ. Now if α ∈ S, then |bα ∩ α| ≤ |bα| = |Aα| < κ ≤ µ = cf(α), so there is an
ordinal g(α) such that sup(bα ∩ α) < g(α) < α. Thus g is a regressive function on S. By
Fodor’s theorem, there exist a stationary S′ ⊆ S and a β < λ such that g[S′] = {β}. For
each α ∈ S′ let F (α) = bα ∩ α. Thus F (α) ∈ [β]<κ, and |[β]<κ| < λ, so there exist an
S′′ ∈ [S′]λ and a B ∈ [β]<κ such that bα ∩ α = B for all α ∈ S′′.

Now we define 〈αξ : ξ < λ〉 by recursion. For any ξ < λ, αξ is a member of S′′ such
that

(2) αη < αξ for all η < ξ, and

(3) δ < αξ for all δ ∈ ⋃η<ξ bαη .

Since
∣
∣
∣
⋃

η<ξ bαη

∣
∣
∣ < λ, this is possible by the regularity of λ.

Now let A1 = A[{αξ : ξ < λ}] and r = a−1[B]. We claim that C ∩D = r for distinct
C,D ∈ A1. For, write C = Aαξ and D = Aαη . Without loss of generality, η < ξ. Suppose
that x ∈ r. Thus a(x) ∈ B ⊆ bαξ , so by the definition of bαξ we have x ∈ Aαξ = C.
Similarly x ∈ D. Conversely, suppose that x ∈ C ∩ D. Thus x ∈ Aαξ ∩ Aαη , and hence
a(x) ∈ bαξ ∩ bαη . By the definition of αξ, since a(x) ∈ bαη we have a(x) < αξ. So
a(x) ∈ bαξ ∩ αξ = B, and hence x ∈ r.

Clearly |A1| = λ.

Another form of this theorem is as follows. An indexed ∆-system is a system 〈Ai : i ∈ I〉
of sets such that there is a set r (the root) such that Ai ∩ Aj = r for all distinct i, j ∈ I.
Some, or even all, the Ai’s can be equal.

268



Theorem 20.4. Suppose that κ and λ are cardinals, ω ≤ κ < λ, λ is regular, and for all
α < λ, |[α]<κ| < λ. Suppose that 〈Ai : i ∈ I〉 is a system of sets, with each Ai of size less
than κ, and with |I| ≥ λ. Then there is a J ∈ [I]λ such that 〈Ai : i ∈ J〉 is an indexed
∆-system.

Proof. Define i ≡ j iff i, j ∈ I and Ai = Aj. If some equivalence class has λ or more
elements, a subset J of that class of size λ is as desired. If every equivalence class has fewer
than λ elements, then there are at least λ equivalence classes. Let A have exactly one
element in common with λ equivalence classes. We apply Theorem 20.3 to get a subset B

of A of size λ which is a ∆-system, say with kernel r. Say B = {Ai : i ∈ J} with J ∈ [I]λ

and Ai 6= Aj for i 6= j. Then 〈Ai : i ∈ J〉 is an indexed ∆-system with root r.

Now we give some important results of the partition calculus, which is infinitary Ramsey
theory. The basic definition is as follows:

• Suppose that ρ is a nonzero cardinal number, 〈λα : α < ρ〉 is a sequence of cardinals,
and σ, κ are cardinals. We also assume that 1 ≤ σ ≤ λα ≤ κ for all α < ρ. Then we write

κ→ (〈λα : α < ρ〉)σ

provided that the following holds:

For every f : [κ]σ → ρ there exist α < ρ and Γ ∈ [κ]λα such that f [[Γ]σ]] ⊆ {α}.
In this case we say that Γ is homogeneous for f .

The following colorful terminology is standard. We imagine that α is a color for each
α < ρ, and we color all of the σ-element subsets of κ. To say that Γ is homogeneous for f
is to say that all of the σ-element subsets of Γ get the same color. Usually we will take σ
and ρ to be a positive integers. If ρ = 2, we have only two colors, which are conventionally
taken to be red (for 0) and blue (for 1). If σ = 2 we are dealing with ordinary graphs.

Note that if ρ = 1 then we are using only one color, and so the arrow relation obviously
holds by taking Γ = κ. If κ is infinite and σ = 1 and ρ is a positive integer, then the relation
holds no matter what σ is, since

κ =
⋃

i<ρ

{α < κ : f({α}) = i},

and so there is some i < ρ such that |{α < κ : f({α}) = i}| = κ ≥ λi, as desired.
For the first few theorems we assume that ρ is finite, and use the letter r instead of ρ.
The general infinite Ramsey theorem is as follows.

Theorem 20.5. (Ramsey) If n and r are positive integers, then

ω → (ω, . . . , ω
︸ ︷︷ ︸

r times

)n.

Proof. We proceed by induction on n. The case n = 1 is trivial, as observed above.
So assume that the theorem holds for n ≥ 1, and now suppose that f : [ω]n+1 → r. For
each m ∈ ω define gm : [ω\{m}]n → r by:

gm(X) = f(X ∪ {m}).
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Then by the inductive hypothesis, for each m ∈ ω and each infinite S ⊆ ω there is an
infinite HS

m ⊆ S\{m} such that gm is constant on [HS
m]n. We now construct by recursion

two sequences 〈Si : i ∈ ω〉 and 〈mi : i ∈ ω〉. Each mi will be in ω, and we will have
S0 ⊇ S1 ⊇ · · ·. Let S0 = ω and m0 = 0. Suppose that Si and mi have been defined, with
Si an infinite subset of ω. We define

Si+1 = HSi
mi

and

mi+1 = the least element of Si+1 greater than mi.

Clearly S0 ⊇ S1 ⊇ · · · and m0 < m1 < · · ·. Moreover, mi ∈ Si for all i ∈ ω.

(1) For each i ∈ ω, the function gmi is constant on [{mj : j > i}]n.

In fact, {mj : j > i} ⊆ Si+1 by the above, and so (1) is clear by the definition.
Let pi < r be the constant value of gmi ↾ [{mj : j > i}]n, for each i ∈ ω. Hence

ω =
⋃

j<r

{i ∈ ω : pi = j};

so there is a j < r such that K
def
= {i ∈ ω : pi = j} is infinite. Let L = {mi : i ∈ K}. We

claim that f [[L]n+1] ⊆ {j}, completing the inductive proof. For, take any X ∈ [L]n+1; say
X = {mi0 , . . . , min} with i0 < · · · < in. Then

f(X) = gmi0 ({mi1 , . . . , min}) = pi0 = j.

As a digression, we also prove the finite version of Ramsey’s theorem:

Theorem 20.6. (Ramsey) Suppose that n, r, l0, . . . , lr−1 are positive integers, with n ≤ li
for each i < r. Then there is a k ≥ li for each i < r and k ≥ n such that

k → (l0, . . . , lr−1)n.

Proof. Assume the hypothesis, but suppose that the conclusion fails. Thus for every
k such that k ≥ li for each i < r with k ≥ n also, we have k 6→ (l0, . . . , lr−1)n, which means
that there is a function fk : [k]n → r such that for each i < r, there is no set S ∈ [k]li

such that fk[[S]n] ⊆ {i}. We use these functions to define a certain g : [ω]n → r which
will contradict the infinite version of Ramsey’s theorem. Let M = {k ∈ ω : k ≥ li for each
i < r and k ≥ n}.

To define g, we define functions hi : [i]n → r by recursion. h0 has to be the empty

function. Now suppose that we have defined hi so that Si
def
= {s ∈ M : fs ↾ [i]n = hi} is

infinite. This is obviously true for i = 0. Then

Si =
⋃

s:[i+1]n→r

{k ∈ Si : fk ↾ [i+ 1]n = s},
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and so there is a hi+1 : [i + 1]n → r such that Si+1
def
= {k ∈ Si : fk ↾ [i + 1]n = hi+1} is

infinite, finishing the construction.
Clearly hi ⊆ hi+1 for all i ∈ ω. Hence g =

⋃

i∈ω hi is a function mapping [ω]n into
r. By the infinite version of Ramsey’s theorem choose v < r and Y ∈ [ω]ω such that
g[[Y ]n] ⊆ {v}. Take any Z ∈ [Y ]lv . Choose i so that Z ⊆ i, and choose k ∈ Si. Then for
any X ∈ [Z]n we have

fk(X) = hi(X) = g(X) = v,

so Z is homogeneous for fk, contradiction.

According to the following theorem, the most obvious generalization of Ramsey’s theorem
does not hold.

Theorem 20.7. For any infinite cardinal κ we have 2κ 6→ (κ+, κ+)2.

Proof. We consider κ2 under the lexicographic order; see the beginning of Chapter
13. Let 〈fα : α < 2κ〉 be a one-one enumeration of κ2. Define F : 2κ → 2 by setting, for
any α < β < κ,

F ({α, β}) =

{
0 if fα < fβ ,
1 if fβ < fα.

If 2κ → (κ+, κ+)2 holds, then there is a set Γ ∈ [2κ]κ
+

which is homogeneous for F .
If F ({α, β}) = 0 for all distinct α < β in Γ, then 〈fα : α ∈ Γ〉 is a strictly increasing
sequence of length o.t.(Γ), contradicting Theorem 17.4. A similar contradiction is reached
if F ({α, β}) = 1 for all distinct α < β in Γ.

Corollary 20.8. κ+ 6→ (κ+, κ+)2 for every infinite cardinal κ.

Proof. Given F : [κ+]2 → 2, extend F in any way to a function G : [2κ]2 → 2.
A homogeneous set for F yields a homogeneous set for G. So our corollary follows from
Theorem 20.7.

We can, however, generalize Ramsey’s theorem in less obvious ways.

Theorem 20.9. (Dushnik-Miller) If κ is an infinite regular cardinal, then κ→ (κ, ω)2.

(This is also true for singular κ, but the proof is more complicated.)

Proof. Let f : [κ]2 → 2. Assume that

(1) For all Γ ⊆ κ, if f [[Γ]2] ⊆ {0}, then |Γ| < κ.

Thus we want to find an infinite ∆ ⊆ κ such that f [[∆]2] ⊆ {1}. In order to do this, we
will define by recursion subsets Θn,Ωn of κ and elements αn of κ, for all n ∈ ω.

Let Ω0 = κ. Now suppose that Ωn has been defined so that |Ωn| = κ; we define Ωn+1,
αn, and Θn. Let Θn be a maximal subset of Ωn such that f [[Θn]2] ⊆ {0}. Thus |Θn| < κ
by (1). By this maximality,

Ωn\Θn =
⋃

β∈Θn

{γ ∈ Ωn\Θn : f({β, γ}) = 1}.
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Hence since |Ωn\Θn| = κ, |Θn| < κ, and κ is regular, there is an αn ∈ Θn such that

Ωn+1
def
= {γ ∈ Ωn\Θn : f({αn, γ}) = 1} has κ elements. This finishes the construction.

The following facts about this construction are clear:

(2) Ωn+1 ⊆ Ωn\Θn;

(3) αn ∈ Θn ⊆ Ωn;

(4) For all β ∈ Ωn+1 we have f({αn, β}) = 1;

In addition:

(5) The αn’s are all distinct.

In fact, suppose that i < n. Then αi ∈ Θi and Θi ∩ Ωi+1 = ∅. Since Ωn ⊆ Ωi+1, it follows
that αi /∈ Ωn and so αi 6= αn. So (5) holds.

Now with i < n we have αn ∈ Ωn ⊆ Ωi+1, and hence f({αi, αn}) = 1. Thus
f [{αn : n ∈ ω}]2 ⊆ {1}, as desired.

To formulate another generalization of Ramsey’s theorem it is convenient to introduce a
notation for a special form of the arrow notation. We write

κ→ (λ)νµ iff

κ→ (〈λ : α < µ〉)ν

In direct terms, then, κ→ (λ)νµ means that for every f : [κ]ν → µ there is a Γ ∈ [κ]λ such
that |f [Γ]| = 1.

The following cardinal notation is also needed for our next result: for any infinite
cardinal κ we define

2κ0 = κ;

2κn+1 = 2(2κn) for all n ∈ ω.

Theorem 20.10. (Erdös-Rado) For every infinite cardinal κ and every positive integer
n, (2κn−1)+ → (κ+)nκ.

Proof. Induction on n. For n = 1 we want to show that κ+ → (κ+)1κ, and this is
obvious. Now assume the statement for n ≥ 1, and suppose that f : [(2κn)+]n+1 → κ. For
each α ∈ (2κn)+ define Fα : [(2κn)+\{α}]n → κ by setting Fα(x) = f(x ∪ {α}).

(1) There is an A ∈ [(2κn)+]2
κ
n such that for all C ∈ [A]2

κ
n−1 and all u ∈ (2κn)+\C there is a

v ∈ A\C such that Fu ↾ [C]n = Fv ↾ [C]n.

To prove this, we define a sequence 〈Aα : α < (2κn−1)+〉 of subsets of (2κn)+, each of size
2κn. Let A0 = 2κn, and for α limit let Aα =

⋃

β<αAβ. Now suppose that Aα has been

defined, and C ∈ [Aα]2
κ
n−1 . Define u ≡ v iff u, v ∈ (2κn)+\C and Fu ↾ [C]n = Fv ↾ [C]n.

Now |[C]nκ| = 2κn, so there are at most 2κn equivalence classes. Let KC have exactly one
element in common with each equivalence class. Let Aα+1 = Aα ∪ {KC : C ∈ [Aα]2

κ
n−1}.
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Since (2κn)2
κ
n−1 = 2κn, we still have |Aα+1| = 2κn. This finishes the construction. Clearly

A
def
=
⋃

α≤(2κ
n−1

)+ Aα is as desired in (1).

Take A as in (1), and fix a ∈ (2κn)+\A. We now define a sequence 〈xα : α < (2κn−1)+〉
of elements of A. Given C

def
= {xβ : β < α}, by (1) let xα ∈ A\C be such that Fxα ↾

[C]n = Fa ↾ [C]n. This defines our sequence. Let X = {xα : α < (2κn−1)+}.
Now define G : [X ]n → κ by G(x) = Fa(x). Suppose that α0 < · · · < αn < (2κn−1)+.

Then

f({xα0
, . . . , xαn}) = Fxαn ({xα0

, . . . , xαn−1
})

= Fa({xα0
, . . . , xαn−1

})

= G({xα0
, . . . , xαn−1

}).

Now by the inductive hypothesis there is an H ∈ [X ]κ
+

such that G is constant on [H]n.
By the above, f is constant on [H]n+1.

Corollary 20.11. (2κ)+ → (κ+)2κ for any infinite cardinal κ.

Theorem 20.12. For any infinite cardinal κ we have 2κ 6→ (3)2κ.

Proof. Define F : [κ2]2 → κ by setting F ({f, g}) = χ(f, g) for any two distinct
f, g ∈ κ2. If {f, g, h} is homogeneous for F with f, g, h distinct, let α = χ(f, g). Then
f(α), g(α), h(α) are distinct members of 2, contradiction.

Corollary 20.13. For any infinite cardinal κ we have 2κ 6→ (κ+)2κ.

Our final result in the partition calculus indicates that infinite exponents are in general
hopeless.

Theorem 20.14. ω 6→ (ω, ω)ω.

Proof. Let < well-order [ω]ω. We define for any X ∈ [ω]ω

F (X) =
{

0 if Y < X for some Y ∈ [X ]ω,
1 otherwise.

Suppose that H ∈ [ω]ω is homogeneous for F . Let X be the <-least element of [H]ω. Thus
F (X) = 1. So we must have F (Y ) = 1 for all Y ∈ [H]ω. Write H = {mi : i ∈ ω} without
repetitions. For each k ∈ ω let

Ik = {m0, m2, . . . , m2k} ∪ {m2i+1 : i ∈ ω}.

Thus these are infinite subsets of H. Choose k0 so that Ik0 is minimum among all of the
Ik’s. Then Ik0 ⊂ Ik0+1 and Ik0 < Ik0+1, so F (Ik0+1) = 0, contradiction.

We close this chapter with the following theorem of Comfort and Negrepontis.
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Theorem 20.15. Suppose that λ = λ<κ. Then there is a system 〈fα : α < 2λ〉 of members
of λλ such that

∀M ∈
[
2λ
]<κ ∀g ∈ Mλ∃β < λ∀α ∈M [fα(β) = g(α)].

Proof. Let

F =
{

(F,G, s) : F ∈ [λ]<κ, G ∈ [P(F )]<κ, and s ∈ Gλ
}
.

Now if F ∈ [λ]<κ, say |F | = µ, then

∣
∣[P(F )]<κ

∣
∣ ≤ (2µ)<κ| ≤ (λµ)<κ ≤ λ<κ = λ,

and if G ∈ [P(F )]<κ then |Gλ| ≤ λ<κ = λ. It follows that |F | = λ. Let h be a bijection
from λ onto F , and let k be a bijection from 2λ onto P(λ). Now for each α < 2λ we
define fα ∈ λλ by setting, for each β < λ, with h(β) = (F,G, s),

fα(β) =
{
s(k(α) ∩ F ) if k(α) ∩ F ∈ G,
0 otherwise.

Now to prove that 〈fα : α < 2λ〉 is as desired, suppose that M ∈ [2λ]<κ and g ∈ Mλ. For
distinct members α, β of M choose γ(α, β) ∈ k(α)△k(β). Then let

F = {γ(α, β) : α, β ∈M,α 6= β} and G = {k(α) ∩ F : α ∈M}.

Moreover, define s : G→ λ by setting s(k(α)∩ F ) = g(α) for any α ∈M . This is possible
since k(α) ∩ F ) 6= k(β) ∩ F ) for distinct α, β ∈M . Finally, let β = h−1(F,G, s). Then for
any α ∈M we have

fα(β) = s(k(α) ∩ F ) = g(α).

EXERCISES

E20.1. Suppose that κω > κ. Show that there is a family A of subsets of κ, each of size
ω, with |A | = κ+ and the intersection of any two members of A is finite.

E20.2. Suppose that κ is any infinite cardinal, and λ is minimum such that κλ > κ. Show
that there is a family A of subsets of κ, each of size λ, with the intersection of any two
members of A being of size less than λ, and with |A | = λ+.

E20.3. Suppose that κ is uncountable and regular. Show that there is a family A of
subsets of κ, each of size κ with the intersection of any two members of A of size less than
κ, and with |A | = κ+. Hint: (1) show that there is a partition of κ into κ subsets, each
of size κ; (2) Use Zorn’s lemma to start from (1) and produce a maximal almost disjoint
set; (3) Use a diagonal construction to show that the resulting family must have size > κ.

E20.4. Prove that if F is an uncountable family of finite functions each with range ⊆ ω,
then there are distinct f, g ∈ F such that f ∪ g is a function.
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E20.5. (Double ∆-system theorem) Suppose that κ is a singular cardinal with cf(κ) > ω.
Let 〈λα : α < cf(κ)〉 be a strictly increasing sequence of successor cardinals with supremum
κ, with cf(κ) < λ0, and such that for each α < cf(κ) we have (

∑

β<α λβ)+ ≤ λα. Suppose

that 〈Aξ : ξ < κ〉 is a system of finite sets. Then there exist a set Γ ∈ [cf(κ)]cf(κ), a
sequence 〈Ξα : α ∈ Γ〉 of subsets of κ, a sequence 〈Fα : α ∈ Γ〉 of finite sets, and a finite
set G, such that the following conditions hold:

(i) 〈Ξα : α ∈ Γ〉 is a pairwise disjoint system, and |Ξα| = λα for every α ∈ Γ.
(ii) 〈Aξ : ξ ∈ Ξα〉 is a ∆-system with root Fα for every α ∈ Γ.
(iii) 〈Fα : α ∈ Γ〉 is a ∆-system with root G.
(iv) If ξ ∈ Ξα, η ∈ Ξβ , and α 6= β, then Aξ ∩ Aη = G.

E20.6. Suppose that F is a collection of countable functions, each with range ⊆ 2ω, and
with |F | = (2ω)+. Show that there are distinct f, g ∈ F such that f ∪ g is a function.

E20.7. For any infinite cardinal κ, any linear order of size at least (2κ)+ has a subset of
order type κ+ or one similar to (κ+, >).

E20.8. For any infinite cardinal κ, any tree of size at least (2κ)+ has a branch or an
antichain of size at least κ+.

E20.9. Any uncountable tree either has an uncountable branch or an infinite antichain.

E20.10. Suppose that m is a positive integer. Show that any infinite set X of positive
integers contains an infinite subset Y such that one of the following conditions holds:

(i) The members of Y are pairwise relatively prime.
(ii) There is a prime p < m such that for any two a, b ∈ Y , p divides a− b.
(iii) If a, b are distinct members of Y , then a, b are not relatively prime, but the

smallest prime divisor of a− b is at least equal to m.

E20.11. Suppose that X is an infinite set, and (X,<) and (X,≺) are two well-orderings of
X . Show that there is an infinite subset Y of X such that for all y, z ∈ Y , y < z iff y ≺ z.

E20.12. Let S be an infinite set of points in the plane. Show that S has an infinite subset
T such that all members of T are on the same line, or else no three distinct points of T
are collinear.

E20.13. We consider the following variation of the arrow relation. For cardinals κ, λ, µ, ν,
we define

κ→ [λ]µν

to mean that for every function f : [κ]µ → ν there exist an α < ν and a Γ ∈ [κ]λ such
that f [[Γ]µ] ⊆ ν\{α}. In coloring terminology, we color the µ-element subsets of κ with ν
colors, and then there is a set which is anti-homogeneous for f , in the sense that there is
a color α and a subset of size λ all of whose µ-element subsets do not get the color α.

Prove that for any infinite cardinal κ,

κ 6→ [κ]κ2κ .

Hint: (1) Show that there is an enumeration 〈Xα : α < 2κ〉 of [κ]κ in which every member
of [κ]κ is repeated 2κ times. (2) Show that |[κ]κ| = 2κ. (3) Show that there is a one-one
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〈Yα : α < 2κ〉 such that Yα ∈ [Xα]κ for all α < 2κ. (4) Define f : [κ]κ → 2κ so that for all
α < 2κ one has

f(Yα) = o.t.({β < α : Xβ = Xα}).

Reference

Erdös, P.; Hajnal, A.; Máté, A.; Rado, R. Combinatorial set theory: partition rela-
tions for cardinals. Akad. Kiadó, Budapest 1984, 347pp.
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21. Martin’s axiom

Martin’s axiom is not an axiom of ZFC, but it can be added to those axioms. It has many
important consequences. Actually, the continuum hypothesis implies Martin’s axiom, so
it is of most interest when combined with the negation of the continuum hypothesis. The
consistency of MA +¬CH involves iterated forcing, and is prove much later in these notes.

• For any infinite cardinal κ, the notation MA(κ) abbreviates the statement that for any
ccc partial order P and any family D of dense sets in P, with |D | ≤ κ, there is a filter G
on P such that G ∩D 6= ∅ for every D ∈ D .

• Martin’s axiom, abbreviated MA, is the statement that MA(κ) holds for every infinite
κ < 2ω.

Clearly if κ < λ and MA(λ), then also MA(κ).

Theorem 21.1. MA(ω) holds.

Proof. Let P be a ccc partial order and D a countable collection of dense sets in P.
If D is empty, we can fix any p ∈ P and let G = {q ∈ P : p ≤ q}. Then G is a filter on P,
which is all that is required in this case.

Now suppose that D is nonempty, and let 〈Dn : n ∈ ω〉 enumerate all the members of
D ; repetitions are needed if D is finite. We now define a sequence 〈pn : n ∈ ω〉 of elements
of P by recursion. Let p0 be any element of P . If pn has been defined, by the denseness of
Dn let pn+1 be such that pn+1 ≤ pn and pn+1 ∈ Dn. This finishes the construction. Let
G = {q ∈ P : pn ≤ q for some n ∈ ω}. Clearly G is as desired.

Note that ccc was not used in this proof.

Corollary 21.2. CH implies MA.

Theorem 21.3. MA(2ω) does not hold.

Proof. Suppose that it does hold. Let

P = {f : f is a finite function with dmn(f) ⊆ ω and rng(f) ⊆ 2};

f ≤ g iff f, g ∈ P and f ⊇ g;

P = (P,≤).

Then P has ccc, since P itself is countable. Now for each n ∈ ω let

Dn = {f ∈ P : n ∈ dmn(f)}.

Each such set is dense in P. For, if g ∈ P , either g is already in Dn, or n /∈ dmn(g), and
then g ∪ {(n, 0)} is in Dn and it is ≤ g.

For each h ∈ ω2 let

Eh = {f ∈ P : there is an n ∈ dmn(f) such that f(n) 6= h(n)}.
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Again, each such set Eh is dense in P. For, let f ∈ P . If f 6⊆ h, then already f ∈ Eh,
so suppose that f ⊆ h. Take any n ∈ ω\dmn(f), and let g = f ∪ {(n, 1 − h(n))}. Then
g ∈ Eh and g ≤ f , as desired.

So, by MA(2ω) let G be a filter on P which intersects each of the sets Dn and Eh. Let
k =

⋃
G.

(*) k : ω → ω.

In fact, k is obviously a relation. Suppose that (m, ε), (m, δ) ∈ k. Choose f, g ∈ G such
that (m, ε) ∈ f and (m, δ) ∈ g. Then choose s ∈ G such that s ≤ f, g. So f, g ⊆ s, and s
is a function. It follows that ε = δ. Thus k is a function.

If n ∈ ω, choose f ∈ G ∩Dn. So n ∈ dmn(f), and so n ∈ dmn(k). So we have proved
(∗).

Now take any f ∈ G ∩ Ek. Choose n ∈ dmn(f) such that f(n) 6= k(n). But f ⊆ k,
contradiction.

There is one more fact concerning the definition of MA which should be mentioned.
Namely, for κ > ω the assumption of ccc is essential in the statement of MA(κ). (Re-
call our comment above that ccc is not needed in order to prove that MA(ω) holds.) To
see this, define

P = {f : f is a finite function, dmn(f) ⊆ ω, and rng(f) ⊆ ω1};

f ≤ g iff f, g ∈ P and f ⊇ g;

P = (P,≤).

This example is similar to two of the partial orders above. Note that P does not have ccc,
since for example {{(0, α)} : α < ω1} is an uncountable antichain. Defining Dn as in the
proof of Theorem 21.3, we clearly get dense subsets of P. Also, for each α < ω1 let

Fα = {f ∈ P : α ∈ rng(f)}.

Then Fα is dense in P. For, suppose that g ∈ P . If α ∈ rng(g), then g itself is in Fα, so
suppose that α /∈ rng(g). Choose n ∈ ω\dmn(g). Let f = g ∪ {(n, α)}. Then f ∈ Fα and
f ≤ g, as desired. Now if MA(ω1) holds without the assumption of ccc, then we can apply
it to our present partial order. Suppose that G is a filter on P which intersects each of

these sets Dn and Fα. As in the proof of Theorem 21.3, k
def
=
⋃
G is a function mapping

ω into ω1. For any α < ω1 choose f ∈ G ∩ Fα. Thus α ∈ rng(f), and so α ∈ rng(k). Thus
k has range ω1. This is impossible.

Now we proceed beyond the discussion of the definition of MA in order to give several
typical applications of it. First we consider again almost disjoint sets of natural numbers.
Our result here will be used to derive some important implications of MA for cardinal
arithmetic. We proved in Theorem 20.1 that there is a family of size 2ω of almost disjoint
sets of natural numbers. Considering this further, we may ask what the size of maximal
almost disjoint families can be; and we may consider the least such size. This is one
of many min-max questions concerning the natural numbers which have been considered
recently. There are many consistency results saying that numbers of this sort can be less

278



than 2ω; in particular, it is consistent that there is a maximal family of almost disjoint
subsets of ω which has size less than 2ω. MA, however, implies that this size, and most of
the similarly defined min-max functions, is 2ω.

Let A ⊆ P(ω). The almost disjoint partial order for A is defined as follows:

PA = {(s, F ) : s ∈ [ω]<ω and F ∈ [A ]<ω};

(s′, F ′) ≤ (s, F ) iff s ⊆ s′, F ⊆ F ′, and x ∩ s′ ⊆ s for all x ∈ F ;

PA = (PA ,≤).

We give some useful properties of this construction.

Lemma 21.4. Let A ⊆ P(ω).
(i) PA is a partial order.
(ii) Let (s, F ), (s′, F ′) ∈ PA . Then the following conditions are equivalent:

(a) (s, F ) and (s′, F ′) are compatible.
(b) ∀x ∈ F (x ∩ s′ ⊆ s) and ∀x ∈ F ′(x ∩ s ⊆ s′).
(c) (s ∪ s′, F ∪ F ′) ≤ (s, F ), (s′, F ′).

(iii) Suppose that x ∈ A , and let Dx = {(s, F ) ∈ PA : x ∈ F}. Then Dx is dense in
PA .

(iv) PA has ccc.

Proof. (i): Clearly ≤ is reflexive on PA and it is antisymmetric, i.e. (s, F ) ≤
(s′, F ′) ≤ (s, F ) implies that (s, F ) = (s′, F ′). Now suppose that (s′′, F ′′) ≤ (s′, F ′) ≤
(s, F ). Thus s ⊆ s′ ⊆ s′′, so s ⊆ s′′. Similarly, F ⊆ F ′′. Now take any x ∈ F . Then
x ∈ F ′, so x ∩ s′′ ⊆ s′ because (s′′, F ′′) ≤ (s′, F ′). Hence x ∩ s′′ ⊆ x ∩ s′. And x ∩ s′ ⊆ s
because (s′, F ′) ≤ (s, F ). So x ∩ s′′ ⊆ s, as desired.

(ii): For (a)⇒(b), assume (a). Choose (s′′, F ′′) ≤ (s, F ), (s′, F ′). Now take any x ∈ F .
Then x ∩ s′ ⊆ x ∩ s′′ since s′ ⊆ s′′, and x ∩ s′′ ⊆ s since (s′′, F ′′) ≤ (s, F ); so x ∩ s′ ⊆ s′′.
The other part of (b) follows by symmetry.

(b)⇒(c): By symmetry it suffices to show that (s ∪ s′, F ∪ F ′) ≤ (s, F ), and for this
we only need to check the last condition in the definition of ≤. So, suppose that x ∈ F .
Then x ∩ (s ∪ s′) = (x ∩ s) ∪ (x ∩ s′) ⊆ s by (b).

(c)⇒(a): Obvious.
(iii): For any (s, F ) ∈ PA , clearly (s, F ∪ {x}) ≤ (s, F ).
(iv) Suppose that 〈(sξ, Fξ) : ξ < ω1〉 is a pairwise incompatible system of elements of

PA . Clearly then sξ 6= sη for distinct ξ, η < ω1, contradiction.

Theorem 21.5. Let κ be an infinite cardinal, and assume MA(κ). Suppose that A ,B ⊆
P(ω), and |A |, |B| ≤ κ. Also assume that

(i) For all y ∈ B and all F ∈ [A ]<ω we have |y\⋃F | = ω.

Then there is a d ⊆ ω such that |d ∩ x| < ω for all x ∈ A and |d ∩ y| = ω for all y ∈ B.

Proof. For each y ∈ B and each n ∈ ω let

Eyn = {(s, F ) ∈ PA : s ∩ y 6⊆ n}.
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We claim that each such set is dense. For, suppose that (s, F ) ∈ PA . Then by assumption,
|y\⋃F | = ω, so we can pick m ∈ y\⋃F such that m > n. Then (s ∪ {m}, F ) ≤ (s, F ),
since for each z ∈ F we have z ∩ (s ∪ {m}) ⊆ s because m /∈ z. Also, m ∈ y\n, so
(s ∪ {m}) ∈ Eyn. This proves our claim.

There are clearly at most κ sets Eyn; and also there are at most κ sets Dx with x ∈ A ,
with Dx as in Lemma 21.4(iii). Hence by MA(κ) we can let G be a filter on PA intersecting
all of these dense sets. Let d =

⋃

(s,F )∈G s.

(1) For all x ∈ A , the set d ∩ x is finite.

For, by the denseness of Dx, choose (s, F ) ∈ G∩Dx. Thus x ∈ F . We claim that d∩x ⊆ s.
To prove this, suppose that n ∈ d∩x. Choose (s′, F ′) ∈ G such that n ∈ s′. Now (s, F ) and
(s′, F ′) are compatible. By Lemma 21.4(ii), ∀y ∈ F (y ∩ s′ ⊆ s); in particular, x ∩ s′ ⊆ s.
Since n ∈ x ∩ s′, we get n ∈ s. This proves our claim, and so (1) holds.

The proof will be finished by proving

(2) For all y ∈ B, the set d ∩ y is infinite.

To prove (2), given n ∈ ω choose (s, F ) ∈ Eyn ∩ G. Thus s ∩ y 6⊆ n, so we can choose
m ∈ s ∩ y\n. Hence m ∈ d ∩ y\n, proving (2).

Corollary 21.6. Let κ be an infinite cardinal and assume MA(κ). Suppose that A ⊆
P(ω) is an almost disjoint set of infinite subsets of ω of size κ. Then A is not maximal.

Proof. If F is a finite subset of A , then we can choose a ∈ A \F ; then a ∩⋃F =
⋂

b∈F (a∩ b) is finite. Thus ω\⋃F is infinite. Hence we can apply Theorem 21.5 to A and

B
def
= {ω} to obtain the desired result.

Corollary 21.7. Assuming MA, every maximal almost disjoint set of infinite sets of
natural numbers has size 2ω.

Lemma 21.8. Suppose that B ⊆ P(ω) is an almost disjoint family of infinite sets, and
|B| = κ, where ω ≤ κ < 2ω. Also suppose that A ⊆ B. Assume MA(κ).

Then there is a d ⊆ ω such that |d ∩ x| < ω for all x ∈ A and |d ∩ x| = ω for all
x ∈ B\A .

Proof. We apply 21.5 with B\A in place of B. If y ∈ B\A and F ∈ [A ]<ω, then
y ∪ F ⊆ B, and hence y ∩ z is finite for all y ∈ F . Hence also y ∩⋃F is finite. Since y
itself is infinite, it follows that y\⋃F is infinite.

Thus the hypotheses of 21.5 hold, and it then gives the desired result.

We now come to two of the most striking consequences of Martin’s axiom.

Theorem 21.9. If κ is an infinite cardinal and MA(κ) holds, then 2κ = 2ω.

Proof. By Theorem 20.1 let B be an almost disjoint family of infinite subsets of ω
such that |B| = κ. For each d ⊆ ω let F (d) = {b ∈ B : |b∩d| < ω}. We claim that F maps
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P(ω) onto P(B); from this it follows that 2κ ≤ 2ω, hence 2κ = 2ω. To prove the claim,
suppose that A ⊆ B. A suitable d with F (d) = A is then given by Lemma 21.8.

Corollary 21.10. MA implies that 2ω is regular.

Proof. Assume MA, and suppose that ω ≤ κ < 2ω. Then 2κ = 2ω by Theorem 21.9,
and so cf(2ω) = cf(2κ) > κ by Corollary 12.25.

Another important application of Martin’s axiom is to the existence of Suslin trees; in fact,
Martin’s axiom arose out of the proof of this theorem:

Theorem 21.11. MA(ω1) implies that there are no Suslin trees.

Proof. Suppose that (T,≤) is a Suslin tree. By 18.7 and the remarks before it, we
may assume that T is well-pruned. We are going to apply MA(ω1) to the partial order
(T,≥), i.e., to T turned upside down. Because T has no uncountable antichains in the tree
sense, (T,≥) has no uncountable antichains in the incompatibility sense. Now for each
α < ω1 let

Dα = {t ∈ T : ht(t, T ) > α}.

Then each Dα is dense in (T,≥). For, suppose that s ∈ T . By well-prunedness, choose
t ∈ T such that s < t and ht(t, T ) > α. Thus t ∈ Dα and t > s, as desired.

Now we let G be a filter on (T,≥) which intersects each Dα. Any two elements of
G are compatible in (T,≥), so they are comparable in (T,≤). Since G ∩ Dα 6= ∅ for all
α < ω1, G has a member of T of height greater than α, for each α < ω1. Hence G is an
uncountable chain, contradiction.

Our last application of Martin’s axiom involves Lebesgue measure. In order not to assume
too much about measures, we give some results of measure theory that will be used in our
application but may have been omitted in your standard study of measure theory.

Lemma 21.12. Suppose that µ is a measure and E, F,G are µ-measurable. Then

µ(E△F ) ≤ µ(E△G) + µ(G△F ).

Proof.

µ(E△F ) = µ(E\F ) + µ(F\E)

= µ((E\F ) ∩G) + µ((E\F )\G) + µ(F\E) ∩G) + µ((F\E)\G)

≤ µ(G\F ) + µ(E\G) + µ(G\E) + µ(F\G)

= µ(E△G) + µ(G△F ).

Lemma 21.13. If E is Lebesgue measurable with finite measure, then for any ε > 0 there
is an open set U ⊇ E such that µ(E) ≤ µ(U) ≤ µ(E) + ε. Moreover, there is a system
〈Kj : j < ω〉 of open intervals such that U =

⋃

j<ωKj and µ(U) ≤∑j<ω µ(Kj) ≤ µ(E)+ε.
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Proof. By the basic definition of Lebesgue measure,

µ(E) = inf

{
∑

j∈ω
µ(Ij) : 〈Ij : j ∈ ω〉 is a sequence of half-open intervals

such that E ⊆
⋃

j∈ω
Ij

}

.

Hence we can choose a sequence 〈Ij : j ∈ ω〉 of half-open intervals such that E ⊆ ⋃j∈ω Ij
and

µ




⋃

j∈ω
Ij



 ≤
∑

j∈ω
µ(Ij) ≤ µ(E) +

ε

2
.

Write Ij = [aj, bj) with aj < bj . Define

Kj =
(

aj −
ε

2j+2
, bj

)

; then

E ⊆
⋃

j∈ω
Kj and

µ




⋃

j∈ω
Kj



 ≤
∑

j∈ω
µ(Kj)

=
∑

j∈ω

( ε

2j+2
+ µ(Ij)

)

=
∑

j∈ω

ε

2j+2
+
∑

j∈ω
µ(Ij)

≤ ε

2
+ µ(E) +

ε

2
= µ(E) + ε.

The following is an elementary lemma concerning the topology of the reals.

Lemma 21.14. Suppose that U is a bounded open set.
(i) There is a collection A of pairwise disjoint open intervals such that U =

⋃
A .

(ii) There exist a countable subset C of R and a collection B of pairwise disjoint open
intervals with rational endpoints such that U = C ∪⋃B and C ∩⋃B = ∅.

Proof. (i): For x, y ∈ R, define x ≡ y iff one of the following conditions holds: (1)
x = y; (2) x < y and [x, y] ⊆ U ; (3) y < x and [y, x] ⊆ U . Clearly ≡ is an equivalence
relation on R. If x < z < y and x ≡ y, then obviously x ≡ z. Thus each equivalence class
is convex. If C is an equivalence class with more than one element, then it must be an open
interval (a, b), since if for example the left endpoint a is in C then some real to the left
of a must be in C, contradiction. It follows now that the collection A of all equivalence
classes with more than one element is as desired in (i).
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(ii): First note that the set A of (i) must be countable. Now take any (a, b) ∈ A ,
a < b. Let c0 < c1 < · · · < cm < · · · be rational numbers in (a, b) which converge to
b, and c0 = d0 > d1 > · · · > dm > · · · rational numbers which converge to a. Then let
Lab2i = (ci, ci+1) and Lab2i+1 = (di+1, di) for all i ∈ ω. Let Dab = {ci : i < ω} ∪ {di : i < ω}.
Define B = {Labi : (a, b) ∈ A , i < ω} and C =

⋃

(a,b)∈A
Dab. Clearly this works for

(ii).

Lemma 21.15. If E is Lebesgue measurable and ε > 0, then there is an m ∈ ω and a
sequence 〈Ii : i < m〉 of open intervals with rational endpoints such that µ

(
E△⋃i<m Ii

)
≤

ε.

Proof. By Lemma 21.13 let U ⊇ E be open such that µ(E) ≤ µ(U) ≤ µ(E) + ε
2 .

Then choose C and B as in Lemma 21.14(ii). Let W =
⋃

B. So µ(W ) =
∑

I∈B
µ(I).

Then choose m ∈ ω and 〈Ii : i < m〉 elements of B such that
∑

I∈B
µ(I) −∑i<m µ(Ii) ≤

ε
2 . Now µ(W ) =

∑

I∈B
µ(I) and µ(

⋃

i<m Ii) =
∑

i<m µ(Ii). Let V =
⋃

i<m Ii. Thus
µ(W ) − µ(V ) ≤ ε

2
. Hence V ⊆ W ⊆ U , and

µ(E△V ) ≤ µ(E△U) + µ(U△W ) + µ(W△V )

= µ(U\E) + µ(C) + µ(W\V )

= µ(U) − µ(E) + µ(W ) − µ(V )

≤ ε

2
+
ε

2
= ε.

Now we are ready for an application of Martin’s axiom to Lebesgue measure.

Theorem 21.16. Suppose that κ is an infinite cardinal and MA(κ) holds. If 〈Mα : α < κ〉
is a system of subsets of R each of Lebesgue measure 0, then also

⋃

α<κMα has Lebesgue
measure 0.

Proof. Let ε > 0. We are going to find an open set U such that
⋃

α<κMα ⊆ U and
µ(U) ≤ ε; this will prove our result. Let

P = {p ⊆ R : p is open and µ(p) < ε}.

The ordering, as usual, is ⊇.

(1) Elements p, q ∈ P are compatible iff µ(p ∪ q) < ε.

In fact, the direction ⇐ is clear, while if p and q are compatible, then there is an r ∈ P

with r ⊇ p, q, hence p ∪ q ⊆ r and µ(r) < ε, hence µ(p ∪ q) < ε.
Next we check that P has ccc. Suppose that 〈pα : α < ω1〉 is a system of pairwise

incompatible elements of P. Now

ω1 =
⋃

n∈ω

{

α < ω1 : µ(pα) ≤ ε− 1

n+ 1

}

,

so there exist an uncountable Γ ⊆ ω1 and a positive integer m such that µ(pα) ≤ ε − 1
m

for all α ∈ Γ. Let C be the collection of all finite unions of open intervals with rational
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coefficients. Note that C is countable. By Lemma 21.15, for each α ∈ Γ let Cα be a
member of C such that µ(pα△Cα) ≤ 1

3m
. Now take any two distinct members α, β ∈ Γ.

Then

ε ≤ µ(pα ∪ pβ) = µ(pα ∩ pβ) + µ(pα△pβ) ≤ ε− 1

m
+ µ(pα△pβ),

and hence µ(pα△pβ) ≥ 1
m

. Thus, using Lemma 21.12,

1

m
≤ µ(pα△pβ) ≤ µ(pα△Cα) + µ(Cα△Cβ) + µ(Cβ△pβ) ≤ 1

3m
+ µ(Cα△Cβ) +

1

3m
;

Hence µ(Cα△Cβ) ≥ 1
3m

. It follows that Cα 6= Cβ . But this means that 〈Cα : α ∈ Γ〉 is a
one-one system of members of C , contradiction. So P has ccc.

Now for each α < κ let
Dα = {p ∈ P : Mα ⊆ p}.

To show that Dα is dense, take any p ∈ P. Thus µ(p) < ε. By Lemma 21.13, let U be an
open set such that Mα ⊆ U and µ(U) < ε − µ(p). Then µ(p ∪ U) ≤ µ(p) + µ(U) < ε; so
p ∪ U ∈ Dα and p ∪ U ⊃ p, as desired.

Now let G be a filter on P which intersects each Dα. Set V =
⋃
G. So V is an open

set. For each α < κ, choose pα ∈ G ∩Dα. Then Mα ⊆ pα ⊆ V . It remains only to show
that µ(V ) ≤ ε. Let B be the set of all open intervals with rational endpoints. We claim
that V =

⋃
(G ∩ B). In fact, ⊇ is clear, so suppose that x ∈ V . Then x ∈ p for some

p ∈ G, hence there is a U ∈ B such that x ∈ U ⊆ p, since p is open. Then U ∈ G since
G is a filter and the partial order is ⊇. So we found a U ∈ G ∩ B such that x ∈ U ; hence
x ∈ ⋃(G∩B). This proves our claim. Now if F is a finite subset of G, then

⋃
F ∈ G since

G is a filter. In particular,
⋃
F ∈ P, so its measure is less than ε. Now G∩B is countable;

let 〈pi : i ∈ ω〉 enumerate it. Define qi = pi\
⋃

j<i pj for all i ∈ ω. Then by induction one
sees that

⋃

i<m pi =
⋃

i<m qi, and hence
⋃

(G ∩ B) =
⋃

i<ω qi. So

µ(V ) = µ
(⋃

(G ∩ B)
)

= µ

(
⋃

i<ω

qi

)

=
∑

i<ω

µ(qi) = lim
m→∞

∑

i<m

µ(qi) = lim
m→∞

µ

(
⋃

i<m

qi

)

= lim
m→∞

µ

(
⋃

i<m

pi

)

≤ ε.

EXERCISES

E21.1. Assume MA(κ). Suppose that X is a compact Hausdorff space, and any pairwise
disjoint collection of open sets in X is countable. Suppose that Uα is dense open in X for
each α < κ. Show that

⋂

α<κ Uα 6= ∅.

E21.2. A partial order P is said to have ω1 as a precaliber iff for every system 〈pα : α < ω1〉
of elements of P there is an X ∈ [ω1]ω1 such that for every finite subset F of X there is a
q ∈ P such that q ≤ pα for all α ∈ F .

Show that MA(ω1) implies that every ccc partial order P has ω1 as a precaliber.
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Hint: for each α < ω1 let

Wα = {q ∈ P : ∃β > α(q and pα are compatible)}.

Show that there is an α < ω1 such that Wα = Wβ for all β > α, and apply MA(ω1) to
Wα.

E21.3. Call a topological space X ccc iff every collection of pairwise disjoint open sets in
X is countable. Show that

∏

i∈I Xi is ccc iff ∀F ∈ [I]<ω[
∏

i∈F Xi is ccc]. Hint: use the
∆-system theorem.

E21.4 Assuming MA(ω1), show that any product of ccc spaces is ccc.

E21.5. Assume MA(ω1). Suppose that P and Q are ccc partially ordered sets. Define ≤
on P ×Q by setting (a, b) ≤ (c, d) iff a ≤ c and b ≤ d. Show that < is a ccc partial order
on P ×Q. Hint: use exercise E21.2.

E21.6. We define <∗ on ωω by setting f <∗ g iff f, g ∈ ωω and ∃n∀m > n(f(m) < g(m).
Suppose that MA(κ) holds and F ∈ [ωω]κ. Show that there is a g ∈ ωω such that f <∗ g
for all f ∈ F . Hint: let P be the set of all pairs (p, F ) such that p is a finite function
mapping a subset of ω into ω and F is a finite subset of F . Define (p, F ) ≤ (q, G) iff
q ⊆ p, G ⊆ F , and

∀f ∈ G∀n ∈ dmn(p)\dmn(q)[p(n) > f(n)].

E21.7. Let B ⊆ [ω]ω be almost disjoint of size κ, with ω ≤ κ < 2ω. Let A ⊆ B with A

countable. Assume MA(κ). Show that there is a d ⊆ ω such that |d∩x| < ω for all x ∈ A ,
and |x\d| < ω for all x ∈ B\A . Hint: Let 〈ai : i ∈ ω〉 enumerate A . Let

P = {(s, F,m) : s ∈ [ω]<ω, F ∈ [B\A ]<ω, and m ∈ ω};

(s′, F ′, m′) ≤ (s, F,m) iff s ⊆ s′, F ⊆ F ′, m ≤ m′, and

∀x ∈ F

[(

x\
⋃

i∈m
ai

)

∩ s′ ⊆ s

]

.

Show that P satisfies ccc. To apply MA(κ), one needs various dense sets. The most
complicated is defined as follows. Let D = {(s, F,m, i, n) : (s, F,m) ∈ P, i < m, and
n ∈ ai\s}. Clearly |D | = κ. For each (s, F,m, i, n) ∈ D let

E(s,F,m,i,n) = {(s′, F ′, m′) ∈ P : (s, F,m) and (s′, F ′, m′) are incompatible

or (s′, F ′, m′) ≤ (s, F,m) and n ∈ s′}.

E21.8. [The condition that A is countable is needed in exercise E21.7.] Show that there
exist A ,B such that B is an almost disjoint family of infinite subsets of ω, A ⊆ B,
|A | = |B\A | = ω1, and there does not exist a d ⊆ ω such that |x\d| < ω for all
x ∈ A , and |x ∩ d| < ω for all x ∈ B\A . Hint: construct A = {aα : α < ω1} and
B\A = {bα : α < ω1} by constructing aα, bα inductively, making sure that the elements
are infinite and pairwise almost disjoint, and also aα ∩ bα = ∅, while for α 6= β we have
aα ∩ bβ 6= ∅.
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E21.9. Suppose that A is a family of infinite subsets of ω such that
⋂
F is infinite for

every finite subset F of A . Suppose that |A | ≤ κ. Assuming MA(κ), show that there is
an infinite X ⊆ ω such that X\A is finite for every A ∈ A . Hint: use Theorem 21.5.

E21.10. Show that MA(κ) is equivalent to MA(κ) restricted to ccc partial orders of car-
dinality ≤ κ. Hint: Assume the indicated special form of MA(κ), and assume given a ccc
partially ordered set P and a family D of at most κ dense sets in P ; we want to find a
filter on P intersecting each member of D . We introduce some operations on P . For each
D ∈ D define fD : P → P by setting, for each p ∈ P , fD(p) to be some element of D
which is ≤ p. Also we define g : P × P → P by setting, for all p, q ∈ P ,

g(p, q) =

{
p if p and q are incompatible,
r with r ≤ p, q if there is such an r.

Here, as in the definition of fD, we are implicitly using the axiom of choice; for g, we
choose any r of the indicated form.

We may assume that D 6= ∅. Choose D ∈ D , and choose s ∈ D. Now let Q be the
intersection of all subsets of P which have s as a member and are closed under all of the
operations fD and g. We take the order on Q to be the order induced from P . Apply the
special form to Q.

E21.11. Define x ⊂∗ y iff x, y ⊆ ω, x\y is finite, and y\x is infinite. Assume MA(κ),
and suppose that L,<) is a linear ordering of size at most κ. Show that there is a system
〈ax : x ∈ L〉 of infinite subsets of ω such that for all x, y ∈ L, x < y iff ax ⊂∗ ay. Hint: let
P consist of all pairs (p, n) such that n ∈ ω, p is a function whose domain is a finite subset
of L, and ∀x ∈ dmn(p)[p(x) ⊆ n]. Define (p, n) ≤ (q,m) iff m ≤ n, dmn(q) ⊆ dmn(p),
∀x ∈ dmn(q)[p(x) ∩m = q(x)], and ∀x, y ∈ dmn(q)[x < y → p(x)\p(y) ⊆ m].

For the remaining exercises we use the following definitions.

a ⊆∗ b iff a\b is finite;

a ⊂∗ b iff a ⊆∗ b and b\a is infinite.

E21.12. If A ,B are nonempty countable subsets of [ω]ω and a ⊆∗ b whenever a ∈ A and
b ∈ B, then there is a c ∈ [ω]ω such that a ⊆∗ c ⊆∗ b whenever a ∈ A and b ∈ B.

E21.13. Suppose that A is a nonempty countable family of members of [ω]ω, and ∀a, b ∈
A [a ⊆∗ b or b ⊆∗ a]. Also suppose that ∀a ∈ A [a ⊂∗ d], where d ∈ [ω]ω. Then there is a
c ∈ [ω]ω such that ∀a ∈ A [a ⊆∗ c ⊂∗ d].

E21.14. If a, b ∈ [ω]ω and a ⊂∗ b, then there is a c ∈ [ω]ω such that a ⊂∗ c ⊂∗ b.

E21.15. Suppose that A and B are nonempty countable subsets of [ω]ω, ∀x, y ∈ A [x ⊆∗ y
or y ⊆∗ x], ∀x, y ∈ B[x ⊆∗ y or y ⊆∗ x], and ∀x ∈ A ∀y ∈ B[a ⊂∗ b]. Then there is a
c ∈ [ω]ω such that a ⊂∗ c ⊂∗ b for all a ∈ A and b ∈ B.

Now we need some more terminology. Let A ⊆ [ω]ω, b ∈ [ω]ω, and ∀a ∈ A [a ⊂∗ b]. We
say that b is near to A iff for all m ∈ ω the set {a ∈ A : a\b ⊆ m} is finite.
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E21.16. Suppose that am ∈ [ω]ω for all m ∈ ω, am ⊂∗ an whenever m < n ∈ ω, b ∈ [ω]ω,
and am ⊂∗ b for all m ∈ ω. Then there is a c ∈ [ω]ω such that ∀m ∈ ω[am ⊂∗ c ⊂∗ b] and
c is near to {an : n ∈ ω}.

E21.17. Suppose that A ⊆ [ω]ω, ∀x, y ∈ A [x ⊂∗ y or y ⊂∗ x], b ∈ [ω]ω, ∀x ∈ A [x ⊂∗ b],
and ∀a ∈ A [b is near to {d ∈ A : d ⊂∗ a}].

Then there is a c ∈ [ω]ω such that ∀a ∈ A [a ⊂∗ c ⊂∗ b] and c is near to A .

E21.18. (The Hausdorff gap) There exist sequences 〈aα : α < ω1〉 and 〈bα : α < ω1〉 of
members of [ω]ω such that ∀α, β < ω1[α < β → aα ⊂∗ aβ and bβ ⊂∗ bα], ∀α, β < ω1[aα ⊂∗

bβ], and there does not exist a c ⊆ ω such that ∀α < ω1[aα ⊂∗ c and c ⊂∗ bα].

Reference

Fremlin, D. Consequences of Martin’s axiom. Cambridge Univ. Press, 325pp.
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22. Large cardinals

The study, or use, of large cardinals is one of the most active areas of research in set theory
currently. There are many provably different kinds of large cardinals whose descriptions
are different from one another. We restrict ourselves in this chapter to three important
kinds: Mahlo cardinals, weakly compact cardinals, and measurable cardinals. All of these
large cardinals are uncountable regular limit cardinals (which are frequently called weakly
inaccessible cardinals), and most of them are strongly inaccessible cardinals.

Mahlo cardinals

As we mentioned in the elementary part of these notes, one cannot prove in ZFC that
uncountable weakly inaccessible cardinals exist (if ZFC itself is consistent). But now
we assume that even the somewhat stronger inaccessible cardinals exist, and we want
to explore, roughly speaking, how many such there can be. We begin with some easy
propositions. A strong limit cardinal is an infinite cardinal κ such that 2λ < κ for all
λ < κ.

Proposition 22.1. Assume that uncountable inaccessible cardinals exist, and suppose that
κ is the least such. Then every uncountable strong limit cardinal less than κ is singular.

The inaccessibles are a class of ordinals, hence form a well-ordered class, and they can be
enumerated in a strictly increasing sequence 〈ια : α ∈ O〉. Here O is an ordinal, or On,
the class of all ordinals. The definition of Mahlo cardinal is motivated by the following
simple proposition.

Proposition 22.2. If κ = ια with α < κ, then the set {λ < κ : λ is regular} is a
nonstationary subset of κ.

Proof. Since κ is regular and α < κ, we must have supβ<α ιβ < κ. Let C = {γ :
supβ<α ιβ < γ < κ and γ is a strong limit cardinal}. Then C is club in κ with empty
intersection with the given set.

• κ is Mahlo iff κ is an uncountable inaccessible cardinal and {λ < κ : λ is regular} is
stationary in κ.

• κ is weakly Mahlo iff κ is an uncountable weakly inaccessible cardinal and {λ < κ : λ is
regular} is stationary in κ.

Since the function ι is strictly increasing, we have α ≤ ια for all α. Hence the following is
a corollary of Proposition 22.2

Corollary 22.3. If κ is a Mahlo cardinal, then κ = ικ.

Thus a Mahlo cardinal κ is not only inaccessible, but also has κ inaccessibles below it.

Proposition 22.4. For any uncountable cardinal κ the following conditions are equivalent:
(i) κ is Mahlo.
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(ii) {λ < κ : λ is inaccessible} is stationary in κ.

Proof. (i)⇒(ii): Let S = {λ < κ : λ is regular}, and S′ = {λ < κ : λ is inaccessible}.
Assume that κ is Mahlo. In particular, κ is uncountable and inaccessible. Suppose that
C is club in κ. The set D = {λ < κ : λ is strong limit} is clearly club in κ too. If
λ ∈ S ∩ C ∩D, then λ is inaccessible, as desired.

(ii)⇒(i): obvious.

The following proposition answers a natural question one may ask after seeing Corollary
22.3.

Proposition 22.5. Suppose that κ is minimum such that ιk = κ. Then κ is not Mahlo.

Proof. Suppose to the contrary that κ is Mahlo, and let S = {λ < κ : λ is
inaccessible} For each λ ∈ S, let f(λ) be the α < κ such that λ = ια. Then α = f(λ) < λ
by the minimality of κ. So f is regressive on the stationary set S, and hence there is an
α < κ and a stationary subset S′ of S such that f(λ) = α for all λ ∈ S′. But actually f is
clearly a one-one function, contradiction.

Mahlo cardinals are in a sense larger than “ordinary” inaccessibles. Namely, below every
Mahlo cardinal κ there are κ inaccessibles. But now in principle one could enumerate all
the Mahlo cardinals, and then apply the same idea used in going from regular cardinals to
Mahlo cardinals in order to go from Mahlo cardinals to higher Mahlo cardinals. Thus we
can make the definitions

• κ is hyper-Mahlo iff κ is inaccessible and the set {λ < κ : λ is Mahlo} is stationary in κ.

• κ is hyper-hyper-Mahlo iff κ is inaccessible and the set {λ < κ : λ is hyper-Mahlo} is
stationary in κ.

Of course one can continue in this vein.

Weakly compact cardinals

• A cardinal κ is weakly compact iff κ > ω and κ → (κ, κ)2. There are several equivalent
definitions of weak compactness. The one which justifies the name “compact” involves
infinitary logic, and it will be discussed later. Right now we consider equivalent conditions
involving trees and linear orderings.

• A cardinal κ has the tree property iff every κ-tree has a chain of size κ.

Equivalently, κ has the tree property iff there is no κ-Aronszajn tree.

• A cardinal κ has the linear order property iff every linear order (L,<) of size κ has a
subset with order type κ or κ∗ under <.

Lemma 22.6. For any regular cardinal κ, the linear order property implies the tree prop-
erty.

Proof. We are going to go from a tree to a linear order in a different way from the
branch method of Chapter 18.
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Assume the linear order property, and let (T,<) be a κ-tree. For each x ∈ T and
each α ≤ ht(x, T ) let xα be the element of height α below x. Thus x0 is the root which
is below x, and xht(x) = x. For each x ∈ T , let T ↾ x = {y ∈ T : y < x}. If x, y are
incomparable elements of T , then let χ(x, y) be the smallest ordinal α ≤ min(ht(x), ht(y))
such that xα 6= yα. Let <′ be a well-order of T . Then we define, for any distinct x, y ∈ T ,

x <′′ y iff x < y, or x and y are incomparable and xχ(x,y) <′ yχ(x,y).

We claim that this gives a linear order of T . To prove transitivity, suppose that x <′′ y <′′

z. Then there are several possibilities. These are illustrated in diagrams below.
Case 1. x < y < z. Then x < z, so x <′′ z.
Case 2. x < y, while y and z are incomparable, with yχ(y,z) <′ zχ(y,z).

Subcase 2.1. ht(x) < χ(y, z). Then x = xht(x) = yht(x) = zht(x) so that x < z,
hence x <′′ z.

Subcase 2.2. χ(y, z) ≤ ht(x). Then x and z are incomparable. In fact, if z < x
then z < y, contradicting the assumption that y and z are incomparable; if x ≤ z, then
yht(x) = x = xht(x) = zht(x), contradiction. Now if α < χ(x, z) then yα = xα = zα; it
follows that χ(x, z) ≤ χ(y, z). If α < χ(y, z) then α ≤ ht(x), and hence xα = yα = zα; this
shows that χ(y, z) ≤ χ(x, z). So χ(y, z) = χ(x, z). Hence xχ(x,z) = yχ(x,z) = yχ(y,z) <′

zχ(y,z) = zχ(x,z), and hence x <′′ z.
Case 3. x and y are incomparable, and y < z. Then x and z are incomparable. Now

if α < χ(x, y), then xα = yα = zα; this shows that χ(x, y) ≤ χ(x, z). Also, xχ(x,y) <′

yχ(x,y) = zχ(x,y), and this implies that χ(x, z) ≤ χ(x, y). So χ(x, y) = χ(x, z). It follows
that xχ(x,z) = xχ(x,y) <′ yχ(x,y) = zχ(x,z), and hence x <′′ z.

Case 4. x and y are incomparable, and also y and z are incomparable. We consider
subcases.

Subcase 4.1. χ(y, z) < χ(x, y). Now if α < χ(y, z), then xα = yα = zα; so
χ(y, z) ≤ χ(x, z). Also, xχ(y,z) = yχ(y,z) <′ zχ(y,z), so that χ(x, z) ≤ χ(y, z). Hence
χ(x, z) = χ(y, z), and xχ(x,z) = yχ(y,z) <′ zχ(y,z), and hence x <′′ z.

Subcase 4.2. χ(y, z) = χ(x, y). Now xχ(x,y) <′ yχ(x,y) = yχ(y,z) <′ zχ(y,z) =
zχ(x,y). It follows that χ(x, z) ≤ χ(x, y). For any α < χ(x, y) we have xα = yα = zα since
χ(y, z) = χ(x, y). So χ(x, y) = χ(x, z). Hence xχ(x,z) = xχ(x,y) <′ yχ(x,y) = yχ(y,z) <′

zχ(y,z) = zχ(x,z), so x <′′ z.
Subcase 4.3. χ(x, y) < χ(y, z). Then xχ(x,y) <′ yχ(x,y) = zχ(x,y), and if α < χ(x, y)

then xα = yα = zα. It follows that x <′′ z

Clearly any two elements of T are comparable under <′′, so we have a linear order. The
following property is also needed.

(*) If t < x, y and x <′′ a <′′ y, then t < a.

In fact, suppose not. If a ≤ t, then a < x, hence a <′′ x, contradiction. So a and t are
incomparable. Then χ(a, t) ≤ ht(t), and hence x <′′ y <′′ a or a <′′ x <′′ y, contradiction.

Now by the linear order property, (T,<′′) has a subset L of order type κ or κ∗. First
suppose that L is of order type κ. Define

B = {t ∈ T : ∃x ∈ L∀a ∈ L[x ≤′′ a→ t ≤ a]}.
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We claim that B is a chain in T of size κ. Suppose that t0, t1 ∈ B with t0 6= t1, and choose
x0, x1 ∈ L correspondingly. Say wlog x0 <

′′ x1. Now t0 ∈ B and x0 ≤′′ x1, so t0 ≤ x1.
And t1 ∈ B and x1 ≤ x1, so t1 ≤ x1. So t0 and t1 are comparable.

Now let α < κ; we show that B has an element of height α. For each t of height α let
Vt = {x ∈ L : t ≤ x}. Then

{x ∈ L : ht(x) ≥ α} =
⋃

ht(t)=α

Vt;

since there are fewer than κ elements of height less than κ, this set has size κ, and so there
is a t such that ht(t) = α and |Vt| = κ. We claim that t ∈ B. To prove this, take any
x ∈ Vt such that t < x. Suppose that a ∈ L and x ≤′′ a. Choose y ∈ Vt with a <′′ y and
t < y. Then t < x, t < y, and x ≤′′ a <′′ y. If x = a, then t ≤ a, as desired. If x <′′ a,
then t < a by (*).

This finishes the case in which L has a subset of order type κ. The case of order type
κ∗ is similar, but we give it. So, suppose that L has order type κ∗. Define

B = {t ∈ T : ∃x ∈ L∀a ∈ L[a ≤′′ x→ t ≤ a]}.

We claim that B is a chain in T of size κ. Suppose that t0, t1 ∈ B with t0 6= t1, and choose
x0, x1 ∈ L correspondingly. Say wlog x0 <

′′ x1. Now t0 ∈ B and x0 ≤ x0, so t0 ≤ x0. and
t1 ∈ B and x0 ≤′′ x1, so t1 ≤ x0. So t0 and t1 are comparable.
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Now let α < κ; we show that B has an element of height α. For each t of height α let
Vt = {x ∈ L : t ≤ x}. Then

{x ∈ L : ht(x) ≥ α} =
⋃

ht(t)=α

Vt;

since there are fewer than κ elements of height less than κ, this set has size κ, and so there
is a t such that ht(t) = α and |Vt| = κ. We claim that t ∈ B. To prove this, take any
x ∈ Vt such that t < x. Suppose that a ∈ L and a ≤′′ x. Choose y ∈ Vt with y <′′ a and
t < y. Then t < x, t < y, and y <′′ a ≤′′ x. If a = x, then t < a, as desired. If a <′′ x,
then t < a by (*).

Theorem 22.7. For any uncountable cardinal κ the following conditions are equivalent:
(i) κ is weakly compact.
(ii) κ is inaccessible, and it has the linear order property.
(iii) κ is inaccessible, and it has the tree property.
(iv) For any cardinal λ such that 1 < λ < κ we have κ→ (κ)2λ.

Proof. (i)⇒(ii): Assume that κ is weakly compact. First we need to show that κ is
inaccessible.

To show that κ is regular, suppose to the contrary that κ =
∑

α<λ µα, where λ < κ
and µα < κ for each α < λ. By the definition of infinite sum of cardinals, it follows that
we can write κ =

⋃

α<λMα, where |Mα| = µα for each α < λ and the Mα’s are pairwise
disjoint. Define f : [κ]2 → 2 by setting, for any distinct α, β < κ,

f({α, β}) =
{

0 if α, β ∈Mξ for some ξ < λ,
1 otherwise.

Let H be homogeneous for f of size κ. First suppose that f [[H]2] = {0}. Fix α0 ∈ H, and
say α0 ∈ Mξ. For any β ∈ H we then have β ∈ Mξ also, by the homogeneity of H. So
H ⊆ Mξ, which is impossible since |Mξ| < κ. Second, suppose that f [[H]2] = {1}. Then
any two distinct members of H lie in distinct Mξ’s. Hence if we define g(α) to be the
ξ < λ such that α ∈ Mξ for each α ∈ H, we get a one-one function from H into λ, which
is impossible since λ < κ.

To show that κ is strong limit, suppose that λ < κ but κ ≤ 2λ. Now by Theorem
20.7 we have 2λ 6→ (λ+, λ+)2. So choose f : [2λ]2 → 2 such that there does not exist an

X ∈ [2λ]λ
+

with f ↾ [X ]2 constant. Define g : [κ]2 → 2 by setting g(A) = f(A) for any

A ∈ [κ]2. Choose Y ∈ [κ]κ such that g ↾ [Y ]2 is constant. Take any Z ∈ [Y ]λ
+

. Then
f ↾ [Z]2 is constant, contradiction.

So, κ is inaccessible. Now let (L,<) be a linear order of size κ. Let ≺ be a well order
of L. Now we define f : [L]2 → 2; suppose that a, b ∈ L with a ≺ b. Then

f({a, b}) =
{

0 if a < b,
1 if b > a.

Let H be homogeneous for f and of size κ. If f [[H]2] = {0}, then H is well-ordered by <.
If f [[H]2] = {1}, then H is well-ordered by >.
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(ii)⇒(iii): By Lemma 22.6.
(iii)⇒(iv): Assume (iii). Suppose that F : [κ]2 → λ, where 1 < λ < κ; we want to

find a homogeneous set for F of size κ. We construct by recursion a sequence 〈tα : α < κ〉
of members of <κκ; these will be the members of a tree T . Let t0 = ∅. Now suppose
that 0 < α < κ and tβ ∈ <κκ has been constructed for all β < α. We now define tα
by recursion; its domain will also be determined by the recursive definition, and for this
purpose it is convenient to actually define an auxiliary function s : κ→ κ+1 by recursion.
If s(η) has been defined for all η < ξ, we define

s(ξ) =







F ({β, α}) where β < α is minimum such that s ↾ ξ = tβ , if there is such a β,

κ if there is no such β.

Now eventually the second condition here must hold, as otherwise 〈s ↾ ξ : ξ < κ〉 would
be a one-one function from κ into {tβ : β < α}, which is impossible. Take the least ξ
such that s(ξ) = κ, and let tα = s ↾ ξ. This finishes the construction of the tα’s. Let
T = {tα : α < κ}, with the partial order ⊆. Clearly this gives a tree.

By construction, if α < κ and ξ < dmn(tα), then tα ↾ ξ ∈ T . Thus the height of an
element tα is dmn(tα).

(2) The sequence 〈tα : α < κ〉 is one-one.

In fact, suppose that β < α and tα = tβ. Say that dmn(tα) = ξ. Then tα = tα ↾ ξ = tβ,
and the construction of tα gives something with domain greater than ξ, contradiction.
Thus (2) holds, and hence |T | = κ.

(3) The set of all elements of T of level ξ < κ has size less than κ.

In fact, let U be this set. Then

|U | ≤
∏

η<ξ

λ = λξ < κ

since κ is inaccessible. So (3) holds, and hence, since |T | = κ, T has height κ and is a
κ-tree.

(4) If tβ ⊂ tα, then β < α and F ({β, α}) = tα(dmn(tβ)).

This is clear from the definition.
Now by the tree property, there is a branch B of size κ. For each ξ < λ let

Hξ = {α < κ : tα ∈ B and t⌢α 〈ξ〉 ∈ B}.

We claim that each Hξ is homogeneous for F . In fact, take any distinct α, β ∈ Hξ. Then
tα, tβ ∈ B. Say tβ ⊂ tα. Then β < α, and by construction tα(dmn(tβ)) = F ({α, β}). So
F ({α, β}) = ξ by the definition of Hξ, as desired. Now

{α < κ : tα ∈ B} =
⋃

ξ<λ

{α < κ : tα ∈ Hξ},
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so since |B| = κ it follows that |Hξ| = κ for some ξ < λ, as desired.
(iv)⇒(i): obvious.

Now we go into the connection of weakly compact cardinals with logic, thereby justifying
the name “weakly compact”. This is optional material.

Let κ and λ be infinite cardinals. The language Lκλ is an extension of ordinary first
order logic as follows. The notion of a model is unchanged. In the logic, we have a sequence
of λ distinct individual variables, and we allow quantification over any one-one sequence
of fewer than λ variables. We also allow conjunctions and disjunctions of fewer than κ
formulas. It should be clear what it means for an assignment of values to the variables to
satisfy a formula in this extended language. We say that an infinite cardinal κ is logically
weakly compact iff the following condition holds:

(*) For any language Lκκ with at most κ basic symbols, if Γ is a set of sentences of the
language and if every subset of Γ of size less than κ has a model, then also Γ has a model.

Notice here the somewhat unnatural restriction that there are at most κ basic symbols.
If we drop this restriction, we obtain the notion of a strongly compact cardinal. These
cardinals are much larger than even the measurable cardinals discussed later. We will not
go into the theory of such cardinals.

Theorem 22.8. An infinite cardinal is logically weakly compact iff it is weakly compact.

Proof. Suppose that κ is logically weakly compact.

(1) κ is regular.

Suppose not; say X ⊆ κ is unbounded but |X | < κ. Take the language with individual
constants cα for α < κ and also one more individual constant d. Consider the following
set Γ of sentences in this language:

{d 6= cα : α < κ} ∪







∨

β∈X

∨

α<β

(d = cα)






.

If ∆ ∈ [Γ]<κ, let A be the set of all α < κ such that d = cα is in ∆. So |A| < κ. Take any
α ∈ κ\A, and consider the structure M = (κ, γ, α)γ<κ. There is a β ∈ X with α < β, and
this shows that M is a model of ∆.

Thus every subset of Γ of size less than κ has a model, so Γ has a model; but this is
clearly impossible.

(2) κ is strong limit.

In fact, suppose not; let λ < κ with κ ≤ 2λ. We consider the language with distinct
individual constants cα, d

i
α for all α < κ and i < 2. Let Γ be the following set of sentences

in this language:

{
∧

α<λ

[(cα = d0
α ∨ cα = d1

α) ∧ d0
α 6= d1

α]

}

∪
{
∨

α<λ

(cα 6= df(α)
α ) : f ∈ λ2

}

.
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Suppose that ∆ ∈ [Γ]<κ. We may assume that ∆ has the form
{
∧

α<λ

[(cα = d0
α ∨ cα = d1

α) ∧ d0
α 6= d1

α]

}

∪
{
∨

α<λ

(cα 6= df(α)
α ) : f ∈M

}

,

where M ∈ [λ2]<κ. Fix g ∈ λ2\M . Let d0
α = α, d1

α = α+ 1, and cα = d
g(α)
α , for all α < λ.

Clearly (κ, cα, d
i
α)α<λ,i<2 is a model of ∆.

Thus every subset of Γ of size less than κ has a model, so Γ has a model, say

(M,uα, v
i
α)α<λ,i<2. By the first part of Γ there is a function f ∈ λ2 such that uα = d

f(α)
α

for every α < λ. this contradicts the second part of Γ.
Hence we have shown that κ is inaccessible.
Finally, we prove that the tree property holds. Suppose that (T,≤) is a κ-tree. Let

L be the language with a binary relation symbol ≺, unary relation symbols Pα for each
α < κ, individual constants ct for each t ∈ T , and one more individual constant d. Let Γ
be the following set of sentences:

all Lκκ-sentences holding in the structure M
def
= (T,<,Levα(T ), t)α<κ,t∈T ;

∃x[Pαx ∧ x ≺ d] for each α < κ.

Clearly every subset of Γ of size less than κ has a model. Hence Γ has a model N
def
=

(A,<′, S′
α, at, b)α<κ,t∈T . For each α < κ choose eα ∈ S′

α with eα <
′ b. Now the following

sentence holds in M and hence in N :

∀x



Pαx↔
∨

s∈Levα(T )

(x = cs)



 .

Hence for each α < κ we can choose t(α) ∈ T such that ea = at(α). Now the sentence

∀x, y, z[x < z ∧ y < z → x and y are comparable]

holds in M , and hence in N . Now fix α < β < κ. Now eα, eβ <
′ b, so it follows that eα and

eβ are comparable under ≤′. Hence at(α) and at(β) are comparable under ≤′. It follows
that t(α) and t(β) are comparable under ≤. So t(α) < t(β). Thus we have a branch of
size κ.

Now suppose that κ is weakly compact. Let L be an Lκκ-language with at most κ
symbols, and suppose that Γ is a set of sentences in L such that every subset ∆ of Γ of
size less than κ has a model M∆. We will construct a model of Γ by modifying Henkin’s
proof of the completeness theorem for first-order logic.

First we note that there are at most κ formulas of L. This is easily seen by the
following recursive construction of all formulas:

F0 = all atomic formulas;

Fα+1 = Fα ∪ {¬ϕ : ϕ ∈ Fα} ∪
{∨

Φ : Φ ∈ [Fα]<κ
}

∪ {∃xϕ : ϕ ∈ Fα, x of length < κ};

Fα =
⋃

β<α

Fβ for α limit.
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By induction, |Fα| ≤ κ for all α ≤ κ, and Fκ is the set of all formulas. (One uses that κ is
inaccessible.)

Expand L to L′ by adjoining a set C of new individual constants, with |C| = κ. Let
Θ be the set of all subformulas of the sentences in Γ. Let 〈ϕα : α < κ〉 list all sentences
of L′ which are of the form ∃xψα(x) and are obtained from a member of Θ by replacing
variables by members of C. Here x is a one-one sequence of variables of length less than
κ; say that x has length βα. Now we define a sequence 〈dα : α < κ〉; each dα will be a
sequence of members of C of length less than κ. If dβ has been defined for all β < α, then

⋃

β<α

rng(dβ) ∪ {c ∈ C : c occurs in ϕβ for some β < α}

has size less than κ. We then let dα be a one-one sequence of members of C not in this
set; dα should have length βα. Now for each α ≤ κ let

Ωα = {∃xψβ(x) → ψβ(dβ) : β < α}.

Note that Ωα ⊆ Ωγ if α < γ ≤ κ. Now we define for each ∆ ∈ [Γ]<κ and each α ≤ κ a
model N∆

α of ∆ ∪ Ωα. Since Ω0 = ∅, we can let N∆
0 = M∆. Having defined N∆

α , since
the range of dα consists of new constants, we can choose denotations of those constants,
expanding N∆

α to N∆
α+1, so that the sentence

∃xψα(x) → ψα(dα)

holds in N∆
α+1. For α ≤ κ limit we let N∆

α =
⋃

β<αN
∆
β .

It follows that N∆
κ is a model of ∆ ∪ Ωκ. So each subset of Γ ∪ Ωκ of size less than κ

has a model.
It suffices now to find a model of Γ ∪ Ωκ in the language L′. Let 〈ψα : α < κ〉 be

an enumeration of all sentences obtained from members of Θ by replacing variables by
members of C, each such sentence appearing κ times. Let T consist of all f satisfying the
following conditions:

(3) f is a function with domain α < κ.

(4) ∀β < α[(ψβ ∈ Γ ∪ Ωκ → f(β) = ψβ) and ψβ /∈ Γ ∪ Ωκ → f(β) = ¬ψβ)].

(5) rng(f) has a model.

Thus T forms a tree ⊆.

(6) T has an element of height α, for each α < κ.

In fact, ∆
def
= {ψβ : β < α, ψβ ∈ Γ ∪ Ωκ} ∪ {¬ψβ : β < α,¬ψβ ∈ Γ ∪ Ωκ} is a subset of

Γ ∪ Ωκ of size less than κ, so it has a model P . For each β < α let

f(β) =

{
ψβ if P |= ψβ,
¬ψγ if P |= ¬ψβ .
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Clearly f is an element of T with height α. So (6) holds.
Thus T is clearly a κ-tree, so by the tree property we can let B be a branch in T of

size κ. Let Ξ = {f(α) : α < κ, f ∈ B, f has height α + 1}. Clearly Γ ∪ Ωκ ⊆ Ξ and for
every α < κ, ψα ∈ Ξ or ¬ψα ∈ Ξ.

(7) If ϕ, ϕ→ χ ∈ Ξ, then χ ∈ Ξ.

In fact, say ϕ = f(α) and ϕ → χ = f(β). Choose γ > α, β so that ψγ is χ. We may
assume that dmn(f) ≥ γ + 1. Since rng(f) has a model, it follows that f(γ) = χ. So (7)
holds.

Let S be the set of all terms with no variables in them. We define σ ≡ τ iff σ, τ ∈ S
and (σ = τ) ∈ Ξ. Then ≡ is an equivalence relation on S. In fact, let σ ∈ S. Say that
σ = σ is ψα. Since ψα holds in every model, it holds in any model of {f(β) : β ≤ α}, and
hence f(α) = (σ = σ). So (σ = σ) ∈ Ξ and so σ ≡ σ. Symmetry and transitivity follow
by (7).

Let M be the collection of all equivalence classes. Using (7) it is easy to see that the
function and relation symbols can be defined on M so that the following conditions hold:

(8) If F is an m-ary function symbol, then

FM (σ0/ ≡, . . . , σm−1/ ≡) = F (σ0, . . . , σm−1)/ ≡ .

(9) If R is an m-ary relation symbol, then

〈σ0/ ≡, . . . , σm−1/ ≡〉 ∈ RM iff R(σ0, . . . , σm−1) ∈ Ξ.

Now the final claim is as follows:

(10) If ϕ is a sentence of L′, then M |= ϕ iff ϕ ∈ Ξ.

Clearly this will finish the proof. We prove (10) by induction on ϕ. It is clear for atomic
sentences by (8) and (9). If it holds for ϕ, it clearly holds for ¬ϕ. Now suppose that Q is
a set of sentences of size less than κ, and (10) holds for each member of Q. Suppose that
M |= ∧

Q. Then M |= ϕ for each ϕ ∈ Q, and so Q ⊆ Ξ. Hence there is a ∆ ∈ [κ]<κ such
that Q = f [∆], with f ∈ B. Choose α greater than each member of ∆ such that ψα is the
formula

∧
Q. We may assume that α ∈ dmn(f). Since rng(f) has a model, it follows that

f(α) =
∧
Q. Hence

∧
Q ∈ Ξ.

Conversely, suppose that
∧
Q ∈ Ξ. From (7) it easily follows that ϕ ∈ Ξ for every

ϕ ∈ Q, so by the inductive hypothesis M |= ϕ for each ϕ ∈ Q, so M |= ∧Q.
Finally, suppose that ϕ is ∃xψ, where (10) holds for shorter formulas. Suppose that

M |= ∃xψ. Then there are members of S such that when they are substituted in ψ for x,
obtaining a sentence ψ′, we have M |= ψ′. Hence by the inductive hypothesis, ψ′ ∈ Ξ. (7)
then yields ∃xψ ∈ Ξ.

Conversely, suppose that ∃xψ ∈ Ξ. Now there is a sequence d of members of C such
that ∃xψ ∈ Ξ → ψ(d) is also in Ξ, and so by (7) we get ψ(d) ∈ Ξ. By the inductive
hypothesis, M |= ψ(d), so M |= ∃xψ ∈ Ξ.

Next we want to show that every weakly compact cardinal is a Mahlo cardinal. To do this
we need two lemmas.
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Lemma 22.9. Let A be a set of infinite cardinals such that for every regular cardinal
κ, the set A ∩ κ is non-stationary in κ. Then there is a one-one regressive function with
domain A.

Proof. We proceed by induction on γ
def
=
⋃
A. Note that γ is a cardinal; it is 0 if

A = ∅. The cases γ = 0 and γ = ω are trivial, since then A = ∅ or A = {ω} respectively.
Next, suppose that γ is a successor cardinal κ+. Then A = A′ ∪ {κ+} for some set A′

of infinite cardinals less than κ+. Then
⋃
A′ < κ+, so by the inductive hypothesis there

is a one-one regressive function f on A′. We can extend f to A by setting f(κ+) = κ, and
so we get a one-one regressive function defined on A.

Suppose that γ is singular. Let 〈µξ : ξ < cf(γ)〉 be a strictly increasing continuous
sequence of infinite cardinals with supremum γ, with cf(γ) < µ0. Note then that for every
cardinal λ < γ, either λ < µ0 or else there is a unique ξ < cf(γ) such that µξ ≤ λ < µξ+1.
For every ξ < cf(γ) we can apply the inductive hypothesis to A ∩ µξ to get a one-one
regressive function gξ with domain A ∩ µξ. We now define f with domain A. In case
cf(γ) = ω we define, for each λ ∈ A,

f(λ) =







g0(λ) + 2 if λ < µ0,
µξ + gξ+1(λ) + 1 if µξ < λ < µξ+1,
µξ if λ = µξ+1,
1 if λ = µ0,
0 if λ = γ ∈ A.

Here the addition is ordinal addition. Clearly f is as desired in this case. If cf(γ) > ω, let
〈νξ : ξ < cf(γ)〉 be a strictly increasing sequence of limit ordinals with supremum cf(γ).
Then we define, for each λ ∈ A,

f(λ) =







g0(λ) + 1 if λ < µ0,
µξ + gξ+1(λ) + 1 if µξ < λ < µξ+1,
νξ if λ = µξ,
0 if λ = γ ∈ A.

Clearly f works in this case too.
Finally, suppose that γ is a regular limit cardinal. By assumption, there is a club C

in γ such that C ∩ γ ∩ A = ∅. We may assume that C ∩ ω = ∅. Let 〈µξ : ξ < γ〉 be the
strictly increasing enumeration of C. Then we define, for each λ ∈ A,

f(λ) =







g0(λ) + 1 if λ < µ0,
µξ + gξ+1(λ) + 1 if µξ < λ < µξ+1,
0 if λ = γ ∈ A.

Clearly f works in this case too.

Lemma 22.10. Suppose that κ is weakly compact, and S is a stationary subset of κ. Then
there is a regular λ < κ such that S ∩ λ is stationary in λ.

Proof. Suppose not. Thus for all regular λ < κ, the set S ∩ λ is non-stationary in
λ. Let C be the collection of all infinite cardinals less than κ. Clearly C is club in κ, so
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S ∩ C is stationary in κ. Clearly still S ∩ C ∩ λ is non-stationary in λ for every regular
λ < κ. So we may assume from the beginning that S is a set of infinite cardinals.

Let 〈λξ : ξ < κ〉 be the strictly increasing enumeration of S. Let

T =






s : ∃ξ < κ



s ∈
∏

η<ξ

λη and s is one-one










.

For every ξ < κ the set S ∩ λξ is non-stationary in every regular cardinal, and hence by
Lemma 22.9 there is a one-one regressive function s with domain S ∩ λξ. Now S ∩ λξ =
{λη : η < ξ}. Hence s ∈ T .

Clearly T forms a tree of height κ under ⊆. Now for any α < κ,

∏

β<α

λβ ≤
(

sup
β<α

λβ

)|α|

< κ.

Hence by the tree property there is a branch B in T of size κ. Thus
⋃
B is a one-one

regressive function with domain S, contradicting Fodor’s theorem.

Theorem 22.11. Every weakly compact cardinal is Mahlo, hyper-Mahlo, hyper-hyper-
Mahlo, etc.

Proof. Let κ be weakly compact. Let S = {λ < κ : λ is regular}. Suppose that C
is club in κ. Then C is stationary in κ, so by Lemma 22.10 there is a regular λ < κ such
that C ∩ λ is stationary in λ; in particular, C ∩ λ is unbounded in λ, so λ ∈ C since C is
closed in κ. Thus we have shown that S ∩ C 6= ∅. So κ is Mahlo.

Let S′ = {λ < κ : λ is a Mahlo cardinal}. Suppose that C is club in κ. Let
S′′ = {λ < κ : λ is regular}. Since κ is Mahlo, S′′ is stationary in κ. Then C ∩ S′′

is stationary in κ, so by Lemma 22.10 there is a regular λ < κ such that C ∩ S′′ ∩ λ is
stationary in λ. Hence λ is Mahlo, and also C ∩ λ is unbounded in λ, so λ ∈ C since C is
closed in κ. Thus we have shown that S′ ∩ C 6= ∅. So κ is hyper-Mahlo.

Let S′′′ = {λ < κ : λ is a hyper-Mahlo cardinal}. Suppose that C is club in κ. Let
Siv = {λ < κ : λ is Mahlo}. Since κ is hyper-Mahlo, Siv is stationary in κ. Then C ∩ Siv
is stationary in κ, so by Lemma 22.10 there is a regular λ < κ such that C ∩ Siv ∩ λ is
stationary in λ. Hence λ is hyper-Mahlo, and also C ∩λ is unbounded in λ, so λ ∈ C since
C is closed in κ. Thus we have shown that S′′′ ∩ C 6= ∅. So κ is hyper-hyper-Mahlo.

Etc.

We now give another equivalent definition of weak compactness. For it we need several
lemmas.

Lemma 22.12. Suppose that R is a well-founded class relation on a class A, and it is
set-like and extensional. Also suppose that B ⊆ A, B is transitive, ∀a, b ∈ A[aRb ∈ B →
a ∈ B], and ∀a, b ∈ B[aRb↔ a ∈ b]. Let G,M be the Mostowski collapse of (A,R). Then
G ↾ B is the identity.
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Proof. Suppose not, and let X = {b ∈ B : G(b) 6= b}. Since we are assuming that X
is a nonempty subclass of A, choose b ∈ X such that y ∈ A and yRb imply that y /∈ X.
Then

G(b) = {G(y) : y ∈ A and yRb}
= {G(y) : y ∈ B and yRb}
= {y : y ∈ B and yRb}
= {y : y ∈ B and y ∈ b}
= {y : y ∈ b}
= b,

contradiction.

Lemma 22.13. Let κ be weakly compact. Then for every U ⊆ Vκ, the structure (Vκ,∈, U)
has a transitive elementary extension (M,∈, U ′) such that κ ∈M .

(This means that Vκ ⊆ M and a sentence holds in the structure (Vκ,∈, U, x)x∈Vκ iff it
holds in (M,∈, U ′, x)x∈Vκ .)

Proof. Let Γ be the set of all Lκκ-sentences true in the structure (Vκ,∈, U, x)x∈Vκ,
together with the sentences

c is an ordinal,

α < c (for all α < κ),

where c is a new individual constant. The language here clearly has κ many symbols. Every
subset of Γ of size less than κ has a model; namely we can take (Vκ,∈, U, x, β)x∈Vκ, choosing
β greater than each α appearing in the sentences of Γ. Hence by weak compactness, Γ has
a model (M,E,W, kx, y)x∈Vκ . This model is well-founded, since the sentence

¬∃v0v1 . . .
[
∧

n∈ω
(vn+1 ∈ vn)

]

holds in (Vκ,∈, U, x)x∈Vκ, and hence in (M,E,W, kx, y)x∈Vκ .
Note that k is an injection of Vκ into M . Let F be a bijection from M\rng(k) onto

{(Vκ, u) : u ∈ M\rng(k)}. Then G
def
= k−1 ∪ F−1 is one-one, mapping M onto some set

N such that Vκ ⊆ N . We define, for x, z ∈ N , xE′z iff G−1(x)EG−1(z). Then G is an

isomorphism from (M,E,W, kx, y)x∈Vκ onto N
def
= (N,E′, G[W ], x, G(y))x∈Vκ. Of course

N is still well-founded. It is also extensional, since the extensionality axiom holds in (Vκ,∈)
and hence in (M,E) and (N,E′). Let H,P be the Mostowski collapse of (N,E′). Thus P
is a transitive set, and

(1) H is an isomorphism from (N,E′) onto (P,∈).

(2) ∀a, b ∈ N [aE′b ∈ Vκ → a ∈ b].
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In fact, suppose that a, b ∈ N and aE′b ∈ Vκ. Let the individual constants used in the
expansion of (Vκ,∈, U) to (Vκ,∈, U, x)a∈Vκ be 〈cx : x ∈ Vκ〉. Then

(Vκ,∈, U, x)a∈Vκ |= ∀z
[

z ∈ kb →
∨

w∈b
(z = kw)

]

,

and hence this sentence holds in (N,E′, G[W ], x, G(y))x∈Vκ as well, and so there is a w ∈ b
such that a = w, i.e., a ∈ b. So (2) holds.

(3) ∀a, b ∈ Vκ[a ∈ b→ aE′b]

In fact, suppose that a, b ∈ Vκ and a ∈ b. Then the sentence ka ∈ kb holds in (Vκ,∈
, U, x)x∈Vκ, so it also holds in (N,E′, G[W ], x, G(y))x∈Vκ, so that aE′b.

We have now verified the hypotheses of Lemma 22.12. It follows that H ↾ Vκ is
the identity. In particular, Vκ ⊆ P . Now take any sentence σ in the language of (Vκ,∈
, U, x)x∈Vκ. Then

(Vκ,∈, U, x)x∈Vκ |= σ iff (M,E,W, kx)x∈Vκ |= σ

iff (N,E′, G[W ], x)x∈Vκ |= σ

iff (P,∈, H[G[W ]], x)x∈Vκ |= σ.

Thus (P,∈, H[G[W ]]) is an elementary extension of (Vκ,∈, U).
Now for α < κ we have

(M,E,W, kx, y)x∈Vκ |= [y is an ordinal and kαEy], hence

(N,E′, G[W ], x, G(y))x∈Vκ |= [G(y) is an ordinal and αE′G(y)], hence

(P,∈, H[G[W ]], x,H(G(y)))x∈Vκ |= [H(G(y)) is an ordinal and α ∈ H(G(y))].

Thus H(G(y)) is an ordinal in P greater than each α < κ, so since P is transitive,
κ ∈ P .

An infinite cardinal κ is first-order describable iff there is a U ⊆ Vκ and a sentence σ in
the language for (Vκ,∈, U) such that (Vκ,∈, U) |= σ, while there is no α < κ such that
(Vα,∈, U ∩ Vα) |= σ.

Theorem 22.14. If κ is infinite but not inaccessible, then it is first-order describable.

Proof. ω is describable by the sentence that says that κ is the first limit ordinal;
absoluteness is used. The subset U is not needed for this. Now suppose that κ is singular.

Let λ = cf(κ), and let f be a function whose domain is some ordinal γ < κ with
rng(f) cofinal in κ. Let U = {(λ, β, f(β)) : β < λ}. Let σ be the sentence expressing the
following:

For every ordinal γ there is an ordinal δ with γ < δ, U is nonempty, and there is an
ordinal µ and a function g with domain µ such that U consists of all triples (µ, β, g(β))
with β < µ.
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Clearly (Vκ,∈, U) |= σ. Suppose that α < κ and (Vα,∈, Vα ∩ U) |= σ. Then α is a limit
ordinal, and there is an ordinal γ < α and a function g with domain γ such that Vα ∩ U
consists of all triples (γ, β, g(β)) with β < γ. (Some absoluteness is used.) Now Vα ∩ U
is nonempty; choose (γ, β, g(β)) in it. Then γ = λ since it is in U . It follows that g = f .
Choose β < λ such that α < f(β). Then (λ, β, f(β)) ∈ U ∩ Vα. Since α < f(β), it follows
that α has rank less than α, contradiction.

Now suppose that λ < κ ≤ 2λ. A contradiction is reached similarly, as follows. Let f
be a function whose domain is P(λ) with range κ. Let U = {(λ,B, f(B)) : B ⊆ λ}. Let
σ be the sentence expressing the following:

For every ordinal γ there is an ordinal δ with γ < δ, U is nonempty, and there is an ordinal
µ and a function g with domain P(µ) such that U consists of all triples (µ,B, g(B)) with
B ⊆ µ.

Clearly (Vκ,∈, U) |= σ. Suppose that α < κ and (Vα,∈, Vα ∩ U) |= σ. Then α is a limit
ordinal, and there is an ordinal γ < α and a function g with domain P(γ) such that
Vα∩U consists of all triples (γ, B, g(B)) with B ⊆ γ. (Some absoluteness is used.) Clearly
γ = λ; otherwise U ∩ Vα would be empty. Note that g = f . Choose B ⊆ λ such that
α = f(B). Then (λ,B, f(B)) ∈ U ∩ Vα. Again this implies that α has rank less than α,
contradiction.

The new equivalent of weak compactness involves second-order logic. We augment first
order logic by adding a new variable S ranging over subsets rather than elements. There
is one new kind of atomic formula: Sv with v a first-order variable. This is interpreted as
saying that v is a member of S.

Now an infinite cardinal κ is Π1
1-indescribable iff for every U ⊆ Vκ and every second-

order sentence σ of the form ∀Sϕ, with no quantifiers on S within ϕ, if (Vκ,∈, U) |= σ,
then there is an α < κ such that (Vα,∈, U ∩ Vα) |= σ. Note that if κ is Π1

1-indescribable
then it is not first-order describable.

Theorem 22.15. An infinite cardinal κ is weakly compact iff it is Π1
1-indescribable.

Proof. First suppose that κ is Π1
1-indescribable. By Theorem 22.14 it is inaccessible.

So it suffices to show that it has the tree property. By the proof of Theorem 22.7(iii)⇒(iv)
it suffices to check the tree property for a tree T ⊆ <κκ. Note that <κκ ⊆ Vκ. Let σ be
the following sentence in the second-order language of (Vκ,∈, T ):

∃S[T is a tree under ⊂, and

S ⊆ T and S is a branch of T of unbounded length].

Thus for each α < κ the sentence σ holds in (Vα,∈, T ∩ Vα). Hence it holds in (Vκ,∈, T ),
as desired.

Now suppose that κ is weakly compact. Let U ⊆ Vκ, and let σ be a Π1
1-sentence

holding in (Vκ,∈, U). By Lemma 22.13, let (M,∈, U ′) be a transitive elementary extension
of (Vκ,∈, U) such that κ ∈M . Say that σ is ∀Sϕ, with ϕ having no quantifiers on S. Now

(1) ∀X ⊆ Vκ[(Vκ,∈, U) |= ϕ(X)].
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Now since κ ∈M and (M,∈) is a model of ZFC, V Mκ exists, and by absoluteness it is equal
to Vκ. Hence by (1) we get

(M,∈, U ′) |= ∀X ⊆ Vκϕ
Vκ(U ′ ∩ Vκ).

Hence
(M,∈, U ′) |= ∃α∀X ⊆ Vαϕ

Vα(U ′ ∩ Vα),

so by the elementary extension property we get

(Vκ,∈, U) |= ∃α∀X ⊆ Vαϕ
Vα(U ′ ∩ Vα).

We choose such an α. Since Vκ∩On = κ, it follows that α < κ. Hence (Vα,∈, U ′∩Vα) |= σ,
as desired.

Measurable cardinals

Our third kind of large cardinal is the class of measurable cardinals. Although, as the
name suggests, this notion comes from measure theory, the definition and results we give
are purely set-theoretical. Moreover, similarly to weakly compact cardinals, it is not
obvious from the definition that we are dealing with large cardinals.

The definition is given in terms of the notion of an ultrafilter on a set.

• Let X be a nonempty set. A filter on X is a family F of subsets of X satisfying the
following conditions:

(i) X ∈ F .
(ii) If Y, Z ∈ F , then Y ∩ Z ∈ F .
(iii) If Y ∈ F and Y ⊆ Z ⊆ X , then Z ∈ F .

• A filter F on a set X is proper or nontrivial iff ∅ /∈ F .

• An ultrafilter on a set X is a nontrivial filter F on X such that for every Y ⊆ X , either
Y ∈ F or X\Y ∈ F .

• A family A of subsets of X has the finite intersection property, fip, iff for every finite
subset B of A we have

⋂
B 6= ∅.

• If A is a family of subsets of X , then the filter generated by A is the set

{Y ⊆ X :
⋂

B ⊆ Y for some finite B ⊆ A }.

[Clearly this is a filter on X , and it contains A .]

Proposition 22.16. If x ∈ X, then {Y ⊆ X : x ∈ Y } is an ultrafilter on X.

An ultrafilter of the kind given in this proposition is called a principal ultrafilter. There
are nonprincipal ultrafilters on any infinite set, as we will see shortly.

Proposition 22.17. Let F be a proper filter on a set X. Then the following are equivalent:
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(i) F is an ultrafilter.
(ii) F is maximal in the partially ordered set of all proper filters (under ⊆).

Proof. (i)⇒(ii): Assume (i), and suppose that G is a filter with F ⊂ G . Choose
Y ∈ G \F . Since Y /∈ F , we must have X\Y ∈ F ⊆ G . So Y,X\Y ∈ G , hence
∅ = Y ∩ (X\Y ) ∈ G , and so G is not proper.

(ii)⇒(i): Assume (ii), and suppose that Y ⊆ X , with Y /∈ F ; we want to show that
X\Y ∈ F . Let

G = {Z ⊆ X : Y ∩W ⊆ Z for some W ∈ F}.
Clearly G is a filter on X , and F ⊆ G . Moreover, Y ∈ G \F . It follows that G is not
proper, and so ∅ ∈ G . Thus there is a W ∈ F such that Y ∩W = ∅. Hence W ⊆ X\Y ,
and hence X\Y ∈ F , as desired.

Theorem 22.18. For any infinite set X there is a nonprincipal ultrafilter on X. Moreover,
if A is any collection of subsets of X with fip, then A can be extended to an ultrafilter.

Proof. First we show that the first assertion follows from the second. Let A be the
collection of all cofinite subsets of X—the subsets whose complements are finite. A has
fip, since if B is a finite subset of A , then X\⋂B =

⋃

Y ∈B
(X\B) is finite. By the second

assertion, A can be extended to an ultrafilter F . Clearly F is nonprincipal.
To prove the second assertion, let A be a collection of subsets of X with fip, and let

C be the collection of all proper filters on X which contain A . Clearly the filter generated
by A is proper, so C 6= ∅. We consider C as a partially ordered set under inclusion.
Any subset D of C which is a chain has an upper bound in C , namely

⋃
D , as is easily

checked. So by Zorn’s lemma C has a maximal member F . By Proposition 22.16, F is an
ultrafilter.

• Let X be an infinite set, and let κ be an infinite cardinal. An ultrafilter F on X is κ-
complete iff for any A ∈ [F ]<κ we have

⋂
A ∈ F . We also say σ-complete synonomously

with ℵ1-complete.

This notion is clearly a generalization of one of the properties of ultrafilters. In fact, every
ultrafilter is ω-complete, and every principal ultrafilter is κ-complete for every infinite
cardinal κ.

Lemma 22.19. Suppose that X is an infinite set, F is an ultrafilter on X, and κ is the
least infinite cardinal such that there is an A ∈ [F ]κ such that

⋂
A /∈ F . Then there is a

partition P of X such that |P| = κ and X\Y ∈ F for all Y ∈ P.

Proof. Let 〈Yα : α < κ〉 enumerate A . Let Z0 = X\Y0, and for α > 0 let Zα =
(
⋂

β<α Yβ)\Yα. Note that Yα ⊆ X\Zα, and so X\Zα ∈ F . Clearly Zα ∩Zβ = ∅ for α 6= β.
Let W =

⋂

α<λ Yα. Clearly W ∩ Zα = ∅ for all α < λ. Let

P = ({Zα : α < κ} ∪ {W})\{∅}.
So P is a partition of X and X\Z ∈ F for all Z ∈ P. Clearly |P| ≤ κ. If |P| < κ, then

∅ =
⋂

Z∈P

(X\Z) ∈ F,

304



contradiction. So |P| = κ.

Theorem 22.20. Suppose that κ is the least infinite cardinal such that there is a non-
principal σ-complete ultrafilter F on κ. Then F is κ-complete.

Proof. Assume the hypothesis, but suppose that F is not κ-complete. So there is a
A ∈ [F ]<κ such that

⋂
A /∈ F . Hence by Lemma 22.19 there is a partition P of κ such

that |P| < κ and X\P ∈ F for every P ∈ P. Let 〈Pα : α < λ〉 be a one-one enumeration
of P, λ an infinite cardinal. We are now going to construct a nonprincipal σ-complete
ultrafilter G on λ, which will contradict the minimality of κ.

Define f : κ → λ by letting f(β) be the unique α < λ such that β ∈ Pα. Then we
define

G = {D ⊆ λ : f−1[D] ∈ F}.

We check the desired conditions for G. ∅ /∈ G, since f−1[∅] = ∅ /∈ F . If D ∈ G and D ⊆ E,
then f−1[D] ∈ F and f−1[D] ⊆ f−1[E], so f−1[E] ∈ F and hence E ∈ G. Similarly, G
is closed under ∩. Given D ⊆ λ, either f−1[D] ∈ F or f−1[λ\D] = κ\f−1[D] ∈ F , hence
D ∈ G or λ\D ∈ G. So G is an ultrafilter on λ. It is nonprincipal, since for any α < λ
we have f−1[{α}] = Pα /∈ F and hence {α} /∈ G. Finally, G is σ-complete, since if D is a
countable subset of G, then

f−1
[⋂

D

]

=
⋂

P∈D

f−1[P ] ∈ F,

and hence
⋂

D ∈ G.

We say that an uncountable cardinal κ is measurable iff there is a κ-complete nonprincipal
ultrafilter on κ.

Theorem 22.21. Every measurable cardinal is weakly compact.

Proof. Let κ be a measurable cardinal, and let U be a nonprincipal κ-complete
ultrafilter on κ.

Since U is nonprincipal, κ\{α} ∈ U for every α < κ. Then κ-completeness implies
that κ\F ∈ U for every F ∈ [κ]<κ.

Now we show that κ is regular. For, suppose it is singular. Then we can write
κ =

⋃

α<λ Γα, where λ < κ and each Γα has size less than κ. So by the previous paragraph,
κ\Γα ∈ U for every α < κ, and hence

∅ =
⋂

α<λ

(κ\Γα) ∈ U,

contradiction.
Next, κ is strong limit. For, suppose that λ < κ and 2λ ≥ κ. Let S ∈ [λ2]κ. Let

〈fα : α < κ〉 be a one-one enumeration of S. Now for each β < λ, one of the sets
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{α < κ : fα(β) = 0} and {α < κ : fα(β) = 1} is in U , so we can let ε(β) ∈ 2 be such that
{α < κ : fα(β) = ε(β)} ∈ U . Then

⋂

β<λ

{α < κ : fα(β) = ε(β)} ∈ U ;

this set clearly has only one element, contradiction.
Thus we now know that κ is inaccessible. Finally, we check the tree property. Let

(T,≺) be a tree of height κ such that every level has size less than κ. Then |T | = κ, and
we may assume that actually T = κ. Let B = {α < κ : {t ∈ T : α � t} ∈ U}. Clearly
any two elements of B are comparable under ≺. Now take any α < κ; we claim that
Levα(T ) ∩B 6= ∅. In fact,

(1) κ = {t ∈ T : ht(t, T ) < α} ∪
⋃

t∈Levα(T )

{s ∈ T : t � s}.

Now by regularity of κ we have |{t ∈ T : ht(t, T ) < α}| < κ, and so the complement of
this set is in U , and then (1) yields

(2)
⋃

t∈Levα(T )

{s ∈ T : t � s} ∈ U.

Now |Levα(T )| < κ, so from (2) our claim easily follows.
Thus B is a branch of size κ, as desired.

A diagram of large cardinals

We define some more large cardinals, and then indicate relationships between them by a
diagram.

All cardinals are assumed to be uncountable.

1. regular limit cardinals.

2. inaccessible.

3. Mahlo.

4. weakly compact.

5. indescribable. The ω-order language is an extension of first order logic in which one
has variables of each type n ∈ ω. For n positive, a variable of type n ranges over Pn(A)
for a given structure A. In addition to first-order atomic formulas, one has formulas P ∈ Q
with P n-th order and Q (n + 1)-order. Quantification is allowed over the higher order
variables.

κ is indescribable iff for all U ⊆ Vκ and every higher order sentence σ, if (Vκ,∈, U) |= σ
then there is an α < κ such that (Vα,∈, U ∩ Vα) |= σ.

6. κ→ (ω)<ω2 . Here in general
κ→ (α)<ωm
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means that for every function f :
⋃

n∈ω[κ]n → m there is a subset H ⊆ κ of order type α
such that for each n ∈ ω, f ↾ [H]n is constant.

7. 0♯ exists. This means that there is a non-identity elementary embedding of L into L.
Thus no actual cardinal is referred to. But 0♯ implies the existence of some large cardinals,
and the existence of some large cardinals implies that 0♯ exists.

8. Jónsson κ is a Jónsson cardinal iff every model of size κ has a proper elementary
substructure of size κ.

9. Rowbottom κ is a Rowbottom cardinal iff for every uncountable λ < κ, every model
of type (κ, λ) has an elementary submodel of type (κ, ω).

10. Ramsey κ→ (κ)<ω2 .

11. measurable

12. strong κ is a strong cardinal iff for every set X there exists a nontrivial elementary
embedding from V to M with κ the first ordinal moved and with κ ∈ M.

13. Woodin κ is a Woodin cardinal iff

∀A ⊆ Vκ∀λ < κ∃µ ∈ (λ, κ)∀ν < κ∃j[j is a nontrivial elementary embedding of V

into some set M, with µ the first ordinal moved, such that

j(µ) > ν, Vν ⊆ M, A ∩ Vν = j(A) ∩ Vν ]

14. superstrong κ is superstrong iff there is a nontrivial elementary embedding j : V →
M with κ the first ordinal moved, such that Vj(κ) ⊆ M.

15. strongly compact κ is strongly compact iff for any Lκκ-language, if Γ is a set of
sentences and every subset of Γ of size less than κ has a model, then Γ itself has a model.

16. supercompact κ is supercompact iff for every A with |A| ≥ κ there is normal measure
on Pκ(A).

17. extendible For an ordinal η, we say that k is η-extendible iff there exist ζ and a
nontrivial elementary embedding j : Vκ+η → Vζ with κ first ordinal moved, with η < j(κ).
κ is extendible iff it is η-extendible for every η > 0.

22. Vopěnka’s principle If C is a proper class of models in a given first-order language,
then there exist two distinct members A,B ∈ C such that A can be elementarily embedded
in B.

19. huge A cardinal κ is huge iff there is a nontrivial elementary embedding j : V → M
with κ the first ordinal moved, such that Mj(κ) ⊆ M.

20. I0. There is an ordinal δ and a proper elementary embedding j of L(Vδ+1) into L(Vδ+1)
such that the first ordinal moved is less than δ.

In the diagram on the next page, a line indicates that (the consistency of the) existence of
the cardinal above implies (the consistency of the) existence of the one below.
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EXERCISES

E22.1. Let κ be an uncountable regular cardinal. We define S < T iff S and T are
stationary subsets of κ and the following two conditions hold:

(1) {α ∈ T : cf(α) ≤ ω} is nonstationary in κ.
(2) {α ∈ T : S ∩ α is nonstationary in α)} is nonstationary in κ.

Prove that if ω < λ < µ < κ, all these cardinals regular, then Eκλ < Eκµ , where

Eκλ = {α < κ : cf(α) = λ},

and similarly for Eκµ .

E22.2. Continuing exercise E22.1: Assume that κ is uncountable and regular. Show that
the relation < is transitive.

E22.3. If κ is an uncountable regular cardinal and S is a stationary subset of κ, we define

Tr(S) = {α < κ : cf(α) > ω and S ∩ α is stationary in α}.

Suppose that A,B are stationary subsets of an uncountable regular cardinal κ and A < B.
Show that Tr(A) is stationary.

E22.4. (Real-valued measurable cardinals) We describe a special kind of measure. A
measure on a set S is a function µ : P(S) → [0,∞) satisfying the following conditions:

(1) µ(∅) = 0 and µ(S) = 1.

(2) If µ({s}) = 0 for all s ∈ S,

(3) If 〈Xi : i ∈ ω〉 is a system of pairwise disjoint subsets of S, then µ(
⋃

i∈ωXi) =
∑

i∈ω µ(Xi). (The Xi’s are not necessarily nonempty.)

Let κ be an infinite cardinal. Then µ is κ-additive iff for every system 〈Xα : α < γ〉 of
nonempty pairwise disjoint sets, with γ < κ, we have

µ

(
⋃

α<γ

Xα

)

=
∑

α<γ

µ(Xα).

Here this sum (where the index set γ might be uncountable), is understood to be

sup
F⊆γ,
F finite

∑

α∈F
µ(Xα).

We say that an uncountable cardinal κ is real-valued measurable iff there is a κ-additive
measure on κ. Show that every measurable cardinal is real-valued measurable. Hint: let
µ take on only the values 0 and 1.

E22.5. Suppose that µ is a measure on a set S. A subset A of S is a µ-atom iff µ(A) > 0
and for every X ⊆ A, either µ(X) = 0 or µ(X) = µ(A). Show that if κ is a real-
valued measurable cardinal, µ is a κ-additive measure on κ, and A ⊆ κ is a µ-atom, then
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{X ⊆ A : µ(X) = µ(A)} is a κ-complete nonprincipal ultrafilter on A. Conclude that κ is
a measurable cardinal if there exist such µ and A.

E22.6. Prove that if κ is real-valued measurable then either κ is measurable or κ ≤ 2ω.
Hint: if there do not exist any µ-atoms, construct a binary tree of height at most ω1.

E22.7. Let κ be a regular uncountable cardinal. Show that the diagonal intersection of
the system 〈(α+ 1, κ) : α < κ〉 is the set of all limit ordinals less than κ.

E22.8. Let F be a filter on a regular uncountable cardinal κ. We say that F is normal
iff it is closed under diagonal intersections. Suppose that F is normal, and (α, κ) ∈ F for
every α < κ. Show that every club of κ is in F . Hint: use exercise E22.7.

E22.9. Let F be a proper filter on a regular uncountable cardinal κ. Show that the
following conditions are equivalent.

(i) F is normal
(ii) For any S0 ⊆ κ, if κ\S0 /∈ F and f is a regressive function defined on S0, then

there is an S ⊆ S0 with κ\S /∈ F and f is constant on S.

E22.10. A probability measure on a set S is a real-valued function µ with domain P(S)
having the following properties:

(i) µ(∅) = 0 and µ(S) = 1.
(ii) If X ⊆ Y , then µ(X) ≤ µ(Y ).
(iii) µ({a}) = 0 for all a ∈ S.
(iv) If 〈Xn : n ∈ ω〉 is a system of pairwise disjoint sets, then µ(

⋃

n∈ω Xn) =
∑

n∈ω µ(Xn). (Some of the sets Xn might be empty.)

Prove that there does not exist a probability measure on ω1. Hint: consider an Ulam
matrix.

E22.11. Show that if κ is a measurable cardinal, then there is a normal κ-complete non-
principal ultrafilter on κ. Hint: Let D be a κ-complete nonprincipal ultrafilter on κ. Define
f ≡ g iff f, g ∈ κκ and {α < κ : f(α) = g(α)} ∈ D. Show that ≡ is an equivalence relation
on κκ. Show that there is a relation ≺ on the collection of all ≡-classes such that for all
f, g ∈ κκ, [f ] ≺ [g] iff {α < κ : f(α) < g(α)} ∈ D. Here for any function h ∈ κκ we use [h]
for the equivalence class of h under ≡. Show that ≺ makes the collection of all equivalence
classes into a well-order. Show that there is a ≺ smallest equivalence class x such that
∀f ∈ x∀γ < κ[{α < κ : γ < f(α)} ∈ D. Let E = {X ⊆ κ : f−1[X ] ∈ D}. Show that E
satisfies the requirements of the exercise.

Reference

Kanamori, A. The higher infinite. Springer 2005, 536pp.
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23. Constructible sets

This chapter is devoted to the exposition of Gödel’s constructible sets. We will define a
proper class L, the class of all constructible sets. The development culminates in the proof
of consistency of AC and GCH relative to the consistency of ZF. We also prove the relative
consistency of ♦.

Sets are called constructible iff they are built up from the empty set using easily
defined procedures. This essentially amounts to replacing the power set operation in the
definition of the Vα’s by an operation which produces only definable subsets. So first we
have to indicate what we mean by “definable subsets”.

We also introduce two variants on constructibility: starting from a set B, and allowing
parameters from a set C. For the main notion of constructibility we take B = C = ∅.

We begin with some simple operations on sets, to express definability.

• Rel(A,C, n, i) = {s ∈ nA : s(i) ∈ C} for i < n < ω.

• Proj′(A,R, i, n) = {s ∈ nA : ∀t ∈ nA[t ↾ (n\{i}) = s ↾ (n\{i}) → t ∈ R]}
for i < n < ω and all R ⊆ nA.

• Diag∈(A, n, i, j) = {s ∈ nA : s(i) ∈ s(j)} for i, j < n < ω.

• Diag=(A, n, i, j) = {s ∈ nA : s(i) = s(j)} for i, j < n < ω.

These basic functions are applied recursively in the following theorem.

Theorem 23.1. There is a class function F : ω× V ×V × ω → V such that for any sets
A,C and any k, n ∈ ω we have

F(0, A, C, n) = {Rel(A,C, n, i) : i < n} ∪ {Diag∈(A, n, i, j) : i, j < n}
∪ {Diag=(A, n, i, j) : i, j < n};

F(k + 1, A, C, n) = F(k, A, C, n)∪ {nA\R : R ∈ F(k, A, C, n)}
∪ {(nA\R) ∪ S : R, S ∈ F(k, A, C, n)}
∪ {Proj′(A,R, i, n) : R ∈ F(k, A, C, n), i < n}.

Proof. Let A = ω × V × V × ω, and define R ⊆ A × A as follows:

(k, A, C, n)R(k′, A′, C′, n′) iff k, k′, n, n′ ∈ ω and A = A′ and C = C′ and k < k′.

Then R is well-founded on A. In fact, if X is a nonempty subset of A, let (k, A, C, n) ∈ X
be a member of X with k minimum. Clearly (k, A, C, n) is R-minimal. Also, R is set-like
on A. For, let (k, A, C, n) ∈ A. Then

predAR(k, A, C, n) = {(k′, A′, C′, n′) ∈ ω × {A} × {C} × ω : k′ < k}.
Now define G : A × V → V as follows. Suppose that A,C ∈ V , n ∈ ω, and f ∈ V . Then
we define

G(0, A, C, n, f) = {Rel(A,C, n, i) : i < n} ∪ {Diag∈(A, n, i, j) : i, j < n}
∪ {Diag=(A, n, i, j) : i, j < n},
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If k ∈ ω, k = k′ + 1, and f is a function with domain predAR(k, A, C, n), then we define

G(k, A, C, n, f) = f(k′, A, C, n)∪ {nA\R : R ∈ f(k′, A, C, n)}
∪ {(nA\R) ∪ S : R, S ∈ f(k′, A, C, n)}
∪ {Proj′(A,R, i, n) : R ∈ f(k′, A, C, n), i < n}.

If f is not a function with domain predAR(k, A, C, n), let G(k, A, C, n, f) = ∅.
Now let F : A → V be obtained by the recursion theorem 8.7: F(k, A, C, n) =

G(k, A, C, n,F ↾ predAR(k, A, C, n)) for all (k, A, C, n) ∈ A. Then for any sets A,C and
any k ∈ ω,

F(0, A, C, n) = G(0, A, C, n,F ↾ pred
AR

(0, A, C, n))

= {Rel(A,C, n, i) : i < n} ∪ {Diag∈(A, n, i, j) : i, j < n}
∪ {Diag=(A, n, i, j) : i, j < n};

F(k + 1, A, C, n) = G(k + 1, A, C, n,F ↾ predAR(k + 1, A, C, n))

= F(k, A, C, n)∪ {nA\R : R ∈ F(k, A, C, n)}
∪ {(nA\R) ∪ S : R, S ∈ F(k, A, C, n)}
∪ {Proj′(A,R, i, n) : R ∈ F(k, A, C, n), i < n}.

We use Df ′ for the function in Theorem 23.1, and then we define Df : V × V × ω → V
by setting, for any sets A,C and any n ∈ ω,

Df(A,C, n) =
⋃

k∈ω
Df ′(k, A, C, n).

Now let L ′ be the first order language for set theory augmented by a unary relation
symbol R. Given two sets A,C, a formula ϕ(v0, . . . , vn−1) and elements a0, . . . , an−1 of A,
we denote by ϕA,C(a0, . . . , an−1) the statement that ϕ holds with quantifiers relativized
to A and a subformula Rvi interpreted as saying that ai ∈ C. It is easy to give a recursive
definition of ϕA,C(a0, . . . , an−1).

Lemma 23.2. Let n ∈ ω, ϕ(v0, . . . , vn−1) be a formula of L ′ with variables among
v0, . . . , vn−1, and let A,C be any sets, A 6= ∅. Then

{s ∈ nA : ϕA,C(s(0), . . . , s(n− 1))} ∈ Df(A,C, n).

Proof. Induction on ϕ:
If ϕ is Rvi, then i < n and

{s ∈ nA : ϕA,C(s(0), . . . , s(n− 1))} = {s ∈ nA : s(i) ∈ C}
= Rel(A,C, n, i)

∈ Df ′(0, A, C, n)

⊆ Df(A,C, n).
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If ϕ is vi ∈ vj , then

{s ∈ nA : ϕA,C(s(0), . . . , s(n− 1))} = {x ∈ nA : s(i) ∈ s(j)}
= Diag∈(A, n, i, j)

∈ Df ′(0, A, C, n)

⊆ Df(A,C, n).

If ϕ is vi = vj , then

{s ∈ nA : ϕA,C(s(0), . . . , s(n− 1))} = {x ∈ nA : s(i) = s(j)}
= Diag=(A, n, i, j)

∈ Df ′(0, A, C, n)

⊆ Df(A,C, n).

Suppose that ϕ is ¬ψ, where

{s ∈ nA : ψA,C(s(0), . . . , s(n− 1))} ∈ Df(A,C, n).

Say {s ∈ nA : ψA,C(s(0), . . . , s(n− 1))} ∈ Df ′(k, A, C, n). Then

{s ∈ nA : ϕA,C(s(0), . . . , s(n− 1))} = nA\{s ∈ nA : ψA,C(s(0), . . . , s(n− 1))}
∈ Df ′(k + 1, A, C, n)

⊆ Df(A,C, n).

Suppose that ϕ is ψ → χ, where

{s ∈ nA : ψA,C(s(0), . . . , s(n− 1))} ∈ Df(A,C, n)

and {s ∈ nA : χA,C(s(0), . . . , s(n− 1))} ∈ Df(A,C, n).

Say

{s ∈ nA : ψA,C(s(0), . . . , s(n− 1))} ∈ Df ′(k, A, C, n)

and {s ∈ nA : χA,C(s(0), . . . , s(n− 1))} ∈ Df ′(l, A, C, n).

We may assume that k = l. Then

{s ∈ nA : ϕA,C(s(0), . . . , s(n− 1))}
= {s ∈ nA : (¬ψ)A,C(s(0), . . . , s(n− 1))} ∪ {s ∈ nA : χA,C(s(0), . . . , s(n− 1))}
= (nA\{s ∈ nA : ψA,C(s(0), . . . , s(n− 1))}) ∪ {s ∈ nA : χA,C(s(0), . . . , s(n− 1))}
∈ Df ′(k + 1, A, C, n)

⊆ Df(A,C, n).
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Finally, suppose that ϕ is ∀viψ. We assume inductively that

{s ∈ nA : ψA,C(s(0), . . . , s(n− 1))} ∈ Df(A,C, n);

say
{s ∈ nA : ψA,C(s(0), . . . , s(n− 1))} ∈ Df ′(k, A, C, n).

Then

{s ∈ nA : ϕA,C(s(0), . . . , s(n− 1))}
= {s ∈ nA : ∀t ∈ nA[t ↾ (n\{i}) = s ↾ (n\{i}) → ψA,C(t(0), . . . , t(n− 1))]

= Proj′(A, {s ∈ n+1A : ψA,C(s(0), . . . , s(n− 1))}, n)

∈ Df ′(k + 1, A, C, n)

⊆ Df(A,C, n)

Now we prove a sequence of lemmas leading up to the fact that Df is absolute for transitive
models of ZF. To do this, we have to extend the definitions of our functions above so that
they are defined for all sets, since absoluteness was developed only for such functions. We
do this by just letting the values be 0 for arguments not in the domain of the original
functions.

Lemma 23.3. The function Rel is absolute for transitive models of Zf.

Proof. x = Rel(A,C, n, i) iff one of the following conditions holds:

(1) n /∈ ω and x = 0,

(2) n ∈ ω and i /∈ n and x = 0,

(3) i < n ∈ ω and the following condition holds:

∀s ∈ x[s ∈ nA and s(i) ∈ C] and ∀s ∈ nA[s(i) ∈ C → s ∈ x].

Lemma 23.4. The function Proj′ is absolute for transitive models of ZF.

Proof. x = Proj′(A,R, n) iff one of the following conditions holds:

(1) n /∈ ω and x = 0,

(2) n ∈ ω and not(i < n) and x = 0.

(3) n ∈ ω and i < n and R 6⊆ n+1A and x = 0,

(3) n ∈ ω and i < n and R ⊆ n+1A and the following conditions hold:

(4) ∀s ∈ x[s ∈ nA and ∀t ∈ nA[t ↾ (n\{i}) = s ↾ (n\{i}) → t ∈ R]

(5) ∀s ∈ nA[∀t ∈ nA[t ↾ (n\{i}) = s ↾ (n\{i}) → t ∈ R] → s ∈ x]

Lemma 23.5. The function Diag∈ is absolute for transitive models of ZF.
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Proof. x = Diag∈(A, n, i, j) iff not(n ∈ ω and i, j < n) and x = 0, or n ∈ ω, i, j < n,
and the following condition holds:

∀s ∈ x[s ∈ nA ∧ s(i) ∈ s(j)] ∧ ∀s ∈ nA[s(i) ∈ s(j) → s ∈ x]

Lemma 23.6. The function Diag= is absolute for transitive models of ZF.

Proof. Similar to that of Lemma 23.5.

Lemma 23.7. For any sets A and C and any natural number n let

T1(A,C, n) ={Rel(A,C, n, i) : i < n} ∪ {Diag∈(A, n, i, j) : i, j < n}
∪ {Diag=(A, n, i, j) : i, j < n}.

Then T1 is absolute for transitive models of ZF.

Proof. x = T1(A,C, n) iff not(n ∈ ω) and x = 0, or n ∈ ω and the following condition
holds:

∀y ∈ x[∃i < n[y = Rel(A,C, n, i)]∨
∃i, j < n[y = Diag∈(A, n, i, j)∨ y = Diag=(A, n, i, j)]]

∧ ∀i < n[Rel(A,C, n, i) ∈ x]

∧ ∀i, j < n[Diag∈(A, n, i, j) ∈ x]

∧ ∀i, j < n[Diag=(A, n, i, j) ∈ x]

Lemma 23.8. For any sets A,L and any natural number n let

T2(A, n, L) = {nA\R : R ∈ L}.

Then T2 is absolute for transitive models of ZF.

Proof. x = T2(A, n, L) iff not(n ∈ ω) and x = 0, or n ∈ ω and the following condition
holds:

∀y ∈ x∃R ∈ L[y = nA\R] ∧ ∀z[∃R ∈ L(z = nA\R) → z ∈ x].

Here we need a little argument. Let M be a transitive model of ZF. Suppose that A, n, L ∈
M , n ∈ ω, z is a set, R ∈ L, and z = nA\R; we would like to show that z ∈M . There is a
w ∈M such that w = (nA\R)M , since M is a model of ZF. By absoluteness, z = w ∈M ,
as desired.

Lemma 23.9. For all sets A,L and all n ∈ ω let T3(A, n, L) = {(nA\R) ∪ S : R, S ∈ L}.
Then T3 is absolute for transitive models of ZF.

Proof. x = T3(A, n, L) iff (n /∈ ω and x = 0) or n ∈ ω and the following holds:

∀y ∈ x∃R, S ∈ L[y = (nA\R) ∪ S] and ∀R, S ∈ L[(nA\R) ∪ S ∈ x].
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Lemma 23.10. For any sets A,L and any natural numbers i, n with i < n, let T4(A, i, n, L)
be the set {Proj′(A,R, i, n) : R ∈ L}. Then T4 is absolute for transitive models of ZF.

Proof. x = T4(A, n,X) iff one of the following conditions holds:

(1) not(n ∈ ω) and x = 0.

(2) n ∈ ω, not(i < n), and x = 0.

(3) i, n ∈ ω, i < n, and the following two conditions hold:
(a) ∀R ∈ L[Proj′(A,R, i, n) ∈ x].
(b) ∀y ∈ x∃R ∈ L[y = Proj′(A,R, i, n)].

Lemma 23.11. Df ′ is absolute for transitive models of ZF.

Proof. We are going to apply Theorem 14.28. Let A,R,G be as in the proof of
Theorem 23.1. Clearly A and R are absolute for transitive models of ZF. Now suppose
that A and C are sets, k, n ∈ ω, and f,X are sets. Then G(k, A, C, n, f) = X iff one of
the following conditions holds:

(1) f is a function with domain pred
AR

(k, A, C, n), k = 0, and X = T1(A,C, n).

(2) f is a function with domain pred
AR

(k, A, C, n), k = k′ + 1 for some k′ ∈ ω, and

X = f(k, A, C, n)∪ T2(A, n, f(k, A, C, n))∪ T3(f(k, A, C, n))∪ T4(A, n, f(k, A, C, n+ 1).

(3) f is not a function with domain predAR(k, A, C, n) and X = ∅.

Thus G is absolute for transitive models of ZF.
Next, the statement (R is set-like on A)M , with M a model of ZF , can be written as

follows:

For all sets A,C ∈M and all k, n ∈ ω there is a set X ∈M such that X = {(k′, A, C, n′) :
k′ < k}.
Clearly this holds in M . It is also clear that this set X is a subset of M .

This verifies the hypotheses of Theorem 14.28, and so Df ′ is absolute for transitive
models of ZF.

Lemma 23.12. Df is absolute for all transitive models of ZF.

Proof.

x = Df(A,C, n) iff ∀y ∈ x∃k ∈ ω[y ∈ Df ′(k, A, C, n)]

∧ ∀k ∈ ω∀y ∈ Df ′(k, A, C, n)[y ∈ x].

The following is the definable power set operation: For any sets A,C,

D(A,C) = {X ⊆ A : ∃n ∈ ω∃s ∈ nA∃R ∈ Df(A,C, n+ 1)[X = {x ∈ A : s⌢〈x〉 ∈ R}]}.

Here s⌢〈x〉 is the member t of n+1A such that s ⊆ t and t(n) = x.
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Lemma 23.13. D(A,C) is absolute for all transitive models of ZF.

Proof.

D = D(A,C) iff ∀X ∈ D∃n ∈ ω∃s ∈ nA∃R ∈ Df(A,C, n+ 1)

[∀x ∈ X(x ∈ A ∧ s⌢〈x〉 ∈ R)

∧ ∀x ∈ A(s⌢〈x〉 ∈ R→ x ∈ X)]

∧ ∀X [∃n ∈ ω∃s ∈ nA∃R ∈ Df(A,C, n+ 1)

[∀x ∈ X(x ∈ A ∧ s⌢〈x〉 ∈ R)

∧ ∀x ∈ A ∧ ∀s ∈ nA(s⌢〈x〉 ∈ R→ x ∈ X)] → X ∈ D]

Here there is an unbounded quantifier ∀X , and one must check that if the statement holds
in a transitive class model of ZF, then it really holds. This is clear.

Lemma 23.14. Let ϕ(v0, . . . , vn−1, x) be a formula of L ′ with the indicated free variables.
Then

∀A∀C∀v0, . . . , vn−1 ∈ A[{x ∈ A : ϕA,C(v0, . . . , vn−1, x)} ∈ D(A,C)].

Proof. Let v0, . . . , vn−1 ∈ A and R = {s ∈ n+1A : ϕA(s(0), . . . , s(n))}. Then by
Lemma 23.2, R ∈ Df(A,C, n+ 1). Clearly

{x ∈ A : ϕA,C(v0, . . . , vn−1, x)} = {x ∈ A : v⌢〈x〉 ∈ R},

and hence {x ∈ A : ϕA,C(v0, . . . , vn−1, x)} ∈ D(A,C).

Lemma 23.15. For any sets A,C and any n ∈ ω, |Df(A,C, n)| ≤ ω.

Lemma 23.16. Let A and C be any sets. Then:
(i) D(A,C) ⊆ P(A).
(ii) If A is transitive, then A ⊆ D(A,C).
(iii) If X ∈ [A]<ω, then X ∈ D(A,C).
(iv) If A is infinite, then |D(A,C)| = |A|.
(v) C ∩A ∈ D(A,C).

Proof. (i) is obvious. For (ii), let ϕ(v, x) be the formula x ∈ v. Then for any v ∈ A
we have v = {x ∈ A : x ∈ v} by the transitivity of A, and so v ∈ D(A,C) by Lemma
23.14.

For (iii), suppose that X ∈ [A]<ω. Then there exist an n ∈ ω and an s : n → A with
rng(s) = X . For each i < n we have

{s ∈ n+1A : s(n) = s(i)} = Diag=(A, n+ 1, i, n) ∈ Df(A,C, n+ 1).

Hence

R
def
= {s ∈ n+1A : s(n) ∈ rng(s ↾ n)} =

⋃

i<n

{s ∈ n+1A : s(n) = s(i)} ∈ Df(A,C, n+ 1).
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Hence
X = {x ∈ A : s⌢〈x〉 ∈ R} ∈ D(A,C),

as desired.
For (iv), note that

D(A,C) =
⋃

n∈ω
s∈nA

{{x ∈ A : s⌢〈x〉 ∈ R} : R ∈ Df(A,C, n)}.

Hence
|D(A,C)| ≤

∑

n∈ω
(|nA| · |Df(A,C, n)|) ≤ ω · |A| · ω = |A|.

On the other hand, {a} ∈ D(A,C) for each a ∈ A by (iii), so |A| ≤ |D(A,C)|. So (iv)
holds.

Finally, if x ∈ C∩A, then A∩C = {x ∈ A : x ∈ C} ∈ D(A,C) by Lemma 23.14.

Now we define the constructible hierarchy. Recall that for any set B, trcl(B) is the tran-
sitive closure of B, i.e., it is the smallest transitive set containing B. It can be defined
recursively using the intuition trcl(B) = B ∪⋃B ∪⋃⋃B ∪ . . .. See Theorem 14.5.

Theorem 23.17. There is a class function F : V × V × On → V such that for any sets
B,C and any ordinal α,

F(B,C, 0) = trcl(B),

F(B,C, α+ 1) = D(F(B,C, α), C),

F(B,C, α) =
⋃

β<α

F(B,C, β) for α limit.

Proof. Let A = V×V×On and R = {((B,C, α), (B,C, β)) : α, β ∈ On and α < β}.
Clearly R is well-founded and set-like on A. Define G : A × V → V by setting, for any
sets A,C, f and any ordinal α,

G(B,C, α, f) =







trcl(B) if α = 0,
D(f(B,C, α′), C) if α = α′ + 1 and f is a function

with domain pred
AR

(B,C, α)
⋃

β<α f(B,C, β) if α is limit and f is a function
with domain predAR(B,C, α)

∅ otherwise.

Let F be obtained by Theorem 5.7. Clearly F is as desired.

With F as in Theorem 23.17 we define

LBCα = F(B,C, α);

Lα(B) = L{B}∅
α ;
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Lα[C] = L∅C
α ;

LBC =
⋃

α∈On

LBCα ;

L = L∅∅

L(B) = LB∅;

L[C] = L∅C .

Corollary 23.18.

LBC0 = trcl(B);

LBCα+1 = D(LBCα , C);

LBCα =
⋃

β<α

LBCβ for α limit.

Corollary 23.19.

L0 = ∅;

Lα+1 = D(Lα, ∅);

Lα =
⋃

β<α

Lβ for α limit.

Corollary 23.20.

L0(B) = trcl(B);

Lα+1(B) = D(Lα(B), ∅);

Lα(B) =
⋃

β<α

Lβ(B) for α limit.

Corollary 23.21.

L0[C] = ∅;

Lα+1[C] = D(Lα[C], C);

Lα[C] =
⋃

β<α

Lβ[C] for α limit.

Lemma 23.22. For any ordinal α,
(i) LBCα is transitive.
(ii) LBCβ ⊆ LBCα for all β < α.
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Proof. We prove both statements simultaneously by induction on α. Both statements
are clear for α = 0. Now assume them for α. By (i) for α and Lemma 23.16(ii), it follows
that V BCα ⊆ D(V BCα , C) = V BCα+1, and this easily gives (ii) for α+ 1. If x ∈ y ∈ LBCα+1, then
y ∈ D(LBCα , C) ⊆ P(LBCα ), so x ∈ LBCα ⊆ LBCα+1. So LBCα+1 is transitive.

If α is a limit ordinal and (i) and (ii) hold for all α′ < α, clearly they hold for α
too.

Now we have a notion of rank for constructible sets too. Let B,C be sets, with B transitive.
For each x ∈ LBC , its LBC-rank is the least ordinal ρ(x) = α such that x ∈ LBCα+1.

Theorem 23.23. Suppose that B and C are sets, with B transitive. Let x ∈ LBC and let
α an ordinal. Then

(i) LBCα = {y ∈ LBC : ρBC(y) < α}.
(ii) For all y ∈ x we have y ∈ LBC , and ρBC(y) < ρBC(x).
(iii) α ∈ L∅C , and ρ∅C(α) = α.
(iv) L∅C

α ∩ On = α.
(v) LBCα ∈ LBCα+1.
(vi) Lα ⊆ Vα for all α.
(vii) [Lα]<ω ⊆ Lα+1 for every α.
(viii) Ln = Vn for every n ∈ ω.
(ix) Lω = Vω.
(x) B ∈ LBC .
(xi) C ∩ LBC ∈ LBC .
(xii) If A ⊆ A′, then D(A,C) ⊆ D(A′, C).
(xiii) L∅C

α ⊆ LBCα .

Proof. (i): Suppose that y ∈ LBCα . Then α 6= 0. If α is a successor ordinal β+1, then
ρBC(y) ≤ β < α. If α is a limit ordinal, then y ∈ LBCβ for some β < α, hence y ∈ LBCβ+1

also, so ρBC(y) ≤ β < α. This proves ⊆.

For ⊇, suppose that β
def
= ρBC(y) < α. Then y ∈ LBCβ+1 ⊆ LBCα , as desired.

(ii): Assume that y ∈ x. Let ρBC(x) = β. Then x ∈ LBCβ+1 = D(LBCβ , C) ⊆ P(LBCβ ),

and so y ∈ LBCβ . Hence ρBC(y) < ρBC(x).
(iv): We prove this by induction on α. It is obvious for α = 0, and the inductive step

when α is limit is clear. So, suppose that we know that L∅C
β ∩ On = β, and α = β + 1. If

γ ∈ L∅C
α ∩ On, then γ ∈ D(L∅C

β , C) ⊆ P(L∅C
β ), so γ ⊆ L∅C

β ∩ On = β; hence γ ≤ β. This

shows that L∅C
α ∩On ⊆ α. If γ < β, then γ ∈ L∅C

β ∩On ⊆ L∅C
α ∩On. Thus it remains only

to show that β ∈ L∅C
α . Now there is a natural ∆0 formula ϕ(x) which expresses that x is

an ordinal:

∀y ∈ x∀z ∈ y(z ∈ x) ∧ ∀y ∈ x∀z ∈ y∀w ∈ z(w ∈ y);

this just says that x is transitive and every member of x is transitive. Since L∅C
β is

transitive, ϕ(x) is absolute for it. Hence

β = L∅C
β ∩ On = {x ∈ L∅C

β : ϕL
∅C
β (x)}.
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Hence β ∈ D(L∅C
β , C) = L∅C

α , as desired.

(iii): By (iv) we have L∅C
α+1 ∩ On = α + 1, and hence α ∈ α + 1 ⊆ L∅C

α+1, so that

α ∈ L∅C and ρ∅C(α) ≤ α. By (iv) again, we cannot have α ∈ L∅C
α , so ρ∅C(α) = α.

(v): LBCα = {x ∈ LBCα : (x = x)L
BC
α } ∈ D(LBCα , C) = LBCα+1.

(vi): An easy induction on α.
(vii): Clearly [LBCα ]<ω ⊆ D(LBCα , C) = LBCα+1.
(viii): By induction on n. It is clear for n = 0. Assume that Ln = Vn. Thus Ln is

finite. Hence by (vii) and (vi),

Vn+1 = P(Vn) = P(Ln) = [Ln]<ω ⊆ Ln+1 ⊆ Vn+1,

as desired.
(ix): Immediate from (viii).
(x): Obvious.
(xi): For each c ∈ C ∩ LBC let α(c) be an ordinal such that c ∈ LBCα(c), and let

β =
⋃

c∈C α(c). Thus C ∩ LBC ⊆ LBCβ . Then by Lemma 23.14,

C ∩ LBC = C ∩ LBCβ = {x ∈ LBC : x ∈ C} ∈ D(LBCβ , C) = LBCβ+1 ⊆ LBC .

(xii): obvious.
(xiii): Clear by induction on α, using (xii).

Lemma 23.24. If α ≥ ω, then |Lα| = |α|.
Proof. First note by Theorem 23.23(iv) that α ⊆ Lα. Hence |α| ≤ |Lα| for every

ordinal α. So we just need to prove that |Lα| ≤ |α| for infinite α.
Now we prove the lemma by induction on α. We assume that for every infinite β < α

we have |Lβ| = |β|. Since Ln is finite for n ∈ ω by theorems 23.23(viii), it follows that
|Lβ| ≤ |α| for every β < α. If α is a limit ordinal, then

|Lα| ≤
∑

β<α

|Lβ| ≤ |α| · |α| = |α|,

If α = β + 1, then by 23.16(iv), |Lα| = |D(Lβ)| = |Lβ| = |β| = |α|.
Lemma 23.24 exhibits an important difference between the hierarchy of sets and the hi-
erarchy of constructible sets. Although the two hierarchies agree up through stage ω, we
have |Vω+1| = 2ω and |Lω+1| = ω, by Theorem 14.9 and Lemma 23.24. The hierarchy of
sets continues to create many new sets at each stage, but the hierarchy of constructible sets
builds new sets much more slowly. But since, as we will see, it is consistent that V = L
so that eventually the same sets could be created.

Theorem 23.25. LBC is a model of ZF.

Proof. We take the axioms one by one, using the results of Chapter 14. Extensionality
and foundation hold since LBC is transitive (by Lemma 23.22(i)); see Theorems 14.10 and
14.16.
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According to Theorem 14.11, to verify that the comprehension axioms hold in LBC

it suffices to take any formula ϕ with free variables among x, z, w1, . . . , wn, assume that
z, w1, . . . , wn ∈ LBC , and prove that

(1) {x ∈ z : ϕL
BC

(x, z, w1, . . . , wn)} ∈ LBC

Clearly there is an ordinal α such that z, w1, . . . , wn ∈ LBCα . By Theorem 14.38, choose
an ordinal β > α such that the formula x ∈ z ∧ ϕ is absolute for LBCβ ,LBC . Then

{x ∈ z : ϕL
BC

(x, z, w1, . . . , wn)}
= {x ∈ LBCβ : (x ∈ z ∧ ϕL

BC

(x, z, w1, . . . , wn))}
= {x ∈ LBCβ : (x ∈ z ∧ ϕLBCβ (x, z, w1, . . . , wn))} (absoluteness)

∈ D(LBCβ , C) (by Lemma 23.14)

= LBCβ+1,

and (1) holds.
Pairing: See Theorem 14.12. Suppose that x, y ∈ LBC . Choose α so that x, y ∈ LBCα .

Then by Lemma 23.14,

{x, y} = {z ∈ LBCα : (z = x ∨ z = y)L
BC
α } ∈ D(LBCα , C) = LBCα+1,

as desired.
Union: See Theorem 14.13. Suppose that x ∈ LBC . Choose α so that x ∈ LBCα . Then

⋃

x = {z : ∃u(z ∈ u ∧ u ∈ x)}

= {z ∈ LBCα : (∃u(z ∈ u ∧ u ∈ x))L
BC
α } (since LBCα is transitive)

∈ D(LBCα , C) = LBCα+1,

as desired.
Power set: See Theorem 14.14. Suppose that x ∈ LBC . For each z ∈ L such that

z ⊆ x choose βz such that z ∈ LBCβz . Let γ = supz⊆x L
BC
βz

. Then, using Theorem 23.23(v),

P(x) ∩ LBC = {z ∈ LBC : z ⊆ x} ⊆ LBCγ ∈ LBCγ+1 ⊆ LBC ,

as desired.
Replacement: See Theorem 14.15. Suppose that ϕ is a formula with free variables

among x, y, A, w1, . . . , wn, we are given A,w1, . . . , wn ∈ L, and

(1) ∀x ∈ A∃ !y[y ∈ LBC ∧ ϕL(x, y, A, w1, . . . , wn)].

For each x ∈ A let zx be such that zx ∈ LBC and ϕL(x, zx, A, w1, . . . , wn); we are using
the replacement axiom here. Then for each x ∈ A choose αx so that zx ∈ LBCαx . Let
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β = supx∈A αx. Suppose now that y ∈ LBC and ϕL
BC

(x, y, A, w1, . . . , wn) for some x ∈ A.
Then by (1), y = zx, and hence y ∈ LBCαx ⊆ LBCγ . This proves that

{y ∈ LBC : ∃x ∈ AϕL
BC

(x, y, A, w1, . . . , wn)} ⊆ LBCγ .

Since LBCγ ∈ LBCγ+1 ⊆ LBC , this is as desired.

Infinity: Since ω ∈ L∅C
ω+1 ⊆ LBCω+1 ⊆ LBC by Theorem 23.23(iv),(xiii), the infinity

axiom holds by Theorem 14.26.

Theorem 23.26. Suppose that M is a transitive proper class model of ZF, B ∈ M, and
C ∩ M ∈ M. Then LBC = (LBC)M ⊆ M.

Proof. Take any ordinal α. Then M 6⊆ LBCα , since M is a proper class; so choose
x ∈ M\LBCα . Then ρBC(x) ≥ α. Now ρBC(x) = (ρBC)M(x) by absoluteness, so ρBC(x) ∈
M, and hence α ∈ M. This proves that On ⊆ M.

It follows by absoluteness of LBC that

(LBC)M = {x ∈ M : (∃α(x ∈ LBCα ))M} =
⋃

α∈On

(LBCα )M =
⋃

α∈On

LBCα = LBC .

Hence LBC = (LBC)M ⊆ M.

By Lemma 23.13 we have:

Corollary 23.27. The function 〈Lα(B) : B ∈ V, α ∈ On〉 is absolute for transitive class
models of ZF.

Corollary 23.28. L is a model of ZF + V = L.

Proof. We want to prove that ∀x ∈ L∃α ∈ L(x ∈ Lα)L). So, let x ∈ L. Choose α
such that x ∈ Lα. Now x ∈ LL

α by Lemma 23.27.

Now we turn to the proof that the axiom of choice holds in L. In fact, we will define a
well-order of L.

We will deal frequently with some obvious lexicographic orders, which we uniformly
denote by <lex, leaving to the reader exactly which lexicographic order is referred to.

Let A be any set, and n any natural number. For each R ∈ {Diag∈(A, n, i, j) :
i, j < n}, let (Ch(0, A, n, R),Ch(1, A, n, R)) be the smallest pair (i, j), in the lexicographic
order of ω × ω such that i, j < n and R = Diag∈(A, n, i, j). Note, for example, that
Diag∈(A, 2, 0, 0) = Diag∈(A, 2, 1, 1) = ∅. Now we define

R <0An S iff (Ch(0, A, n, R),Ch(1, A, n, R)) <lex Ch(0, A, n, S),Ch(1, A, n, S)).

Clearly this is a well-order of {Diag∈(A, n, i, j) : i, j < n}.
In a very analogous way we can define a well-order <1An of {Diag=(A, n, i, j) : i, j <

n}.
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Now we can define a well-order <2An of

{Diag∈(A, n, i, j) : i, j < n} ∪ {Diag=(A, n, i, j) : i, j < n}

as follows. For any R, S in this union,

R <2An S iff R, S ∈ {Diag∈(A, n, i, j) : i, j < n} and R <0An S

or R ∈ {Diag∈(A, n, i, j) : i, j < n}, S /∈ {Diag∈(A, n, i, j) : i, j < n}
or R, S /∈ {Diag∈(A, n, i, j) : i, j < n} and R <1An S.

For the next few constructions, suppose that X and A are sets, n ∈ ω, and we are given a
well-ordering < of X . Then we well-order {nA\R : R ∈ X} by setting

S ≺0,A,n,<,X T iff ∃S′, T ′ ∈ X [S′ < T ′ and S = nA\S′, T = nA\T ′].

We well-order {R ∩ S : R, S ∈ X} as follows. Suppose that U, V ∈ {R ∩ S : R, S ∈ X}.
Let (R, S) be lexicographically smallest in X ×X (using <) such that U = R ∩ S, and let
(R′, S′) be lexicographically smallest in X × X (using <) such that V = R′ ∩ S′. Then
U <1,A,n,<,X V iff (R, S) <lex (R′, S′).

We well-order {Proj′(A,R, n) : R ∈ X} as follows. Suppose U, V ∈ {Proj′(A,R, n) :
R ∈ X}. Let R be<-minimum inX such that U = Proj′(A,R, n), and let S be<-minimum
in X such that V = Proj′(A, S, n). Then U <2,A,n,<,X V iff R < S.

Next, for any set A and any k, n ∈ ω we define a well-order <3kAn of Df ′(k, A, ∅, n)
by induction on k. Let <30An be <2An. Assume that <3kAn has been defined for all n ∈ ω,
and let R, S ∈ Df ′(k + 1, A, ∅, n). Then we define R <3(k+1)An S iff one of the following
conditions holds:

(1) R, S ∈ Df ′(k, A, ∅, n) and R <3kAn S

(2) R ∈ Df ′(k, A, ∅, n) and S /∈ Df ′(k, A, ∅, n).

(3) R, S /∈ Df ′(k, A, ∅, n), R, S ∈ {nA\T : T ∈ Df ′(k, A, ∅, n)}, and

R ≺0,A,n,<3kAn,Df ′(k,A,∅,n) S.

(4) R, S /∈ Df ′(k, A, ∅, n), R ∈ {nA\T : T ∈ Df ′(k, A, ∅, n)}, and S /∈ {nA\T : T ∈
Df ′(k, A, ∅, n)}.

(5) R, S /∈ Df ′(k, A, ∅, n), R, S /∈ {nA\T : T ∈ Df ′(k, A, ∅, n)}, R, S ∈ {T ∩ U : T, U ∈
Df ′(k, A, ∅, n)}, and

R ≺1,A,n,<3kAn,Df ′(k,A,n) S.

(6) R, S /∈ Df ′(k, A, ∅, n), R, S /∈ {nA\T : T ∈ Df ′(k, A, ∅, n)}, R ∈ {T ∩ U : T, U ∈
Df ′(k, A, ∅, n)}, and S /∈ {T ∩ U : T, U ∈ Df ′(k, A, ∅, n)}.

(7) R, S /∈ Df ′(k, A, ∅, n), R, S /∈ {nA\T : T ∈ Df ′(k, A, ∅, n)}, R, S /∈ {T ∩ U : T, U ∈
Df ′(k, A, ∅, n)}, and

R ≺2,A,n,<3kA(n+1),Df ′(k,A,n) S.
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Finally, for any set A and any natural number n, we well-order Df(A, ∅, n) as follows. Let
R, S ∈ Df(A, ∅, n). Let k be minimum such that R ∈ Df ′(k, A, ∅, n), and let l be minimum
such that S ∈ Df ′(l, A, ∅, n). Then we define

R <4An S iff k < l, or k = l and R <3kAn S.

We define a well-ordering <5α of Lα by recursion. First of all, <50= ∅. If α is a limit
ordinal, then for any x, y ∈ Lα we define

x <5α y iff ρ(x) < ρ(y) ∨ [ρ(x) = ρ(y) and x <5ρ(x) y].

Clearly this is a well-order of Lα.
Now suppose that a well-order <5α of Lα has been defined. Then for each n ∈ ω we

define the lexicographic order <6nα on nLα: for any x, y ∈ nLα,

x <6nα y iff ∃k < n[x ↾ k = y ↾ k and x(k) <5α y(k)].

Clearly this is a well-order of nLα. Now for any X ∈ Lα+1 = D(Lα), let n(X) be the least
natural number n such that

∃s ∈ nLα∃R ∈ Df(Lα, n+ 1)[X = {x ∈ Lα : s⌢〈x〉 ∈ R}].

Then let s(X) be the least member of n(X)Lα (under the well-order <6n(X)α) such that

∃R ∈ Df(Lα, n(X) + 1)[X = {x ∈ Lα : s(X)⌢〈x〉 ∈ R}].

Then let R(X) be the least member of Df(Lα, n+1) (under the well-order <4Lα(n+1)) such
that

X = {x ∈ Lα : s(X)⌢〈x〉 ∈ R(X)}].

Finally, for any X, Y ∈ Lα+1 we define X <5(α+1) Y iff one of the following conditions
holds:

(i) X, Y ∈ Lα and X <5α Y .
(ii) X ∈ Lα and Y /∈ Lα.
(iii) X, Y /∈ Lα and one of the following conditions holds:

(a) n(X) < n(Y ).
(b) n(X) = n(Y ) and s(X) <6n(X)α s(Y ).
(c) n(X) = n(Y ) and s(X) = s(Y ) and R(X) <4Lα(n+1) R(Y ).

Clearly this gives a well-order of Lα+1.

We denote the union of all the well-orders <5α for α ∈ On by <L. Under V = L it is a
well-ordering of the universe. Thus we have shown the following.

Theorem 23.29. <L is a well-order of L. Hence L is a model of ZFC. It follows that if
ZF is consistent, then so is ZFC.

Now we work up to proving GCH from V = L. For any set M , let o(M) = M ∩ On.
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Lemma 23.30. If M is a transitive set, then o(M) is an ordinal, and is in fact the first
ordinal not in M .

Proof. Since o(M) is a set of ordinals, for the first statement it suffices to show that
o(M) is transitive. Suppose that α ∈ β ∈ o(M). Then α ∈ M since M is transitive, as
desired.

For the second statement, first of all, o(M) /∈ M , as otherwise o(M) ∈ o(M). Now
suppose that α /∈M . If α < o(M), then α ∈M , contradiction.

Theorem 23.31. There is a sentence ϕ which is a finite conjunction of members of
ZF + V = L such that

ZFC ⊢ ∀M [M transitive ∧ ϕM →M = Lo(M)].

Proof. Let ϕ be a conjunction of V = L together with enough of ZF to prove that
〈Lα : α ∈ On〉 is absolute, and also enough to prove that there is no largest ordinal. Then
for any transitive set M , if ϕM , then o(M) is a limit ordinal, (∀x(x ∈ L))M and hence
M = LM , and

M = LM = {x ∈M : (∃α(x ∈ Lα))M} =
⋃

α∈M
Lα = Lo(M).

Theorem 23.32. If V = L, then for every infinite ordinal α we have P(Lα) ⊆ Lα+ .

Proof. Let ϕ be as in Theorem 23.31. Assume that V = L and α is an infinite
ordinal. Take any A ∈ P(Lα). Let X = Lα ∪ {A}. Clearly X is transitive. By Lemma
23.24, |X | = |α|. Now by Theorem 14.39 with Z = V, let M be a transitive set such
that X ⊆ M , |M | = |α|, and ϕM ↔ ϕV. But ϕV actually holds, so ϕM holds. Hence
M = Lo(M) by Theorem 23.31. Now o(M) = M ∩ On, and |M | = |α|, so o(M) < α+.
Hence A ∈ X ⊆M = Lo(M) ⊆ Lα+ .

Theorem 23.33. V = L implies AC + GCH.

Proof. Assume V = L. Then AC holds by 23.29. By Theorem 23.32 we have, for
any infinite cardinal κ, P(κ) ⊆ P(Lκ) ⊆ Lκ+ . Since |Lκ+ | = κ+ by Lemma 23.25, it
follows that 2κ = κ+.

Corollary 23.34. If ZF is consistent, then so is ZFC + GCH.

Theorem 23.35. V = L implies ♦.

Proof. Assume V = L. By recursion, for each α < ω1 we define (Aα, Cα) to be the
<L-first pair of subsets of α such that Cα is club in α and there is no ξ ∈ Cα such that

Aα ∩ ξ = Aξ, or (Aα, Cα) = (0, 0) if this is not possible. Thus f
def
= 〈(Aα, Cα) : α < ω1〉 is

defined by recursion, and is absolute for models of ZF (or certain finite fragments of it).
We claim that 〈Aα : α < ω1〉 is a ♦-sequence.
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To prove this, we suppose that it is not a ♦-sequence. Then there is a subset A of ω1

such that {α < ω1 : A∩α = Aα} is not stationary, and hence there is a club D in ω1 such
that A ∩ α 6= Aα for all α ∈ D. We take the <L-first such pair (A,D).

(1) A,D ∈ Lω2
.

This holds since ω1 ∈ Lω1+1 by Theorem 23.23(iv), hence ω1 ⊆ Lω1+1, and then (1) follows
by Theorem 23.32.

Now we need the following elementary fact:

(2) If x, y ∈ Lα, then {x, y} ∈ Lα+1.

This is an application of Theorem 23.14

{x, y} = {z ∈ Lα : z = x or z = y} ∈ D(Lα, ∅) = Lα+1.

(3) f ∈ Lω2
.

In fact, fix α < ω1. Then Aα, Cα ∈ Lω2
by the argument proving (1). Hence by (2), also

(α, (Aα, Cα)) ∈ Lω2
. Hence unfixing α, we see that there is a ξ < ω2 such that f ⊆ Lξ;

hence (3) follows by Theorem 23.32.
Now we apply Theorem 14.39 to Z = L to obtain a transitive set P such that Lω2

⊆ P
and certain formulas, relations, and functions in the rest of this proof are absolute for P .

Now by Theorem 14.41, let M be a set such that {ω, ω1, f, (A,D)} ⊆M ⊆ P , M � P ,
and |M | ≤ ω.

(4) ∅ ∈M .

In fact, ∅ ∈ P , so ∀y(y /∈ ∅) holds in P by absoluteness, hence ∃x∀y(y /∈ x) holds in P ,
hence in M since M � P , so choose x ∈ M such that ∀y(y /∈ x) holds in M . Hence it
holds in P since M � P . Since P is transitive, it follows that x = ∅, as desired.

(5) If ξ ∈M ∩ On, then ξ + 1 ∈M .

The proof of (5) is similar to that of (4).

(6) M ∩ ω1 is a countable limit ordinal.

To prove (6) it suffices to show that M ∩ ω1 is an ordinal. In fact, then (5) implies that it
is a limit ordinal, and hence since M is countable, it is countable. To show that M ∩ ω1

is an ordinal it suffices to take any ξ ∈M ∩ ω1 and show that ξ ⊆M , since this will show
that M ∩ω1 is transitive; so as a transitive set of transitive sets, it is an ordinal. If ξ < ω,
clearly ξ ⊆ M by (4) and (5). Suppose that ω ≤ ξ. Let g be a bijection from ω onto ξ.
Then “g is a bijection from ω onto ξ” holds in P by absoluteness, so “∃g(g is a bijection
from ω onto ξ)” holds in P , and hence in M . Choose h ∈ M such that “h is a bijection
from ω onto ξ” holds in M ; then it holds in P , and hence it is really true, by absoluteness.
Now by similar arguments, h(n) ∈M for every n ∈ ω, so ξ ⊆M , as desired.

Let α = M ∩ ω1. Now M is extensional since P is. Let G,N be the Mostowski
collapsing function and the Mostowski collapse, respectively.

(7) G(β) = β for all β < α.
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We prove (7) by induction, using the fact from (6) that α ⊆M :

G(β) = {G(γ) : γ ∈M and γ ∈ β} = {γ : γ ∈ β} = β.

(8) G(A) = A ∩ α.

For,

G(A) = {G(β) : β ∈M and β ∈ A}
= {G(β) : β ∈M ∩ ω1 and β ∈ A}
= {β : β ∈ α and β ∈ A} using (7)

= A ∩ α.

Similarly,

(9) G(D) = D ∩ α.

(10) G(ω1) = α.

In fact,
G(ω1) = {G(β) : β ∈M and β ∈ ω1} = {G(β) : β ∈ α} = α

by (7).
Now by absoluteness,

P |=(A,D) is <L-first such that A,D ⊆ ω1,

D is club in ω1, and A ∩ β 6= 1st(f(β)) for all β ∈ D.

It follows that M is a model of this same formula, and hence applying the isomorphism G
and using the above facts, we get

N |=(A ∩ α,D ∩ α) is <L-first such that D ∩ α is a club in α

and A ∩ α ∩ β 6= 1st(f(β)) for all β ∈ D ∩ α.

By absoluteness, since N is transitive this statment really holds. It follows that A∩α = Aα.
Moreover, α ∈ D since D is club in ω1. This is a contradiction.

EXERCISES

E23.1. In the ordering <L determine the first four sets and their order. Hint: use Corollary
23.5.

E23.2. Suppose that M is a nonempty transitive class satisfying the comprehension axioms,
and also ∀x ⊆ M∃y ∈ M[x ⊆ y]. Show that M is a model of ZF.

E23.3. Show that if M is a transitive proper class model of ZF, then ∀x ⊆ M∃y ∈ M[x ⊆
y].

E23.4. Show that for every ordinal α > ω, |Lα| = |Vα| iff α = iα.
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E23.5. Assume V = L and α > ω. Then Lα = Vα iff α = iα.

E23.6. Assume V = L and prove that Lκ = H(κ) for every infinite cardinal κ.

In the next exercises we develop the theory of ordinal definable sets. OD is the class of
all sets a such that:

∃β > rank(a)∃n ∈ ω∃s ∈ nβ∃R ∈ Df(Vβ , ∅, n+ 1)

∀x ∈ Vβ [s⌢〈x〉 ∈ R↔ x = a].

E23.7. Show that if ϕ(y1, . . . , yn, x) is a formula with at most the indicated variables free,
then

∀α1, . . . , αn∀a[∀x[ϕ(α1, . . . , αn, x) ↔ x = a] → a ∈ OD].

Also show that ∅ ∈ OD.

E23.8. We define s ⊳ t iff s, t ∈ <ωON and one of the following holds:
(i) s = ∅ and t 6= ∅;
(ii) s, t 6= ∅ and max(rng(s)) < max(rng(t));
(iii) s, t 6= ∅ and max(rng(s)) = max(rng(t)) and dmn(s) < dmn(t);
(iv) s, t 6= ∅ and max(rng(s)) = max(rng(t)) and dmn(s) = dmn(t) and ∃k ∈

dmn(s)[s ↾ k = t ↾ k and s(k) < t(k)].

Prove the following:

(v) ⊳ well-orders <ωON.
(vi) ∀t ∈ <ωON[{s : s ⊳ t} is a set].
(vii) For every infinite ordinal α we have |<ωα| = |α|.
(viii) For every uncountable cardinal κ, the set <ωκ is well-ordered by ⊳ in order type

κ and is an initial segment of <ωON.
(ix) <ωω is well-ordered by ⊳ in order type ω2.

We need to get a finer description of the definable sets. That is done by the following
recursive definition of a function En of three variables m,A, n with m,n ∈ ω and A any
set. The definition is by recursion on m, with A fixed. We assume that En(m′, A, n′) is
defined for all m′ < m and for all n′ ∈ ω. Write m = 2i · 3j · 5k · r with r ∈ ω not divisible
by 2, 3, or 5.

En(m,A, n) =







Diag∈(A, n, i, j) if r = 1, k = 0, and i, j < n,
Diag=(A, n, i, j) if r = 1, k = 1, and i, j < n,
nA\En(i, A, n) if r = 1, k = 2,
En(i, A, n) ∩ En(j, A, n) if r = 1, k = 3,
Proj′(A,En(i, A, n+ 1), n) if r = 1, k = 4,
∅ otherwise.

E23.9. Prove that for any m ∈ ω and any set A, Df(A, ∅, n) = {En(m,A, n) : m ∈ ω}.

E23.10. Prove that if ϕ(x0, . . . , xn−1) is a formula with free variables among x0, . . . , xn−1,
then there is an m ∈ ω such that for every set A,

{s ∈ nA : ϕA(s(0), . . . , s(n− 1))} = En(m,A, n).
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E23.11. By exercise E23.8, for each uncountable cardinal κ there is an isomorphism fκ
from (κ,∈) onto (<ωκ,⊳). Then fκ ⊆ fλ for κ < λ. It follows that there is a function
Enon mapping ON onto <ωON such that α < β iff Enon(α) ⊳ Enon(β).

Now we define a class function Enod with domain ON, as follows. For any ordinal γ,

Enod(γ) =







a if there exist s, β,m, n such that Enon(γ) = s⌢〈β, n,m〉
with m,n ∈ ω, β ∈ ON, s ∈ <ωβ, dmn(s) = n, and
∀x ∈ Vβ [s⌢x ∈ En(m,Vβ, n+ 1) ↔ x = a],

0 otherwise.

Prove that OD = {Enod(γ) : γ ∈ ON}.

E23.12. Now we define HOD = {x ∈ OD : trcl(x) ⊆ OD}.
Prove that ON ⊆ HOD and HOD is transitive.

E23.13. Show that (Vα ∩ HOD) ∈ HOD for every ordinal α.

E23.14. Prove without using the axiom of choice that HOD is a model of ZFC.

E23.15. Show that the axiom of choice holds in L(B) iff trcl({A}) can be well-ordered in
L(B).

E23.16. Recall from elementary set theory the following definition of the standard well-
ordering of On × On:

(α, β) ≺ (γ, δ) iff (α ∪ β < γ ∪ δ)
or (α ∪ β = γ ∪ δ and α < γ)

or (α ∪ β = γ ∪ δ and α = γ and β < δ).

Prove that ≺ is absolute for transitive class models of ZF.
Now define ∆ : On → On × On by recursion as follows:

∆(0) = (0, 0);

∆(α+ 1) =







(β, γ + 1) if ∆(α) = (β, γ) and γ < β,
(0, β + 1) if ∆(α) = (β, γ) and γ = β,
(β + 1, γ) if ∆(α) = (β, γ) and β + 1 < γ,
(γ, 0) if ∆(α) = (β, γ) and β + 1 = γ;

∆(α) =≺ -least(β, γ) such that ∀δ < α[∆(δ) ≺ (β, γ)] if α is limit.

Prove:
(1) If α < β, then ∆(α) ≺ ∆(β).
(2) ∆ maps onto On × On.
(3) ∆ is absolute for transitive class models of ZF.
(4) ∆−1 is absolute for transitive class models of ZF.

E23.17. Suppose that M is a transitive class model of ZFC, and every set of ordinals
is in M . Show that M = V . Hint: take any set X . Let κ = |trcl({X})|, and let
f : κ → trcl({X}) be a bijection. Define αEβ iff α, β < κ and f(α) ∈ f(β). Use exercise
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E23.16 to show that E ∈ M . Take the Mostowski collapse of (κ,E) in M , and infer that
X ∈M .

E23.18. Show that if X ⊆ ω1 then CH holds in L(X). Hint: show that if A ∈ P(ω) in
L(X), then there are α, β < ω1 such that X ∈ Lα(X ∩ β).

E23.19. Show that if X ⊆ ω1 then GCH holds in L(X).
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24. Powers of regular cardinals

In this chapter we continue Chapter 16, and describe in more detail the possibilities
for 2κ when κ is regular, where the results are fairly complete. The case of singular κ is
more involved, and there are still important open problems.

To obtain upper bounds on the size of powers the following concept will be used.
Suppose that P is a forcing order and σ ∈ V P. A nice name for a subset of σ is a

member of V P of the form ⋃

π∈dmn(σ)

({π} ×Aπ),

where each Aπ is an antichain in P.

Lemma 24.1. If σ is a P -name and (π, p) ∈ σ, then p  π ∈ σ.

Proof. Let G be generic with p ∈ G. Then by Theorem 15.6, πG ∈ σG.

Proposition 24.2. Let M be a c.t.m. of ZFC, P ∈M a forcing order, and σ ∈MP .
(i) For any µ ∈MP there is a nice name τ ∈MP for a subset of σ such that

(∗) 1  τ = µ ∩ σ.

(ii) If G is P-generic over M and a ⊆ σG in M [G], then a = τG for some nice name
τ for a subset of σ.

Proof. Assume the hypotheses of the proposition.
(i): Assume also that µ ∈MP . For each π ∈ dmn(σ) let Aπ ⊆ P be such that

(1) p  (π ∈ µ ∧ π ∈ σ) for all p ∈ Aπ.

(2) Aπ is an antichain of P.

(3) Aπ is maximal with respect to (1) and (2).

Moreover, we do this definition inside M , so that 〈Aπ : π ∈ dmn(σ)〉 ∈M . Now let

τ =
⋃

π∈dmn(σ)

({π} × Aπ).

To prove (∗), suppose that G is P-generic over M ; we want to show that τG = µG ∩ σG.
First suppose that a ∈ µG ∩ σG. Choose (π, p) ∈ σ such that p ∈ G and a = πG. By

Lemma 24.1, p  π ∈ σ.

(4) Aπ ∩G 6= ∅.

For, suppose that Aπ ∩G = ∅. By Lemma 15.14(i), there is a q ∈ G such that q ⊥ r for all
r ∈ Aπ. Now since πG ∈ µG, by Corollary 15.21 there is a q′ ∈ G such that q′  π ∈ µ. Let
r ∈ G with r ≤ q, q′. Then r  (π ∈ µ ∧ π ∈ σ). It follows that Aπ ∪ {r} is an antichain,
contradicting (3). Thus (4) holds.
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By (4), take q ∈ Aπ ∩ G. Then (π, q) ∈ τ and q ∈ G, so a = πG ∈ τG. Thus we have
shown that µG ∩ σG ⊆ τG.

Now suppose that a ∈ τG. Choose (π, p) ∈ τ such that p ∈ G and a = πG. Thus
p ∈ Aπ, so by (1), p  (π ∈ µ ∧ π ∈ σ). By the definition of forcing, a = πG ∈ µG ∩ σG.
This shows that τG ⊆ µG ∩ σG. Hence τG = µG ∩ σG.

(ii): Assume the hypotheses of (ii). Write a = µG. Taking τ as in (i), we have
a = µG = µG ∩ σG = τG, as desired.

Proposition 24.3. Suppose that M is a c.t.m. of ZFC, and in M , P is a forcing order,
|P | = κ ≥ ω, P has the λ-cc, and µ is an infinite cardinal. Suppose that G is P-generic
over M . Then there is a function in M [G] mapping ((κ<λ)µ)M onto a set containing
P(µ)M [G].

Proof. We do some calculations in M . Each antichain in P has size at most κ<λ.
Since |dmn(µ̌)| has size µ, we thus have at most ν

def
= (κ<λ)µ nice names for subsets of µ̌.

Let 〈τα : α < ν〉 enumerate all of these names. Define

π = {(op(α̌, τα), 1) : α < ν}.

Now πG is a function. For, if x ∈ πG, then there is an α < ν such that x = (α, (τα)G),
by Lemma 15.22. Thus πG is a relation. Now suppose that (x, y), (x, z) ∈ πG. Then there
exist α, β < ν such that (x, y) = (α, (τα)G) and (x, z) = (β, (τβ)). Hence α = β and
y = z. Clearly the domain of πG is ν. By Proposition 24.2, P(µ) ⊆ rng(πG) in M [G], as
desired.

Now we can prove a more precise version of Theorem 16.8.

Theorem 24.4. (Solovay) Let M be a c.t.m. of ZFC. Suppose that κ is a cardinal of M
such that κω = κ. Let P be the partial order fin(κ, 2) ordered by ⊇, and let G be P-generic
over M . Then M [G] has the same cofinalities and cardinals as M , and 2ω = κ in M [G].

Moreover, if λ is any infinite cardinal in M , then κ ≤ (2λ)M [G] ≤ (κλ)M .

Proof. By Theorem 16.8, M [G] has the same cofinalities and cardinals as M and
κ ≤ 2ω.

Note that |fin(κ, 2)| = κ in M . Hence by Proposition 24.3, for any infinite cardinal λ
of M we have

κ ≤ (2ω)M [G] ≤ (2λ)M [G] ≤ ((κ<λ)λ)M = (κλ)M .

Applying this to λ = ω we get 2ω = κ in M [G].

By assuming that the ground model satisfies GCH, which is consistent by the theory of
constructible sets, we can obtain a sharper result.

Corollary 24.5. Suppose that M is a c.t.m. of ZFC + GCH. Suppose that κ is an
uncountable regular cardinal of M . Let P be the partial order fin(κ, 2) ordered by ⊇, and
let G be P-generic over M . Then M [G] has the same cofinalities and cardinals as M , and
2ω = κ in M [G].
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Moreover, for any infinite cardinal λ of M we have

(2λ)M [G] =

{
κ if λ < κ,
λ+ if κ ≤ λ.

Proof. By GCH we have κω = κ. Hence the hypothesis of Theorem 24.4 holds, and
the conclusion follows using GCH in M .

We give several more specific corollaries.

Corollary 24.6. If ZFC is consistent, then so is each of the following:
(i) ZFC + 2ℵ0 = ℵ2.
(ii) ZFC + 2ℵ0 = ℵ203.
(iii) ZFC + 2ℵ0 = ℵω1

.
(iv) ZFC + 2ℵ0 = ℵω4

.

Corollary 24.7. If ZFC+“there is an uncountable regular limit cardinal” is consistent,
so is ZFC+“ 2ω is a regular limit cardinal”.

Corollary 24.8. Suppose that M is a c.t.m. of ZFC. Then there is a generic extension
M [G] such that in it, 2ω = ((2ω)+)M .

Since clearly ((2ω)+)ω = (2ω)+ in M , this is immediate from Theorem 24.4.

Now we turn to powers of regular uncountable cardinals, where similar results hold. We
need some elementary facts about cardinals. For cardinals κ, λ, we define

κ<λ = sup
α<λ

|ακ|.

Note here that the supremum is over all ordinals less than λ, not only cardinals.

Proposition 24.9. Let κ and λ be cardinals with κ ≥ 2 and λ infinite and regular. Then
(κ<λ)<λ = κ<λ.

Proof. Clearly ≥ holds. For ≤, by the fact that λ·λ = λ it suffices to find an injection
from

(1)
⋃

α<λ

α



⋃

β<λ

βκ





into

(2)
⋃

α,β<λ

α×β(κ+ 1).
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Let x be a member of (1), and choose α < λ accordingly. Then for each ξ < α there is a
βx,ξ < λ such that x(ξ) ∈ βx,ξκ. Let γx = supξ<α βx,ξ. Then γx < λ by the regularity of
λ. We now define f(x) with domain α× γx by setting, for any ξ < α and η < γx

(f(x))(ξ, η) =
{

(x(ξ))(η) if η < βx,ξ,
κ otherwise.

Then f is one-one. In fact, suppose that f(x) = f(y). Let the domain of f(x) be α× γx
as above. Suppose that ξ < α. If βx,ξ 6= βy,ξ, say βx,ξ < βy,ξ. Then γx = γy ≥ βy,ξ > βx,ξ,
and (f(x))(ξ, βx,ξ) = κ while (f(y))(ξ, βx,ξ) < κ, contradiction. Hence βx,ξ = βy,ξ. Finally,
take any η < βxξ. Then

(x(ξ))(η) = (f(x))(ξ, η) = (f(y))(ξ, η) = (y(ξ))(η);

it follows that x = y.
Now the direction ≤ follows.

Proposition 24.10. For any cardinals κ, λ, |[κ]<λ| ≤ κ<λ.

Proof. For each cardinal µ < λ define f : µκ → [κ]≤µ\{∅} by setting f(x) = rng(x)
for any x ∈ µκ. Clearly f is an onto map. It follows that |[κ]≤µ| ≤ |µκ| ≤ κ<λ. Hence

|[κ]<λ| =

∣
∣
∣
∣
∣
∣
∣

⋃

µ<λ,
µ a cardinal

[κ]≤µ

∣
∣
∣
∣
∣
∣
∣

≤
∑

µ<λ,
µ a cardinal

|[κ]≤µ|

≤
∑

µ<λ,
µ a cardinal

κ<λ

≤ λ · κ<λ
= κ<λ.

Lemma 24.11. If I, J are sets and λ is an infinite cardinal, then Fn(I, J, λ) has the
(|J |<λ)+-cc.

Proof. Let θ = (|J |<λ)+, and suppose that {pξ : ξ < θ} is a collection of elements
of Fn(I, J, λ); we want to show that there are distinct ξ, η < θ such that pξ and pη are
compatible. We want to apply the general indexed ∆-system theorem 20.4, with κ, λ,
〈Ai : i ∈ I〉 replaced by λ, θ, 〈dmn(pξ) : ξ < θ〉 respectively. Obviously θ is regular. If
α < θ, then |[α]<λ| ≤ |α|<λ (by Proposition 24.10) ≤ (|J |<λ)<λ = |J |<λ (by Proposition
24.9) < θ. Thus we can apply 20.4, and we get J ∈ [θ]θ such that 〈dmn(pξ) : ξ ∈ J〉 is an
indexed ∆-system, say with root r. Now |rJ | ≤ |J |<λ < θ, so there exist a K ∈ [J ]θ and
an f ∈ rJ such that pξ ↾ r = f for all ξ ∈ K. Clearly pξ and pη are compatible for any
two ξ, η ∈ K.
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Lemma 24.12. If I, J are sets and λ is a regular cardinal, then Fn(I, J, λ) is λ-closed.

Proof. Suppose that γ < λ and 〈pξ : ξ < γ〉 is a system of elements of Fn(I, J, λ)
such that pη ⊇ pξ whenever ξ < η < γ. Let q =

⋃

ξ<γ pξ. Clearly q ∈ Fn(I, J, λ) and
q ⊇ pξ for each ξ < γ.

We now need another little fact about cardinal arithmetic.

Lemma 24.13. If λ is regular, then λ<λ = 2<λ.

Proof. Note that if α < λ, then by the regularity of λ,

|αλ| =

∣
∣
∣
∣
∣
∣

⋃

β<λ

αβ

∣
∣
∣
∣
∣
∣

≤
∑

β<λ

|β||α| ≤
∑

β<λ

|max(α, β)||max(α,β)| ≤
∑

β<λ

2|max(α,β)| ≤ 2<λ ≤ λ<λ;

hence the lemma follows.

Lemma 24.14. Suppose that M is a c.t.m. of ZFC, I, J, λ ∈M , and in M , λ is a regular
cardinal, 2<λ = λ and |J | ≤ λ. Then Fn(I, J, λ)M preserves cofinalities and cardinalities.

Proof. By Lemma 24.12, the set Fn(I, J, λ) is λ-closed, and so by Proposition 12.11,
Fn(I, J, λ) preserves cofinalities and cardinalities ≤ λ. Now |J |<λ ≤ λ<λ = 2<λ = λ by
Lemma 24.13, Hence by Lemma 24.11, Fn(I, J, λ) has the λ+-cc. By Proposition 16.5
Fn(I, J, λ) preserves cofinalities and cardinals ≥ λ+.

Now we can give our main theorem concerning making 2λ as large as we want, for any
regular λ given in advance.

Theorem 24.15. Suppose that M is a c.t.m. of ZFC and in M we have cardinals κ, λ
such that λ < κ, λ is regular, 2<λ = λ, and κλ = κ. Let P = Fn(κ, 2, λ) ordered by ⊇.
Then P preserves cofinalities and cardinalities. Let G be P-generic over M . Then

(i) (2λ = κ)M [G].
(ii) If µ and ν are cardinals of M and ω ≤ µ < λ, then (νµ)M = (νµ)M [G].
(iii) For any cardinal µ of M , if µ ≥ λ then (2µ)M [G] = (κµ)M .

Proof. Preservation of cofinalities and cardinalities follows from Lemma 24.14. Now
we turn to (i). To show that κ ≤ (2λ)M [G], we proceed as in the proof of Theorem 16.1
Let g =

⋃
G. So g is a function mapping a subset of κ into 2.

(1) For each α ∈ κ, the set {f ∈ Fn(κ, 2, λ) : α ∈ dmn(f)} is dense in P (and it is a
member of M).

In fact, given f ∈ Fn(κ, 2, λ), either f is already in the above set, or else α /∈ dmn(f) and
then f ∪ {(α, 0)} is an extension of f which is in that set. So (1) holds.

Since G intersects each set (1), it follows that g maps κ into 2. Let (inM) h : κ×λ→ κ
be a bijection. For each α < κ let aα = {ξ ∈ λ : g(h(α, ξ)) = 1}. We claim that aα 6= aβ
for distinct α, β; this will give κ ≤ (2λ)M [G]. The set

{f ∈ Fn(κ, 2, λ) : there is a ξ ∈ λ such that

h(α, ξ), h(β, ξ) ∈ dmn(f) and f(h(α, ξ)) 6= f(h(α, ξ))}
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is dense in P (and it is in M). In fact, let distinct α and β be given, and suppose that
f ∈ Fn(κ, 2, λ). Now {ξ : h(α, ξ) ∈ f or h(β, ξ) ∈ f} has size less than λ, so choose ξ ∈ λ
not in this set. Thus h(α, ξ), h(β, ξ) /∈ f . Let h = f ∪ {(h(α, ξ), 0), (h(β, ξ), 1)}. Then h
extends f and is in the above set, as desired.

It follows that G contains a member of this set. Hence aα 6= aβ . Thus we have now
shown that κ ≤ (2λ)M [G].

For the other inequality, note by Lemma 24.11 that P has the (2<λ)+-cc, and by
hypothesis (2<λ)+ = λ+. By the assumption that κλ = κ we also have |P | = κ. Hence by
Proposition 24.3 the other inequality follows. Thus we have finished the proof of (i).

For (ii), assume the hypothesis. If f ∈M [G] and f : µ→ ν, then f ∈M by Theorem
16.10. Hence (ii) follows.

Finally, for (iii), suppose that µ is a cardinal of M such that µ ≥ λ. By Proposition
24.3 with λ replaced by λ+ we have (2µ)M [G] ≤ (κµ)M . Now (κµ)M ≤ (κµ)M [G] =
((2λ)µ)M [G] = (2µ)M [G], so (iii) holds.

Corollary 24.16. Suppose that M is a c.t.m. of ZFC+GCH, and in M we have cardinals
κ, λ, both regular, with λ < κ. Let P = Fn(κ, 2, λ) ordered by ⊇. Then P preserves
cofinalities and cardinalities. Let G be P-generic over M . Then for any infinite cardinal
µ,

(2µ)M [G] =







µ+ if µ < λ,
κ if λ ≤ µ < κ,
µ+ if κ ≤ µ.

Proof. Immediate from Theorem 24.15.

Theorem 24.15 gives quite a bit of control over what can happen to powers 2κ for κ regular.
We can apply this theorem to obtain a considerable generalization of it.

Theorem 24.17. Suppose that n ∈ ω and M is a c.t.m. of ZFC. Also assume the
following:

(i) λ1 < · · · < λn are regular cardinals in M .
(ii) κ1 ≤ · · · ≤ κn are cardinals in M .
(iii) (cf(κi) > λi)

M for each i = 1, . . . , n.
(iv) (2<λi = λi)

M for each i = 1, . . . , n.
(v) (κλii )M = κi for each i = 1, . . . , n

Then there is a c.t.m. N ⊇M with the same cofinalities and cardinals such that:

(vi) (2λi = κi)
N for each i = 1, . . . , n.

(vii) (2µ)N = (κµn)M for all µ > λn.

Proof. The statement vacuously holds for n = 0. Suppose that it holds for n−1, and
the hypothesis holds for n, where n is a positive integer. Let Pn = Fn(κn, 2, λn). Then by
Lemma 24.11, Pn has the (2<λn)+-cc, i.e., by (iv) it has the λ+

n -cc. By Lemma 24.12 it is
λn-closed. So by Proposition 24.14, Pn preserves all cofinalities and cardinalities. Let G be
Pn-generic over M . By Theorem 24.15, (2λn = κn)M [G], (2µ)M [G] = (κµn)M for all µ > λn,
and also conditions (i)-(v) hold for M [G] for i = 1, . . . , n − 1. Hence by the inductive
hypothesis, there is a c.t.m. N with M [G] ⊆ N such that
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(1) (2λi = κi)
N for each i = 1, . . . , n− 1.

(2) (2µ)N = (κµn−1)M [G] for all µ > λn−1.

In particular,

(2λn)N = (κλnn−1)M [G] ≤ (κλnn )M [G] = ((2λn)λn)M [G] = (2λn)M [G]

= κn = (2λn)M [G] ≤ (2λn)N .

Thus (2λn)N = κn. Furthermore, if µ > λn then

(2µ)N = (κµn−1)M [G] ≤ (κµn)M [G] = ((2λn)µ)M [G] = (2µ)M [G]

= (κµn)M ≤ (κµn)N = ((2λn)µ)N = (2µ)N .

It follows that (2µ)N = (κµn)M . This completes the inductive proof.

Corollary 24.18. Suppose that n ∈ ω and M is a c.t.m. of ZFC + GCH. Also assume
the following:

(i) λ1 < · · · < λn are regular cardinals in M .
(ii) κ1 ≤ · · · ≤ κn are cardinals in M .
(iii) (cf(κi) > λi)

M for each i = 1, . . . , n.

Then there is a c.t.m. N ⊇M with the same cofinalities and cardinals such that:

(iv) (2λi = κi)
N for each i = 1, . . . , n.

(v) (2µ)N = (κµn)M for all µ > λn.

Corollary 24.19. If ZFC is consistent, then so are each of the following:
(i) ZFC + 2ℵ0 = 2ℵ1 = ℵ3.
(ii) ZFC ∪ {2ℵn = ℵn+2 : n < 100}.
(iii) ZFC ∪ {2ℵn = ℵω+1 : n < 300}.
(iv) ZFC ∪ {2ℵn = ℵω+n : n < 33}.

Corollary 24.20. If it is consistent with ZFC that there is an uncountable regular limit
cardinal, then the following is consistent:

ZFC ∪ {2ℵn is the first regular limit cardinal: n < 1000}.
Theorem 24.17 can itself be generalized; the following is the ultimate generalization, in
some sense. We do not give the proof.

Theorem. (Easton) Suppose that M is a c.t.m. of ZFC, and that in M E is a class
function whose domain is the class of all regular cardinals, and whose range is contained
in the class of cardinals of M . Also assume the following in M :

(i) For any regular cardinal λ, cf(E(λ)) > λ.
(ii) If λ < κ are regular cardinals, then E(λ) ≤ E(κ).
Then there is a generic extension M [G] of M preserving cofinalities and cardinals

such that in M [G], 2λ = E(λ) for every regular λ.
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Note that we have always been concerned with 2λ for λ regular; 2λ when λ is singular can
be computed on the basis of what has been done for regular cardinals. It is difficult to
directly do something about 2λ when λ is singular, and there are even hard open problems
remaining concerning this. PCF theory applies to these questions. (PCF = “possible
cofinalities”)

EXERCISES

E24.1. Show that fin(ω, ω1) collapses ω1 to ω, but preserves cardinals ≥ ω2.

E24.2. Suppose that κ is an uncountable regular cardinal of M , and P ∈ M is a κ-cc
forcing order. Assume that C is club in κ, with C ∈ M [G]. Show that there is a C′ ⊆ C
such that C′ ∈ M and C′ is club in κ. Hint: in M [G] let f : κ → κ be such that
∀α < κ[α < f(α) ∈ C]. Apply Theorem 12.4.

E24.3. Suppose that κ is an uncountable regular cardinal of M , and P ∈ M is a κ-cc
forcing order. Assume that S ∈ M is stationary in κ, in the sense of M . Show that it
remains stationary in M [G].

E24.4. Suppose that κ is an uncountable regular cardinal of M , and P ∈M is a κ-closed
forcing order. Assume that S ∈ M is stationary in κ, in the sense of M . Show that it
remains stationary in M [G].

E24.5. Prove that if ZFC is consistent, then so is ZFC + GCH + ¬(V = L).
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25. Isomorphisms and ¬AC

In this chapter we prove that if ZF is consistent, then so is ZF + ¬AC. First, however, we
go into the relationship of isomorphisms of forcing orders to forcing and generic sets; this
is needed for the consistency proof, and is independently interesting and important.

Let P and Q be forcing orders, and suppose that f : P → Q. We define a function f∗
with domain V P by recursion by setting, for any τ ∈ V P ,

f∗(τ) = {(f∗(σ), f(p)) : (σ, p) ∈ τ}.

Proposition 25.1. Suppose that P and Q are forcing orders and f is a function mapping
P into Q. Then

(i) f∗(τ) ∈ V Q for any τ ∈ V P.
(ii) f∗ is absolute for c.t.m. of ZFC.
(iii) If M is a c.t.m. of ZFC, then f∗ maps MP into MQ.

Proof. (i) is easily proved by induction on τ . (ii) follows from absoluteness of recursive
definitions. (iii) follows from (i), (ii).

Again, let P and Q be forcing orders. An isomorphism from P to Q is a bijection f from
P onto Q such that f(1P) = 1Q, and for any p, r ∈ P , p ≤P r iff f(p) ≤Q f(r).

As with other mathematical notions of isomorphisms, an isomorphism of forcing orders
extends in a routine way to mappings of structures derived from the forcing orders. We
give several results which carry out this routine analysis.

Lemma 25.2. If P and Q are forcing orders and f is an isomorphism from P to Q, then
f∗(x̌P) = x̌Q for every set x.

Proof. The proof is by ∈-induction:

f∗(x̌P) = {(f∗(σ), f(p)) : (σ, p) ∈ x̌P}
= {(f∗(y̌P), f(1P)) : y ∈ x}
= {(y̌Q, 1Q) : y ∈ x}
= x̌Q.

Lemma 25.3. Suppose that P,Q,R are forcing orders, g is an isomorphism from P to Q,
and f is an isomorphism from Q to R. Then f ◦ g is an isomorphism from P to R, and
f∗(g∗(τ)) = (f ◦ g)∗(τ) for every τ ∈ V P .

Proof. Obviously f ◦g is an isomorphism from P to R. We prove the second statement
by induction:

f∗(g∗(τ)) = {(f∗(σ), f(p)) : (σ, p) ∈ g∗(τ)}
= {(f∗(g∗(ρ)), f(g(q))) : (ρ, q) ∈ τ}
= {((f ◦ g)∗(ρ), (f ◦ g)(q)) : (ρ, q) ∈ τ}
= (f ◦ g)∗(τ).
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Corollary 25.4. If f is an isomorphism from a forcing order P to a forcing order Q, then
f∗ is a bijection from V P to V Q.

Recall from Chapter 13 the “embedding” of a forcing order P into RO(P); we denote that
embedding by eP. If f is an isomorphism P with Q, then it is easy to see that eQ ◦ f
satisfies the following conditions:

(1) eQ[f [P ]] is dense in RO(Q).
(2) For all p, q ∈ P , if p ≤ q then eQ(f(p)) ≤ eQ(f(q)).
(3) For any p, q ∈ P , p ⊥ q iff eQ(f(p)) · eQ(f(q)) = 0.

Hence from Theorem 13.22 it follows that there is a unique isomorphism f∗ of RO(P) onto
RO(Q) such that f∗ ◦ eP = eQ ◦ f .

Lemma 25.5. Let f be an isomorphism from a forcing order P onto a forcing order Q.
Then

f∗([[ϕ(σ0, . . . , σn−1)]]RO(P)) = [[ϕ(f∗(σ0), . . . , f∗(σn−1))]]RO(Q).

Proof. We omit the subscripts P and Q.
First take atomic equality formulas, by well-founded induction:

f∗([[σ = τ ]]) = f∗
(
∏

(ξ,p)∈τ



−e(p) +
∑

(ρ,q)∈σ
(e(q) · [[ρ = ξ]])





·
∏

(ρ,q)∈σ



−e(q) +
∑

(ξ,p)∈τ
(e(p) · [[ρ = ξ]])





)

=
∏

(ξ,p)∈τ



−f∗(e(p)) +
∑

(ρ,q)∈σ
(f∗(e(q)) · f∗([[ρ = ξ]]))





·
∏

(ρ,q)∈σ



−f∗(e(q)) +
∑

(ξ,p)∈τ
(f∗(e(p)) · f∗([[ρ = ξ]])





=
∏

(ξ,p)∈τ



−e(f(p)) +
∑

(ρ,q)∈σ
(e(f(q)) · [[f∗(ρ) = f∗(ξ)]])





·
∏

(ρ,q)∈σ



−e(f(q)) +
∑

(ξ,p)∈τ
(e(f(p)) · [[f∗(ρ) = f∗(ξ)]])





=
∏

(ξ,p)∈f∗(τ)



−e(p) +
∑

(ρ,q)∈f∗(σ)

(e(q) · [[ρ = ξ]])





·
∏

(ρ,q)∈f∗(σ)



−e(q) +
∑

(ξ,p)∈f∗(τ)

(e(p) · [[ρ = ξ]])





= [[f∗(σ) = f∗(τ)]].
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Now we prove the lemma itself by induction on ϕ, thus officially outside our usual mathe-
matical language. The atomic equality case has already been treated. Here is the remaining
argument, with obvious inductive assumptions:

f∗([[σ ∈ τ ]]) = f∗




∑

(ρ,p)∈τ
(e(p) · [[σ = ρ]])





=
∑

(ρ,p)∈τ
(f∗(e(p)) · f∗([[σ = ρ]]))

=
∑

(ρ,p)∈τ
(e(f(p)) · [[f∗(σ) = f∗(ρ)]])

=
∑

(ϕ,q)∈f∗(τ)

(e(q) · [[f∗(σ) = ϕ]])

= [[f∗(σ) = f∗(τ)]];

f∗([[¬ϕ(σ0, . . . , σn−1)]]) = f∗(−[[ϕ(σ0, . . . , σn−1)]])

= −f∗([[ϕ(σ0, . . . , σn−1)]])

= −[[ϕ(f∗(σ0), . . . , f∗(σn−1))]]

= [[¬ϕ(f∗(σ0), . . . , f∗(σn−1))]];

f∗([[ϕ(σ0, . . . , σn−1)∨ψ(σ0, . . . , σn−1)]])

= f∗([[ϕ(σ0, . . . , σn−1)]] + [[ψ(σ0, . . . , σn−1)]])

= f∗([[ϕ(σ0, . . . , σn−1)]]) + f∗([[ψ(σ0, . . . , σn−1)]])

= [[ϕ(f∗(σ0), . . . , f∗(σn−1))]]) + [[ψ(f∗(σ0), . . . , f∗(σn−1))]])

= [[ϕ(f∗(σ0), . . . , f∗(σn−1)) ∨ ψ(f∗(σ0), . . . , f∗(σn−1))]]);

f∗([[∃xϕ(σ0, . . . , σn−1, x)]]) = f∗
(
∑

τ∈V P
[[ϕ(σ0, . . . , σn−1, τ)]]

)

=
∑

τ∈V Q
f∗([[ϕ(σ0, . . . , σn−1, τ)]])

=
∑

τ∈V Q
[[ϕ(f∗(σ0), . . . , f∗(σn−1), f∗(τ))]])

=
∑

τ∈V Q
[[ϕ(f∗(σ0), . . . , f∗(σn−1), τ)]])

= [[∃xϕ(f∗(σ0), . . . , f∗(σn−1), x)]].

Lemma 25.6. If P and Q are forcing orders and f is an isomorphism of P to Q, then for
any p ∈ P ,

p P ϕ(σ0, . . . , σn−1) iff f(p) Q ϕ(f∗(σ0), . . . , f∗(σn−1)).

Proof.

p  ϕ(σ0, . . . , σn−1) iff e(p) ≤ [[ϕ(σ0, . . . , σn−1)]]
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iff f∗(e(p)) ≤ f∗([[ϕ(σ0, . . . , σn−1)]])

iff e(f(p)) ≤ [[ϕ(f∗(σ0), . . . , f∗(σn−1))

iff f(p)  ϕ(f∗(σ0), . . . , f∗(σn−1)).

Corollary 25.7. If P and Q are forcing orders and f is an isomorphism of P to Q, then
for any p ∈ P ,

p  ϕ(x̌0, . . . , x̌n−1) iff f(p)  ϕ(x̌0, . . . , x̌n−1).

Proof. By Lemmas 25.2 and 25.6.

Lemma 25.8. Suppose that M is a c.t.m. of ZFC, P,Q ∈M are forcing orders, f ∈M is
an isomorphism of P to Q, and G is P-generic over M . Then f [G] is Q-generic over M .
Moreover, if σG ∈ τG, then (f∗(σ))f [G] ∈ (f∗(τ))f [G], and if σG = τG, then (f∗(σ))f [G] =
(f∗(τ))f [G].

Proof. We skip some details. If D ⊆ Q is dense and D ∈ M , clearly f−1[D] ∈ M is
dense in P; choose p ∈ f−1[D] ∩G. Then f(p) ∈ D ∩ f [G]. So f [G] is P-generic over M .

Now suppose that σG ∈ τG. Choose p ∈ G such that p  σ ∈ τ . Then f(p) ∈ f [G]
and f(p)  f∗(σ) ∈ f∗(τ). Hence (f∗(σ))f [G] ∈ (f∗(τ))f [G].

Similarly, σG = τG implies that (f∗(σ))f [G] = (f∗(τ))f [G].

Lemma 25.9. Suppose that M is a c.t.m. of ZFC, P,Q ∈ M are forcing orders, f ∈ M
is an isomorphism of P to Q, and G is P-generic over M . Then M [G] = M [f [G]], and
there is an bijection f⋆ : M [G] →M [G] such that f⋆(σG) = (f∗(σ))f [G] for every σ ∈MP.
Moreover, for x, y ∈M [G] we have x ∈ y iff f⋆(x) ∈ f⋆(y).

Proof. Clearly f [G] ∈ M [G]. Hence by Lemma 15.8, M [f [G]] ⊆ M [G]. Applying
this to f−1, we get M [G] = M [f−1[f [G]]] ⊆M [f [G]]. So M [G] = M [f [G]].

By Lemma 25.8 there is a function f⋆ : M [G] →M [G] such that f⋆(σG) = (f∗(σ))f [G]

for every σ ∈MP. f⋆ is a bijection since

(f−1)⋆(f⋆(σG)) = (f−1)⋆((f∗(σ))f [G]) = ((f−1)∗(f∗(σ))f−1[f [G]] = σG,

so that f−1 ◦ f is the identity on M [G]; and similarly f ◦ f−1 is the identity on M [f [G]] =
M [G]. Finally, by Lemma 25.8, σG ∈ τG iff f⋆(σG) ∈ f⋆(τG).

We now turn to more special considerations needed for our proof of consistency of ¬AC.
P is almost homogeneous iff for all p, q ∈ P there is an automorphism f of P such that

f(p) and q are compatible.

Lemma 25.10. Let P be an almost homogeneous forcing order. Then
(i) If there is a p such that p  ϕ(x̌0, . . . , x̌n−1), then 1  ϕ(x̌0, . . . , x̌n−1).
(ii) Either 1  ϕ(x̌0, . . . , x̌n−1) or 1  ¬ϕ(x̌0, . . . , x̌n−1).

Proof. (i): Assume that p  ϕ(x̌0, . . . , x̌n−1), but suppose that 1 6 ϕ(x̌0, . . . , x̌n−1).
Thus [[ϕ(x̌0, . . . , x̌n−1)]] 6= 1, so there is a q such that e(q) ≤ −[[ϕ(x̌0, . . . , x̌n−1)]]; so
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q  ¬ϕ(x̌0, . . . , x̌n−1). Let f be an automorphism such that f(p) and q are compatible. By
Lemma 25.7, f(p)  ϕ(x̌0, . . . , x̌n−1). If r ≤ f(p), q we then have e(r) ≤ [[ϕ(x̌0, . . . , x̌n−1)]]·
−[[ϕ(x̌0, . . . , x̌n−1)]], contradiction.

(ii): Suppose that 1 6 ϕ(x̌0, . . . , x̌n−1). By (i), p 6 ϕ(x̌0, . . . , x̌n−1) for all p. Hence
1  ¬ϕ(x̌0, . . . , x̌n−1).

Lemma 25.11. Suppose that I and J are sets, κ is an infinite cardinal, and π = 〈πi : i ∈ I〉
is a system of permutations of J . For each f ∈ Fn(I, J, κ) define π◦(f) to be the function
given as follows:

dmn(π◦(f)) = dmn(f);

(π◦(f))(i) = πi(f(i)) for each i ∈ dmn(f).

Then π◦ is an automorphism of Fn(I, J, κ).

Proof. Clearly π◦(f) ∈ Fn(I, J, κ) for any f ∈ Fn(I, J, κ). Now π◦ is one-one:
suppose that π◦(f) = π◦(g). Then

dmn(f) = dmn(π◦(f)) = dmn(π◦(g)) = dmn(g),

and for any i ∈ dmn(f),

f(i) = π−1
i (πi(f(i))) = π−1

i ((π◦(f))(i) = π−1
i ((π◦(g))(i) = π−1

i (πi(g(i))) = g(i).

So f = g.
Next, π◦ maps onto Fn(I, J, κ). For, let g ∈ Fn(I, J, κ). Let f(i) = π−1

i (g(i)) for all
i ∈ dmn(g), with dmn(f) = dmn(g). Clearly π◦(f) = g.

Now suppose that f, g ∈ Fn(I, J, κ) and f ⊆ g. Then for i ∈ dmn(f) we have
(π◦(f))(i) = πi(f(i)) = πi(g(i)) = (π◦(g))(i). So π◦(f) ⊆ π◦(g). The other implication is
proved similarly.

Lemma 25.12. Fn(I, J, κ) is almost homogeneous.

Proof. Suppose that f, g ∈ Fn(I, J, κ). For each i ∈ I let πi be the following
permutation of J : if i /∈ dmn(f) ∩ dmn(g), then πi is the identity on J . If i ∈ dmn(f) ∩
dmn(g), then πi is the transposition (f(i), g(i)) (which may be the identity). Then we
claim that π◦(f) and g are compatible. For, suppose that i ∈ dmn(π◦(f)) ∩ dmn(g) =
dmn(f) ∩ dmn(g). Then (π◦(f))(i) = πi(f(i)) = g(i), as desired.

We now need a basic result about product forcing; this result will be useful also when
discussing iterated forcing later.

Let P and Q be forcing orders. Their product P × Q is defined to be (P ×Q,≤′, 1′),
where

(p1, q1) ≤ (p2, q2) iff p1 ≤ p2 and q1 ≤ q2;

1′ = (1P, 1Q).
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Theorem 25.13. Suppose that M is a c.t.m. of ZFC, P,Q ∈ M are forcing orders,
G1 ⊆ P , and G2 ⊆ Q. Then the following are equivalent:

(i) G0 ×G1 is (P × Q)-generic over M .
(ii) G0 is P-generic over M and G1 is Q-generic over M [G0].
(iii) G1 is Q-generic over M and G0 is P-generic over M [G1].

Moreover, if one of (i)–(iii) holds, then M [G0 ×G1] = M [G0][G1] = M [G1][G0].

Proof. (i)⇒(ii): Assume that G0 × G1 is (P × Q)-generic over M . Suppose that
p ∈ G0 and p ≤ p′ ∈ P . Then (p, 1) ∈ G0 ×G1 and (p, 1) ≤ (p′, 1), so (p′, 1) ∈ G0 ×G1; so
p′ ∈ G0.

Suppose that p, p′ ∈ G0. Then (p, 1), (p′, 1) ∈ G0×G1, so they are compatible. Clearly
this implies that p and p′ are compatible.

Let D ∈ M be a dense subset of P . Define E = {(p, q) ∈ P × Q : p ∈ D}. Then
E ∈M and it is clearly dense in P ×Q. Hence we can choose (p, q) ∈ E ∩ (G0 ×G1). So
p ∈ D ∩G0, as desired.

Thus G0 is P-generic over M .
Now by arguments similar to the above, G1 satisfies the conditions to be Q-generic

over M [G0] except possibly the denseness condition. So, suppose that D ∈ M [G0] is a
dense subset of Q. Take τ ∈MP such that τG0

= D. Then there is a p ∈ G0 such that

(1) p  τ is dense in Q̌.

Define
E = {(p′, q) : p′ ≤ p and p′  q̌ ∈ τ}.

Thus E is a subset of P × Q; we claim that it is dense below (p, 1). To prove this, take
any (p′, q′) ≤ (p, 1). Now p′ ≤ p, so by (1),

p′  ∀x ∈ Q̌∃y ∈ Q̌(y ∈ τ and y ≤ x),

and hence
p′  ∃y ∈ Q̌(y ∈ τ and y ≤ q̌′).

Hence by Proposition 16.16 there is a p′′ ≤ p′ and a q′′ ∈ Q such that

p′′  q̌′′ ∈ τ and q̌′′ ≤ q̌′.

Then by Lemma 25.11, q′′ ≤ q′. Hence p′′ ≤ p′ ≤ p and p′′  q̌′′ ∈ τ , so (p′′, q′′) ∈ E. Also
(p′′, q′′) ≤ (p′, q′). So this proves our claim that E is dense below (p, 1).

Since p ∈ G0, we have (p, 1) ∈ G0 × G1, so by the genericity of G0 × G1 we get
(G0 × G1) ∩ E 6= 0; say that (r, s) ∈ (G0 × G1) ∩ E. Thus r ∈ G0, s ∈ G1, r ≤ p, and
r  š ∈ τ . Hence s ∈ τG = D, so D ∩G1 6= ∅. So we have proved (ii).

(ii)⇒(i): Assume (ii). First we check that G0 × G1 is a filter. Suppose that (p, q) ∈
G0 × G1 and (p, q) ≤ (p′, q′). Then p ≤ p′, hence p′ ∈ G0; similarly, q′ ∈ G1. So
(p′, q′) ∈ G0 ×G1. Now suppose that (p, q), (p′, q′) ∈ G0 × G1. Thus p, p′ ∈ G0, so there
is an r ∈ G0 such that r ≤ p, p′. Similarly we get an s ∈ G1 such that s ≤ q, q′. So
(r, s) ∈ G0 ×G1 and (r, s) ≤ (p, q), (p′, q′). So G0 ×G1 is a filter.
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Now suppose that D ⊆ P ×Q is dense and is in M . Let

D∗ = {q ∈ Q : there is a p ∈ G0 such that (p, q) ∈ D}.
Thus D∗ ∈ M [G0]. Note that if q ∈ D∗ ∩ G1, then with p as in the definition of D∗ we
get (p, q) ∈ D ∩ (G0 × G1). Thus it suffices to show that D∗ is dense in Q. To this end,
suppose that q ∈ Q. Let

E = {p ∈ P : there is a q′ ≤ q such that (p, q′) ∈ D}.
Clearly E ∈ M . Also, E is dense in P : if p ∈ P , choose (p′, q′) ∈ D such that (p′, q′) ≤
(p, q); then p′ ∈ E, as desired. Now since G0 is P-generic over M , choose p ∈ G0 ∩ E.
Then by the definition of E, choose q′ ≤ q such that (p, q′) ∈ D. Thus q′ ∈ D∗ and q′ ≤ q,
as desired. This proves (i).

By symmetry, (i)↔(iii).
Now assume that one of (i)–(iii) holds, and hence all three hold. Now M ⊆M [G0][G1]

and G0 × G1 ∈ M [G0][G1], so by Lemma 15.8, M [G0 × G1] ⊆ M [G0][G1]. On the other
hand, M ⊆M [G0 ×G1] and G0 ∈M [G0 ×G1], so by Lemma 15.8, M [G0] ⊆M [G0 ×G1].
And G1 ∈ M [G0 × G1], so by Lemma 15.8 yet again, M [G0][G1] ⊆ M [G0 × G1]. This
proves that M [G0 ×G1] = M [G0][G1]. By symmetry, M [G0 ×G1] = M [G1][G0].

Lemma 25.14. Suppose that M is a c.t.m. of ZFC, and I, J ∈M are uncountable (in the
sense of M). Let P and Q be the partial orders Fin(I, 2, ω) and Fin(J, 2, ω) respectively.
Then for any formula ϕ(x) and any ordinal α,

1P P (ϕ(α̌P)L(P(ω)) iff 1Q Q (ϕ(α̌Q)L(P(ω)).

Proof. By symmetry, say (|I| ≤ |J |)M . Let R be the partial order Fn(I, J, ω1), and
let H be R-generic over M . Then by the usual argument,

⋃
H is a function mapping I

onto J in M [H]. Thus

(1) (|I| = |J |)M [H].

Next,

(2) If G is P-generic over M [H], then G is P-generic over M and M [G] ⊆ M [H][G] =
M [G][H].

In fact, assume that G is P-generic over M [H]. Obviously then G is P-generic over M . By
Lemma 15.8 we have M [G] ⊆M [H][G]. By Theorem 25.13, M [H][G] = M [G][H].

Recall that P preserves cardinalities. So M [G] has the same cardinals as M .
Now by Lemma 24.12, we know that R is ω1-closed in M .

(3) R is ω1-closed in M [G].

In fact, working in M [G] suppose that β < ω1, p = 〈pα : α < β〉 is a system of members
of R, and pγ ≤ pα whenever α < γ < β. Let τ be a P -name with τG = p, and let q ∈ G
be such that

q τ is a function with domain ω̌1 and range ⊆ Ř

∧ ∀α, γ < β̌[α < γ → τγ ≤ τα].
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In particular we have
q  ∀α < β̌∃s ∈ Ř[τ(α) = s],

and so by Proposition 16.16, for each α < β we can choose rα ∈ G and sα ∈ R such that
rα ≤ q and rα  τ(α̌) = šα. Then

(4) If α < γ < β, then sγ ≤ sα.

In fact, choose t ≤ rα, rγ ; this is possible since rα, rγ ∈ G. Then

t  τ(γ̌) ≤ τ(α̌) ∧ τ(α̌) = šα ∧ τ(γ̌) = šγ ,

hence t  šγ ≤ šα, hence it easily follows that sγ ≤ sα, so that (4) holds.
Thus in M we have a decreasing sequence s = 〈sα : α < β〉, and so there is a t ∈ R

such that t ≤ sα for all α < β. It follows that rα  ť ≤ τ(α̌) for all α < β, and hence
t ≤ pα for all α < β, as desired for (3).

(5) (P(ω))M [G] = (P(ω))M [G][H].

For, if f ∈ ω2 and f ∈ M [G][H], then by (3) and Theorem 16.10 we have f ∈ M [G]. So
(5) holds.

(6) 1P P,M (ϕ(α̌P)L(P(ω)) iff 1P P,M [H] (ϕ(α̌P)L(P(ω)).

In fact, first suppose that 1P P,M (ϕ(α̌P)L(P(ω)); but suppose also that 1P 6P,M [H]

(ϕ(α̌P)L(P(ω)). Let G be P-generic over M [H] such that ¬(ϕ(α̌P)L(P(ω)))M [H][G], and
choose p ∈ G such that p P,M [H] ¬ϕ(α̌P)L(P(ω)). Let G be P-generic over M [H] with

p ∈ G. Hence (¬ϕ(α̌P)L(P(ω)) holds in M [H][G]. By absoluteness and (5), (¬ϕ(α̌P)L(P(ω))

holds in M [G]. But G is P-generic over M , so this contradicts the supposition.
Second, suppose that 1P P,M [H] (ϕ(α̌P)L(P(ω)). Take any G which is P generic over

M [H]. Then ϕ(α)L(P(ω)) holds in M [H][G], and hence in M [G] by absoluteness and (5).
Thus G is P-generic over M and ϕ(α)L(P(ω)) holds in M [G], so there is a p ∈ G such that
p P,M (ϕ(α̌P)L(P(ω)). Hence by Lemmas 25.12 and 25.14 applied to Fin(I, 2) = Fn(I, I, ω)
we get 1P P,M (ϕ(α̌P)L(P(ω)). This proves (6).

By symmetry we have

(7) 1Q Q,M (ϕ(α̌Q)L(P(ω)) iff 1Q Q,M [H] (ϕ(α̌Q)L(P(ω)).

Now in M [H] we have |I| = |J |, as noted above. Hence in M [H], the partial orders P

and Q are isomomorphic. Hence the conclusion of the lemma follows from (6), (7), and
Corollary 25.7.

Theorem 25.17. If ZF is consistent, then so is ZF + ¬AC.

Proof. Assume that ZF is consistent. By the theory of constructibility we know that
also ZFC is consistent, so we take a c.t.m. M of ZFC. Let P = Fn(ω1, 2, ω), and let G be
P-generic over M , and let N = L(P(ω))M [G]. By Theorem 23.25, N is a model of ZF. We
claim that AC fails in N , as desired.
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For, suppose that AC holds in N , and in N let κ = |P(ω)|. Thus (κ̌ = |P(ω)|)L(P(ω))

holds in M [G], and so there is a p ∈ G such that p  (|κ̌| = |P(ω)|)L(P(ω)). Hence
1 P (|κ̌| = |P(ω)|)L(P(ω)) by Lemmas 25.10 and 25.12.

Now let Q be the partial order Fin(|κ|+, 2, ω). By Lemma 25.14 and the preceding
paragraph we have 1 Q (|κ̌| = |P(ω)|)L(P(ω)). Let H be Q-generic over M . Then
(|κ̌| = |P(ω)|)L(P(ω)) holds in M [H]. This means that there is a bijection from κ to
P(ω) in M [H]. But the argument used in Cohen forcing shows that ω has at least |κ|+
subsets in M [H], contradiction.

EXERCISES

E25.1. Show that for any infinite cardinal κ, the partial order Fn(κ, 2, ω) is isomorphic to
Fn(κ× ω, 2, ω).

E25.2. Prove that if P and Q are isomorphic forcing orders, then RO(P) and RO(Q) are
isomorphic Boolean algebras.

E25.3. Give an example of non-isomorphic forcing orders P and Q such that RO(P) and
RO(Q) are isomorphic Boolean algebras.

E25.4. For any system 〈Pi : i ∈ I〉, we define the weak product
∏w
i∈I Pi as follows: the

underlying set is {f ∈∏i∈I Pi : {i ∈ I : f(i) 6= 1} is finite}, with f ≤ g iff f(i) ≤Pi g(i) for
all i ∈ I. Prove that for any infinite cardinal κ, the forcing order fn(κ, 2, ω) is isomorphic
to
∏w
α<κ Pα, where each Pα is equal to fin(ω, 2).

The remaining exercises are concerned with generalizations of the main theorem, Theorem
25.17, of this chapter. Proofs of the consistency of ¬CH date from the 1930’s—long before
forcing, and shortly before constructibility. The proofs were not relative to ZFC; one had
to admit many “Urelemente”—elements with no members. But the basic idea of those
proofs can be adapted to ZFC, and Theorem 25.17 is of this sort. We give some exercises
which form an introduction to the rather extensive work that has been done in this area.
Most of this work is to show that such-and-such a statement, while a consequence of ZFC,
cannot be proved in ZF, but does not imply AC either.

E25.5. We expand the language of set theory by adding an individual constant ∅. An
Urelement is an object a such that a 6= ∅ but a does not have any elements. (Plural is
Urelemente.) A set is an object x which is either ∅ or has an element. Both of these are
just definitions, formally like this:

Ur(a) ↔ a 6= ∅ ∧ ∀x(x /∈ a);

Set(x) ↔ x = ∅ ∨ ∃y(y ∈ x).

Now we let ZFU be the following set of axioms in this language:

All the axioms of ZF except extensionality and foundation.
∀x[¬(x ∈ ∅)].
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∀x, y[Set(x) ∧ Set(y) ∧ ∀z(z ∈ x↔ z ∈ y) → x = y].
∀x[Set(x) ∧ x 6= ∅ → ∃y ∈ x∀z(z ∈ x→ z /∈ y)].

We also reformulate the axiom of choice for ZFU; it is the following statement:

∀A {Set(A ) ∧ ∀x ∈ A [Set(x) ∧ x 6= ∅]

∧ ∀x ∈ A ∀y ∈ A [x 6= y → ∀z[¬(z ∈ x ∧ z ∈ y)]]

→ ∃B∀x ∈ A ∃!y(y ∈ x ∧ y ∈ B)}.

We let ZFCU be all of these axioms.

One can adapt most of elementary set theory to use these axioms; browsing through the
first few chapters should convince one of this.

In this exercise, give a new definition of ordinal.
Also, show that if we add the axiom ¬∃a[Ur(a)] we get a theory equivalent to ZF.

E25.6. Let κ be an infinite cardinal. Let α be an infinite ordinal such that κ ≤ Vα Since
|Vα+1| = 2|Vα|, we also have κ ≤ |Vα+1\Vα|. Let U be a subset of Vα+1\Vα of size κ. Let
Z be any element of U , fixed for what follows. We define 〈Wβ : β ∈ On〉 by recursion:

W0 = U ;

Wβ+1 = Wβ ∪ (P(Wβ)\{∅});

Wβ =
⋃

γ<β

Wγ for β limit;

W =
⋃

β∈Ord

Wβ .

Prove the following:

(1) If γ < β, then Wγ ⊆ Wβ.

(2) If x ∈ y ∈Wβ\U , then x ∈Wβ . (Thus y ∈W\U implies that y ⊆W .)

(3) Wβ ∩ Vα = ∅ for all β.

Now for each x ∈W we define its rank rankW (x) in this new hierarchy. Let β be minimum
such that x ∈ Wβ. If β = 0, let rankW (x) = −1. Otherwise, β is a successor ordinal γ + 1
and we define rankW (x) = γ.

(4) Wβ = {x ∈W : rankW (x) < β}.

(5) If x, y ∈ W and x ∈ y, then rankW (x) < rankW (y).

(6) If x ∈W\U , then rankW (x) = supy∈x(rankW (y) + 1).

(7) If x ∈W , then rank(x) = α+ 1 + rankW (x).

(8) If a ∈ W\U , then W ∩ a 6= ∅.

(9) For any a ∈W we have UrW (a) iff a ∈ U\{Z}.
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(10) For any a ∈W we have SetW (a) iff a /∈ U\{Z}.

This is clear from (9).

E25.7. (Continuing E25.6) Show that (W,Z) is a model of ZFCU.

E25.8. (Continuing E25.7) Let f be a permutation of U\{Z}. Show that f extends to an
automorphism f+ of the structure (W,∈, Z) in a natural way, so that f+(a) = {f+(b) :
b ∈ W, b ∈ a} for every a ∈W .

E25.9. (Continuing E25.8) An element a of W is W -transitive iff for all b, c ∈ W , if
b ∈ c ∈ a then b ∈ a. Note that each member of U , and even each set of members of U ,
are symmetric. Show that for any a ∈ W\U there is a smallest W -transitive set T such
that either T = a ∈ U or a /∈ U and a ⊆ T . We call this set (which is clearly unique) the
W -transitive closure of a.

Also show that if f is a permutation of U\{Z} and a ∈ W\U , then f+ maps the
W -transitive closure of a onto the W -transitive closure of f+(a).

E25.10. (Continuing E25.9) An element a of W is symmetric iff there is a finite subset F
of U\{Z} such that f+(a) = a for every permutation f of U\{Z} such that f(x) = x for
all x ∈ F . Then we call a hereditarily symmetric iff every b in the W -transitive closure of
{a} is symmetric. Let H be the class of all hereditarily symmetric elements of W . Prove:

(i) Every element of U is hereditarily symmetric.
(ii) Prove that if a is symmetric and f is any permutation of U\{Z}, then f+(a) is

symmetric.
(iii) Prove that if f is any permutation of U\{Z}, then f+ ↾ H is an automorphism

of (H,Z).
(iv) Prove that if ϕ(v0, . . . , vn−1) is any formula, v0, . . . , vn−1 ∈ H, ϕH holds, and f

is any automorphism of (H,Z), then ϕH(f+(v0), . . . , f+(vn−1)).
(v) Prove that (H,Z) is a model of ZFU. where H is the class of all hereditrily

symmetric elements of W .

E25.11. (Continuing E25.10) (i) We make a metalanguage definition, associating with each
natural number m a term m in a definitional extension of the language for ZFU: 0 = ∅,
and m+ 1 = m ∪ {m}. Prove that ZFU |= m ∈ ω for all m ∈ ω.

(ii) Prove that if m < n < ω, then ZFU |= m ∈ n ∧m 6= n.
(iii) Let ZFUI be the theory ZFU together with each of the following sentences, for

m ∈ ω:

∃v0 . . . vm




∧

i≤m
Ur(vi) ∧

∧

0≤i<j≤m
[¬(vi = vj)]



 .

Prove that AC cannot be proved in ZFUI.
Hint: In fact, show that ZFUI cannot prove that there is a one-one function mapping

ω into Ur. For this, take the above model (H,Z) with κ infinite, hence with U infinite.
Assume that f ∈ H is such that

(H,Z) |= f is a one-one function mapping ω into Ur,
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and get a contradiction.
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26. Embeddings, iterated forcing, and Martin’s axiom

In this chapter we mainly develop iterated forcing. The idea of iterated forcing is to
construct in succession M [G0], M [G0][G1], etc., continuing transfinitely, but stopping at
some stage M [G0][G1] . . . [Gα]. Here G0 is P0-generic over M , G1 is P1-generic over M [G0],
etc., where P0 is a forcing order in M , P1 is a forcing order in M [G0], etc.

Note that after the famous “. . .” in such an iteration one cannot simply take the union
of preceding models. This has already been observed in exercise E15.13. We give here a
solution of that exercise, since this helps motivate the way that iterated forcing is defined.
Take the simple case in which we are given a forcing order P in M such that for every
p ∈ P there are incompatible q, r ≤ p, and form

M = M0 ⊆M1 ⊆M2 ⊆ · · ·

where for each n, Mn+1 = Mn[Gn] for some Gn which is P-generic over Mn. We claim
that

⋃

n∈ωMn does not satisfy the power set axiom. For, assume that R =
⋃

n∈ωMn does
satisfy the power set axiom. Then R |= ∃y∀z(z ⊆ P → z ∈ y). Choose y ∈ R so that
R |= ∀z(z ⊆ P → z ∈ y). Say y ∈ Mn. Then R |= Gn ⊆ P → z ∈ y. By absoluteness,
R |= Gn ⊆ P . So R |= Gn ∈ y, hence Gn ∈ y ∈Mn. This contradicts Lemma 11.2.

Thus care must be taken at limit steps in an iteration.
A remarkable fact about iteration is that the final stage can be defined as a simple

generic extension of M with respect to a (complicated) forcing order. In fact, the official
definition of iterated forcing will have this property built-in.

Usually a single step in an iteration is the most important, with the gluing together of
all the single steps a technical matter. Such a single step amounts to seeing what happens
in the situation M [G][H], and we first deal with that in detail.

Since we will be dealing with at least two forcing orders at the same time, it is
important to be rather precise with the notation. So we return to the official notation
P = (P,≤, 1) for forcing orders introduced in Chapter 13. Now we want to be even more
precise, and write P = (PP,≤P, 1P) to indicate the dependence on the particular forcing
order.

Let M be a c.t.m. of ZFC, and let P ∈M be a forcing order. A P-name for a forcing
order is a P-name π = op(op(π0, π1), π2) such that π2 ∈ dmn(π0) and

1P P π
2 ∈ π0 and π1 is a forcing order on π0 with largest element π2.

Sometimes we denote π1, π2 by ≤π , and 1π respectively. Recall from before 15.22 the
definition of op.

Thus if G is P-generic over M , then πG is a forcing order in M [G]. We now want to
define a single forcing order in M which embodies both P and πG, in a sense. So we define
a forcing order P ∗ π in M . The underlying set of this forcing order is

{(p, τ) : p ∈ PP, τ ∈ dmn(π0), and p P τ ∈ π0}.

The order in P ∗ π is given by

(p, τ) ≤P∗π (q, σ) iff p ≤P q and p P τ ≤π σ.
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Finally, we let 1P∗π = (1P, 1π).
We have given the definition here replete with all necessary subscripts. But from now

on we omit some subscripts when no confusion is likely. We illustrate this simplification
by giving the proof of the following theorem first without subscripts and then with them.

Proposition 26.1. Under the above notation, P ∗ π is a forcing order in M .

Proof. Suppose that (p, τ) ∈ P ∗ π. Then 1  ∀x ∈ π0(x ≤ x) and p  τ ∈ π0, so
p  τ ≤ τ . Hence (p, τ) ≤ (p, τ).

Suppose that (p, τ) ≤ (q, σ) ≤ (r, ϕ). Then p ≤ q ≤ r, so p ≤ r. Also, p  τ ≤ σ and
q  σ ≤ ϕ, so, since p ≤ q, p  τ ≤ ϕ. Thus (p, τ) ≤ (r, ϕ).

If (p, τ) ∈ P ∗ π, then p ≤ 1 and p  τ ≤ 1, so (p, τ) ≤ (1, 1).

Proof with subscripts. Suppose that (p, τ) ∈ P ∗ π. Then 1P P ∀x ∈ π0(x ≤π x)
and p P τ ∈ π0, so p P τ ≤π τ . So (p, τ) ≤P∗π (p, τ).

Suppose that (p, τ) ≤P∗π (q, σ) ≤P∗π (r, ϕ). Then p ≤P q ≤P r, so p ≤P r. Also,
p P τ ≤π σ and q P σ ≤π ϕ, so, since p ≤P q, p P τ ≤π ϕ. Thus (p, τ) ≤P∗π (r, ϕ).

If (p, τ) ∈ P ∗ π, then p ≤P 1 and p P τ ≤π 1π, so (p, τ) ≤P∗π (1P, 1π).

We now need to digress into more of the general theory of forcing orders and forcing. If P

and Q are forcing orders, a function i : PP → PQ is a complete embedding iff the following
conditions hold:

(1) i(1) = 1.

(2) For all p, p′ ∈ PP, if p′ ≤ p then i(p′) ≤ i(p).

(3) For all p, p′ ∈ PP, p ⊥ p′ iff i(p) ⊥ i(p′).

(4) For any q ∈ PQ there is a p ∈ PP, which is called a reduction of q to P, such that for
all p′ ∈ PP, if p′ ≤ p then i(p′) and q are compatible.

Proposition 26.2. Suppose P and Q are forcing orders and i : PP → PQ. Then i is a
complete embedding iff (1)–(3) hold together with
(5) For all A ⊆ P, if A is a maximal antichain in P, then i[A] is a maximal antichain in
Q.

Proof. ⇒: Assume that i is a complete embedding, and suppose that A ⊆ P is a
maximal antichain in P. Let q ∈ Q. Choose p by (4). Then there is a p′ ∈ A such that
p and p′ are compatible. Say p′′ ≤ p, p′. Then by (4), i(p′′) and q are compatible. By
(2), i(p′′) ≤ i(p′). Thus i(p′) and q are compatible. This shows that i[A] is a maximal
antichain in Q.

⇐: Assume (5), and suppose that q ∈ Q. Let A ⊆ P be maximal such that the
following hold:

(a) p ⊥ p′ for all distinct p, p′ ∈ A.
(b) i(p) ⊥ q for all p ∈ A.

Then by (b) and (3), i[A] is an antichain in Q, but it is not maximal. Hence by (5), A is
not a maximal antichain. So there is a p ∈ P such that p ⊥ p′′ for all p′′ ∈ A. Suppose that
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p′ ∈ P and p′ ≤ p. Then also p′ ⊥ p′′ for all p′′ ∈ A. By the maximality of A, it follows
that i(p′) and q are compatible.

Theorem 26.3. Suppose that M is a c.t.m. of ZFC, and in M i is a complete embedding
of a forcing order P into a forcing order Q. Suppose that H is Q-generic over M . Then
i−1[H] is P-generic over M , and M [i−1[H]] ⊆M [H].

Proof. To show that i−1[H] is P-generic over M we will apply Proposition 15.3 and
show that i−1[H] is upward closed, any two members of it are compatible, and it intersects
every dense set which is in M .

Suppose that p ≥ p′ ∈ i−1[H]. Thus by (1), i(p) ≥ i(p′) ∈ H, so i(p) ∈ H and hence
p ∈ i−1[H].

Suppose that p, q ∈ i−1[H]. Thus i(p), i(q) ∈ H, so i(p) and i(q) are compatible.
Hence p and q are compatible by (2).

Suppose that D ⊆ PP is dense and is in M . Let

E = {q ∈ PQ : there is a u ∈ D such that q ≤ i(u)}.
Clearly E is in M . We claim that it is dense in Q. To prove this, suppose that s ∈ PQ.
Let t ∈ PP be a reduction of s to P. Choose u ∈ D such that u ≤ t. Then by the definition
of reduction it follows that i(u) and s are compatible. Say q ≤ i(u), s. Then q ∈ E and
q ≤ s, as desired.

So, choose q ∈ E ∩ H. Then there is a u ∈ D such that q ≤ i(u). It follows that
i(u) ∈ H, and hence u ∈ i−1[H] ∩D, as desired.

So we have checked that i−1[H] is P-generic over M .
Now i ∈M ⊆M [H], so i−1[H] ∈M [H] by absoluteness. It follows from Lemma 15.8

that M [i−1[H]] ⊆M [H].

For the next theorem, recall the definition of i∗ from Chapter 25.

Theorem 26.4. Suppose that P and Q are forcing orders and i is a function mapping P
into Q. Suppose that M is a c.t.m. of ZFC. Then

(i) If H ⊆ Q and τ ∈MP, then val(τ, i−1[H]) = val(i∗(τ), H).
(ii) Assume that i is a complete embedding of P into Q. Suppose that H is Q-generic

over M and ϕ(x1, . . . , xn) is a formula which is absolute for c.t.m. of ZFC. Then for any
p ∈ P ,

p P ϕ(τ1, . . . , τn) iff i(p) Q ϕ(i∗(τ1), . . . , i∗(τn)).

Proof. (i): by induction on τ . First suppose that x ∈ val(τ, i−1[H]). Choose (σ, p) ∈
τ such that p ∈ i−1[H] and x = val(σ, i−1[H]). Then i(p) ∈ H and, by the inductive
hypothesis, x = val(i∗(σ), H). Thus (i∗(σ), i(p)) ∈ i∗(τ). So x ∈ val(i∗(τ), H).

Conversely, suppose that x ∈ val(i∗(τ), H). Choose (σ, p) ∈ τ so that i(p) ∈ H and
x = val(i∗(σ), H). Then p ∈ i−1[H] and, by the inductive hypothesis, x = val(σ, i−1[H]).
So x ∈ val(τ, i−1[H]).

(ii): For ⇒, assume that p P ϕ(τ1, . . . , τn). Let H be Q-generic over Q with i(p) ∈ H.
Then p ∈ i−1[H], and i−1[H] is P-generic over M by 26.3. Hence by the external definition
of forcing,

ϕ(val(τ1, i
−1[H]), . . . , val(τn, i

−1[H]))
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holds in M [i−1[H]]. Now by (i), val(τj , i
−1[H]) = val(i∗(τj), H) for each j = 1, . . . , n, and

M [i−1[H]] ⊆M [H] by 26.3, so by absoluteness we see that

ϕ(val(i∗(τ1), H), . . . , val(i∗(τn), H))

holds in M [H]. Hence by the definition of forcing, i(p) Q ϕ(i∗(τ1), . . . , i∗(τn)).
For ⇐, suppose that it is not the case that p P ϕ(τ1, . . . , τn). Then there

is a q ≤ p such that q P ¬ϕ(τ1, . . . , τn). By the direction ⇒, we then have
i(q) Q ¬ϕ(i∗(τ1), . . . , i∗(τn)). Since i(q) ≤ i(p), it follows that it is not the case that
i(p) Q ¬ϕ(i∗(τ1), . . . , i∗(τn)).

We return to our discussion of two-stage iterations. With the notation introduced above,
define i(p) = (p, 1π).

Proposition 26.5. Under the above notation, i is a complete embedding of P into P ∗ π.

Proof. (1) and (2) are easy to check. For (3), let (p, τ) ∈ P∗π be given. We claim that
p is a reduction of (p, τ) to P. For, suppose that q ≤ p. Then i(q) = (q, 1) is compatible
with (p, τ), since (q, τ) ∈ P ∗ π and (q, τ) ≤ (q, 1), (p, τ).

Proposition 26.6. Again assume the above notation. Suppose that G is P-generic over
M , ρ is a P-name, and ρG ∈ π0

G. then there is a (r, σ) ∈ P ∗ π such that r ∈ G and
r  ρ = σ ∧ σ ∈ π0.

Proof. Choose q ∈ G such that q  ρ ∈ π0. Then by Lemma 15.17 choose r ≤ q with
r ∈ G such that for some (σ, s) ∈ π0 we have r ≤ s and r  ρ = σ. Since r ≤ q, we have
r  ρ ∈ π0, so by the external definition of forcing, r  σ ∈ π0. Clearly (r, σ) ∈ P∗π.

Next, suppose that G is P-generic over M and H ⊆ π0
G. Then we define

G ∗H = {(p, τ) ∈ P ∗ π : p ∈ G and τG ∈ H}.

Theorem 26.7. Suppose that M is a c.t.m. of ZFC, P is a forcing order in M , and π is
a P-name for a forcing order in M .

If G is P-generic over M and H is πG-generic over M [G], then G∗H is (P∗π)-generic
over M , and M [G ∗H] = M [G][H].

Proof. Suppose that (p, τ) ∈ G ∗H and (p, τ) ≤ (q, σ). Thus p ∈ G, τG ∈ H, p ≤ q,
and p  τ ≤ σ. Hence q ∈ G. Also, τG ≤ σG, and so σG ∈ H. Hence (q, σ) ∈ G ∗H.

Suppose that (p, τ), (q, σ) ∈ G∗H. Then p ∈ G, τG ∈ H, q ∈ G, and σG ∈ H. Choose
ρG ∈ H such that ρG ≤ τG, σG. By Proposition 26.6 choose (r, ϕ) ∈ P ∗ π such that r ∈ G
and r  ρ = ϕ. Also choose s, t ∈ G so that s  ρ ≤ τ and t  ρ ≤ σ. Finally, take
u ≤ p, q, r, s, t. Then (u, ϕ) ∈ P ∗ π and (u, ϕ) ≤ (p, τ), (q, σ).

Now suppose that D ⊆ P ∗ π is dense in P ∗ π. Let

F = {σG : (q, σ) ∈ D for some q ∈ G and some σ}.
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We claim that F is dense in πG. To check this, let x ∈ πG; say x = ρG with (ρ, q) ∈ π and
q ∈ G. Thus (q, ρ) ∈ P ∗ π. Now we claim that

K
def
= {s ∈ P : (s, σ) ≤ (q, ρ) for some σ such that (s, σ) ∈ D}

is dense below q. For, suppose that r ≤ q. Then r  ρ ∈ π, so (r, ρ) ∈ P ∗ π. Choose
(s, σ) ∈ D such that (s, σ) ≤ (r, ρ). Thus s ∈ K and s ≤ r, as desired.

Now let s ∈ G ∩K; say (s, σ) ≤ (q, ρ) with (s, σ) ∈ D. Then s  σ ≤ ρ, so σG ≤ ρG.
Since s ∈ G, this shows that F is dense.

Choose σG ∈ F ∩H. Say (q, σ) ∈ D with q ∈ G. Then (q, σ) ∈ D∩(G∗H), as desired.
For the final statement of the theorem, note that G ∈ M [G ∗ H], since p ∈ G iff

(p, 1) ∈ G ∗H. Hence M [G] ⊆M [G ∗H] by Lemma 15.8. Also, H ∈M [G ∗H], since

H = {x : there is a (q, τ) ∈ G ∗H such that x = τG}.

HenceM [G][H] ⊆M [G∗H]. Conversely, clearlyG∗H ∈M [G][H], soM [G∗H] ⊆M [G][H].

Theorem 26.8. Suppose that M is a c.t.m. of ZFC, P is a forcing order in M , and π is
a P-name for a forcing order in M . Let i be the complete embedding defined above.

Suppose that K is (P ∗ π)-generic over M . Define G = i−1[K] and

H = {τG : τ ∈ dmn(π0) and (q, τ) ∈ K for some q}.

Then G is P-generic over M , H is πG-generic over M [G], K = G ∗ H, and M [K] =
M [G][H].

Proof. By Theorem 26.3, G is P-generic over M and M [G] ⊆M [K].
Now suppose that x ∈ H and x ≤ y; we want to show that y ∈ H. Write x = τG

with τ ∈ dmn(π0) and (q, τ) ∈ K for some q. We are assuming that y ∈ π0
G. So there

is an (σ, s) ∈ π0 such that s ∈ G and y = σG. Since τG ≤ σG, choose p ∈ G such that
p  τ ≤ σ. Since p ∈ G, we have (p, 1) ∈ K. Also (q, τ) ∈ K, so we can choose (r, ρ) ∈ K
such that (r, ρ) ≤ (p, 1), (q, τ). Thus r ≤ p, so r  τ ≤ σ. Also, from (r, ρ) ≤ (q, τ) we see
that r  ρ ≤ τ . So r  ρ ≤ σ. Hence (r, ρ) ≤ (r, σ), and hence (r, σ) ∈ K. This shows
that y = σG ∈ H.

Next suppose that x, y ∈ H; we want to find a common extension. Write x = τG with
τ ∈ dmn(π0) and (q, τ) ∈ K, and y = σG with σ ∈ dmn(π0) and (s, σ) ∈ K. Choose
(p, ρ) ≤ (q, τ), (s, σ) with (p, ρ) ∈ K. Then also (p, 1) ∈ K, so p ∈ G. Also, p  ρ ≤ τ , so
ρG ≤ τG = x. Similarly, ρG ≤ σG.

Next let D ∈M [G] be a dense subset of πG; we want to show that D ∩H 6= ∅. Let δ
be a P-name such that δG = D. Then there is a p ∈ G such that

p  “δ is dense in π”.

Let
D′ = {(q, τ) ∈ P ∗ π : q  τ ∈ δ}.
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We claim that D′ is dense below (p, 1). For, suppose that (r, ρ) ≤ (p, 1). Then r 
“δ is dense in π”, and r  ρ ∈ π0, so

r  ∃x ∈ π0(x ∈ π0 ∧ x ∈ δ ∧ x ≤ ρ).

Hence by Proposition 6.16 there exist s ≤ r and τ ∈ dmn(π0) such that

s  τ ∈ π0 ∧ τ ∈ δ ∧ τ ≤ ρ.

Thus (s, τ) ∈ P∗π, (s, τ) ≤ (r, ρ), and s  τ ∈ δ. Thus (s, τ) ∈ D′ and (s, τ) ≤ (r, ρ). This
proves that D′ is dense below (p, 1).

Now p ∈ G, so (p, 1) ∈ K. Hence there is a (q, τ) ∈ D′ ∩K. Hence also (q, 1) ∈ K, so
q ∈ G. Since q  τ ∈ δ, it follows that τG ∈ δG = D. Clearly also τG ∈ H. This finishes
the proof that H is πG-generic over M [G].

Next we show that K ⊆ G ∗ H. If (p, τ) ∈ K, then also (p, 1) ∈ K, and so p ∈ G.
Clearly also τG ∈ H, so (p, τ) ∈ G ∗H.

Now we show that G ∗H ⊆ K. Let (p, τ) ∈ G ∗H. Thus p ∈ G and τG ∈ H. Hence
(p, 1) ∈ K. By the definition of H, there exist σ ∈ dmn(π0) and q such that (q, σ) ∈ K
and τG = σG. Choose r ∈ G such that r  τ = σ. So (r, 1) ∈ K. Let (s, ϕ) ∈ K be such
that (s, ϕ) ≤ (p, 1), (q, σ), (r, 1). Since (s, ϕ) ≤ (q, σ), we have s  ϕ ≤ σ. Also, s ≤ r, so
s  τ = σ. Hence s  ϕ ≤ τ . Hence (s, ϕ) ≤ (p, τ), and so (p, τ) ∈ K, as desired.

The last part of the theorem follows from Theorem 26.7.

Lemma 26.9. Suppose that M is a c.t.m. of ZFC, κ is a regular cardinal of M , P is a
forcing order in M , and P satisifies κ-cc in M . Suppose that σ is a P-name, and

1  σ ⊆ κ̌ ∧ |σ| < κ̌.

Then there is a β < κ such that 1  σ ⊆ β̌.

Proof. First we work in M . Let

E =
{

α < κ : there is a p ∈ P such that p  α̌ =
⋃

σ
}

.

For each α ∈ E, pick pα ∈ P such that pα  α̌ =
⋃
σ.

(1) {pα : α ∈ E} is an antichain in P.

For, suppose that α and β are distinct elements of E. If q ≤ pα, pβ, then q  α̌ = β̌,
contradiction.

Thus by κ-cc, |E| < κ. Hence there is a β < κ such that E ⊆ β.
This finishes our argument inside M . Now if G is P-generic over M , then κ is regular

in M [G] by Proposition 16.5. Since |σG| < κ, it follows that
⋃
σG < κ. Let α =

⋃
σG,

and choose p ∈ G such that p  α̌ =
⋃
σ. Thus α ∈ E, and hence α ∈ β. Thus

⋃
σG < β,

and so σG ⊆ β. Since this is true for any generic G, it follows that 1  σ ⊆ β̌.

Theorem 26.10. Suppose that M is a c.t.m. of ZFC, and in M , π is a P-name for a
forcing order, κ is a regular cardinal, P is κ-cc, and 1  π is κ̌-cc.
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Then P ∗ π is κ-cc.

Proof. Suppose not, and let 〈(pξ, τξ) : ξ < κ〉 be an antichain in P ∗ π in M . Let
σ = {(ξ̌, pξ) : ξ < κ}. Thus σ is a P-name in M .

Now let G be P-generic over M . Then

(1) σG = {ξ ∈ κ : pξ ∈ G}.

In fact, x ∈ σG iff there is a ξ < κ such that pξ ∈ G and x = ξ, so (1) holds.
We claim now that if ξ < η and both are in σG, then (τξ)G and (τη)G are incompatible.

For, the hypothesis yields pξ, pη ∈ G. Suppose that x ≤ (τξ)G, (τη)G. Then x ∈ π0
G, so

there exists a (ρ, q) ∈ π0 such that q ∈ G and x = ρG. Clearly q  ρ ∈ π. Also, there are
s, t ∈ G such that s  ρ ≤ τξ and t  ρ ≤ τη. Let u ∈ G be such that u ≤ pξ, pη, q, s, t.
Then (u, ρ) ∈ P ∗ π and (u, ρ) ≤ (pξ, τξ), (pη, τη), contradiction. This proves our claim.

However, 1  π is κ̌-cc, so πG is κ-cc. Hence by the preceding paragraph, |σG| < κ.
Thus our argument with an arbitrary generic G has shown that 1  σ ⊆ κ̌. Hence

by Lemma 26.9 there is a β < κ such that 1  σ ⊆ β̌. But clearly pβ  β̌ ∈ σ,
contradiction.

We are now ready for the definition of iterated forcing. Suppose that I is any set. An ideal
of subsets of I is a collection I of subsets of I such that ∅ ∈ I , I is closed under ∪, and
if x ∈ I and y ⊆ x then y ∈ I . Let M be a c.t.m. of ZFC, α an ordinal, and I an ideal
of subsets of α containing all finite subsets of I. If 〈Pξ : ξ < α〉 is a sequence of forcing
orders and p ∈∏ξ<α Pξ, then the support of p is the set

supp(p)
def
= {ξ < α : p(ξ) 6= 1ξ}.

An α-stage iterated forcing construction with supports in I is an ordered pair (P, π) in M
with the following properties:

(K1) P is a sequence of length α+ 1 of forcing orders.

(K2) π is a sequence of length α+ 1; each πξ is a Pξ-name for a forcing order.

(K3) For each ξ ≤ α, Pξ is a collection of sequences of length ξ.

(K4) If ξ < η ≤ α and p ∈ Pη, then p ↾ ξ ∈ Pξ.

(K5) If ξ < α and p ∈ Pα, then p(ξ) ∈ dmn(π0
ξ ).

(K6) If ξ ≤ α, then 1ξ = 〈1η : η < ξ〉.
(K7) P0 = ({0}, 0, 0).

(K8) For every ξ < α and every (ξ + 1)-termed sequence p,

p ∈ Pξ+1 iff p ↾ ξ ∈ Pξ, p(ξ) ∈ dmn(π0
ξ ), and p ↾ ξ Pξ p(ξ) ∈ π0

ξ .

(K9) For all ξ < α and all p, p′ ∈ Pξ+1,

p ≤Pξ+1
p′ iff p ↾ ξ ≤Pξ p

′ ↾ ξ and p ↾ ξ Pξ p(ξ) ≤πξ p′(ξ).
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(K10) If η ≤ α is a limit ordinal and p is an η-termed sequence, then

p ∈ Pη iff p ↾ ξ ∈ Pξ for all ξ < η and supp(p) ∈ I .

(K11) If η ≤ α is a limit ordinal and p, p′ ∈ Pη, then

p ≤Pη p
′ iff p ↾ ξ ≤Pξ p ↾ ξ for every ξ < η.

Given this situation, if ξ ≤ η ≤ α we define a function iξη with domain Pξ as follows. For
each p ∈ Pξ, the sequence iξη(p) is such that (iξη(p)) ↾ ξ = p and (iξη(p))(µ) = 1πµ for all
µ ∈ [ξ, η).

Now we give some elementary properties of iterated forcing constructions.

Theorem 26.11. Let an iterated forcing construction be given, with notation as above.
(i) For every β ≤ α and every p ∈ Pβ, the set supp(p) is in I .
(ii) For each ξ < α, the forcing order Pξ+1 is isomorphic to Pξ ∗ πξ.
(iii) For ξ ≤ η ≤ α, the function iξη maps Pξ into Pη.
(iv) If ξ ≤ η ≤ ζ ≤ α, then iξζ = iηζ ◦ iξη.
(v) If ξ ≤ η, then iξη(1Pξ) = 1Pη .
(vi) If ξ ≤ η, p, p′ ∈ Pη, and p ≤ p′, then p ↾ ξ ≤ p′ ↾ ξ.
(vii) If ξ ≤ η, p, p′ ∈ Pξ, and p ≤ p′, then iξη(p) ≤ iξη(p′).
(viii) If ξ ≤ η, p, q ∈ Pη, and p ↾ ξ ⊥ q ↾ ξ, then p ⊥ q.
(ix) If ξ < η, p, q ∈ Pη, and supp(p) ∩ supp(q) ⊆ ξ, then p ↾ ξ ⊥ q ↾ ξ iff p ⊥ q.
(x) If ξ ≤ η and p, q ∈ Pξ, then p ⊥ q iff iξη(p) ⊥ iξη(q).
(xi) If ξ ≤ η, then iξη is a complete embedding of Pξ into Pη.

Proof. (i): An easy induction on β.
(ii): By (K2), πξ is a Pξ-name for a forcing order, so that Pξ ∗ πξ is defined. For

each (p, τ) ∈ Pξ ∗ πξ let f(p, τ) be the sequence of length ξ + 1 such that (f(p, τ)) ↾ ξ = p
and (f(p, τ))(ξ) = τ . Thus f(p, τ) ∈ Pξ+1 by the definition of Pξ ∗ πξ and (K8). Also
it is clear that f is a bijection. The definitions also make clear that (p, τ) ≤ (q, σ) iff
f(p, τ) ≤ f(q, σ). Finally, f(1Pξ∗πξ) = 1Pξ+1

by (K6).
(iii): By induction on η, with ξ fixed.
(iv): Obvious.
(v): Obvious.
(vi): We prove this by induction on η, with ξ fixed. So, we assume that ξ < η and (vi)

holds for all η′ < η. Suppose that p, p′ ∈ Pη and p ≤ p′. If η = η′ + 1, then p ↾ η′ ≤ p′ ↾ η′

by (K9), and hence p ↾ ξ ≤ p′ ↾ ξ by the inductive hypothesis. If η is a limit ordinal, then
p ↾ ξ ≤ p′ ↾ ξ by (K11).

(vii): We prove this by induction on η, with ξ fixed. So, we assume that ξ < η
and (vii) holds for all η′ < η. Suppose that p, p′ ∈ Pξ and p ≤ p′. If η = η′ + 1, then
iξη′(p) ≤ iξη′(p

′) by the inductive hypothesis, and then iξη(p) ≤ iξη(p′) by (K9), since

iξη(p) ↾ η′ = iξη′(p), iξη(p′) ↾ η′ = iξη′(p
′),

iξη′(p)  1 ≤πξ′ 1, (iξη(p))(η′) = 1, and (iξη(p′))(η′) = 1.
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For η limit, the desired conclusion is immediate from (K11) and the inductive hypothesis.
(viii): immediate from (vi).
(ix): ⇒ holds by (viii). For ⇐, suppose that r ∈ Pξ and r ≤ p ↾ ξ, q ↾ ξ; we want to

show that p and q are compatible.
Define s with domain η by setting, for each ρ < η,

s(ρ) =







r(ρ) if ρ < ξ,
p(ρ) if ξ ≤ ρ ∈ supp(p),
q(ρ) if ξ ≤ ρ ∈ supp(q)\supp(p),
1 otherwise.

Now it suffices to prove the following statement:

(*) For all γ ≤ η we have s ↾ γ ∈ Pγ , s ↾ γ ≤ p ↾ γ, and s ↾ γ ≤ q ↾ γ.

We prove (*) by induction on γ. If γ ≤ ξ, then s ↾ γ = r ↾ γ ∈ Pγ by (K4), and
s ↾ γ ≤ p ↾ γ, q ↾ γ since r ≤ p ↾ ξ, q ↾ ξ, by (vi).

Now assume inductively that ξ < γ ≤ η. First suppose that γ is a successor ordinal
γ′ + 1. Then s ↾ γ′ ∈ Pγ′ by the inductive hypothesis. Now we consider several cases.

Case 1. γ′ ∈ supp(p). Then s(γ′) = p(γ′) ∈ dmn(π0
γ′). Moreover, by the inductive

hypothesis s ↾ γ′ ≤ p ↾ γ′, and p ↾ γ′  p(γ′) ∈ π0
γ′ . It follows that s ↾ γ′  s(γ′) ∈ π0

γ′ .
Thus s ↾ γ ∈ Pγ by (K8).

Case 2. γ′ ∈ supp(q)\supp(p). This is treated similarly to Case 1.
Case 3. γ′ /∈ supp(p) ∪ supp(q). Then s(γ′) = 1, and hence clearly s ↾ γ ∈ Pγ by

(K8).

So, we have shown that s ↾ γ ∈ Pγ in any case.
To show that s ↾ γ ≤ p ↾ γ, first note that s ↾ γ′ ≤ p ↾ γ′ by the inductive hypothesis.

If γ′ ∈ supp(p), then s(γ′) = p(γ′) and so obviously p ↾ γ′  s(γ′) ≤ p(γ′) and hence
s〈γ ≤ p ↾ γ by (K9). If γ′ /∈ supp(p), then p(γ′) = 1 and again the desired conclusion
holds. Thus s ↾ γ ≤ p ↾ γ.

For s ↾ γ ≤ q ↾ γ, first note that s ↾ γ′ ≤ q ↾ γ′ by the inductive hypothesis. If
γ′ ∈ supp(q), then γ′ /∈ supp(p) by the hypothesis of (ix), since ξ ≤ γ′. Hence the proof
can continue as for p.

This finishes the successor case γ = γ′ + 1. Now suppose that γ is a limit ordinal. By
the inductive hypothesis, s ↾ ρ ∈ Pρ for each ρ < γ. Since clearly supp(s) ⊆ supp(r) ∪
supp(p) ∪ supp(q), we have supp(s) ∈ I . Hence s ∈ Pγ by (K10). Finally, s ↾ γ ≤ p ↾
γ, q ↾ γ by the inductive hypothesis and (K11).

This finishes the proof of (ix).
(x): Immediate from (iii) and (ix).
(xi): Conditions (1) and (2) hold by (vii) and (ix). For (3), suppose that q ∈ Pη.

Then q ↾ ξ ∈ Pξ by (vi); we claim that it is a reduction of q to Pξ. For, suppose that
q ↾ ξ ≤ p. Then supp(q) ∩ supp(iξη(p)) ⊆ ξ and q ↾ ξ and (iξη(p)) ↾ ξ = p are compatible
since q ↾ ξ ≤ p. So by (ix), q and iξη(p) are compatible, as desired.

Lemma 26.12. Suppose that an iterated forcing construction is given, with notation as
above. Also suppose that κ is an uncountable regular cardinal, and I is the collection of
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all finite subsets of α. Suppose that for each ξ < α, 1 Pξ (πξ is κ̌ − cc). Then for each
ξ ≤ α the forcing order Pξ is κ-cc in M .

Proof. We proceed by induction on ξ. It is trivially true for ξ = 0, by (K7). The
inductive step from ξ to ξ + 1 follows from Theorem 26.11(ii) and Theorem 26.10. Now
suppose that ξ is limit and the assertion is true for all η < ξ. Suppose that 〈pβ : β < κ〉 is
an antichain in Pξ. Let M ∈ [κ]κ be such that 〈supp(pξ) : ξ ∈M〉 is a ∆-system, say with
root r. Choose η < ξ such that r ⊆ η. Then by Theorem 26.11(ix), 〈pν ↾ η : ν ∈ M〉 is a
system of incompatible elements of Pη, contradiction.

Lemma 26.13. Suppose that an iterated forcing construction is given, with notation as
above.

(i) Suppose that G is Pα-generic over M . For each ξ ≤ α let Gξ = i−1
ξα [G]. Then

(a) For each ξ ≤ α, the set Gξ is Pξ-generic over M .
(b) If ξ ≤ η ≤ α, then M [Gξ] ⊆M [Gη] ⊆M [G].

(ii) Let ξ < α. Define

Qξ = (πξ)Gξ ;

Hξ = {ρGξ : ρ ∈ dmn(π0
ξ ) and ∃p(p⌢〈ρ〉 ∈ Gξ+1)}.

Then Hξ ∈M [Gξ+1] and Hξ is Qξ-generic over M [Gξ].

Proof. (i)(a) holds by Theorem 26.11(xi) and Theorem 26.3; and (i)(b) follows from
these theorems too.

To prove (ii) we are going to apply Theorem 26.8 with P and π replaced by Pξ and
πξ; by (K2), πξ is a Pξ-name for a forcing order. Let j be the complete embedding of Pξ
into Pξ ∗ πξ given by j(p) = (p, 1); this corresponds to i in Theorem 26.23. Now Gξ+1

is Pξ+1-generic over M by (i). Let f be the isomorphism of Pξ ∗ πξ with Pξ+1 given
in the proof of Theorem 26.11(ii). Clearly then f−1[Gξ+1] is Pξ ∗ πξ-generic over M ,
and we apply Theorem 26.8 with it in place of K. Note that f ◦ j = iξ,ξ+1, and hence
j−1[f−1[Gξ+1]] = Gξ; so Gξ is the G in Theorem 26.23. Next,

Hξ = {ρGξ : ρ ∈ dmn(π0
ξ ) and ∃p(p⌢〈ρ〉 ∈ Gξ+1)}

= {ρGξ : ρ ∈ dmn(π0
ξ ) and ∃p((p, ρ) ∈ f−1[Gξ+1])},

so that Theorem 26.8 applies to yield that Gξ is Pξ-generic over M (we already know this
by (i)) and Hξ is Qξ-generic over M [Gξ]. Clearly Hξ ∈M [Gξ+1].

Lemma 26.14. Suppose that an iterated forcing construction is given, with notation as
above, with α limit, and I the collection of all finite subsets of α. Suppose that G is
Pα-generic over M , S ∈M , X ⊆ S, X ∈M [G], and (|S| < cf(α))M [G].

Then there is an η < α such that X ∈M [i−1
ηα [G]].

Proof. Let σ be a Pα-name such that X = σG. Thus for any s ∈ S, s ∈ X iff there is
a p ∈ G such that p Pα š ∈ σ. Now clearly Pα =

⋃

ξ<α iξα[Pξ], and G =
⋃

ξ<α iξα[i−1
ξα [G]].
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Hence for each s ∈ X we can find ξ(s) < α such that there is a p ∈ i−1
ξ(s)α[G] such that

iξ(s)α(p) Pα š ∈ σ. Let η = sups∈X ξ(s); so η < α by assumption.
Thus X = {s ∈ S : ∃p ∈ Gη(iηα(p) Pα š ∈ σ}. Hence X ∈M [Gη].

This finishes our general exposition of iterated forcing. The main application of this
method, which forms a starting point of further applications, is to the consistency of
Martin’s axiom with ¬CH. Before turning to this, however, there is another general fact
about forcing which will be needed.

Lemma 26.16. Suppose that M is a c.t.m. of ZFC and in M we have a forcing order P,
an antichain A of P, and a system 〈σq : q ∈ A〉 of members of MP. Then there is a name
π ∈MP such that q  π = σq for every q ∈ A.

Proof. We define

(τ, r) ∈ π iff (τ, r) ∈MP and there is a q ∈ A such that r ≤ q

and r  τ ∈ σq and τ ∈ dmn(σq).

Fix q ∈ A and fix a generic G for P over M such that q ∈ G; we want to show that
πG = (σq)G.

First suppose that x ∈ πG. Choose (τ, r) ∈ π such that r ∈ G and x = τG. By the
definition of π, there is a q′ ∈ A such that r ≤ q′, r  τ ∈ σq′ , and τ ∈ dmn(σq′). Since
r ∈ G, also q′ ∈ G. But A is an antichain, q, q′ ∈ A, and q ∈ G, so q = q′. So r  τ ∈ σq,
and since r ∈ G it follows that τG ∈ (σq)G.

Second, suppose that y ∈ (σq)G. Choose (τ, r) ∈ σq such that r ∈ G and y = τG.
Since τG ∈ (σq)G, there is a p ∈ G such that p  τ ∈ σq. Also q ∈ G, so let s ∈ G be such
that s ≤ p, q. Then (τ, s) ∈ π, and so y = τG ∈ πG.

Theorem 26.17. (maximal principle) Suppose that M is a c.t.m. of ZFC, P ∈ M is a
forcing order, τ1, . . . , τn ∈MP, p ∈ P , and p  ∃xϕ(x, τ1, . . . , τn). Then there is a π ∈MP

such that p  ϕ(π, τ1, . . . , τn).

Proof. This argument takes place inM , unless otherwise indicated. By Zorn’s lemma,
let A be an antichain, maximal with respect to the property

(1) For all q ∈ A, q ≤ p and q  ϕ(σ, π1, . . . , πn) for some σ ∈MP .

By the axiom of choice, for each q ∈ A let σq ∈ MP be such that q  ϕ(σq, π1, . . . , πn).
By Lemma 26.17, let π ∈ MP be such that q  π = σq for every q ∈ A. Since also
q  ϕ(σq, τ1, . . . , τn), an easy argument using the definition of forcing, thus external to M ,
shows that q  ϕ(π, τ1, . . . , τn).

Now we show that p  ϕ(π, τ1, . . . , τn). To this end we argue outside M . Suppose
that G is P-generic over M . We claim that G ∩ A 6= ∅. In fact the set

(2) {r ≤ p : there is a σ ∈MP such that r  ϕ(σ, τ1, . . . , τn)}

is dense below p, and hence there is an r ∈ G which is also in (2). If G∩A = ∅, then there
is an element q ∈ G incompatible with each member of A; in this case, choose s ∈ G with
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s ≤ r, q. Then s is in (2) and s is incompatible with each element of A, contradicting the
maximality of A. So G ∩ A 6= ∅.

Say q ∈ G ∩ A. Choose r ∈ G such that r ≤ p, q. Since q  ϕ(π, τ1, . . . , τn), also
r  ϕ(σ, τ1, . . . , τn), and hence ϕ(τG, (τ1)G, . . . , (τn)G) holds in M [G], as desired.

Now we give a fact about Martin’s axiom which is used below; it is an exercise in Chapter
21.

Lemma 26.18. MA(κ) is equivalent to MA(κ) restricted to ccc forcing orders of cardinality
≤ κ.

Proof. We assume the indicated special form of MA(κ), and assume given a ccc
forcing order P and a family D of at most κ dense sets in P; we want to find a filter on
P intersecting each member of D . We introduce some operations on P . For each D ∈ D

define fD : P → P by setting, for each p ∈ P , fD(p) to be some element of D which is ≤
p. Also we define g : P × P → P by setting, for all p, q ∈ P ,

g(p, q) =

{
p if p and q are incompatible,
r with r ≤ p, q if there is such an r.

Here, as in the definition of fD, we are implicitly using the axiom of choice; for g, we
choose any r of the indicated form.

We may assume that D 6= ∅. Choose D ∈ D , and choose s ∈ D. Now let Q be the
intersection of all subsets of P which have s as a member and are closed under all of the
operations fD and g. We take the order on Q to be the order induced from P .

(1) |Q| ≤ κ.

To prove this, we give an alternative definition of Q. Define

R0 = {s};

Rn+1 = Rn ∪ {g(a, b) : a, b ∈ Rn} ∪ {fD(a) : D ∈ D and a ∈ Rn}.

Clearly
⋃

n∈ω Rn = Q. By induction, |Rn| ≤ κ for all n ∈ ω, and hence |Q| ≤ κ, as desired
in (1).

We also need to check that Q is ccc. Suppose that X is a collection of pairwise
incompatible elements of Q. Then these elements are also incompatible in P , since x, y ∈ X
with x, y compatible in P implies that g(x, y) ≤ x, y and g(x, y) ∈ Q, so that x, y are
compatible in Q. It follows that X is countable. So Q is ccc.

Next we claim that if D ∈ D then D ∩ Q is dense in Q. For, suppose p ∈ Q. Then
fD(q) ∈ D ∩Q. as desired.

Now we can apply our special case of MA(κ) to Q and {D ∩Q : D ∈ D}; we obtain a
filter G on Q such that G ∩D ∩Q 6= ∅ for all D ∈ D . Let

G′ = {p ∈ P : q ≤ p for some q ∈ G}.

We claim that G′ is the desired filter on P intersecting each D ∈ D .
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Clearly if p ∈ G′ and p ≤ r, then r ∈ G′.
Suppose that p1, p2 ∈ G′. Choose q1, q2 ∈ G such that qi ≤ p1 for each i = 1, 2. Then

there is an r ∈ G such that r ≤ q1, q2. Then r ∈ G′ and r ≤ p1, p2. So G′ is a filter on P .
Now for any D ∈ D . Take q ∈ G ∩D ∩Q. Then q ∈ G′ ∩D, as desired.

Theorem 26.19. Suppose that M is a c.t.m. of ZFC, and in M we have an uncountable
regular cardinal κ such that

∑

λ<κ 2λ = κ.
Then there is a forcing order P in M such that P satisfies ccc, and for any P-generic

G over M , the extension M [G] satisfies MA and 2ω = κ.

Proof. The overall idea of the proof runs like this. We do an iterated forcing which
has the effect of producing a chain

M = M0 ⊆M1 ⊆ · · · ⊆Mα ⊆Mα+1 ⊆ · · · ⊆Mκ

of length κ + 1 of c.t.m.s of ZFC. We carry along in the construction a list of names of
forcing orders. This list is of length κ. At the step from Mα to Mα+1 we take care of one
entry in this list, say Q, by taking a Q-generic filter G and setting Mα+1 = Mα[G], and
we add to our list all names of forcing orders in Mα. By proper coding, we can do this so
that at end we have taken care of all forcing orders in any model Mα. Then we show that
any ccc forcing order in Mκ appeared already in an earlier stage and so a generic filter for
it was added.

We begin by defining the coding which will be used.

Claim. There is a function f in M with the following properties:
(1) f : κ→ κ× κ.
(2) For all ξ, β, γ < κ there is an η > ξ such that f(η) = (β, γ).
(3) 1st(f(ξ)) ≤ ξ for all ξ < κ.

Proof of Claim. Let g : κ→ κ×κ×κ be a bijection. For each ξ < κ let g(ξ) = (α, β, γ),
and set

f(ξ) =

{
(β, γ) if β ≤ ξ,
(0, 0) otherwise.

So (1) and (3) obviously hold. For (2), suppose that ξ, β, γ < κ. Now g−1[{(α, β, γ) :
α < κ}] has size κ, so there is an η ∈ g−1[{(α, β, γ) : α < κ}] such that ξ, β < η. Say
g(η) = (α, β, γ). Then β < η, so f(η) = (β, γ) and ξ < η, as desired.

Another preliminary is a cardinality bound. Note that if λ < κ, then κλ = κ, since, using
regularity and

∑

µ<κ 2µ = κ, we have

κλ = |λκ| =

∣
∣
∣
∣
∣

⋃

µ<κ

λµ

∣
∣
∣
∣
∣
≤
∑

ρ<κ

2ρ = κ.

(4) If Q is a ccc forcing order in M of size less than κ, then there are at most κ pairs (λ, σ)
such that λ < κ and σ is a nice Q-name for a subset of (λ× λ)̌ .
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To prove (4), recall that a nice Q-name for a subset of (λ× λ)̌ is a set of the form

⋃

{{ǎ} ×Aa : a ∈ λ× λ}

where for each a ∈ λ × λ, Aa is an antichain in Q. Now by ccc the number of antichains
in Q is at most |Q|ω ≤ κ. So for a fixed λ < κ the number sets of the indicated form is at
most κλ = κ. Hence (4) holds.

For brevity, we let pord(λ,W ) abbreviate the statement that W is the order relation of a
ccc forcing order on the set λ, with largest element 0.

Now we are going to define by recursion functions P, π, λ, and σ with domain κ. Let I

be the collection of all finite subsets of κ.
Let P0 be the trivial partial order ({0}, 0, 0).
Now suppose that Pα has been defined, so that it is a ccc forcing order in M . We

now define πα, λα, σα, and Pα+1. By (4), the set of all pairs (β, γ) such that β < κ and
γ is a nice Pα-name for a subset of (β × β)̌ has size at most κ. We let {(λαξ , σ

α
ξ ) : ξ < κ}

enumerate all of them. This defines λα and σα. Now let f(α) = (β, γ). So β ≤ α, and
hence λβγ and σβγ are defined. We consider the complete embedding iβα given in Theorem

26.11(xi). By Proposition 21.1, iβα∗(σβγ ) is a Pα-name.

(5) There is a Pα-name ρ such that

1Pα Pα pord((λβγ )̌, ρ) and [pord((λβγ )̌, iβα∗(σβγ )) → ρ = iβα∗(σβγ )].

In fact, clearly

1Pα Pα ∃W (pord((λβγ )̌,W ) and [pord((λβγ )̌, iβα∗(σβγ )) → W = iβα∗(σβγ )],

so (5) follows by the maximal principle, Theorem 26.18.
We now let

πα = op(op(λβγ )̌, ρ), 0),

which is a Pα-name for a forcing order. Finally, Pα+1 is determined by (K8) and (K9).
For limit α ≤ κ we define Pα by (K10) and (K11).
This finishes the construction.
By Lemma 26.12, each forcing order Pα for α ≤ κ satisfies ccc.
Now take any Pκ-generic G over M ; we want to show that MA(µ) holds in M [G] for

every µ < κ. (Later we show that 2ω = κ in M [G].) Note that, by ccc, Pκ preserves
cofinalities and cardinalities. Let Gξ = i−1

ξκ [G] for each ξ < κ.
Suppose that Q is a ccc forcing order in M [G], |Q| ≤ µ, and D is a family of at most µ

subsets of Q dense in Q, with D ∈M [G]. By taking an isomorphic image, we may assume
that Q is an ordinal ϕ less than κ, and it has maximal element 0.

(6) There are α, β, γ < κ such that f(α) = (β, γ), Q = λβγ , ≤Q= (σβγ )Gβ , and D ∈M [Gβ ].

In fact, we have pord(ϕ,≤Q). Applying Lemma 26.14 with ϕ× ϕ in place of S and ≤Q in
place of X , we see that ≤Q is a member of some M [Gβ] with β < κ. Let D = {Dα : α < µ}.
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Then we can apply Lemma 26.14 to the set {(α, β) : α, β < µ and β ∈ Dα} to infer that
D ∈M [Gη] for some η < κ, and we may assume that η = β. By Proposition 4.9, there is
a nice name Pβ-name ζ for a subset of ϕ×ϕ such that ζGβ =≤Q. By construction, we can

then choose γ < κ such that (ϕ, ζ) = (λβγ , σ
β
γ ). Next, choose α such that f(α) = (β, γ).

Thus (6) holds.
Now we consider the construction of Pα+1. In this construction we chose a name ρ as in

(5). Now we know that pord(ϕ,≤Q) (in M [G]). By absoluteness, this also holds in M [Gα].
(It is still ccc, as otherwise it would fail to be ccc in M [G].) We have Q = ϕ = ((λβγ )̌)Gβ
and ≤Q= ζGβ = (σβγ )Gβ . By Theorem 26.4(i), (σβγ )Gβ = (iβα∗(σβγ ))Gα . Take ρ as in (5).

Then ρGα = (iβα∗(σβγ ))Gα . Thus πα = op(op(λβγ )̌, ρ), 0). Then (πα)Gα = Q. Let

H = {ψGα : ψ ∈ dmn(π0
α) and p⌢〈ψ〉 ∈ Gα+1 for some p}.

Then H is (πα)Gα-generic over M [Gα] by Lemma 26.13. Since D ∈ M [Gα], we get
H ∩D 6= ∅ for all D ∈ D , as desired.

Since MA(µ) holds for every µ < κ, it follows from Lemma 26.19 that in M [G], κ ≤ 2ω.
Now in M we have κω = κ, as observed early in this proof. Hence by Proposition 24.3

it follows that 2ω ≤ κ in M [G]. Thus 2ω = κ in M [G].

EXERCISES

E26.1. Let f be a complete embedding of P into Q. Show that there is an isomorphism

g of RO(P) into RO(Q) such that for any X ⊆ RO(P), g(
∑RO(P)

X) =
∑RO(Q)

x∈X g(x).
Furthermore, show that the following diagram commutes:

P Q

RO(P ) RO(Q)

f

eP eQ

g

E26.2. Prove that a composition of complete embeddings is a complete embedding.

E26.3. Suppose that f is a complete embedding of P into Q. Also suppose that ∀p ∈
P∃q, r ≤ p(q ⊥ r). Show that ∀p ∈ Q∃q, r ≤ p(q ⊥ r).

E26.4. Prove that every isomorphism is a complete embedding.

E26.5. Give an example of a complete embedding which is not an isomorphism.

E26.6. A dense embedding of P into Q is a function f : P → Q such that the following
conditions hold:

(i) ∀p, q ∈ P [p ≤ q → f(p) ≤ f(q)].
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(ii) ∀p, q ∈ P [p ⊥ q → f(p) ⊥ f(q)].
(iii) For any q ∈ Q there is a p ∈ P such that f(p) ≤ q.

Show that every dense embedding is a complete embedding, and every isomorphism is a
dense embedding.

E26.7. Prove that if f is a dense embedding of P into Q, then RO(P) and RO(Q) are
isomorphic.

E26.8. Let P and Q be forcing orders in M . Recall the notion of product from Chapter 25.
Let Q∗ = op(op(P̌Q, ≤̌Q), 1̌Q). Note that ˇ is with respect to P here; see the definition on
page 38. Show that Q∗ is a P-name for a forcing order, and P×Q is isomorphic to P ∗Q∗.

E26.9. Give an example of a partial order P and a P-name π for a partial order such that
P ∗ π is not a partial order. Hint: Let P be fin(ω, 2). Let p = {(0, 0)} and q = {(0, 1)}.
Now define

π0 = {(∅, p), ({(∅, q)}, p), (∅, q)};

π2 = ∅;

π1 = up(op(∅, ∅), op(∅, ∅)).

E26.10. Let κ be an infinite cardinal. For f, g ∈ κκ we write f <κ g iff |{α < κ : f(α) ≥
g(α)}| < κ. We say that F ⊆ κκ is almost unbounded iff there is no g ∈ κκ such that
f <κ g for all f ∈ F . Clearly κκ itself is almost unbounded; it has size 2κ

Show that if κ is a regular cardinal, then any almost unbounded subset of κκ has size
at least κ+.

E26.11. Suppose that κ is an infinite cardinal and MA(κ) holds. Suppose that F ⊆ ωω
and |F | = κ. Then there is a g ∈ ωω such that f <ω g for all f ∈ F . Hint: let P be the
set of all pairs (p, F ) such that p is a finite function contained in ω × ω and F is a finite
subset of F . Define (p, F ) ≤ (q, G) iff p ⊇ q, F ⊇ G, and

∀f ∈ G∀n ∈ (dmn(p)\dmn(q))[p(n) > f(n)].

E26.12. We begin exercises giving another application of iterated forcing.
(i) Show that there is a c.t.m. M of ZFC + 2ω = ω1 + 2ω1 = ω3.
(ii) Show that if Q is a ccc forcing order of size ≤ ω1 in the model M of (i), then there

are at most ω1 nice Q-names for subsets of (ω × ω)ˇ.

E26.13. (Continuing E26.12) Now we are going to define by recursion functions P, π, and
σ with domain ω2.

Let P0 be the trivial partial order ({0}, 0, 0).
Now suppose that Pα has been defined, so that it is a ccc forcing order in M of size

at most ω1. We now define πα, σα, and Pα+1. By E26.12(ii), the set of all nice Pα-names
for subsets of (ω × ω)̌ has size at most ω1. We let {ταγ : γ < ω1} enumerate all of them.
Prove:

(iii) For every γ < ω1 there is a Pα-name σαγ such that

1Pα Pα σ
α
γ : ω̌ → ω̌ and [ταγ : ω̌ → ω̌ implies that σαγ = ταγ ].
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E26.14. (Continuing E26.13) For each H ∈ [ω1]<ω we define ραH = {(σαγ , 1Pα) : γ ∈ H}.
So ραH is a Pα-name.

Next, define

π0
α = {(op(p̌, ραH), 1) : p ∈ fin(ω, ω) and H ∈ [ω1]<ω}.

Let G be Pα-generic over M . Prove:
(iv) (π0

α)G = {(p,K) : p ∈ fin(ω, ω) and K ∈ [ωω]<ω}.

E26.15. (Continuing E26.14) Next, we define

π1
α = {(op(op(p̌, ραH), op(p̌′, ραH′)), q) : p, p′ ∈ fin(ω, ω),

H,H ′ ∈ [ω1]<ω, p′ ⊆ p, H ′ ⊆ H, q ∈ Pα, and for all γ ∈ H ′

and all n ∈ dmn(p)\dmn(p′), q Pα σ
α
γ (ň) < (p(n))ˇ}.

Again, suppose that G is Pα-generic over M . Prove:

(π1
α)G = {((p,K), (p′, K ′)) : (p,K), (p′, K ′) ∈ (π0

α)G, p
′ ⊆ p, K ′ ⊆ K,(v)

and for all f ∈ K ′ and all n ∈ dmn(p)\dmn(p′), f(n) < p(n)}.

E26.16. (Continuing E26.15) Next, we let π2
α = {(op(0, 0), 1Pα)}. Then for any generic

G, (π2
α)G = (0, 0). Finally, let πα = op(op(π0

α, π
1
α), π2

α). This finishes the definition of πα.
Prove:

(vi) 1Pα Pα πα is ω̌1 − cc.

E26.17. (Continuing E26.16) Now Pα+1 is determined. The limit stages are clear. So the
construction is finished, and Pκ is ccc.

Let G be Pκ-generic over M . Prove

(vii) In M [G], if F ⊆ ωω and |F | < ω2, then there is a g ∈ ωω such that f <ω g for all
f ∈ F .

E26.18. (Continuing E26.17) Show that if ZFC is consistent, then there is a c.t.m. of ZFC
with the following properties:

(i) 2ω = ω2.
(ii) 2ω1 = ω3.
(iii) Every almost unbounded set of functions from ω to ω has size 2ω.
(iv) MA(ω1) fails.
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27. Various forcing orders

In this section we briefly survey various forcing orders which have been used. Many of
them give rise to new real numbers, i.e., new subsets of ω. (It is customary to identify
real numbers with subsets of ω, since these are simpler objects than Dedekind cuts; and
a bijection in the ground model between R and P(ω) transfers the newness to “real” real
numbers.) For each kind of forcing we give a reference for further results concerning it. Of
course our list of forcing orders is not complete, but we hope the treatment here can be a
guide to further study.

Cohen forcing

The forcing used in Chapter 16 is, as indicated there, called Cohen forcing. If M is a
c.t.m. of ZFC, P is Fin(ω, 2), and G is P-generic over M , then

⋃
G is a Cohen real. More

generally, if N is a c.t.m. of ZFC and M ⊆ N , then a Cohen real in N is a function
f : ω → 2 in N such that there is a P-generic filter G over M such that M [G] ⊆ N and
f =

⋃
G.

Theorem 27.1. Suppose that M is a c.t.m. of ZFC, I ∈M , I = J0 ∪J1 with J0 ∩J1 = ∅,
and G is Fin(I, 2)-generic over M .

(i) Let H0 = G ∩ Fin(J0, 2). Then H0 is Fin(J0, 2)-generic over M .
(ii) Let H1 = G ∩ Fin(J1, 2). Then H1 is Fin(J1, 2)-generic over M [H0].
(iii) M [G] = M [H0][H1].

Proof. We are going to use Theorem 25.13. Let P be the partial order Fin(J0, 2)
and Q the partial order Fin(J1, 2). We claim that Fin(I, 2) is isomorphic to P×Q. Define
f(p) = (p ↾ J0, p ↾ J1). Clearly this is an isomorphism. We claim that f [G] = H0 ×H1.
For, suppose that p ∈ G. then p ↾ J0 ⊆ p, so p ↾ J0 ∈ G, and hence p ↾ J0 ∈ H0. Similarly,
p ↾ J1 ∈ H1. So f(p) ∈ H0 ×H1. Conversely, if (p, q) ∈ H0 ×H1, then p ∈ G and q ∈ G, so
there is an r ∈ G such that p, q ⊆ r. Now p∪ q ⊆ r, so p∪ q ∈ G. Clearly f(p∪ q) = (p, q).
So this proves that f [G] = H0 ×H1.

Now it follows from Lemma 25.9 that H0 ×H1 is P×Q-generic over M , and M [G] =
M [H0 ×H1]. Now we can apply Theorem 25.13 to get:

(1) H0 is P-generic over M .

(2) H1 is Q-generic over M [H0].

(3) M [G] = M [H0][H1].

This proves our theorem.

It follows that all of the subsets of ω given in the proof of Theorem 16.1 are Cohen reals:

Corollary 27.2. Let M be a c.t.m. of ZFC and let κ be a cardinal of M such that κω = κ.
Let P = Fin(κ, 2) in M , and let G be P-generic over M , and let g =

⋃
G. Let h : κ×ω → κ

be a bijection in M . Then for each α < κ, the set {m ∈ ω : g(h(α,m)) = 1} is a Cohen
real.
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Proof. Remember that subsets of ω and their characteristic functions are both con-
sidered as reals. Implicitly, one is a Cohen real iff the other is, by definition. So we will

show that the function l
def
= 〈g(h(α,m)) : m ∈ ω〉 is a Cohen real.

Fix α < κ, and let J = {β < κ : h−1(β) has the form (α,m) for some m ∈ ω}. Let
k(m) = h(α,m) for all m ∈ ω. Then k is a bijection from ω onto J . By 27.1, G∩Fin(J, 2)
is Fin(J, 2)-generic over M . Define k′ : Fin(J, 2) → Fin(ω, 2) by setting k′(p) = p ◦ k for
any p ∈ Fin(J, 2). So k′ is an isomorphism from Fin(J, 2) onto Fin(ω, 2). Clearly then
k′[G ∩ Fin(J, 2)] is Fin(ω, 2)-generic over M . So the proof is completed by checking that
⋃
k′[G ∩ Fin(J, 2)] = l. Take any m ∈ ω. Then

(m, ε) ∈
⋃

k′[G ∩ Fin(J, 2)] iff there is a p ∈ k′[G ∩ Fin(J, 2)]

such that (m, ε) ∈ p

iff there is a q ∈ G ∩ Fin(J, 2)

such that (m, ε) ∈ k′(q)

iff there is a q ∈ G ∩ Fin(J, 2)

such that (m, ε) ∈ q ◦ k
iff g(k(m)) = ε

iff g(h(α,m)) = ε

iff (m, ε) ∈ l

Theorem 27.3. Suppose that M is a c.t.m. of ZFC and G is Fin(ω, 2)-generic over M .
Let g =

⋃
G (so that g is a Cohen real). Then for any f ∈ ω2 which is in M , the set

{m ∈ ω : f(m) < g(m)} is infinite.

Proof. For each n ∈ ω let in M

Dn = {h ∈ Fin(ω, 2) : there is an m > n such that m ∈ dmn(h) and f(m) < h(m)}.

Clearly Dn is dense. Hence the desired result follows.

Thus if g is a Cohen real, then there is no f in the ground model such that {m ∈ ω :
g(m) ≤ f(m)} is finite. Put another way, if A ⊆ ω is a Cohen real, then there is no B ⊆ ω
in the ground model such that A\B is finite.

Let 〈Pi : i ∈ I〉 be a system of forcing orders. We define the product of these orders to be
the set

w∏

i∈I
Pi =

{

f ∈
∏

i∈I
Pi : {j ∈ I : f(j) 6= 1} is finite

}

with the order
f ≤ g iff ∀i ∈ I[fi ≤ gi].

Theorem 27.4. For any infinite cardinal κ, Fin(κ, 2) is isomorphic to
∏

α<κ Fin(ω, 2).
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Proof. Let k : κ→ κ× ω be a bijection. For each f ∈∏α<κ Fin(ω, 2) let

dmn(F (f)) = {α < κ : 2nd(k(α)) ∈ dmn(f(1st(k(α))) and

(F (f))(α) = (f(1st(k(α))))(2nd(k(α))).

Clearly F maps
∏

α<κ Fin(ω, 2) into Fin(κ, 2). To show that F is one-one, suppose that
f, g ∈ ∏α<κ Fin(ω, 2) and f 6= g; say f(α) 6= g(α). Say (n, ε) ∈ f(α)\g(α). Let β =
k−1(α, n). Thus β ∈ dmn(F (f)). We may assume that β ∈ dmn(F (g)). It follows that
(F (f))(β) 6= (F (g))(β). So F (f) 6= F (g).

To show that F maps onto, let h ∈ Fin(κ, 2). Define f ∈∏α<κ Fin(ω, 2) by setting

dmn(f(α)) = {n ∈ ω : k−1(α, n) ∈ dmn(h)}
(f(α))(n) = h(k−1(α, n)) if k−1(α, n) ∈ dmn(h).

Clearly F (f) = h.
Clearly f ≤ g iff F (f) ⊆ F (g).

Cohen reals are widely used in set theory.

Roitman, J. Adding a random or a Cohen real. Fund. Math. 103 (1979), 47–60.

Random forcing

The general idea of random forcing is to take a σ-algebra of measurable sets with respect
to some measure, divide by the ideal of sets of measure zero, obtaining a complete Boolean
algebra, and use it as the forcing algebra; the partially ordered set of nonzero elements is
the forcing partial order.

We give fairly complete details for the case of the product measure on κ2, for any
infinite cardinal κ. To make our treatment self-contained we give a standard development
of this measure, following

Fremlin, D. Measure theory, vol. 1.

Let κ be an infinite cardinal. For each f ∈ Fn(κ, 2, ω) let Uf = {g ∈ κ2 : f ⊆ g}. Hence
U∅ = κ2. Note that the function taking f to Uf is one-one. For each f ∈ Fn(κ, 2, ω) let
θ0(Uf ) = 1/2|dmn(f)|. Thus θ0(U∅) = 1. Let C = {Uf : f ∈ Fn(κ, 2, ω)}. Note that κ2 ∈ C.
For any A ⊆ κ2 let

θ(A) = inf

{
∑

n∈ω
θ0(Cn) : C ∈ ωC and A ⊆

⋃

n∈ω
Cn

}

.

An outer measure on a set X is a function µ : P(X) → [0,∞] satisfying the following
conditions:

(1) µ(∅) = 0.

(2) If A ⊆ B ⊆ X , then µ(A) ≤ µ(B).
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(3) For every A ∈ ωP(X), µ(
⋃

n∈ω An) ≤∑n∈ω µ(An).

Proposition 27.4. θ is an outer measure on κ2.

Proof. For (1), for any m ∈ ω let f ∈ Fn(κ, 2, ω) have domain of size m. Then
∅ ⊆ Uf and θ0(Uf ) = 1

m
. Hence θ(∅) = 0.

For (2), if A ⊆ B ⊆ κ2, then

{

C ∈ ωC : B ⊆
⋃

n∈ω
Cn

}

⊆
{

C ∈ ωC : A ⊆
⋃

n∈ω
Cn

}

,

and hence µ(A) ≤ µ(B).
For (3), assume that A ∈ ωP(κ2). We may assume that

∑

n∈ω θ(An) < ∞. Let
ε > 0; we show that θ(

⋃

n∈ω An) ≤ ∑

n∈ω θ(An) + ε, and the arbitrariness of ε then
gives the desired result. For each n ∈ ω choose Cn ∈ ωC such that An ⊆ ⋃

m∈ω C
n
m and

∑

m∈ω θ0(Cnm) ≤ θ(An) + ε
2n . Then

⋃

n∈ω An ⊆ ⋃n∈ω
⋃

m∈ω C
n
m and

θ

(
⋃

n∈ω
An

)

≤
∑

n∈ω

∑

n∈ω
θ0(Cnm) ≤

∑

n∈ω
θ(An) + ε,

as desired.

If A is a σ-algebra of subsets of X , then a measure on A is a function µ : A→ [0,∞] such
that µ(∅) = 0 and µ(

⋃

i∈ω ai) =
∑

i∈ω µ(ai) if a ∈ ωA and ai ∩ aj = ∅ for all i 6= j. Note
that ai = ∅ is possible for some i ∈ ω.

We give some important properties of measures:

Proposition 27.5. Suppose that µ is a measure on a σ-algebra A of subsets of X. Then:
(i) If Y, Z ∈ A and Y ⊆ Z, then µ(Y ) ≤ µ(Z).
(ii) If Y ∈ ωA, then µ(

⋃

n∈ω Yn) ≤∑n∈ω µ(Yn).
(iii) If Y ∈ ωA and Yn ⊆ Yn+1 for all n ∈ ω, then µ(

⋃

n∈ω Yn) = supn∈ω µ(Yn).

Proof. (i): We have µ(Z) = µ(Y ) + µ(Z\Y ) ≥ µ(Y ).
(ii): Let Zn = Yn\

⋃

m<n Ym. By induction,
⋃

m≤n Zm =
⋃

m≤n Ym, and hence
⋃

m∈ω Zm =
⋃

m∈ω Ym. Now

µ

(
⋃

m∈ω
Ym

)

= µ

(
⋃

m∈ω
Zm

)

=
∑

m∈ω
µ(Zm) ≤

∑

m∈ω
µ(Ym).

(iii): Again let Zn = Yn\
⋃

m<n Ym. By induction, Yn =
⋃

m≤n Zm. Hence

µ

(
⋃

n∈ω
Yn

)

= µ

(
⋃

n∈ω
Zn

)

=
∑

n∈ω
µ(Zn)

372



= lim
n→∞

∑

m≤n
µ(Zm)

= lim
n→∞

µ




⋃

m≤n
Zm





= lim
n→∞

µ(Yn)

= sup
n∈ω

µ(Yn).

Proposition 27.6. Let

A = {E ⊆ κ2 : ∀X ⊆ κ2[θ(X) = θ(X ∩ E) + θ(X\E)]}.

Then A is a σ-algebra of subsets of κ2, and θ ↾ A is a measure on A.

Proof. ∅ ∈ A since for any X ⊆ κ2 we have

θ(X ∩ ∅) + θ(X\∅) = θ(∅) + θ(X) = 0 + θ(X) = θ(X).

If E ∈ A, obviously also κ2\E ∈ A.
Next we show that if E1, E2 ∈ A then E1 ∪ E2 ∈ A. For any X ⊆ κ2,

θ(X ∩ (E1 ∪E2)) + θ(X\(E1 ∪ E2))

= θ(X ∩ (E1 ∪ E2) ∩ E1) + θ(X ∩ (E1 ∪E2)\E1) + θ(X\(E1 ∪ E2))

= θ(X ∩E1) + θ((X\E1) ∩ E2) + θ((X\E1)\E2)

= θ(X ∩E1) + θ(X\E1)

= θ(X).

Now suppose that E ∈ ωA. Let F =
⋃

i∈ω Ei; we want to show that F ∈ A. For
each n ∈ ω let Gn =

⋃

i≤nEi. So Gn ∈ A by the binary case already considered. Let
H0 = G0 and Hn+1 = Gn+1\Gn for all n ∈ ω. Hence H0 = E0 and Hn+1 = En+1\Gn
for all n ∈ ω. Moreover, by induction

⋃

i≤nHi =
⋃

i≤nGi for all n ∈ ω, and hence
⋃

i∈ωHi =
⋃

i∈ω Gi =
⋃

i∈ω Ei = F .
Now suppose that n ≥ 1 and X ⊆ κ2. Then

θ(X ∩Gn) = θ(X ∩Gn ∩Gn−1) + θ(X ∩Gn\Gn−1)

= θ(X ∩Gn−1) + θ(X ∩Hn).

Hence by induction we get

(1) θ(X ∩Gn) =
∑

m≤n
θ(X ∩Hm) for all n ∈ ω.

Now X = (X ∩ F ) ∪ (X\F ), so by the outer measure property we have

(2) θ(X) ≤ θ(X ∩ F ) + θ(X\F ).

373



Now X ∩ F =
⋃

n∈ω(X ∩Hn), so by the outer measure property we have

θ(X ∩ F ) ≤
∑

n∈ω
θ(X ∩Hn)

= lim
m→∞

∑

n≤m
θ(X ∩Hn)

= lim
m→∞

θ(Gm) by (1)

Thus

(3) θ(X ∩ F ) ≤ lim
m→∞

θ(X ∩Gm)

Next, note that Gn ⊆ ⋃

m∈ω Gm and hence X\⋃m∈ω Gm ⊆ X\Gn. Also Gm ⊆ Gn for
m ≤ n, and hence X\Gn ⊆ X\Gm. Thus by (2) in the definition of outer measure we
have

θ(X\F ) = θ

(

X\
⋃

m∈ω
Gm

)

≤ inf
m∈ω

θ(X\Gm) = lim
m→ω

θ(X\Gm).

Together with (3) it then follows that

θ(X ∩ F ) + θ(X\F ) ≤ lim
m→ω

(θ(X ∩Gm) + θ(X\Gm)) = θ(X).

Together with (2) this implies that F ∈ A.
Thus A is a σ-algebra of subsets of κ2.
Now suppose that En ∩Em = ∅ for n 6= m. Then

θ(Gn+1) = θ(Gn+1 ∩ En+1) + θ(Gn+1\En+1) = θ(En+1) + θ(Gn).

It follows by induction that θ(Gn) =
∑

m≤n θ(Em) for every n ∈ ω. Hence

(4) θ(F ) ≤
∑

m∈ω
θ(Em) since θ is an outer measure

and
θ(F ) ≥ θ(

⋃

m≤n
Em) = θ(Gn) =

∑

m≤n
θ(Em)

for each n, and hence θ(F ) ≥∑m∈ω Em. Now (4) gives θ(F ) =
∑

m∈ω θ(Em).

Proposition 27.7. If ε ∈ 2 and α < κ, then {f ∈ κ2 : f(α) = ε} ∈ A.

Proof. Let E = {f ∈ κ2 : f(α) = ε}, and let X ⊆ κ2; we want to show that
θ(X) = θ(X ∩ E) + θ(X\E). ≤ holds by the definition of outer measure. Now suppose
that δ > 0. Choose C ∈ ωC such that X ⊆ ⋃

n∈ω Cn and
∑

n∈ω θ0(Cn) < θ(X) + δ. For
each n ∈ ω let Cn = Ufn with fn ∈ Fn(κ, 2, ω). For each n ∈ ω, if α /∈ dmn(fn), replace
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Cn by Ug and Uh, where g = f ∪ {(α, 0)} and h = f ∪ {(α, 1)}; let the new sequence be
C′ ∈ ωC. Then

∑

n∈ω θ(Cn) =
∑

n∈ω θ(C
′
n) and X ⊆ ⋃n∈ω C′

n. Then there is a partition
M,N of ω such that X ∩E ⊆ ⋃n∈M C′

n and X\E ⊆ ⋃n∈N C′
n. Hence

θ(X ∩E) + θ(X\E) ≤
∑

n∈M
θ(C′

n) +
∑

n∈N
θ(C′

n) =
∑

n∈ω
θ(C′

n) < θ(X) + δ.

Since δ is arbitrary, it follows that θ(X) = θ(X ∩E) + θ(X\E).

For f : 2 → R we define
∫
f = 1

2f(0) + 1
2f(1).

Proposition 27.8. If fn : 2 → [0,∞) for each n ∈ ω and ∀t < 2[
∑

n∈ω fn(t) < ∞], then
∑

n∈ω
∫
fn <∞, and

∑

n∈ω
∫
fn =

∫ ∑

n∈ω fn.

Proof.
∫
∑

n∈ω
fn =

1

2

∑

n∈ω
fn(0) +

1

2

∑

n∈ω
fn(1) =

∑

n∈ω

(
1

2
fn(0) +

1

2
fn(1)

)

=
∑

n∈ω

∫

fn.

Proposition 27.9. θ(κ2) = 1.

Proof. It is obvious that κ2 ∈ A, and that θ(κ2) ≤ θ0(κ2) = 1. Suppose that
θ(κ2) < 1. Choose C ∈ ωC such that 2κ =

⋃

n∈ω Cn and
∑

n∈ω θ0(Cn) < 1. For each n ∈ ω
let Cn = Ufn , where fn ∈ Fn(κ, 2, ω).

(1) ∀g ∈ Fn(κ, 2, ω)∃n ∈ ω[fn ⊆ g or g ⊆ fn].

In fact, let g ∈ Fn(κ, 2, ω). Let h ∈ κ2 with g ⊆ h. Choose n such that h ∈ Cn. Then
fn ⊆ h. So fn ⊆ g or g ⊆ fn.

(2) Let M = {n ∈ ω : ∀m 6= n[fm 6⊆ fn]}. Then κ2 ⊆ ⋃n∈M Ufn .

For, given g ∈ κ2 choose n ∈ ω such that g ∈ Cn. Thus fn ⊆ g. Let m ∈ ω with fm ⊆ fn
and |dmn(fm)| minimum. Then fm ⊆ g and m ∈M , as desired.

(3) |M | ≥ 2.

In fact, obviously M 6= ∅. Suppose that M = {n}. Since
∑

n∈M θ0(Cn) < 1, we have
fn 6= ∅. Then κ2 ⊆ Ufn , contradiction.

(4) M is infinite.

In fact, suppose that M is finite, and let m = sup{|dmn(fn)| : n ∈M}. Let g ∈ Fn(κ, 2, ω)
be such that |dmn(g)| = m + 1. Then by (1), fn ⊆ g for all n ∈ M . Because of (3), this
contradicts (2).

Let J =
⋃

n∈M dmn(fn).

(5) J is infinite.

For, suppose that J is finite. Now M =
⋃

G⊆J{n ∈M : dmn(fn) = G}, so there is a G ⊆ J

such that {n ∈M : dmn(fn) = G} is infinite. But clearly |{n ∈M : dmn(fn) = G}| ≤ 2|G|,
contradiction.
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Let i : ω → J be a bijection. For n, k ∈ ω let f ′
nk be the restriction of fn to the

domain {α ∈ dmn(fn) : ∀j < k[α 6= ij ]}, and let

αnk =
1

2|dmn(f ′
nk

)| .

Now for n, k ∈ ω and t < 2 we define

fnk(t) =

{
αn,k+1 if ik /∈ dmn(fn),
αn,k+1 if ik ∈ dmn(fn) and fn(ik) = t,
0 otherwise.

(6)
∫
fnk = αnk for all n, k ∈ ω.

In fact,

∫

fnk =
1

2
fnk(0) +

1

2
fnk(1)

=

{
αn,k+1 if ik /∈ dmn(fn),
1
2αn,k+1 if ik ∈ dmn(fn)

= αnk.

Now we define by induction elements tk ∈ 2 and subsets Mk of M . Let M0 = M . Now
suppose that Mk and ti have been defined for all i < k, so that

∑

n∈Mk
αnk < 1. Note

that this holds for k = 0. Now

1 >
∑

n∈Mk

αnk =
∑

n∈Mk

∫

fnk by (6)

=

∫
∑

n∈Mk

fnk by Proposition 1.

It follows that there is a tk < 2 such that
(∑

n∈Mk
fnk
)

(tk) < 1. Let

Mk+1 = {n ∈M : ∀j < k + 1[ij /∈ dmn(fn), or ij ∈ dmn(fn) and fn(ij) = tj ]}.

If n ∈Mk+1, then fnk(tk) = αn,k+1. Hence

∑

n∈Mk+1

αn,k+1 =
∑

n∈Mk+1

fmk(tk) ≤
(
∑

n∈Mk

fnk

)

(tk) < 1.

Also, Mk+1 6= ∅. For, let g ∈ κ2 such that g(ij) = tj for all j ≤ k. Say g ∈ Cn with n ∈M .
Then fn ⊆ g. Hence ij /∈ dmn(fn), or ij ∈ dmn(fn) and fn(ij) = tj . Thus n ∈Mk+1.

This finishes the construction. Now let g ∈ κ2 be such that g(ij) = tj for all j ∈ ω.
Say g ∈ Cn with n ∈ M . Then fn ⊆ g. The domain of fn is a finite subset of J . Choose
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k ∈ ω so that dmn(fn) ⊆ {ij : j < k}. Then n ∈Mk. Hence f ′
nk = ∅ and so αnk = 1. This

contradicts
∑

m∈Mk
αmk < 1.

Let ν be the tiny function with domain 2 which interchanges 0 and 1. For any f ∈ κ2 let
F (f) = ν ◦ f .

Proposition 27.10.
(i) F is a permutation of κ2.
(ii) For any f ∈ Fn(κ, 2, ω) we have F [Uf ] = Uν◦f .
(iii) For any X ⊆ κ2 we have θ(X) = θ(F [X ]).
(iv) ∀E ∈ A[F [E] ∈ A].

Proof. (i): Clearly F is one-one, and F (F (f)) = f for any f ∈ κ2. So (i) holds.
(ii): For any g ∈ κ2,

g ∈ F [Uf ] iff ∃h ∈ Uf [g = F (h)]

iff ∃h ∈ κ2[f ⊆ h and g = ν ◦ h]

iff ∃h ∈ κ2[ν ◦ f ⊆ ν ◦ h and g = ν ◦ h]

iff ν ◦ f ⊆ g

iff g ∈ Uν◦f

(iii): Clearly θ0(Uf ) = θ0(F [Uf ]) for any f ∈ Fn(κ, 2, ω). Also, A ⊆ ⋃

n∈ωCn iff F [A] ⊆
⋃

n∈ω F [Cn]. So (iii) holds.
(iv): Suppose that E ∈ A. Let X ⊆ κ2. Then

θ(X ∩ F [E]) + θ(X\F [E]) = θ(F [F [X ]]∩ F [E]) + θ(F [F [X ]]\F [E])

= θ(F [F [X ] ∩E]) + θ(F [F [X ]\E])

= θ(F [X ] ∩E) + θ(F [X ]\E)

= θ(E) = θ(F [E]).

Proposition 27.11. If α < κ and ε < 2, then θ(U{(α,ε)}) = 1
2 .

Proof. By Proposition 27.10 we have θ(U{(α,ε)}) = θ(U{(α,1−ε)}), so the result follows
from Proposition 27.9.

Proposition 27.12. For each f ∈ Fn(κ, 2, ω) we have Uf ∈ A and θ(Uf ) = 1
2|dmn(f)| .

Proof. We have Uf =
⋂

α∈dmn(f) U{(α,f(α))}, so Uf ∈ A by Proposition 27.7. We

prove that θ(Uf) = 1
2|dmn(f)| by induction on |dmn(f)|. For |dmn(f)| = 1, this holds by

Proposition 27.11. Now assume that it holds for |dmn(f)| = m. For any f with |dmn(f)| =
m and α /∈ dmn(f) we have 2−|dmn(f)| = θ(Uf ) = θ(Uf∪{(α,0)}) + θ(Uf∪{(α,1)}). Since

θ(Uf∪{(α,ε)}) ≤ θ0(Uf∪{(α,ε)}) = 2−|dmn(f)|−1 for each ε ∈ 2, it follows that θ(Uf∪{(α,ε)}) =

2−|dmn(f)|−1 for each ε ∈ 2.
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Proposition 27.13. If F is a finite subset of κ2, then F ∈ A and θ(F ) = 0.

Proof. This is obvious if |F | ≤ 1, and then the general case follows.

This finishes our development of measure theory. Now we start to see how a forcing order
is obtained.

For any BA A, an ideal of A is a nonempty subset of A such that if a, b ∈ A, a ≤ b,
and b ∈ I, then also a ∈ I; and if a, b ∈ I, then a+ b ∈ I.

Proposition 27.14. Let I be an ideal in a BA A. Define ≡I= {(a, b) : a, b ∈ A and
a△b ∈ I}. Then ≡I is an equivalence relation on A, and the collection of all equivalence
classes can be made into a BA (A/I,+, ·,−, [0]I, [1]I) such that the following conditions
hold for all a, b ∈ A:

(i) [a]I + [b]I = [a+ b]I .
(ii) [a]I · [b]I = [a · b]I .
(iii) −[a]I = [−a]I .

Proof. Clearly ≡I is reflexive on A and symmetric. Now suppose that a ≡I b ≡I c.
Thus a△b ∈ I and b△c ∈ I. Hence a · −c = a · b · −c+ a · −b · −c ≤ b△c+ a△b ∈ I. Hence
a · −c ∈ I. Similarly c · −a ∈ I, so a△c ∈ I; thus a ≡I c.

Suppose that a ≡I a′ and b ≡I b′. Then

(a+ b) · −(a′ + b′) = a · −a′ · −b′ + b · −a′ · −b′ ≤ a△a′ + b△b′ ∈ I.

So (a+ b) · −(a′ + b′) ∈ I. Similarly (a′ + b′) · −(a+ b) ∈ I, so (a+ b)△(a′ + b′) ∈ I. Hence
(a+ b) ≡I (a′ + b′). This shows that (i) is well-defined.

Similarly,

a · b · −(a′ · b′) = a · b · −a′ + a · b · −b′ ≤ a△a′ + b△b′ ∈ I,

so a ·b ·−(a′ ·b′) ∈ I. Similarly a′ ·b′ ·−(a ·b) ∈ I, so (a ·b)△(a′ ·b′) ∈ I, so [a ·b]I = [a′ ·b′]I ,
and (ii) is well-defined.

Also, (−a)△(−a′) = a△a′ ∈ I, so [−a]I = [−a′]I , and (iii) holds.
Now it is straightforward to check that (A/I,+, ·,−, [0]I, [1]I) is a BA.

Now the random forcing order on κ is ((A/I)\{[0]I},≤, [1]I), with A as in the above
material on measure, and I is the ideal of members of A of measure 0. We denote it by
ranκ. For each [a]I in ranκ we define θ([a]I) = θ(a). Clearly this definition is unambiguous.

Proposition 27.15. ranκ has ccc.

Proof. Suppose to the contrary that X ∈ [ranκ]ω1 is pairwise disjoint. Then X =
⋃

n∈ω{x ∈ X : θ(x) ≥ 1
n+1}, so we can choose X ′ ∈ [X ]ω1 and n such that θ(x) ≥ 1

n+1
for all x ∈ X ′. Write x = [ax]I for each x ∈ X ′. Let y : n + 2 → X ′ be one-one. For
each i < n + 2 let bi = ayi

∏

j<i−ayj . Then 〈bi : i < n + 2〉 is a system of pairwise

disjoint elements of A, and θ(bi) = θ(aji) ≥ 1
n+1

for all i < n + 2. Hence θ(
∑

i<n+2 bi) =
∑

i<n+2 θ(bi) ≥ n+2
n+1

, contradiction.
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It follows that forcing with ranκ preserves cofinalities and cardinals. If G is ranκ-generic
over a c.t.m. M , then for each α < κ one of the elements [U{(α,0)}]I , [U{(α,1)}]I is in G
since 〈[U{(α,0)}]I , [U{(α,1)}]I〉 is a maximal antichain. This gives a function f : κ → 2. Its
restriction to ω is a random real.

A BA A is σ-complete iff any countable subset of A has a sum.

Lemma 27.16. If A is a σ-complete BA satisfying ccc, then A is complete.

Proof. Let X be any subset of A; we want to show that it has a sum. By Zorn’s
lemma, let Y be a maximal set subject to the following conditions: Y consists of pairwise
disjoint elements, and for any y ∈ Y there is an x ∈ X such that y ≤ x. By ccc, Y is
countable, and so

∑
Y exists. We claim that

∑
Y is the least upper bound of X .

Suppose that x ∈ X and x 6≤∑Y . Then x ·−∑Y 6= 0, and Y ∪{x ·−∑Y } properly
contains Y and satisfies both of the conditions defining Y , contradiction. Hence x ≤∑Y .
So
∑
Y is an upper bound for X .

Suppose that z is any upper bound forX , but suppose that
∑
Y 6≤ z. Thus

∑
Y ·−z 6=

0, so by 2.2 there is a y ∈ Y such that y · −z 6= 0. Choose x ∈ X such that y ≤ x. Now
x ≤ z, so y · −z ≤ z, hence y · −z = 0, contradiction.

Lemma 27.17. A/I is complete.

Proof. By Proposition 27.15 and Lemma 27.16 it suffices to show that it is σ-complete.
So, suppose that X is a countable subset of A/I. We can write X = {[y]I : y ∈ Y } for
some countable subset Y of A. We claim that [

⋃
Y ]I is the least upper bound for X . For,

if x ∈ X , choose y ∈ Y such that x = [y]I . Then y ⊆ ⋃Y , so x ≤ [
⋃
Y ]I . Now suppose

that [z]I is any upper bound of X . Then [y]I ≤ [z]I for any y ∈ Y , so y\z ∈ I, i.e.,
θ(y\z) = 0, for any y ∈ Y . Hence

θ
(⋃

Y \z
)

≤
∑

y∈Y
θ(y\z) = 0;

so [
⋃
Y ]I ≤ [z]I , as desired.

Theorem 27.18. There is an isomorphism f of RO(ranκ) onto A/I such that f(i(a)) = a
for every a ∈ ranκ, where i is as in the definition of RO.

Proof. Define j : ranκ → A/I by setting j(a) = a for all a ∈ ranκ. Then the following
conditions are clear:

(1) j[ranκ] is dense in A/I. (In fact, j[ranκ] consists of all nonzero elements of A/I.)

(2) If a, b ∈ ranκ and a ≤ b, then j(a) ≤ j(b).

(3) If a, b ∈ ranκ and a ⊥ b, then j(a) · j(b) = 0.

Hence our theorem follows from Theorem 13.22.

We now need the following general result about Boolean values.
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Proposition 27.19. [[∃x ∈ Ǎϕ(x)]] =
∑

x∈A[[ϕ(x̌)]].

Proof. Let X = {[[ψ(x̌)]] : x ∈ A}. First we show that [[∃x ∈ Ǎϕ(x)]] is an upper
bound for X . In fact, if x ∈ A then [[x̌ ∈ Ǎ]] = 1 since x̌G = x ∈ A = ǍG for any generic
G, so that 1  x̌ ∈ Ǎ. Hence

[[ϕ(x̌)]] = [[x̌ ∈ Ǎ]] · [[ϕ(x̌)]] = [[x̌ ∈ Ǎ ∧ ϕ(x̌)]] ≤ [[∃x[x ∈ Ǎ ∧ ϕ(x)]]] = [[∃x ∈ Ǎϕ(x)]].

Now suppose that a is an upper bound for X , but [[∃x ∈ Ǎϕ(x)]] 6≤ a. Thus by definition,

(
∑

τ∈V P
[[τ ∈ Ǎ ∧ ϕ(τ)]]

)

· −a 6= 0,

so there is a τ ∈ V P such that [[τ ∈ Ǎ∧ϕ(τ)]] ·−a 6= 0. Hence
(∑

b∈A[[τ = b̌ ∧ ϕ(τ)]]
)
·−a 6=

0, so there is a b ∈ A such that [[τ = b̌ ∧ ϕ(τ)]] · −a 6= 0. But [[τ = b̌ ∧ ϕ(τ)]] ≤ [[ϕ(b̌)]], so
this is a contradiction.

Theorem 27.20. Suppose that M is a c.t.m. of ZFC, and A, I, ranκ are as above, all
in M . Suppose that G is ranκ-generic over M , and f ∈ ωω in M [G]. Then there is an
h ∈M ∩ ωω such that f(n) < h(n) for all n ∈ ω.

Proof. Let σ be a ranκ-name such that σG = f , and let p ∈ ranκ be such that
p  σ : ω → ω. We claim that

E
def
= {q ∈ ranκ : there is an h ∈ ωω such that q  ∀n ∈ ω(σ(n) < ȟ(n))}

is dense below p. Clearly this gives the conclusion of the theorem.
To prove this, take any r ≤ p; we want to find q ∈ E such that q ≤ r. Let k be the

isomorphism from RO(ranκ) to A/I given by Theorem 27.18. Now temporarily fix n ∈ ω.
Let i : ranκ → RO(ranκ) be the mapping from Chapter 9. Then by Proposition 27.19,

i(r) ≤ [[∃m ∈ ω(σ(ň) < m)]] =
∑

m∈ω
[[σ(ň) < m̌]],

Applying k, we get

(1) r ≤
∑

m∈ω
k([[σ(ň) < m̌]]).

Let r · k([[σ(ň) < m̌]]) = [am] for each m ∈ ω. Now clearly if m < p, then r  σ(ň) < m̌→
σ(ň) < p̌, so [am] ≤ [ap]. Let bm =

⋃

p≤m ap for each m ∈ ω. Then [am] = [bm] for each
m.

(2)
∑

m∈ω[bm] =
[⋃

m∈ω bm
]
.

In fact,
[⋃

m∈ω bm
]

is clearly an upper bound for {[bm] : m ∈ ω}. If [c] is any upper bound,

then µ(bm\c) = 0 for each m, and hence θ
(⋃

m∈ω bm\c
)

= 0, so that
[⋃

m∈ω bm
]
≤ [c]. So

(2) holds.
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Note that r =
[⋃

m∈ω bm
]
; so θ(r) = θ

(⋃

m∈ω bm
)
. By Proposition 27.5(iii) we get

θ(r) = sup{θ(bm) : m ∈ ω}. So we can choose m ∈ ω such that θ(bm) ≥ θ(r) − 1
2n+2 θ(r).

Let h(n) be the least such m. Thus

(3) θ(r\bh(n)) = θ(r) − θ(bh(n)) ≤
1

2n+2
θ(r).

Now

θ

(

r\
⋂

n∈ω
bh(n)

)

= θ

(
⋃

n∈ω
(r\bh(n))

)

≤
∑

n∈ω

1

2n+2
θ(r)

=
1

2
θ(r).

It follows that

θ

(
⋂

n∈ω
bh(n)

)

> 0.

Let q =
⋂

n∈ω bh(n). So [q] ∈ ranκ. We claim that [q] ≤ r and [q]  ∀n ∈ ω(σ(n) < ˇh(n)).
For, suppose that [q] ∈ G with G ranκ-generic over M , and suppose that n ∈ ω. Then [q] ≤
[bh(n) = [ah(n) ≤ r. and also [q] ≤ k([[σ(checkn) < ˇh(n)]]). Hence i([q]) ≤ [[σ(checkn) <

ˇh(n)]], hence [q]  σ(ň) < ˇh(n). Thus [q] ∈ E, as desired.

Corollary 27.21. Suppose that M is a c.t.m. of ZFC, and Pr is considered in M . Suppose
that G is Pr-generic over M . Then no f ∈ ωω in M [G] is a Cohen real.

Proof. By Theorem 27.3 and Theorem 27.20.

Thus we may say that adding a random real does not add a Cohen real.

Roitman, J. [79] Adding a random or a Cohen real. . . Fund. Math. 103 (1979), 47–60.

Sacks forcing

Let Seq be the set of all finite sequences of 0’s and 1’s. A perfect tree is a nonempty subset
T of Seq with the following properies:

(1) If t ∈ T and m < dmn(t), then t ↾ m ∈ T .

(2) For any t ∈ T there is an s ∈ T such that t ⊆ s and s⌢〈0〉, s⌢〈1〉 ∈ T .

Thus Seq itself is a perfect tree. Sacks forcing is the collection Q of all perfect trees,
ordered by ⊆ (not by ⊇).

Note that an intersection of perfect trees does not have to be perfect. For example
(with ε1, ε2, . . . any members of 2):

p = {∅, 〈0〉, 〈0ε1〉, 〈0ε1ε2〉, . . .};

q = {∅, 〈1〉, 〈1ε1〉, 〈1ε1ε2〉, . . .}.
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Also, one can have p, q perfect, p ∩ q not perfect, but r ⊆ p ∩ q for some perfect r:

p = {∅, 〈1〉, 〈1ε1〉, 〈1ε1ε2〉, . . .
〈0〉, 〈01〉, 〈01ε2〉, 〈01ε2ε3〉 . . .};

q = {∅, 〈1〉, 〈1ε1〉, 〈1, ε1ε2〉, . . .
〈0〉, 〈00〉, 〈00ε2〉, 〈00ε2ε3〉 . . .};

r = {∅, 〈1〉, 〈1ε1〉, 〈1, ε1ε2〉, . . .}.

Theorem 27.22. Suppose that M is a c.t.m. of ZFC. Consider Q within M , and let G
be Q-generic over M . Then the set

{s ∈ Seq : s ∈ p for all p ∈ G}

is a function from ω into 2.

Proof. For each n ∈ ω let

Dn = {p ∈ Q : there is an s ∈ Seq such that dmn(s) = n and s ⊆ t or t ⊆ s for all t ∈ p}.

Then Dn is dense: if q ∈ Q, choose any s ∈ q such that dmn(s) = n, and let p = {t ∈ q :
s ⊆ t or t ⊆ s}. Clearly p ∈ Dn and p ⊆ q.

Now for each n ∈ ω let p(n) be a member of G ∩Dn, and choose s(n) accordingly.

(1) If m < n, then s(m) ⊆ s(n).

In fact, choose r ∈ G such that r ⊆ p(m) ∩ p(n). Then s(m) ⊆ t and s(n) ⊆ t for all t ∈ r
with dmn(t) ≥ n, so s(m) ⊆ s(n).

(2) s(m) ∈ q for all q ∈ G.

In fact, let q ∈ G, and choose r ∈ G such that r ⊆ q and r ⊆ p(m). Take t ∈ r with
dmn(t) = m. then t = s(m) since r ⊆ p(m). Thus s(m) ∈ q since r ⊆ q.

(3) If t ∈ q for all q ∈ G, then t = s(m) for some m.

For, let dmn(t) = m. Since t ∈ p(m), we have t = s(m).
From (1)–(3) the conclusion of the theorem follows.

The function described in Theorem 27.19 is called a Sacks real.
If p ∈ Q, a member f of p is a branching point iff f⌢〈0〉, f⌢〈1〉 ∈ p.
Sacks forcing does not satisfy ccc:

Proposition 27.23. There is a family of 2ω pairwise incompatible members of Q.

Proof. Let A be a family of 2ω infinite pairwise almost disjoint subsets of ω. With
each A ∈ A we define a sequence 〈PA,n : n ∈ ω〉 of subsets of Seq, by recursion:

PA,0 = {∅};

PA,n+1 =

{
{f⌢〈0〉 : f ∈ PA,n} if n /∈ A,
{f⌢〈0〉 : f ∈ PA,n} ∪ {f⌢〈1〉 : f ∈ PA,n} if n ∈ A.
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Note that all members of PA,n have domain n. We set pA =
⋃

n∈ω PA,n. We claim that
pA is a perfect tree. Condition (1) is clear. For (2), suppose that f ∈ pA; say f ∈ PA,n.
Let m be the least member of A greater than n. If g extends f by adjoining 0’s from n to
m− 1, then g⌢〈0〉, g⌢〈1〉 ∈ pA, as desired in (2).

We claim that if A,B ∈ A and A 6= B, then pA and pB are incompatible. For,
suppose that q is a perfect tree and q ⊆ pA, pB. Now A ∩B is finite. Let m be an integer
greater than each member of A ∩ B. Let f be a branching point of q with dmn(f) ≥ m;
it exists by (2) in the definition of perfect tree. Let dmn(f) = n. Then f ∈ PA,n and
f⌢〈0〉, f⌢〈1〉 ∈ PA,n+1, so n ∈ A by construction. Similarly, n ∈ B, contradiction.

Proposition 27.24. Q is not ω1-closed.

Proof. For each n ∈ ω let

pn = {f ∈ Seq : f(i) = 0 for all i < n}.

Clearly pn is perfect, pn ⊆ pm if n > m, and
⋂

n∈ω Pn is {f} with f(i) = 0 for all i, so
that the descending sequence 〈pn : n ∈ ω〉 does not have any member of Q below it.

By 27.23 and 27.24, the methods of chapters 16 and 24 cannot be used to show that forcing
with Q preserves cardinals, even if we assume CH in the ground model. Nevertheless, we
will show that it does preserve cardinals. To do this we will prove a modified version of
ω1-closure.

If p is a perfect tree, an n-th branching point of p is a branching point f of p such that
there are exactly n branching points g such that g ⊆ f . Thus n > 0. For perfect trees p, q
and n a positive integer, we write p ≤n q iff p ⊆ q and every n-th branching point of q is
a branching point of p. Also we write p ≤0 q iff p ⊆ q.

Lemma 27.25. Suppose that p ⊆ q are perfect trees, and n ∈ ω. Then:
(i) If p ≤n q, then p ≤i q for every i < n.
(ii) If p ≤n q and f is an n-th branching point of q, then f is an n-th branching point

of p.
(iii) For each positive integer n there is an f ∈ p such that f is an n-th branching

point of q.
(iv) The following conditions are equivalent:

(a) p ≤n q.
(b) For every f ∈ Seq, if f is an n-th branching point of q, then f⌢〈0〉, f⌢〈1〉 ∈ p.

(v) For each positive integer n there are exactly 2n−1 n-th branching points of a perfect
tree p.

(vi) If p and q are perfect trees, then so is p ∪ q.
(vii) If p and q are perfect trees, then {r : r is a perfect tree and r ⊆ p or r ⊆ q} is

dense below p ∪ q.
Proof. (i): Assume that p ≤n q, i < n, and f is an i-th branching point of q.

Then since q is perfect there are n-th branching points g, h of q such that f⌢〈0〉 ⊆ g and
f⌢〈1〉 ⊆ h. So g, h ∈ p, hence f ∈ p. This shows that p ≤i q.
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(ii): Suppose that p ≤n q and f is an n-th branching point of q. Let r0, . . . , rn−1 be all
of the branching points g of q such that g ⊆ f . Then by (i), r0, . . . , rn−1 are all branching
points of p. Hence f is an n-th branching point of p.

(iii): Let f be an n-th branching point of p. Then it is an m-th branching point of q
for some m ≥ n. Let r be an n-th branching point of q below f . Then r ∈ p, as desired.
[But r might not be a branching point of p.]

(iv), (v), (vi): Immediate from the definitions.
(vii): Suppose that p, q, t are perfect trees and t ⊆ p ∪ q; we want to find a perfect

tree r ⊆ t such that r ⊆ p or r ⊆ q. If t ⊆ p ∩ q, then r = t works. Otherwise, there is

some member f of t which is not in both p and q; say f ∈ p\q. Then r
def
= {g ∈ t : g ⊆ f

or f ⊆ g} is a perfect tree with r ⊆ t and r ⊆ p.

Lemma 27.26. (Fusion lemma) If 〈pn : n ∈ ω〉 is a sequence of perfect trees and · · · ≤n
pn ≤n−1 · · · ≤2 p2 ≤1 p1 ≤0 p0, then q

def
=
⋂

n∈ω pn is a perfect tree, and q ≤n pn for all
n ∈ ω.

Proof. Let n be a positive integer, and let s be an n-th branching point of pn. If
n ≤ m, then pm ≤n pn, so s is an n-th branching point of pm; hence s, s⌢〈0〉, s⌢〈1〉 ∈ pm.
It follows that s, s⌢〈0〉, s⌢〈1〉 ∈ q, and s is a branching point of q. Thus we just need to
show that q is a perfect tree.

Clearly if t ∈ q and n < dmn(t), then t ↾ n ∈ q. Now suppose that s ∈ q; we want to
find a t ∈ q with s ≤ t and t is a branching point of q. Let n = dmn(s). Now s ∈ pn, and
pn has fewer than n elements less than s, so pn has an n-th branching point t ≥ s. By the
first paragraph, t ∈ q.

Let p be a perfect tree and s ∈ p. We define

p ↾ s = {t ∈ p : t ⊆ s or s ⊆ t}.

Clearly p ↾ s is still a perfect tree. Now for any positive integer n, let t0, . . . , t2n−1 be the
collection of all immediate successors of n-th branching points of p. Suppose that for each
i < 2n we have a perfect tree qi ≤ p ↾ ti. Then we define the amalgamation of {qi : i < 2n}
into p to be the set

⋃

i<2n qi.

Lemma 27.27. Under the above assumptions, the amalgamation r of {qi : i < 2n} into p
has the following properties:

(i) r is a perfect tree.
(ii) r ≤n p.
Proof. (i): Suppose that f ∈ r, g ∈ Seq, and g ⊆ f . Say f ∈ qi with i < 2n. Then

g ∈ qi, so g ∈ r. Now suppose that f ∈ r; we want to find a branching point of r above f .
Say f ∈ qi. Let g be a branching point of qi with f ⊆ g. Clearly g is a branching point of
r.

(ii): Suppose that f is an n-th branching point of p. Then there exist i, j < 2n such
that f⌢〈0〉 = ti and f⌢〈1〉 = tj . So f⌢〈0〉 ∈ qi ⊆ r and f⌢〈1〉 = tj ∈ qj ⊆ r, and so f is
a branching point of r.

384



Lemma 27.28. Suppose that M is a c.t.m. of ZFC and we consider the Sacks partial
order Q within M . Suppose that B ∈M , τ ∈MQ, p ∈ Q, and p  τ : ω̌ → B̌. Then there
is a q ≤ p and a function F : ω → [B]<ω in M such that q  τ(ň) ∈ F̌n for every n ∈ ω.

Proof. We work entirely within M , except as indicated. We construct two sequences
〈qn : n ∈ ω〉 and 〈Fn : n ∈ ω〉 by recursion. Let q0 = p. Suppose that qn has been
defined; we define Fn and qn+1. Assume that qn ≤ p. Then qn  τ : α̌ → B̌, so
qn  ∃x ∈ B̌τ(ň) = x). Let t0, . . . , t2n−1 list all of the functions f⌢〈0〉 and f⌢〈1〉 such
that f is an n-th branching point of qn. Then for each i < 2n we have qn ↾ ti ⊆ qn, and
so qn ↾ ti  ∃x ∈ B̌τ(ň) = x). Hence there exist an ri ⊆ qn ↾ ti and a bi ∈ B such
that ri  τ(ň) = b̌i. Let qn+1 be the amalgamation of {ri : i < 2n} into qn, and let
Fn = {bi : i < 2n}. Thus qn+1 ≤n qn by 27.27. Moreover:

(1) qn+1  τ(ň) ∈ F̌n.

In fact, let G be Q-generic over M with qn+1 ∈ G. By 27.22(vii), there is an i such that
ri ∈ G. Since ri  τ(ň) = b̌i, it follows that τG(n) ∈ Fn, as desired in (1).

Now with (1) the construction is complete.
By the fusion lemma 27.26 we get s ≤n qn for each n. Hence the conclusion of the

lemma follows.

Theorem 27.29. If M is a c.t.m. of ZFC +CH and Q ∈M is the Sacks forcing partial
order, and if G is Q-generic over M , then cofinalities and cardinals are preserved in M [G].

Proof. Since |Q| ≤ 2ω = ω1 by CH, the poset Q satisfies the ω2-chain condition, and
so preserves cofinalities and cardinals ≥ ω2. Hence it suffices to show that ωM1 remains
regular in M [G]. Suppose not: then there is a function f : ω → ωM1 in M [G] such that
rng(f) is cofinal in ωM1 . Hence there is a name τ such that f = τG, and hence there is a
p ∈ G such that p  τ : ω̌ → ω̌M1 . By Lemma 27.28, choose q ≤ p and F : ω → [ωM1 ]<ω in
M such that q  τ(ň) ∈ F̌n for every n ∈ ω. Take β < ωM1 such that

⋃

n∈ω Fn < β. Now

q  ∃n ∈ ω(β̌ < τ(ň), so there exist an r ≤ q and an n ∈ ω such that r  β̌ < τ(ň). So we
have:

(2) r  τ(ň) ∈ F̌n;

(3)
⋃

n∈ω Fn < β;

(4) r  β̌ < τ(ň).

These three conditions give the contradiction r  τ(ň) < τ(ň).

Baumgartner, J.; Laver, R. [79] Iterated perfect-set forcing. Ann. Math. Logic 17 (1979),
271–288.

Hechler MAD forcing

A family A of infinite subsets of ω is maximal almost disjoint (MAD) iff any two members
of A are almost disjoint, and A is maximal with this property. By Theorem 20.1, there
is a MAD family of size 2ω. (Apply Zorn’s lemma.)
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Theorem 27.30. Every infinite MAD family of infinite subsets of ω is uncountable.

Proof. Suppose that A is a denumerable pairwise almost disjoint family of infinite
subsets of ω; we want to extend it. Write A = {An : n ∈ ω}, the An’s distinct. We
define 〈an : n ∈ ω〉 by recursion. Suppose that am has been defined for all m < n. Now
⋃

m<n(Am ∩ An) is finite, so we can choose

an ∈ An\
(

{am : m < n} ∪
⋃

m<n

(Am ∩ An)

)

.

Note that then an /∈ Am for any m < n. Let B = {an : n ∈ ω}. Then B is infinite, and
B ∩An ⊆ {am : m ≤ n}.

Also recall that Martin’s axiom implies that every MAD family has size 2ω; see Theorem
21.7. We now want to introduce a forcing which will make a MAD family of size ω1, with
¬CH.

The members of our partial order H will be certain pairs (p, q); we define (p, q) ∈ H

iff the following conditions hold:

(1) p is a function from a finite subset of ω1 into n2 for some n ∈ ω. We write n = np.

(2) q is a function with domain contained in [dmn(p)]2 and range contained in np.

(3) If {α, β} ∈ dmn(q) and q({α, β}) = m, then for every i with m ≤ i < np we have
(p(α))(i) = 0 or (p(β))(i) = 0.

Furthermore, for (p1, q1), (p2, q2) ∈ H we define (p1, q1) ≤ (p2, q2) iff the following condi-
tions hold:

(4) dmn(p1) ⊇ dmn(p2).

(5) p1(α) ⊇ p2(α) for all α ∈ dmn(p2).

(6) q1 ⊇ q2.

Note that (5) implies that np2 ≤ np1 .
The idea here is to produce almost disjoint sets aα for α < ω1; p(α) is the characteristic

function of aα ∩ np, and aα ∩ aβ ⊆ q({α, β}).

Lemma 27.31. Suppose that (p3, q3) ≤ (p1, q1), (p2, q2). Then (p3, q1 ∪ q2) ∈ H, and
(p3, q3) ≤ (p3, q1 ∪ q2) ≤ (p1, q1), (p2, q2).

Proof. Condition (1) clearly holds for (p3, q1 ∪ q2), since it only involves p3. Clearly
q1 ∪ q2 is a relation with domain ⊆ [dmn(p1)]2 ∪ [dmn(p2)]2 ⊆ [dmn(p3)]2. To show that it
is a function, suppose that {α, β} ∈ dmn(q1) ∩ dmn(q2). Then q1({α, β}) = q3({α, β}) =
q2({α, β}). So q1 ∪ q2 is a function, and it clearly maps into max(np1 , np2) ≤ np3 . Hence
(2) holds for (p3, q1 ∪ q2). Finally, suppose that {α, β} ∈ dmn(q1 ∪ q2). By symmetry,
say {α, β} ∈ dmn(q1). Let q1({α, β}) = m, and suppose that m ≤ i < np3 . Then
q3({α, β}) = q1({α, β}) = m, so (p3(α))(i) = 0 or (p3(β))(i) = 0. So (3) holds. The final
inequalities are clear.
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Lemma 27.32. H satisfies ccc.

Proof. Suppose that N is an uncountable subset of H; we want to find two compatible
members of N . Now 〈dmn(p) : (p, q) ∈ N〉 is an uncountable system of finite sets, so there
exist an uncountable N ′ ⊆ N and a finite subset H of ω1 such that 〈dmn(p) : (p, q) ∈ N ′〉
is a ∆-system with root H. Next,

N ′ =
⋃

(f,g)∈J
{(p, q) ∈ N ′ : p ↾ H = f and q ↾ [H]2 = g}, where

J = {(f, g) : f : H → ω, g is a function,

dmn(g) ⊆ [H]2, and rng(g) ⊆ ω}.

Since J is countable, let (f, g) ∈ J be such that N ′′ def
= {(p, q) ∈ N ′ : p ↾ H = f and

q ↾ [H]2 = g} is uncountable. Now we claim that any two members (p1, q1) and (p2, q2) of
N ′′ are compatible. Since p1 ↾ H = p2 ↾ H and dmn(p1)∩dmn(p2) = H, the relation p1∪p2

is a function. Say np1 ≤ np2 . We now define a function p3 with domain dmn(p1)∪dmn(p2).
Let α ∈ dmn(p1) ∪ dmn(p2). Then we define p3(α) : np2 → 2 by setting, for any i < np2 ,

(p3(α))(i) =

{
(p2(α))(i) if α ∈ dmn(p2),
(p1(α))(i) if α ∈ dmn(p1)\dmn(p2) and i < np1 ,
0 otherwise.

To check that (p3, q1∪q2) ∈ H, first note that (1) is clear. To show that q1∪q2 is a function,
suppose that {α, β} ∈ dmn(q1) ∩ dmn(q2). Then dmn(q1) ∩ dmn(q2) ⊆ [dmn(p1)]2 ∩
[dmn(p2)]2 = [H]2, and it follows that q1({α, β}) = q2({α, β}). Thus q1 ∪ q2 is a function.
Furthermore,

dmn(q1 ∪ q2) = dmn(q1) ∪ dmn(q2)

⊆ [dmn(p1)]2 ∪ [dmn(p2)]2

⊆ [dmn(p1) ∪ dmn(p2)]2

= [dmn(p3)]2.

The range of q1 ∪ q2 is clearly contained in np2 . So we have checked (2). For (3), suppose
that {α, β} ∈ dmn(q1 ∪ q2), (q1 ∪ q2)({α, β}) = m, and m ≤ i < np2 . We consider some
cases:

Case 1. {α, β} ∈ dmn(q2). Then α, β ∈ dmn(p2), so p3(α) = p2(α) and p3(β) = p2(β).
Hence (p3(α))(i) = 0 or (p3(β))(i) = 0, as desired.

Case 2. {α, β} ∈ dmn(q1)\dmn(q2) and i < np1 . Thus α, β ∈ dmn(p1). If α ∈
dmn(p2), then p1(α) = p2(α), and so (p3(α))(i) = (p1(α))(i). If α /∈ dmn(p2), still
(p3(α))(i) = (p1(α))(i). Similarly for β, so the desired conclusion follows.

Case 3. {α, β} ∈ dmn(q1)\dmn(q2) and np1 ≤ i. Thus again α, β ∈ dmn(p1). If one
of α, β is not in dmn(p2), it follows that one of (p3(α))(i) or (p3(β))(i) is 0, as desired.
Suppose that both are in dmn(p2). Then {α, β} ⊆ dmn(p1) ∩ dmn(p2) = H, and hence
{α, β} ∈ dmn(q2), contradiction.
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Theorem 27.33. Let M be a c.t.m. of ZFC, and consider H in M . Let G be H-generic
over M . Then cofinalities and cardinals are preserved in M [G], and in M [G] there is a
MAD family of size ω1.

Proof. Cofinalities and cardinals are preserved by 27.32. For each α < ω1, let

xα =
⋃

{p(α) : (p, q) ∈ G for some q, and α ∈ dmn(p)}.

We claim that xα is a function. For, suppose that (a, b), (a, c) ∈ xα. By the definition,
choose (p1, q1), (p2, q2) ∈ G such that α ∈ dmn(p1), α ∈ dmn(p2), (a, b) ∈ p1(α), and
(a, c) ∈ p2(α). Then choose (p3, q3) ∈ G such that (p3, q3) ≤ (p1, q1), (p2, q2). By (4) in the
definition of H we have α ∈ dmn(p3), and by (5) we have (a, b), (a, c) ∈ p3(α), so a = c.

Next we claim that in fact xα has domain ω. (Its domain is clearly a subset of ω.)
For, take any m ∈ ω. It suffices to show that the set

Dαm
def
= {(p, q) ∈ H : α ∈ dmn(p) and m ∈ dmn(p(α))}

is dense. So, suppose that (r, s) ∈ H. If α ∈ dmn(r), let t = r. Suppose that α /∈ dmn(r).
Extend r to t by adding the ordered pair (α, 〈0 : i < nr〉). Clearly (t, s) ∈ H and
(t, s) ≤ (r, s). If m < nt, then (t, s) ∈ Dαm, as desired. Suppose that nt ≤ m. We now
define

p = {(β, g) : β ∈ dmn(t), g ∈ m+12, t(β) ⊆ g, and

g(i) = 0 for all i ∈ [nt, m]}.

Clearly (p, s) ∈ H , in fact (p, s) ∈ Dαm, and (p, s) ≤ (t, s) ≤ (r, s), as desired.
So Dαm is dense, and hence each xα is a function mapping ω into 2. We define

aα = {m ∈ ω : xα(m) = 1}. We claim that 〈aα : α < ω1 is our desired MAD family.
Now we show that each aα is infinite. For each m ∈ ω let

Em = {(p, q) ∈ H : α ∈ dmn(p), m < np, and there is

an i ∈ [m,np) such that (p(α))(i) = 1}.

Clearly in order to show that aα is infinite it suffices to show that each set Em is dense.
So, suppose that (r, s) ∈ H. First choose (t, u) ≤ (r, s) with (t, u) ∈ Dα0. This is done just
to make sure that α is in the domain of t. Let k be the maximum of nt + 1 and m + 1.
Define the function p as follows. dmn(p) = dmn(t). For any γ ∈ dmn(t) and any i < k, let

(p(γ))(i) =







(t(γ))(i) if i < nt,
0 if nt ≤ i and γ 6= α,
1 if nt ≤ i and γ = α.

It is easy to check that (p, u) ∈ H, in fact (p, u) ∈ Em, and (p, u) ≤ (r, s), as desired. So
each aα is infinite.
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Next we show that distinct aα, aβ are almost disjoint. Suppose that α, β < ω1 with
α 6= β. Since Dα0 and Dβ0 are dense, there are (p1, q1), (p2, q2) ∈ G with α ∈ dmn(p1)
and β ∈ dmn(p2). Choose (p3, q3) ∈ G such that (p3, q3) ≤ (p1, q1), (p2, q2). Thus α, β ∈
dmn(p3). Next we claim:

F
def
= {(r, s) : {α, β} ∈ dmn(s)}

is dense below (p3, q3). In fact, suppose that (t, u) ≤ (p3, q3). We may assume that {α, β} /∈
dmn(u). Let dmn(r) = dmn(t), and for any γ ∈ dmn(r) let r(γ) be the function with
domain nt+1 such that t(γ) ⊆ r(γ) and (r(γ))(nt) = 0. Let dmn(s) = dmn(u)∪{{α, β}},
with u ⊆ s and s({α, β}) = nt. It is easily checked that (r, s) ∈ H, in fact (r, s) ∈ F , and
(r, s) ≤ (t, u). So, as claimed, F is dense below (p3, q3). Choose (p4, q4) ∈ F ∩G.

We claim that aα ∩ aβ ⊆ q4({α, β}). To prove this, assume that m ∈ aα ∩ aβ , but
suppose that q4({α, β}) ≤ m. Thus xα(m) = 1 = xβ(m), so there are (e, b), (c, d) ∈ G such
that α ∈ dmn(e), m ∈ dmn(e(α)), (e(α))(m) = 1, and β ∈ dmn(c), m ∈ dmn(c(β)),
and (c(β))(m) = 1. Choose (p5, q5) ∈ G with (p5, q5) ≤ (p4, q4), (a, b), (c, d). Then
{α, β} ∈ dmn(q5), q5({α, β}) = q4({α, β}) ≤ m < np5 , (p5(α))(m) = (e(α))(m) = 1,
and (p5(β))(m) = (c(β))(m) = 1, contradiction. So we have shown that 〈aα : α < ω1〉 is
an almost disjoint family.

To show that 〈aα : α < ω1〉 is MAD, suppose to the contrary that b is an infinite
subset of ω such that b ∩ aα is finite for all α < ω1. Let σ be a name such that σG = b.
For each α < ω1 let

τα = {(̌i, (p, q)) : i ∈ ω, (p, q) ∈ H, α ∈ dmn(p),

i ∈ dmn(p(α)), and (p(α))(i) = 1}.

Cleary ταG = aα. For each n ∈ ω let An be maximal subject to the following conditions:

(1) An is a collection of pairwise incompatible members of H.

(2) For each (p, q) ∈ An, (p, q)  ň ∈ σ or (p, q)  ň /∈ σ.

Then

(3) An is maximal pairwise incompatible.

In fact, suppose that (r, s) ⊥ (p, q) for all (p, q) ∈ An. Now (r, s)  ň ∈ σ ∨ ň /∈ σ, so
there is a (t, u) ≤ (r, s) such that (t, u)  ň ∈ σ or (t, u)  ň /∈ σ. Then An ∪ {(t, u)} still
satisfies (1) and (2), and (t, u) /∈ An, contradiction.

Now choose
α ∈ ω1\

⋃

n∈ω,
(p,q)∈An

dmn(p).

Let m ∈ ω be such that b ∩ aα ⊆ m. Choose (p1, q1) ∈ G such that (p1, q1)  σ ∩ τα ⊆ m̌.
Using Dα0, we may assume that α ∈ dmn(p1). Choose n ∈ b with n > m and n ≥ np1 .
Then take (p2, q2) ∈ G∩An. Then (p2, q2)  ň ∈ σ, since n ∈ b = σG. Choose (p3, q3) ∈ G
with (p3, q3) ≤ (p1, q1), (p2, q2). Then by 27.32 we have (p3, q1∪q2) ∈ H and (p3, q1∪q2) ≤
(p1, q1), (p2, q2).
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Now choose k > max(np3 , n), and define p4 as follows. The domain of p4 is dmn(p3).
For each β ∈ dmn(p3) we define p4(β) : k → 2 by setting, for each i < k,

(p4(β))(i) =







(p3(β))(i) if i < np3 ,
0 if np3 ≤ i and β 6= α,
0 if np3 ≤ i, β = α, and i 6= n,
1 if β = α and i = n.

We check that (p4, q1 ∪ q2) ∈ H. Conditions (1) and (2) are clear. For (3), suppose that
{β, γ} ∈ dmn(q1 ∪ q2), and (q1 ∪ q2)({β, γ}) ≤ i < np4 . Remember that np4 is k. If
i < np3 , then the desired conclusion follows since (p3, q1 ∪ q2) ∈ H. If np3 ≤ i, then the
desired conclusion follows since at least one of β, γ is different from α. Hence, indeed,
(p4, q1 ∪ q2) ∈ H.

Clearly (p4, q1 ∪ q2) ≤ (p2, q2), and so (p4, q1 ∪ q2)  ň ∈ σ. It is also clear that
(p4, q1 ∪ q2) ≤ (p1, q1), so (p4, q1 ∪ q2)  σ ∩ τα ⊆ m̌. Since m < n, it follows that
(p4, q1∪q2)  ň /∈ τα. But (ň, (p4, q1∪q2)) is clearly a member of τα, and hence (p4, q1∪q2) 
ň ∈ τα, contradiction.

Miller, A. [03] A MAD Q-set. Fund. Math. 178 (2003), 271–281.

Collapsing to ω1

Theorem 27.34. Let M be a c.t.m. of ZFC, and in M let λ be an infinite cardinal, and
set κ = λ+ in M . Let P be Fn(ω, λ, ω), and let G be P -generic over M . Then cardinals

≥ κ are preserved in going to M [G], but ω
M [G]
1 = κ.

Thus we may say that all cardinals µ such that ω < µ < κ become countable ordinals in
M [G].

Proof. Let g =
⋃
G. Clearly g is a function with domain contained in ω and range

contained in λ. We claim that actually its domain is ω and its range is λ. For, let m ∈ ω
and α ∈ λ. Let

D = {f ∈ P : m ∈ dmn(f) and α ∈ rng(f)}.
Clearly D is dense. Hence m ∈ dmn(g) and α ∈ rng(g), as desired. It follows that in
M [G], |λ| = ω, and so the same is true for every ordinal α such that ω ≤ α ≤ λ.

Now we can finish the proof by showing in M that P has the κ-cc. Let X ⊆ P with
|X | = κ. Then 〈dmn(f) : f ∈ X〉 is a system of κ many finite sets, so by the ∆-system
lemma 10.1 with κ, λ replaced by ω, κ, there is a N ∈ [X ]κ such that 〈dmn(f) : f ∈M〉 is
a ∆-system, say with root r. Since |rλ| ≤ λ < κ, there are two members f, g of M such
that f ↾ r = g ↾ r. So f and g are compatible, as desired.

We now want to do the same thing for regular limit cardinals κ. We introduce the Lévy
collapsing order:

Lvκ = {p : p is a finite function, dmn(p) ⊆ κ× ω, and

for all (α, n) ∈ dmn(p), p(α, n) ∈ α}.
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Again this set is ordered by ⊇.

Lemma 27.35. For κ regular uncountable, Lvκ has the κ-cc.

Proof. Very similar to part of the proof of 27.34.

Theorem 27.36. Let M be a c.t.m. of ZFC, and suppose that in M κ is regular and
uncountable. Let G be Lvκ-generic over M . Then cardinals ≥ κ are preserved in M [G],

and ω
M [G]
1 = κ.

Proof. Cardinals ≥ κ are preserved by 27.35. Suppose that 0 < α < κ; we will find a
function mapping ω onto α in M [G]. Let g =

⋃
G. Clearly G is a function. Now for each

α < κ, and m ∈ ω let
Dαm = {p ∈ Lvκ : (α,m) ∈ dmn(p)}.

Clearly Dαm is dense, so (α,m) ∈ dmn(g). Thus dmn(g) = κ × ω. Now suppose that
α < κ and ξ < α. Let

Eαξ = {p ∈ Lvκ : there is an m ∈ ω such that (α,m) ∈ dmn(p) and p(α,m) = ξ}.

We claim that Eαξ is dense. For, suppose that α < κ and ξ < α. Take any q ∈ Lvκ.
Choose m ∈ ω such that (α,m) /∈ dmn(q), and let p = q ∪ {((α,m), ξ)}. Clearly p ∈ Eαξ,
as desired.

It follows that 〈g(α,m) : m ∈ ω〉 maps ω onto α.
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28. Proper forcing

The notion of proper forcing is defined in terms of clubs and stationary sets of the form
[λ]<ω1 , where λ is an uncountable cardinal. We write [λ]≤ω in place of [λ]<ω1 .

Let A be uncountable. Let KA be the collection of all algebras with universe A and
countably many operations. We allow 0-ary operations, i.e., elements of the universe. For
each M ∈ KA let Sm(M) be the set of all countable subuniverses of M . Clearly Sm(M)
is a club of [A]≤ω.

Let D(A) be the collection of all subsets of [A]≤ω which include a club. Thus for A
uncountable D(A) is a filter on [A]≤ω which is countably complete, by Theorem 19.22.

Theorem 28.1. For A uncountable, for every club W of [A]≤ω there is an algebra M ∈ KA

such that Sm(M) ⊆W .

Proof. We define a function s : <ωA→ W . Let s(∅) be any member of W . Suppose
that s(a) ∈W has been defined for any a ∈ mA, where m ∈ ω. Take any a ∈ m+1A. Then
we let s(a) be any member of W containing the set s(a ↾ m)∪{am}. This is possible since
W is unbounded. Note that rng(a) ⊆ s(a) for any a ∈ <ωA. Now for any positive m and
any a ∈ mA, let xa be a function mapping ω onto s(a). We now define for each positive
integer m and each i ∈ ω an m-ary operation Fmi on A by setting Fmi (a) = xa(i). Let
M = (A, Fmi )m,i∈ω,m>0. We claim that Sm(M) ⊆W .

To prove this, let C ∈ Sm(M). Write C = {ai : i ∈ ω}. For each positive integer m
let tm = s(a0, . . . , am−1). Now by construction, m < n implies that tm ⊆ tn. Moreover,
tm is the range of x〈a0,...,am−1〉, which is {Fmi (a0, . . . , am−1) : i ∈ ω}. Thus tm ⊆ C. It
follows that C =

⋃

m>0 tm ∈W .

Theorem 28.2. Suppose that P is a ccc forcing order in a c.t.m. M . Let G be P -generic
over M . Let λ be an uncountable cardinal in the sense of M , and let C be club in [λ]≤ω

in the sense of M [G]. Then C includes a club of [λ]≤ω in the sense of M .

Proof. In M [G] let N = (λ, Fni )i,n∈ω,0<n be an algebra in M [G] such that Sm(N) ⊆
C. Fix n > 0 and a

def
= 〈a0, . . . , an−1〉 ∈ nλ. Define fna : ω → λ by setting fna(i) =

Fni (a0, . . . , an−1) for all i ∈ ω. Thus fna : ω → λ and fna ∈ M [G]. By Theorem 16.4
let gna : ω → P(λ) be such that ∀i ∈ ω[fna(i) ∈ gna(i)] and ∀i ∈ ω[|gna(i)| ≤ ω], with
gna ∈ M . In M , for each i ∈ ω let hnai : ω → gna(i) be a surjection. Now we define
Hn
ik(a0, . . . , an−1) = hnai (k) for all i, k ∈ ω. Let P = (λ,Hn

ik)i,k,n<ω,n>0. We claim that

Sm(P ) ⊆ Sm(N). For, let s ∈ Sm(P ). Suppose that n, i ∈ ω with n > 0 and a
def
=

〈a0, . . . , an−1〉 ∈ ns. Then Fni (a0, . . . , an−1) = fna(i) ∈ gna(i), so there is a k such that
hnai (k) = fna(i). Hence Fni (a0, . . . , an−1) = fna(i) = hnai (k) = Hn

ik(a0, . . . , an−1) ∈ s.
Thus s ∈ Sm(N). Now since Sm(N) ⊆ C we have Sm(P ) ⊆ C.

Corollary 28.3. Suppose that P is a ccc forcing order in a c.t.m. M . Let G be P -generic
over M . Let λ be an uncountable cardinal in the sense of M , and let S be a stationary
subset of [λ]≤ω in M . Then S is also stationary in M [G].

Definition. A forcing order P is proper iff for every uncountable cardinal λ, forcing with
P preserves stationarity in [λ]≤ω.
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Corollary 28.4. Every ccc forcing order is proper.

Lemma 28.5. Assume that P is proper, κ is uncountable, and p  [Ȧ ∈ [κ]≤ω]. Then
there exist a B ∈ [κ]≤ω and a q ≤ p such that q  [Ȧ ⊆ B̌].

Proof. Obviously ([κ]≤ω)M is club in [κ]≤ω and hence is also stationary in M . Let
G be P-generic over M with p ∈ G. Then ([κ]≤ω)M is stationary in M [G]. Now obviously
{X ∈ [κ]≤ω : ȦG ⊆ X} is club. Hence there is a B ∈ ([κ]≤ω)M such that ȦG ⊆ B. So
there is a q ≤ p such that q  [Ȧ ⊆ B̌].

Corollary 28.6. Assume that P is proper, and G is P-generic over M . Then ωM1 = ω
M [G]
1 .

Proof. Suppose not. Then there is a p ∈ G such that p  ω̌1 ∈ [ω1]≤ω. Hence by
Lemma 31.164 there exist a B ∈ [ω1]≤ω and a q ≤ p such that q  [ω̌1 ⊆ B̌]. Let q ∈ H
generic. Then ω1 = ω̌1G ⊆ B, contradiction.

Proposition 28.7. If P is proper and 11P P [Q̇ is proper], then P ∗ Q̇ is proper.

Proof. Assume the hypothesis, and suppose that κ is uncountable and S ⊆ [κ]≤ω is
stationary. Let K be (P ∗ Q̇)-generic over M . Form G and H as in Theorem 26.8. Then S
is stationary in M [G]. Also, Q̇G is proper, so S is stationary in M [G][H] = M [K].

Definition. For E ⊆ P, p ⊥ E means ∀q ∈ E[p ⊥ q]. We say that E is predense below p,
in symbols p ≤ ∨E, iff ∀q ≤ p∃r ∈ E[q and r are compatible].

Lemma 28.8. q ⊥ E iff q  [Ě ∩ Γ = ∅].

Proof. ⇒: Assume that q ⊥ E and q ∈ G generic. Suppose that p ∈ E ∩G. Then p
and q are compatible, contradiction.

⇐: Suppose that q 6⊥ E. Say p ∈ E with p, q compatible. Say r ≤ p, q. Let r ∈ G,
generic. Then p ∈ E ∩G. Thus E ∩G 6= ∅. Hence q 6 [Ě ∩ Γ = ∅].

Lemma 28.9. p ≤ ∨E iff p  [Ě ∩ Γ 6= ∅].

Proof. ⇒: Assume that p ≤ ∨E. Thus ∀q ≤ p[q 6⊥ E], so by Lemma 28.8,

(1) ∀q ≤ p[q 6 [Ě ∩ Γ = ∅]].

Now suppose that p 6 [Ě ∩ Γ 6= ∅]. Then there is a generic G with p ∈ G such that
E ∩ G = ∅. Hence there is a q ∈ G such that q  [Ě ∩ Γ = ∅]. Say r ≤ p, q. Then
r  [Ě ∩ Γ = ∅]. This contradicts (1).

⇐: Assume that p  [Ě ∩ Γ 6= ∅]. Suppose that p 6≤ ∨E. Then there is a q ≤ p such
that ∀r ∈ E[q ⊥ r]; that is, such that q ⊥ E. By Lemma 28.8, q  [Ě ∩ Γ = ∅]. But q ≤ p
so q  [Ě ∩ Γ 6= ∅], contradiction.

Definition. If P ∈ M , then p ∈ P is (M,P)-generic iff for all dense D ⊆ P such that
D ∈M we have p ≤ ∨(D ∩M).

For any p ∈ P we let p↓′= {q : q ≤ p}. A subset X ⊆ P is open iff ∀p ∈ X [p↓′⊆ X ].
For D ⊆ P, D↓= {p ∈ D : p↓⊆ D}
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Proposition 28.10. If θ is uncountable and regular, P ∈ M � H(θ) and p ∈ P, then the
following conditions are equivalent:

(i) p is (M,P)-generic.
(ii) For all open dense D ⊆ P such that D ∈M we have p ≤ (D ∩M).
(iii) For all predense D ⊆ P such that D ∈M we have p ≤ (D ∩M).

Proof. First we claim:

(1) If D ∈M , then (D↓′) ∈M .

In fact, suppose that D ∈M . Then

H(θ) |= ∃X∀x[x ∈ X ↔ ∃y ∈ D[x ≤ y]]; hence

M |= ∃X∀x[x ∈ X ↔ ∃y ∈ D[x ≤ y]];

taking X ∈M such that M |= ∀x[x ∈ X ↔ ∃y ∈ D[x ≤ y]], we have H(θ) |= ∀x[x ∈ X ↔
∃y ∈ D[x ≤ y]], so X = (D↓′). So (1) holds.

Now obviously (i)⇒(ii). (ii)⇒(iii): Assume (ii), and suppose that D ⊆ P is predense
and D ∈M . Clearly D↓′ is open dense, and by (1) (D↓′) ∈M . Hence by (ii), p ≤ ∨((D↓′
) ∩M). Thus ∀q ≤ p∃r ∈ (D↓′) ∩M [q and r are compatible]. Suppose that q ≤ p, and
choose r ∈ (D↓′) ∩M so that q and r are compatible. Choose s ∈ D such that r ≤ s.
Then q and s are compatible. This shows that p ≤ ∨(D ∩M), as desired in (iii).

(iii)⇒(i): similarly.

Proposition 28.11. If D ⊆ P is dense, then there is an A ⊆ D such that A is a maximal
antichain.

Proof. Let A ⊆ D be maximal such that it is an antichain. We claim that A is a
maximal antichain in P. For, suppose not; then there is a b ∈ P incompatible with each
member of A. Choose d ≤ b with d ∈ D. Then d is incompatible with each member of A;
so A ∪ {d} is a subset of D which is an antichain, and d /∈ A since otherwise b would be
incompatible with d. This contradiction proves the proposition.

Proposition 28.12. If θ is uncountable and regular, P ∈ M � H(θ) and p ∈ P, then the
following conditions are equivalent:

(i) p is (M,P)-generic.
(ii) For every maximal antichain D ⊆ P such that D ∈M we have p ≤ (D ∩M).

Proof. (i)⇒(ii): Assume (i), and suppose that D ⊆ P is a maximal antichain such
that D ∈ M . Then (D↓′) ∈ M by (1) in the proof of Proposition 28.10. We claim that
D↓′ is dense. For, let q ∈ P. Choose r ∈ D such that q and r are compatible; say s ≤ q, r.
Thus s ∈ (D↓′) and s ≤ q, as desired. It follows that p ≤ ((D↓′) ∩M). As in the proof of
28.10 this shows that p ≤ (D ∩M).

(ii)⇒(i): Assume (ii), and suppose that D ⊆M with D dense. Then

H(θ) |= ∃X [X is a maximal antichain and X ⊆ D], hence

M |= ∃X [X is a maximal antichain and X ⊆ D].
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Take X ∈ M such that M |= [X is a maximal antichain and X ⊆ D]. Then H(θ) |=
[X is a maximal antichain and X ⊆ D]; so X is a maximal antichain and X ⊆ D. Hence
by (ii), p ≤ (X ∩M). To show that p ≤ (D ∩M), take any q ≤ p. Since p ≤ (X ∩M),
choose r ∈ X so that q and r are compatible. Then r ∈ D, as desired.

Definition. Let A be an uncountable set and f : [A]<ω → [A]≤ω. A set x ∈ [A]≤ω is a
closure point of f iff f(e) ⊆ x for every e ∈ [x]<ω. Cl(f) is the collection of all closure
points of f .

If A is uncountable, f : [A]<ω → [A]≤ω, and x ∈ [A]≤ω, we define y0 = x and
yi+1 = yi ∪

⋃{f(e) : e ∈ [yi]
<ω}, and Clf (x) =

⋃

i∈ω yi.

Theorem 28.13. In M suppose that θ is uncountable and regular and P ∈ H(θ).
Then in any generic extension M [G] there is a club C ⊆ [(H(θ))M ]≤ω such that for

all N ∈ C and p ∈ P the following conditions hold:
(i) N � (H(θ))M and P ∈ N .
(ii) For all D ∈ N , if D is a dense subset of P, then D ∩N ∩G 6= ∅.
(iii) If N ∈M and p ∈ G, then there is a q ≤ p that is (N,P)-generic.

Proof. Let C be the set of all N ∈ [(H(θ))M ]≤ω satisfying (i) and (ii). Clearly C
is closed. To show that it is unbounded, let K ∈ [(H(θ))M ]≤ω. Let c be a choice funtion
for nonempty subsets of (H(θ))M . Let 〈∃xnϕn(xn, yn) : n ∈ ω〉 list all formulas in the
language of set theory that begin with an existential quantifier. We define Y0 = K and

Ym+1 = Ym ∪ {a ∈ (H(θ))M : n ∈ ω, ∃b ⊆ Ym[(H(θ))M |= ϕn(a, b)]}
∪ {c(D ∩G) : D ⊆ P, D dense, D ∈ Ym}.

Finally, let N =
⋃

m∈ω Ym. Clearly N satisfies (i) and (ii).
For (iii), suppose that N ∈ M (and N ∈ C), and p ∈ G. Then there is a q ∈ G with

q ≤ p such that q  ∀D[D dense in P̌ → ∃x[x ∈ Ň ∩D∩Γ]]. Thus for all D ∈ N such that
D ⊆ P is dense in P we have q  [(D∩N)v ∩Γ 6= ∅]. Hence by Lemma 28.5 q ≤ ∨(D∩N)
for all D ∈M such that D ⊆ P is dense in P.

Lemma 28.14. If A is an uncountable set, C ⊆ [A]≤ω is club, and D ⊆ C is countable
and directed, then

⋃
D ∈ C.

Proof. Let D = {di : i < ω}. For each i < ω let ei ∈ D be such that dj ⊆ ei for each
j < i and also ej ⊆ ei for each j < i. Then

⋃
D =

⋃

i<ω ei ∈ C.

Lemma 28.15. If A is uncountable, f : [A]<ω → [A]≤ω and ∅ 6= x ∈ [A]≤ω, then:
(i) Clf (x) ∈ Cl(f);
(ii) If z ⊆ x, then Clf (z) ⊆ Clf (x);
(iii) Clf (x) =

⋃{Clf (z) : z ∈ [x]<ω};
(iv) If y ⊆ x ∈ Cl(f), then Clf (y) ⊆ x;
(v) If x ∈ Cl(f), then Clf (x) = x.

Proof. (i): suppose that e ∈ [Clf (x)]<ω. With 〈yi : i ∈ ω〉 as in the definition of
Clf (x), there is an i ∈ ω such that e ∈ [yi]

<ω. Hence f(e) ⊆ yi+1 ⊆ Clf (x). This proves
(i).
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(ii): if 〈yzi : i ∈ ω〉 is as in the definition of Clf (z) and 〈yxi : i ∈ ω〉 is as in the
definition of Clf (x), then by induction yzi ⊆ yxi for all i ∈ ω, and (ii) follows.

(iii): ⊇ holds by (ii). For ⊆, with 〈yi : i ∈ ω〉 as in the definition of Clf (x), we
prove that yi ⊆ rhs for all i ∈ ω by induction on i, where rhs is the right-hand side of
(iii). Since z ⊆ Clf (z) for each z ∈ [x]<ω we have y0 = x ⊆ rhs. Now suppose that
yi ⊆ rhs. If e ∈ [yi]

<ω, then there is a z ∈ [x]<ω such that e ∈ Clf (z), by (ii). Then
f(e) ⊆ Clf (z) ⊆ rhs. Hence yi+1 ⊆ rhs. This proves (iii).

(iv): clear.
(v): x ⊆ Clf (x) ⊆ x by (iv).

Lemma 28.16. If A is an uncountable set and f : [A]<ω → [A]≤ω, then Cl(f) is a club
of [A]≤ω.

Proof. Clearly Cl(f) is closed. If x ∈ [A]≤ω, then x ⊆ Clf (x) ∈ Cl(f) by Lemma
28.14, so Cl(f) is unbounded.

Lemma 28.17. If A is an uncountable set and C is club in [A]≤ω, then there is an
f : [A]<ω → [A]≤ω such that Cl(f) ⊆ C.

Proof. We define f(e) ∈ C for all e ∈ [A]<ω by recursion on |e|. For each a ∈ A
choose f({a}) ∈ C with {a} ⊆ f({a}). Now suppose that f(e) has been defined for all
e ∈ [A]n, and e ∈ [A]n+1. Choose f(e) ∈ C such that e∪⋃a∈e f(e\{a}) ⊆ f(e). Note that
e1 ⊆ e2 implies that f(e1) ⊆ f(e2).

We claim that Cl(f) ⊆ C. For, suppose that x ∈ Cl(f). Then {f(e) : e ∈ [x]<ω} is
directed and x =

⋃{f(e) : e ∈ [x]<ω}, so x ∈ C.

Lemma 28.18. Suppose that θ is uncountable and regular, and λ is uncountable and
λ ∈ H(θ). Suppose that C ⊆ [H(θ)]≤ω is club. Then there is a club C′ in [λ]≤ω such that
C′ ⊆ {x ∩ λ : x ∈ C}.

Proof. Let f : [H(θ)]<ω → [H(θ)]≤ω be such that Cl(f) ⊆ C, by Lemma 28.16.
Define g : [λ]<ω → [λ]≤ω by setting g(e) = Clf (e) ∩ λ for all e ∈ [λ]<ω. We claim that
Cl(g) ⊆ {x ∩ λ : x ∈ Cl(f)}. For, suppose that y ∈ Cl(g). Then

Clf (y) ∩ λ =
⋃

{Clf (z) ∩ λ : z ∈ [y]<ω} =
⋃

{g(z) : z ∈ [y]<ω}

⊆
⋃

{Clg(z) : z ∈ [y]<ω} = y,

so y = Clf (y) ∩ λ.

Theorem 28.19. Suppose that P is a forcing order. Then the following are equivalent:
(i) P is proper,
(ii) For every uncountable regular cardinal θ with P ∈ H(θ) there is a club C ⊆

[H(θ)]≤ω such that for all N ∈ C the following conditions hold:
(a) P ∈ N .
(b) N � H(θ)
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(c) for all p ∈ P ∩N there is a q ≤ p which is (N,P )-generic.
(iii) There is an infinite cardinal ρ such that for every uncountable regular cardinal

θ ≥ ρ with P ∈ H(θ) there is a club C ⊆ [H(θ)]≤ω such that for all N ∈ C the following
conditions hold:

(a) P ∈ N .
(b) N � H(θ)
(c) for all p ∈ P ∩N there is a q ≤ p which is (N,P )-generic.

Proof. (i)⇒(ii): Assume that P is proper and θ is a regular uncountable cardinal
such that P ∈ H(θ). Let

S = {N ⊆ [H(θ)]≤ω : P ∈ N, N � H(θ), ∃p ∈ P ∩N∀q ≤ p[q is not (N,P)-generic]}.

We claim that S is not stationary. For, suppose that it is. For each N ∈ S choose
p ∈ P ∩ N as indicated. Then by Fodor’s theorem, Theorem 19.24, there exist a p ∈ P

and a stationary subset T of S such that for all N ∈ T , p ∈ P ∩ N and ∀q ≤ p[q is not
(N,P)-generic]. Suppose that G is P-generic over M with p ∈ G. In M [G] let C be a club
given by Lemma 28.13. Since P is proper, T is stationary in M [G], and so we can choose
N ∈ T ∩ C. Thus N ∈ M . By Lemma 28.13(iii), there is a q ≤ p which is (N,P)-generic.
This contradicts the definition of T . So S is not stationary.

It follows that there is a club C in [H(θ)]≤ω such that C ∩ S = ∅. Let C′ = {N ∈
[H(θ)]≤ω : P ∈ N and N � H(θ)}. Then C′ is club. Now C ∩ C′ is as desired in the
theorem.

(ii)⇒(iii): obvious.
(iii)⇒(i): Assume (iii). Let λ be an uncountable cardinal, and suppose that S ⊆ [λ]≤ω

is stationary, G is generic, and S is not stationary in M [G]. Say C ⊆ [λ]≤ω is club with
S ∩ C = ∅. Let 〈fni : i ∈ ω, n ∈ ω〉 be a system of members of M [G] with fni : nλ → λ
and, with M = (λ, 〈fni : i ∈ ω, n ∈ ω〉) we have Sm(M) ⊆ C. (See Theorem 28.2.)
Then there is a name σ and a p ∈ G such that ∀i ∈ ω∀n ∈ ω[p  [σni : nλ → λ and
Sm(op(λ, σ))∩ S = ∅]. Let θ ≥ ρ be an uncountable cardinal such that λ ∈ H(θ). By (iii)
let C′ ⊆ [H(θ)]≤ω satisfy the indicated conditions. By Lemma 28.13, let C′′ be a club in
[λ]≤ω such that C′′ ⊆ {N ∩ λ : N ∈ C′}. Since S is stationary, choose N ∈ C′ ∩ C′′ such
that N ∩ λ ∈ C′′ ∩ C′ ∩ S. Now H(θ) |= ∃p[p  [σni : nλ → λ and Sm(op(λ, σ)) ∩ S = ∅]],
so there is a p ∈ N and σni ∈ N such that p  [σni : nλ → λ and Sm(op(λ, σ)) ∩ S = ∅].
Choose q ≤ p such that q is (N,P)-generic. We claim that q  N ∩ λ ∈ Sm(op(λ, σ)). Let
e ∈ n(N ∩ λ); we show that q  σni (e) ∈ N ∩ λ. Let

A = {r : ∃α < λ[r  σni (e) = α]} ∪ {r : r ⊥ q}.

Then A is dense and A ∈ N . From q being (N,P)-generic it follows that for all r ≤ q, r is
compatible with some s ∈ A ∩ N . Hence for any r ≤ q there exist s, t such that t ≤ r, s
and s ∈ A ∩N . Therefore there is an α < λ such that s  σni (e) = α. Since α is definable
from s, σni , e, it follows that α ∈ N .

Thus we have shown that q  N ∩ λ ∈ Sm(op(λ, σ)), q  Sm(op(λ, σ)) ∩ S = ∅], and
N ∩ λ ∈ S, contradiction.
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Theorem 28.20. Every countably closed poset is proper.

Proof. We apply Theorem 28.19. Let θ be an uncountable regular cardinal such that
P ∈ H(θ). Let C = {N : N countable, P ∈ N and N � H(θ)}. Suppose that p ∈ P ∩N .
Let 〈Dn : n ∈ ω〉 list all of the dense subsets of P which are in N . Define 〈qn : n ∈ ω〉 by
recursion: q0 = p. If qn has been defined, let qn+1 ≤ qn with qn+1 ∈ Dn. Let r ≤ qn for
all n. Clearly r is (N,P)-generic.

Definition. If M is a c.t.m. and N ∈ M , for G a generic filter over M we let N [G] =
{σG : σ is a P-name and σ ∈ N .

Theorem 28.21. For any forcing poset P the following conditions are equivalent:
(i) P is proper.
(ii) For every regular θ > 2|trcl(P)|, every countable N � H(θ) with P ∈ N , and every

p ∈ P ∩N , there is a q ≤ p such that q is (N,P)-generic.

Proof. (i)⇒(ii): Assume that P is proper. Let θ > 2|trcl(P)|, θ regular, let N � H(θ)
with P ∈ N , N countable, and let r ∈ P ∩N .

By Theorem 28.19 let C ⊆ [H(|trcl(P)|+)]≤ω be club such that for all Q ∈ C the
following conditions hold:

(1) P ∈ Q.

(2) Q � H(|trcl(P)|+)

(3) for all p ∈ P ∩Q there is a q ≤ p which is (Q,P)-generic.

Now by Lemma 28.17 there is an f : [H(|trcl(P)|+]<ω → [H(|trcl(P)|+)]≤ω such that
Cl(f) ⊆ C. Now note that if (M,N) ∈ f then M ∈ [H(|trcl(P)|+)]<ω and N ∈
[H(|trcl(P)|+)]≤ω. So |M | < |trcl(P)|+ and each member of M is in H(|trcl(P)|+) and
hence has size < |trcl(P)|+. So M ∈ H(|trcl(P)|+). Similarly, N ∈ H(|trcl(P)|+). Now

|f | = |H(|trcl(P)|+)]<ω| = |H(|P|+)| = 2<|trcl(P)|+ = 2|trcl(P)| < θ. So f ∈ H(θ).
Now for all Q ∈ Cl(f) the conditions (1)–(3) hold. We may assume that f is the least

function in H(θ) with this property. Then clearly N is closed under f , and so N ∩H(θ) is
closed under f . So N ∩H(θ) ∈ Cl(f). Thus by (3) for N ∩H(θ), since p ∈ H(θ) because
p ∈ P ∈ H(θ), it follows that there is a q ≤ p which is (N ∩H(θ),P)-generic. We claim
that q is (N,P)-generic. For, suppose that D ⊆ P is dense and D ∈ N . Since P ∈ H(θ),
we have D ∈ N ∩ H(θ). Hence q ≤ ∨

(D ∩ N ∩ H(θ)). Hence for all r ≤ q there is an
s ∈ D ∩N ∩H(θ) such that r and s are compatible. So q ≤ ∨(D ∩N), as desired.

(ii)⇒(i): Assume (ii), and let C be the set of all countable N � H(θ) such that P ∈ N .
Then Theorem 31.188(iii) holds, and so P is proper.

Lemma 28.22. If N � H(λ), then N [G] � H(λ)M [G].

Proof. We apply Tarski’s criterion. Suppose that H(λ)M [G] |= ∃xϕ(x, y1, . . . , yn)
with each yi in N [G]. Say yi = τ iG with τi ∈ N . Thus H(λ)M [G] |= ∃xϕ(x, τ1

G, . . . , τ
n
G).

Choose p ∈ G such that p  (∃xϕ(σ, τ1, . . . , τn))H(λ). Then since N � H(λ), it follows
that p  (∃xϕ(σ, τ1, . . . , τn))N . Hence N [G] |= ∃xϕ(x, y1, . . . , yn).
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Proposition 28.23. Let P be a forcing order, σ a P-name, p ∈ P, and p  [σ is an
ordinal]. Then the set {q ∈ P : ∃α[q  [σ = α̌]]} is dense below p.

Proof. Assume the hypotheses. Suppose that r ≤ p. Let G be generic with r ∈ G.
Then σG is an ordinal α. Thus there is an s ∈ G such that s  [σ = α̌]. Choose q ∈ G
with q ≤ r, s. Then q is in the set of the proposition.

Proposition 28.24. Suppose that N � H(λ), P is a forcing order in N , and p ∈ P. Then
the following are equivalent:

(i) p is (N,P)-generic.

(ii) If D ⊆ P, D is dense, and D ∈ N , then for every generic G, p ∈ G implies that
D ∩N ∩G 6= ∅.

Proof. (i)⇒(ii): Assume (i), D ⊆ P, D is dense, D ∈ N , and p ∈ G generic. By (i),
D ∩N is predense below p, so D ∩N ∩G 6= ∅.

(ii)⇒(i): Assume (ii) and suppose that D ⊆ P is dense, D ∈ N . Take any q ≤ p. Let
G be generic with q ∈ G. By (ii), choose r ∈ D ∩ N ∩ G. Thus q is compatible with a
member of D ∩N , as desired.

Proposition 28.25. Suppose that N � H(λ), P is a forcing order in N , and p ∈ P. Then
the following are equivalent:

(i) p is (N,P)-generic.

(ii) For every P-name σ ∈ N and every q ≤ p, if q  σ is an ordinal, then for every
generic G with q ∈ G, σG ∈ N .

Proof. (i)⇒(ii): Assume (i), σ ∈ N is a P-name, q ≤ p, q  σ is an ordinal, and q ∈ G

generic. Then by Proposition 28.23, D
def
= {r ∈ P : ∃α[r  σ = α̌]} is dense below q. Let f

be a one-one function mapping D into On such that for each r ∈ D, r  σ = f(r)v. Since
N � H(λ), f ∈ N . Let D′ = D ∪ {r : r ⊥ q}. Then D′ ∈ N and D′ is dense. So by (i)
D′∩N is pre-dense below p, hence also pre-dense below q, so we can choose r ∈ D∩N ∩G
with r ≤ q. Now r  σ = f(r)v. Hence σG = f(r) ∈ N .

(ii)⇒(i): Assume (ii); we verify Proposition 28.24(ii). Suppose that D ⊆ P, D is
dense, and D ∈ N . Let p ∈ G generic. Let f be a bijection from a cardinal κ onto D.
Then f, κ ∈ H(λ), so we get that f and κ are in N . Choose a ∈ D ∩G, and let α < κ be
such that f(α) = a. Let σ be a P-name such that σG = α. Choose q ≤ p with q ∈ G such
that q  σ is an ordinal. Then by (ii), σG ∈ N . Hence also a ∈ N , so a ∈ D∩N ∩G.

Proposition 28.26. Suppose that P is a forcing order, N � H(λ), and p ∈ P. Then the
following are equivalent:

(i) p is (N,P)-generic.

(ii) If p ∈ G generic and α ∈ N [G] ∩ On, then α ∈ N .

Proof. (i)⇒(ii): Assume (i), and suppose that p ∈ G generic and α ∈ N [G] ∩ On.
Say α = σG with σ ∈ N . Choose q ∈ G such that q  σ is an ordinal, and choose r ∈ G
with r ≤ p, q. Then by Proposition 28.25(ii), σG ∈ N .
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(ii)⇒(i): Assume (ii). We will check Proposition 28.25(ii). Suppose that σ is a P-
name, σ ∈ N , q ≤ p, q  σ is an ordinal, and q ∈ G generic. Then σG ∈ N [G] ∩ On, so by
(ii), σG ∈ N .

Definition. Now suppose that P is a forcing order and π is a P-name for a forcing order.
We now associate with each (P ∗ π)-name τ a P-name τ∗, by recursion:

τ∗ = {(η, p) : ∃µ∃θ[θ ∈ dmn(π) ∧ η = op(µ∗, θ) ∧ (µ, (p, θ)) ∈ τ}.

Proposition 28.27. Suppose that P is a forcing order, π is a P-name for a forcing order,
τ is a (P ∗ π)-name, and G is P-generic over M . Then τ∗G is a πG-name.

Proof. By induction:

τ∗G = {ηG : ∃p ∈ G[(η, p) ∈ τ∗]}
= {ηG : ∃p ∈ G∃µ∃θ[θ ∈ dmn(π) ∧ η = op(µ∗, θ) ∧ (µ, (p, θ)) ∈ τ ]}
= {(µ∗

G, θG) : θ ∈ dmn(π) ∧ ∃p ∈ G[(µ, (p, θ)) ∈ τ ]}.

Proposition 28.28. Suppose that P is a forcing order and π is a P-name for a forcing
order. Let G ∗H be (P ∗ π)-generic. Then for any (P ∗ π)-name τ we have τG∗H = (τ∗G)H .

Proof. By induction:

τG∗H = {σG∗H : ∃(p, ξ) ∈ G ∗H[(σ, (p, ξ)) ∈ τ ]}
= {(σ∗

G)H : ∃p ∈ G∃ξ ∈ dmn(π)[ξG ∈ H ∧ (σ, (p, ξ)) ∈ τ ]}.

On the other hand,

(τ∗G)H = {ρH : ∃q ∈ H[(ρ, q) ∈ τ∗G]}
= {µ∗

G : ∃p ∈ G∃θ ∈ dmn(π)[θG ∈ H ∧ (µ, (p, θ)) ∈ τ ]}

which is the same as above.

Proposition 28.29. Let P be a forcing order, π a P -name for a forcing order, N � H(λ),
p is (N,P )-generic, (p, σ) ∈ P ∗π, and for all P -generic G, if p ∈ G then σG is (N [G], πG)-
generic.

Then (p, σ) is (N,P ∗ π)-generic.

Proof. We will apply Proposition 28.26. Suppose that G∗H is generic, (p, σ) ∈ G∗H,
and α ∈ N [G ∗ H] ∩ On. Then there is a P ∗ π name τ ∈ N such that α = τG∗H . By
Proposition 28.28 we have α = (τ∗G)H . Clearly τ∗ ∈ N , so τ∗G ∈ N [G]. Now σG ∈ H,
α ∈ N [G][H] and σG is (N [G], πG)-generic, it follows that α ∈ N [G] ∩ On. Let ξ be a
P -name, ξ ∈ N , such that ξG = α. Since p ∈ G and p is (N,P )-generic, it follows that
α ∈ N .
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Lemma 28.30. Suppose that P is a forcing order, π is a P-name for a forcing order,
i(p) = (p, 1) for all p ∈ P ; so i is a complete embedding of P into P ∗ π. Suppose that σ is
a P -name, and G ∗H is generic. Then (i∗(σ))G∗H = σG.

Proof. By induction on σ:

x ∈ (i∗(σ))G∗H iff ∃q ∈ G ∗H∃ν[(ν, q) ∈ i∗(σ) ∧ x = νG∗H ]

iff ∃q ∈ G ∗H∃ν∃(ρ, r) ∈ σ[(ν, q) = (i∗(ρ), i(r)) ∧ x = νG∗H ]

iff ∃q ∈ G ∗H∃(ρ, r) ∈ σ[x = (i∗(ρ))G∗H ∧ i(r) = q]

iff ∃(ρ, r) ∈ σ[x = ρG ∧ r ∈ G]

iff x ∈ σG.

Theorem 28.31. Suppose that P is a forcing poset and π is a full P -name such that  [π
is proper]. Let θ be a regular uncountable cardinal such that trcl(P), π ∈ H(θ), and suppose
that N � H((2θ)+), N countable, and P ∗ π ∈ N . Let i be the complete embedding of P

into P ∗ π. Suppose that p ∈ P is (N,P)-generic, σ and η are P-names, η ∈ N , and

p  σ ∈ Nv ∧ η ∈ Nv ∧ op(σ, η) ∈ (P ∗ π)v ∧ σ ∈ Γ.

Then there is a ξ ∈ dmn(π) such that (p, ξ) is (N,P∗π)-generic and (p, ξ)  i∗(op(σ, ξ)) ∈
Γ.

Proof. Let p ∈ G generic. Then σG ∈ N , ηG ∈ N , (σG, ηG) ∈ P ∗ π, and σG ∈ G.
By Lemma 28.22, N [G] � (H((2θ)+))M [G]. Now η ∈ N , so ηG ∈ N [G]. Also, π ∈ H(θ),
so πG ∈ (H(θ))M [G]. Note that πG is a proper forcing order in M [G]. Now by Theorem
28.21 there is a q ≤ ηG such that q is (N [G], πG)-generic. Thus

p  ∃χ[χ ∈ π ∧ χ ≤ η ∧ χ is (N [Γ], π) − generic.

By the maximal principle let τ be a P-name such that

p  τ ∈ π ∧ τ ≤ η ∧ τ is (N [Γ], π) − generic.

By the definition of full names, let ξ ∈ dmn(π) be such that p  ξ = τ and (ξ, p) ∈ π.
Then (p, ξ) ∈ P ∗ π and p  ξ is (N [Γ], π) − generic. Hence by Proposition 28.29, (p, ξ) is
(N,P ∗ π)-generic. It remains to show that (p, ξ)  i∗(op(σ, ξ)) ∈ Γ. Let (p, ξ) ∈ G ∗H,
generic. Thus p ∈ G and ξG ∈ H. Also, σG ∈ G by assumption. Hence (i∗(op(σ, ξ)))G∗H =
(op(σ, ξ))G = (σG, ξG) ∈ G ∗H.

Lemma 28.32. Let α > 0, and let (〈(Pξ : ξ ≤ α〉, 〈πξ : ξ < α〉) be a countable support
iteration, with each Pξ for ξ < α proper, and each name πξ full. For ξ ≤ η ≤ α, let iξη
be the complete embedding of Pξ into Pη. For each ξ ≤ α let Γξ be the standard name for
a generic filter over Pξ. Let λ be sufficiently large, and let N � H(λ) be countable with
α,Pα, 〈Pξ : ξ ≤ α〉, 〈πξ : ξ < α〉 ∈ N . Let γ0 ∈ α ∩ N , and assume that pγ0 ∈ Pγ0 is
(N,Pγ0)-generic and σ and τ are Pγ0-names such that

pγ0 Pγ0
σ ∈ Nv ∧ σ ∈ Pv

α ∧ τ ∈ Pvγ0 ∧ τ ⊆ σ ∧ τ ∈ Γγ0 .
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Then there is a (N,Pα)-generic condition q such that q ↾ γ0 = pγ0 and q Pα (iγ0α)∗(σ) ∈
Γα.

Proof. Induction on α; so assume that the lemma holds for any positive ordinal less
than α. First suppose that α is a successor ordinal β + 1, and suppose that γ0 = β. Let
G be Pγ0 -generic with pγ0 ∈ G. Then σG ∈ N , σG ∈ Pα, τG ∈ Pγ0 , τG ⊆ σG, and τG ∈ G.
Hence there is a ξ such that σG = τG

⌢〈ξG〉. Then

pγ0  τ ∈ Nv ∧ ξ ∈ Nv ∧ op(τ, ξ) ∈ (P ∗ πγ0)v ∧ τ ∈ Γ.

Then by Theorem 28.31 there is a ξ ∈ dmn(πγ0) such that (pγ0 , ξ) is (N,Pγ0 ∗ πγ0)-
generic and (pγ0 , ξ)  i∗(op(τ, ξ)) ∈ Γ. Now for each q ∈ Pα let f(q) = (q ↾ γ0, q(γ0)).
Then f is an isomorphism from Pα onto Pγ0 × πγ0 . It follows that pγ0

⌢〈ξ〉 is (N,Pα)-
generic. We claim that pγ0

⌢〈ξ〉  ((iγ0α)∗)(σ) ∈ Γ. For, suppose that pγ0
⌢〈ξ〉 ∈ G

generic. Then (pγ0 , ξ) ∈ f [G], so (i∗(op(τ, ξ)))f [G] ∈ f [G]. Now f [G] = (G ↾ γ0) ∗ H
for some H, so by Lemma 28.30, (i∗(op(τ, ξ)))f [G] = (τG↾γ0 , ξG↾γ0) = f(σG↾γ0). Since
(i∗(op(τ, ξ)))f [G] ∈ f [G], it follows that σG↾γ0 ∈ G. Hence it remains only to show that
(((iγ0α)∗)(σ))G = σG↾γ0 :

x ∈ (((iγ0α)∗)(σ))G iff ∃q ∈ G∃ν[(ν, q) ∈ (iγ0α)∗(σ) ∧ x = νG]

iff ∃q ∈ G∃ν∃(ρ, r) ∈ σ[(ν, q) = ((iγ0α)∗(ρ), iγ0α(r)) ∧ x = νG]

iff ∃q ∈ G∃(ρ, r) ∈ σ[q = iγ0α(r) ∧ x = ((iγ0α)∗(ρ))G]

iff ∃q ∈ G∃(ρ, r) ∈ σ[iγ0,α(r) ∈ G ∧ x = ρG↾γ0 ]

iff ∃(ρ, r) ∈ σ[r ∈ G ↾ γ0 ∧ x = ρG↾γ0 ]

iff x ∈ σG↾γ0 .

Now suppose that α = β + 1 and γ0 < β. Now For any Pα-generic G let σG = ρG
⌢〈ξG〉.

Now
pγ0  ρ ∈ Nv ∧ ρ ∈ Pβ ∧ τ ∈ Pvγ0 ∧ τ ⊆ ρ ∧ τ ∈ Γγ0 ,

so by the inductive hypothesis we get a (N,Pβ)-generic q such that q ↾ γ0 = pγ0 and
q  (iγ0β)∗(ρ) ∈ Γβ . Thus

q (iγ0β)∗(σ) ∈ Nv ∧ (iγ0β)∗(σ) ∈ Pvα ∧ (iγ0β)∗(ρ) ∈ Pvβ∧
(iγ0β)∗(ρ) ⊆ (iγ0β)∗(σ) ∧ (iγ0β)∗(σ) ∈ Γβ .

Then by the first special case of this proof we get a (N,Pα)-generic r such that r ↾ β = q
and r  (iβα)∗((iγ0β)∗(σ)) ∈ Γα. Now Proposition 28.29 finishes this part of the induction.

Now suppose that α is a limit ordinal. Now since N � H(λ), there is no largest ordinal
in α ∩N . Moreover, N is countable. Hence there is an increasing sequence 〈γi : i ∈ ω〉 of
ordinals in α ∩ N , cofinal in α ∩ N , starting with our given γ0. Thus supi∈ω γi = α. Let
〈Di : i ∈ ω〉 list all of the dense subsets of Pα which are in N . Now we are going to define
sequences 〈qi : i ∈ ω〉, 〈τi : i ∈ ω〉, 〈µi : i ∈ ω〉 so that the following conditions hold:

(1) qn ∈ Pγn for each n ∈ ω.
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(2) q0 = pγ0 , qn is (N,Pγn)-generic, and qn+1 ↾ γn = qn.

(3) τ0 = σ, and for n > 0, τn is a Pγn -name such that qn forces (in Pγn) each of the
following:

(a) τn ∈ Nv ∧ τn ∈ Pv
α.

(b) µn is a Pγn -name, µn ⊆ τn, and µn ∈ Γγn .
(c) τn ≤α (iγn−1γn)∗(τn−1).
(d) τn ∈ Dv

n−1.

We define q0 = pγ0 and τ0 = σ. Now suppose that qn and τn have been defined so that
(1)–(3) hold. We claim

qn Pγn
∃χ[χ ∈ Pv

α ∧ χ ∈ Nv ∧ ∃µ[µ ∈ Γγn ∧ µ ⊆ χ](4)

∧ χ ∈ Dv
n ∧ χ ≤ τn]

To prove (4), let G be generic over Pγn with qn ∈ G. Since (a)–(d) hold for n, we have
τnG ∈ N , τnG ∈ Pα, µnG ⊆ τnG, µnG ∈ G, τnG ≤α ((iγn−1γn)∗(τn−1))G, and τnG ∈ Dn−1.
Now let

D′
n = {p ↾ γn : p ∈ Dn ∧ [p ≤α τnG ∨ (p ↾ γn) ⊥ µnG)]}.

Then D′
n ∈ N since N � H(λ). We claim that D′

n is dense in Pγn . To see this, let r ∈ Pγn .
Case 1. r ⊥ µnG. By the density of Dn, choose s ∈ Dn such that s ≤α (iγnα)∗(r).

Then s ↾ γn ≤ r, and so (s ↾ γn) ⊥ µnG. Hence s ↾ γn ∈ D′
n, as desired.

Case 2. r and µnG are compatible. Hence (iγnα)∗(r) and τnG are compatible; say
s ≤ (iγnα)∗(r), τnG. By the density of Dn, let t be such that t ∈ Dn and t ≤ s. Thus
t ≤ τnG, so t ↾ γn ∈ D′

n, and t ↾ γn ≤ r, as desired.

So D′
n is dense and D′

n ∈ N . Since qn is (N,Pγn)-generic, it follows by definition that
D′
n ∩ N is pre-dense below qn. So we can choose x ∈ G ∩D′

n ∩ N . Say x = p ↾ γn with
p ∈ Dn. Thus H(λ) |= ∃p ∈ Dn[x = p ↾ γn], so since N � H(λ), we may assume that
p ∈ N . Now x, µnG ∈ G, so they are compatible. Hence p ≤α τnG. Thus with χG = p we
have verified the conclusion of (4). So (4) holds.

By the maximal principle we get a Pγn-name ρ such that

(5) qn Pγn
ρ ∈ Pv

α ∧ ρ ∈ Nv ∧ ∃µ[µ ∈ Γγn ∧ µ ⊆ ρ] ∧ ρ ∈ Dv
n ∧ ρ ≤ τn.

Now qn Pγn
∃ξ[ξ ∈ Pv

γn+1
∧ ξ ∈ Nv ∧ ξ ⊆ ρ]. Hence by the maximal principle again, there

is a Pγn -name ξ such that qn  ξ ∈ Pv
γn+1

∧ ξ ∈ Nv ∧ ξ ⊆ ρ. Thus

qn Pγn
ξ ∈ Nv ∧ ξ ∈ Pv

γn+1
∧ ∃µ[µ ∈ Γγn ∧ µ ⊆ ξ].

We now apply the inductive hypothesis to γn, γn+1, qn, ξ in place of γ0, α, pγ0 , σ to ob-
tain a (N,Pγn+1

)-generic condition qn+1 such that qn+1 ↾ γn = qn and qn+1 Pγn+1

(iγnγn+1
)∗(ξ) ∈ Γγn+1

. Let τn+1 = (iγnγn+1
)∗(ρ). Then we claim

qn+1 τn+1 ∈ Nv ∧ τn+1 ∈ Pv
α ∧ ∃µ[µ ⊆ τn+1 ∧ µ ∈ Γγn+1

](6)

∧ τn+1 ≤ iγnγn+1
(τn) ∧ τn+1 ∈ Dv

n
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To prove (6) we apply Theorem 26.4. Let G be generic on Pγn+1
with qn+1 ∈ G. Let

H = (iγnγn+1
)−1[G]. Then H is Pγn -generic by Theorem 26.3. Since qn+1 ↾ γn = qn, we

have qn+1 ≤ iγnγn+1
(qn), hence iγnγn+1

(qn) ∈ G and qn ∈ H. Hence by (5), ρH ∈ N ,
ρH ∈ Pα, ρH ↾ γn ∈ H, ρH ≤α τnH , and ρH ∈ Dn. Now by Theorem 26.4 we have
τn+1,G = ((iγnγn+1

)∗(ρ))G = ρH . It follows that τn+1,G ∈ N , τn+1,G ∈ Pα, τn+1,G ∈ Dn,
and τn+1,G ≤α (iγnγn+1

)∗(τnG). Finally,

τn+1,G ↾ γn+1 = ((iγnγn+1
)∗(ρ))G ↾ γn+1

= ρH ↾ γn+1

= ξH

= ((iγnγn+1
)∗(ξ))G

∈ G since qn+1 Pγn+1
(iγnγn+1

)∗(ξ) ∈ Γγn+1
.

This finishes the construction.
Let r =

⋃

n∈ω qn. We claim that r is as desired in the Lemma. Clearly r has countable
support. By (3), using Theorem 26.4, we have

(7) iγnα(qn)  (iγnα)∗(τn) ∈ Nv ∧ (iγnα)∗(τn) ∈ Pv
α.

(8) iγnα(qn)  (iγnα)∗(τn) ↾ γn ∈ (iγnα)∗(Γγn).

(9) iγn+1α(qn+1)  (iγn+1α)∗(τn+1) ≤α (iγnα)∗(τn)).

(10) iγn+1α(qn+1)  (iγn+1α)∗(τn+1) ∈ Dv
n.

Since r ≤ iγnα(qn) for all n, this gives

(11) r  (iγnα)∗(τn) ∈ Nv ∧ (iγnα)∗(τn) ∈ Pv
α.

(12) r  (iγnα)∗(τn) ↾ γn ∈ (iγnα)∗(Γγn).

(13) r  (iγn+1α)∗(τn+1) ≤α (iγnα)∗(τn)).

(14) r  (iγn+1α)∗(τn+1) ∈ Dv
n.

Now to show that r is (N,Pα)-generic, we will apply Lemma 31.197. So suppose that G is
generic on Pα, r ∈ G, D is dense in Pα, and D ∈ N ; we want to show that D∩N ∩G 6= ∅.
Choose n so that D = Dn. Let s = ((iγn+1α)∗(τn+1))G. Thus by (11) and (14), s ∈ D∩N .
By Theorem 26.4 and (12), s = τn+1,Gηn+1

∈ Gηn+1
⊆ G. This finishes the proof that r is

(N,Pα)-generic.
Clearly r ↾ γ0 = pγ0 , and r  (iγ0α)∗(σ) ∈ Γα since σ = τ0.

Theorem 28.33. Let α > 0, and let (〈(Pξ : ξ ≤ α〉, 〈πξ : ξ < α〉) be a countable support
iteration, with each Pξ for ξ < α proper, and each name πξ full. Then Pα is proper.

Proof. Let N and λ be as in the statement of Lemma 28.32. We are going to apply
Lemma 28.21 So, let p ∈ Pα with p ∈ N . Let γ0 = 0. Recall that P0 = {0}. Trivially, 0
is (N,P0)-generic. The hypothesis of Lemma 28.32 holds, with pv in place of σ. Hence by
Lemma 28.32 we get a q ∈ Pα such that q is (N,Pα)-generic and q α (i0α)∗(pv) ∈ Γα.
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Let G be Pα-generic with q ∈ G. Then ((i0α)∗(pv))G ∈ G, i.e., p ∈ G. Choose r ∈ G such
that r ≤ p, q. Then r is clearly (N,Pα)-generic.

We now give an equivalent definition of properness which does not involve forcing at all.
The new definition depends on a certain game of length ω. Let P be a forcing order;
we describe a game Γ(P) played between players I and II. First I chooses p0 ∈ P and a
maximal antichain A0 of P. Then II chooses a countable subset B0

0 of A0. At the n-th pair
of moves, I chooses a maximal antichain An and then II chooses countable sets Bni ⊆ Ai
for each i ≤ n. Then we say that II wins iff there is a q ≤ p0 such that for every i ∈ ω,
the set ⋃

i≤n∈ω
Bni

is predense below q.
We give a rigorous formulation of these ideas, not relying on informal notions of games.

A play of the game Γ(P) is an infinite sequence

〈p0, A0, C0, A1, C1, . . . , An, Cn . . .〉

satisfying the following conditions for each n ∈ ω:

(1) p0 ∈ P .

(2) An is a maximal antichain of P.

(3) Cn = 〈Bni : i ≤ n〉, where each Bni is a countable subset of Ai.

Given such a play, we say that II wins iff there is a q ≤ p0 such that for every i ∈ ω, the
set ⋃

i≤n∈ω
Bni

is predense below q.
A partial play of length m of Γ(P) is a sequence

〈p0, A0, C0, A1, C1, . . . , Am−1, Cm−1, Am〉

satisfying the above conditions. Note that the partial play ends with one of the max-
imal antichains Am. A strategy for II is a function S whose domain is the set of all
partial plays of Γ(P), such that if P is a partial play as above, then S(P) is a set
Cm satisfying the condition (3). A play is said to be according to S iff for every m,
Cm = S(〈p0, A0, C0, A1, C1, . . . , Am−1, Cm−1, Am〉). The strategy S is winning iff II wins
every play which is played according to S.

Proposition 28.34. P is proper iff II has a winning strategy in Γ(P).

Proof. First suppose that P is proper, and suppose that p0 ∈ P . Let λ be sufficiently
large, and let N � H(λ) be such that P, p0 ∈ N . Now a strategy for II is as follows. After I
chooses A0, II chooses a countable set N0 with N � N0 � H(λ) and with A0 ∈ N0; and II
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sets B0
0 = A0∩N0. Suppose that I chooses An, and II has chosen N0 � · · · � Nn−1 � H(λ).

Then II chooses Nn so that Nn−1 � Nn � H(λ), and sets Bni = Ai ∩ Nn for all i ≤ n.
When the game is finished, let Nω =

⋃

n∈ωNn. So Nω � H(λ). By Lemma 28.16 choose
q ≤ p0 so that q is (Nω, P )-generic. Since Nω � H(λ), we may assume that q ∈ Nω. Take
any i ∈ ω; we claim that

⋃

i≤nB
n
i is predense below q. Say q ∈ Nn with i ≤ n. Again

since Nn � H(λ), An ∈ Nn, and Bni = Ai ∩Nn, it follows that Bni is a maximal antichain
in P ∩Nn. Let D = {r ∈ P ∩Nn : r ≤ s for some s ∈ Bni }. Then D is dense in P ∩Nn.
Take any r ≤ q. Then r is compatible with some s ∈ D ∩Nn. Hence r is compatible with
some t ∈ Bni . This shows that II wins.

Conversely, suppose that II has a winning strategy σ. Let λ be sufficiently large, and
let N � H(λ) be such that P, p0, σ ∈ N , N countable. Then we take the game in which
I lists all of the maximal antichains of P which are in N , and II plays using his strategy.
All of the sets Bni which II plays are in N , since σ ∈ N . Since II wins, choose q ≤ p0 such
that for each i ∈ ω the set

⋃

i≤nB
n
i is predense below q. We claim that q is (P,N)-generic.

For, let D ⊆ P , D ∈ N , be dense. Let C be maximal such that C is an antichain and
∀p ∈ C∃d ∈ D[p ≤ d]. Then C is a maximal antichain. For, suppose that p ⊥ C. Choose
d ∈ D such that d ≤ p. Then d ⊥ C, so that C ∪ {d} still satisfies the conditions on C,
contradiction. Say C = Ai. Say q ∈ Nn with i ≤ n. Now

⋃

i≤mB
m
i is predense below

q. Hence there is an s ∈ ⋃i≤mBmi such that s and q are compatible. Say t ≤ s, q. Say
s ∈ Bmi with n ≤ m. Now Bi = Ai ∩N , so s ∈ Ai = C. Choose d ∈ D such that s ≤ d.
Now t is compatible with d ∈ D ∩N and t ≤ q. This shows that q is (P,N)-generic. So P
is proper.

The proper forcing axiom

The proper forcing axiom is similar to Martin’s axiom. It is not really an axiom. It runs
as follows:

(PFA) If P is a proper poset and D is a collection of dense subsets of P with |D | ≤ ω1,
then there is a filter G on P such that G ∩D 6= ∅ for all D ∈ D.

Corollary 28.35. PFA implies MA(ω1).

First of all, PFA is relatively consistent. This requires large cardinals, however. Recall
from Chapter 22 the definition of a supercompact cardinal.

Theorem. (Baumgartner) If “ZFC + there is a supercompact cardinal” is consistent, then
so is “ZFC + 2ω = ω2 + PFA”.

Another important fact about PFA is as follows:

• PFA implies ¬(MA(ω2)).

Now we mention various important applications of PFA, giving the basic definitions, but
no background. After this, to conclude this chapter we give one application in detail.

• An important algebra in set theory is P(ω)/fin. Here P(ω) is the collection of all
subsets of ω, and fin is the collection of finite subsets of ω. Clearly fin is an ideal in the
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Boolean algebra P(ω), so we are considering here the quotient algebra. Let A denote this
quotient algebra.

Now let κ and λ be infinite cardinals. A (κ, λ∗)-gap is a pair (f, g) such that the
following conditions hold:

(1) f ∈ κA and g ∈ λA.

(2) If α < β < κ, then fα < fβ .

(3) If α < β < λ, then gβ < gα.

(4) If α < κ and β < λ, then fα < gβ.

We say that the gap is unfilled iff there is no a ∈ A such that fα < a < gβ for all α < κ
and β < λ.

Hausdorff proved (in ZFC) that there is an unfilled (ω1, ω
∗
1)-gap. Under PFA, every

unfilled gap has one of the forms (ω1, ω
∗
1), (ω, λ∗) with λ ≥ ω2, or (κ, ω∗) with κ ≥ ω2.

• PFA implies that there is a linear ordering of size 2ω which cannot be embedded in
P(ω)/fin.

• A set A of real numbers is ℵ1-dense iff A intersects every open interval in exactly ℵ1

points. Under PFA, any two ℵ1-dense sets of real numbers are order-isomorphic.

• Under PFA, any uncountable Boolean algebra has an uncountable set of pairwise incom-
parable elements.

• Under PFA, any uncountable family of subsets of ω contains an uncountable simply
ordered subset or an uncountable family of pairwise incomparable elements.

• PFA implies that every tree of height ω2 with all levels of size less than ω2 has a linearly
ordered subset of size ω2.

Now we begin to develop a detailed application of PFA. The application concerns closed
unbounded subsets of ω1, and the proof involves the notion of an indecomposable ordinal.
An ordinal is called indecomposable iff it is 0 or has the form ωβ for some β; see Theorem
9.31. First we note the following:

Proposition 28.36. If α < ω1, then ωα < ω1.

Proof. By induction on α.

Corollary 28.37. The set of all indecomposable ordinals less than ω1 is club in ω1.

In particular, the union of a sequence of indecomposable ordinals is indecomposable.
Now we define a partial order which we discuss for the rest of this chapter. Let PC

be the set of all f ∈ Fn(ω1, ω1, ω) such that f ⊆ g for some normal function g on ω1. The
order is ⊇.

Lemma 28.38. If p ∈ PC , β < α < ω1 for all β ∈ rng(p), and α is indecomposable, then
p ∪ {(α, α)} ∈ PC .

407



Proof. We may assume that p is nonempty. Let f be a normal function on ω1 such
that p ⊆ f . Let β be the largest member of rng(p). Then (β ∩ rng(f)) ∪ (ω1\β) is club
in ω1; let g be a normal function with it as range. Choose γ < ω1 such that f(γ) = β.
Then g(γ + δ) = β + δ for every ordinal δ < ω1, and so g(α) = g(γ + α) = β + α = α. So
p ∪ {(α, α)} ⊆ g, as desired.

Theorem 28.39. PC is proper.

Proof. For each p ∈ PC , let αp be the least ordinal such that p ⊆ αp × αp.
We claim

(1) If A is a maximal antichain in PC and α < ω1, then there is an ordinal β < ω1 such
that for every p ∈ PC such that p ⊆ α×α there is a q ∈ A such that q and p are compatible
and q ⊆ β × β.

To prove this, let A is a maximal antichain in PC and α < ω1. For each p ∈ PC such that
p ⊆ α× α choose qp ∈ A such that qp and p are compatible. Now {p ∈ PC : p ⊆ α× α} is
countable, so we can choose β < ω1 such that αqp ≤ β for all p ∈ PC such that p ⊆ α× α.
Clearly β is as desired in (1).

We let g(A, α) be the smallest β satisfying (1). For each maximal antichain A, let
C(A) = {β < ω1 : g(A, α) < β for all α < β}. We claim that C(A) is club in ω1. To show
that it is closed, suppose that γ is a limit ordinal less than ω1 and C(A)∩ γ is unbounded
in γ. Take any α < γ. Choose β ∈ C(A)∩γ such that α < β. Then g(A, α) < β < γ. This
shows that γ ∈ C(A), so C(A) is closed. To show that it is unbounded, take any α < ω1.
Let β0 = α, and if βn has been defined, let βn+1 be an ordinal such that g(A, α) < βn for
all α < βn. Clearly

⋃

n∈ω βn ∈ C(A), as desired.
Let Ind be the set of all indecomposable ordinals. So C(A) ∩ Ind is club for every

maximal antichain A.
Now we define two functions S and f defined on all partial plays of the game Γ(PC).

For a smallest play 〈p0, A0〉, choose f(〈p0, A0〉) ∈ Ind∩C(A0) such that p0 ⊆ f(〈p0, A0〉)×
f(〈p0, A0〉), and let

S(〈p0, A0〉) = {p ∈ A0 : p ⊆ f(〈p0, A0〉) × f(〈p0, A0〉)}

Now suppose that a partial play

P
def
= 〈p0, A0, C0, A1, C1, . . . , Am−1, Cm−1, Am〉

is given, with m > 0. Choose f(P) ∈ Ind ∩⋂i≤mC(Ai) with

f(P) > f(〈p0, A0, C0, A1, C1, . . . , Am−1〉).

Then define for each i ≤ m

Bmi = {p ∈ Ai : p ⊆ f(〈p0, A0, C0, A1, C1, . . . , Ai〉) × f(〈p0, A0, C0, A1, C1, . . . , Ai〉)}

and let S(P) = 〈Bmi : i ≤ m〉.
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This finishes the construction of these functions. Thus S is a strategy for II. We claim
that it is a winning strategy. To prove this, let

〈p0, A0, C0, A1, C1, . . . , An, Cn . . .〉

be a play according to S, with associated function f . For each m ∈ ω let αm =
f(〈p0, A0, C0, A1, C1, . . . , Ai〉). Let α =

⋃

m∈ω αm. Thus α is an indecomposable ordinal

less than ω1. Since p0 ⊆ α0 × α0 < α, it follows from 28.39 that q
def
= p0 ∪ {(α, α)} ∈ PC .

We claim that q is what is needed to show that II has won. To prove this, suppose that
i ∈ ω. To show that

⋃

i≤n∈ω B
n
i is predense below q, take any r ≤ q. Let r′ = r ∩ (α×α).

Obviously r′ ∈ PC . Choose n ∈ ω with n ≥ i such that r′ ⊆ αn×αn. Since αn+1 ∈ C(Ai)
and αn < αn+1, by definition of C(Ai) we have g(Ai, αn) < αn+1, and it follows that there
is an s ∈ Ai such that s and r′ are compatible and s ⊆ g(Ai, αn) × g(Ai, αn). We claim
that s and r are compatible (as desired). For, choose normal functions h and k on ω1 such
that s ∪ r′ ⊆ h and r ⊆ k. Now the set (rng(h) ∩ αn+1) ∪ (α\αn+1) ∪ (rng(k)\α) is club;
let l be its strictly increasing enumeration. Choose γ < ω1 such that h[γ] = rng(h)∩αn+1.
Now since r ≤ q we have α ∈ dmn(r) and r(α) = α; hence k(α) = α. It follows that

l(δ) = h(δ) for all δ < γ,

l(γ + ε) = αn+1 + ε for all ε < α, and l[[γ, α)] = α\αn+1,

l(α+ ε) = k(α+ ε) for all ε < ω1.

Now suppose that δ ∈ dmn(s). Then (δ, s(δ)) ∈ g(Ai, αn)× g(Ai, αn) ⊆ αn+1 ×αn+1, and
so s(δ) = h(δ) = l(δ). Next, suppose that δ ∈ dmn(r) and δ < α. Since r(α) = α, it
follows that r(δ) < α. So (δ, r(δ)) ∈ α× α and hence r(δ) = r′(δ) and (δ, r(δ)) ∈ αn × αn.
So r(δ) = r′(δ) = h(δ) = l(δ). Finally, suppose that δ ∈ dmn(r) and α ≤ δ. Then
r(δ) = k(δ) = l(δ).

Now we are ready for our one application of PFA.

Theorem 28.40. Assume PFA, and suppose that 〈Aα : α < ω1〉 is a collection of infinite
subsets of ω1. Then there is a club C in ω1 such that for all α < ω1, Aα 6⊆ C.

Proof. We are going to apply PFA to the partial order PC which we have been
discussing. By 28.39, PC is proper. We now define three families, each of size at most ω1,
of dense subsets of PC . For each α < ω1, let

Dα = {p ∈ PC : there is a γ ∈ Aα such that one of the following holds:

(1) 0 ∈ dmn(p) and γ < p(0);

(2) there is a β such that β, β + 1 ∈ dmn(p) and p(β) < γ < p(β + 1)}.

To see that Dα is dense in PC , let q ∈ PC . Say q ⊆ f with f a normal function on ω1. Let
r = q ∪ {(0, f(0))}. Clearly r ∈ PC and r ≤ q. Let θ be the largest member of rng(r), and
choose ρ so that r(ρ) = θ.
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If γ < f(0) for some γ ∈ Aα, then r ∈ Dα, as desired. Suppose that f(0) ≤ γ for
every γ ∈ Aα.

Next, suppose that Aα 6⊆ rng(f). Choose γ ∈ Aα\rng(f), and let δ be minimum such
that γ < f(δ). By the continuity of f , δ is a successor ordinal β + 1. Then f(β) < γ <
f(β + 1), and so r ∪ {(β, f(β)), (β + 1, f(β + 1))} is the desired member of Dα extending
q. So suppose that Aα ⊆ rng(f).

Suppose that θ < γ for some γ ∈ Aα. Define g : ω1 → ω1 by setting

g(ξ) =

{
f(ξ) if ξ ≤ ρ,
γ + α if ξ = ρ+ α with α 6= 0.

Clearly g is a normal function, and the function s
def
= r ∪ {(ρ+ 1, γ + 1)} is a subset of it.

We have s(ρ) = r(ρ) = θ < γ < γ + 1 = s(ρ + 1), so s ∈ Dα, as desired. Hence we may
assume that Aα ⊆ θ + 1.

Let dmn(r) = {δi : i < m} with 0 = δ0 < δ1 < · · · < δm and r(δm) = θ. The
infinite set Aα is contained in the finite union

⋃

i<m[r(δi), r(δi+1)], so we can choose i < m
such that Aα ∩ [r(δi), r(δi+1)] is infinite. Let 〈βj : j < ω〉 be such that 〈f(βj) : j < ω〉
enumerates the first ω elements of Aα ∩ (r(δi), r(δi+1)). For each j < ω let γj be such that
βj + γj = δi+1. Then for j < k < ω we clearly have γj ≥ γk. Hence we can choose k < ω
such that γk = γj for all j ≥ k. Now we define g : ω1 → ω1 by:

g(ξ) =

{
f(ξ) if ξ ≤ βk,
f(βk+1 + η) if ξ = βk + η with η 6= 0.

Clearly g is a normal function on ω1. For any j ≤ i we have r(δj) = f(δj) = g(δj). Now
suppose that j ≥ i+ 1, and write δj = δi+1 + σ. Then

r(δj) = f(δj) = f(δi+1 + σ) = f(βk+1 + γk+1 + σ) = g(βk + γk + σ) = g(δi+1 + σ) = g(δj).

Thus s
def
= r ∪ {(βk, g(βk)), (βk + 1, g(βk + 1))} is such that s ⊆ g, and

s(βk) = g(βk) = f(βk) < f(βk+1) < f(βk+1 + 1) = g(βk + 1) = s(βk + 1),

and f(βk+1) ∈ Aα. so s ∈ Dα, as desired.
This finishes the proof that Dα is dense in PC .
Next, for each ordinal α < ω1 let

Eα = {p ∈ PC : α ∈ dmn(p)}.

Clearly each Eα is dense in PC .
Finally, for each limit ordinal α < ω1 let

Fα = {p ∈ PC : one of the following holds:

(1) 0 ∈ dmn(p) and α < p(0),

(2) there is a β ∈ dmn(p) such that p(β) = α,

(3) there is a β < ω1 such that β, β + 1 ∈ dmn(p)

and p(β) < α < p(β + 1)}
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To show that Fα is dense in PC , suppose that q ∈ PC . Let f be a normal function on ω1

such that q ⊆ f . Let r = q ∪ {(0, f(0)}. So r ∈ PC and r ≤ q. If α < r(0), then r ∈ Fα,
as desired. So, assume that r(0) ≤ α. If f(β) = α for some β, then r ∪ {(β, α)} ∈ Fα,
as desired. So assume that α /∈ rng(f). Let δ be smallest such that α < f(δ). Then
δ is a successor ordinal β + 1 since f is continuous, and f(β) < α < f(β + 1). Hence
r ∪ {(β, f(β)), (β + 1, f(β + 1))} ∈ Fα, as desired.

Now by PFA let G be a filter on PC which intersects all of these dense sets. Let
f =

⋃
G. We claim that rng(f) is the desired club.

First, f is a function. For, suppose that (α, β), (α, γ) ∈ f . Choose p, q ∈ G such that
(α, β) ∈ p and (α, γ) ∈ q. Since G is a filter, p ∪ q ∈ FC , and so β = γ.

Since G ∩Eα 6= ∅ for each α < ω1, f has domain ω1.
Next, f is strictly increasing. For, if α < β, we can easily find p ∈ G such that

α, β ∈ dmn(p), and hence f(α) = p(α) < p(β) = f(β).
f is continuous: suppose that γ is a limit ordinal. Let α =

⋃

β<γ f(β). Since f is
strictly increasing, α is a limit ordinal too. Let p ∈ G ∩ Fα. Then by the definition of Fα
there are three possibilities.

Case 1. 0 ∈ dmn(p) and α < p(0). But p(0) = f(0) ≤ α, contradiction.
Case 2. There is a β < ω1 such that β, β + 1 ∈ dmn(p) and p(β) < α < p(β + 1).

Choose δ < γ such that f(β) = p(β) ≤ f(δ). Then clearly β ≤ δ < γ so, since γ is a limit
ordinal, also β + 1 < γ, and hence p(β + 1) = f(β + 1) ≤ α, contradiction.

Case 3. There is a β ∈ dmn(p) such that p(β) = α. By Cases 1 and 2, this is the
only possibility left. We claim that β = γ; this will prove continuity. In fact, if β < γ,
then α = p(β) = f(β) < f(β + 1) ≤ α, contradiction. Suppose that γ < β. If δ < γ, then
f(δ) < f(γ). So α ≤ f(γ) < f(β) = α, contradiction. Thus β = γ.

So now we know that f is a normal function on ω1, and hence rng(f) is club in ω1.
Now suppose that α < ω1; we want to show that Aα 6⊆ rng(f). Choose p ∈ Dα ∩ G.
Choose γ ∈ Aα in accordance with the definition of Dα. There are two possibilities. If
0 ∈ dmn(p) and γ < p(0), then γ < f(0), and so γ /∈ rng(f). If there is a β < ω1 such that
β, β + 1 ∈ dmn(p) and p(β) < γ < p(β + 1), then again γ /∈ rng(p).
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29. More examples of iterated forcing

We give some more examples of iterated forcing. These are concerned with a certain partial
order of functions. For any regular cardinal κ we define

f <κ g iff f, g ∈ κκ and there is an α < κ such that f(β) < g(β) for all β ∈ [α, κ).

This is clearly a partial order on κκ. We say that F ⊆ κκ is almost unbounded iff there is
no g ∈ κκ such that f <κ g for all f ∈ F . Clearly κκ itself is almost unbounded; it has
size 2κ.

Theorem 29.1. Let κ be a regular cardinal. Then any almost unbounded subset of κκ has
size at least κ+.

Proof. Let F ⊆ κκ have size ≤ κ; we want to find an almost bound for it. We may
assume that F 6= ∅. Write F = {fα : α < κ}, possibly with repetitions. (Since maybe
|F | < κ.) Define g ∈ κκ by setting, for each α < κ,

g(α) =

(

sup
β≤α

fβ(α)

)

+ 1.

If β < κ, then {α < κ : g(α) ≤ fβ(α)} ⊆ β, and so fβ <κ g.

Thus under GCH the size of almost unbounded sets has been determined. We are interested
in what happens in the absence of GCH, more specifically, under ¬CH.

Theorem 29.2. Suppose that κ is an infinite cardinal and MA(κ) holds. Suppose that
F ⊆ ωω and |F | = κ. Then there is a g ∈ ωω such that f <ω g for all f ∈ F .

Proof. Let P = {(p, F ) : p ∈ Fn(ω, ω, ω) and F ∈ [F ]<ω}. We partially order P by
setting (p, F ) ≤ (q, G) iff the following conditions hold:

(1) p ⊇ q.

(2) F ⊇ G.

(3) For all f ∈ G and all n ∈ (dmn(p)\dmn(q)), p(n) > f(n).

To check that this really is a partial order, suppose that (p, F ) ≤ (q, G) ≤ (h,H). Obvi-
ously p ⊇ h and F ⊇ H. Suppose that f ∈ H and n ∈ (dmn(p)\dmn(h). If n ∈ dmn(q),
then p(n) = q(n) > f(n). If n /∈ dmn(q), then p(n) > f(n) since f ∈ G.

To show that P has ccc, suppose that X ⊆ P is uncountable. Since Fn(ω, ω, ω) is
countable, there are (p, F ), (q, G) ∈ X with p = q. Then (p, F ∪G) ∈ P and (p, F ∪G) ≤
(p, F ), (p,G), as desired.

For each h ∈ F let Dh = {(p, F ) ∈ P : h ∈ F}. Then Dh is dense. In fact, let
(q, G) ∈ P be given. Then (q, G ∪ {h}) ∈ P and (q, G ∪ {h}) ≤ (q, G), as desired.

For each n ∈ ω let En = {(p, F ) : n ∈ dmn(f)}. Then En is dense. In fact, let
(q, G) ∈ P be given. We may assume that n /∈ dmn(q). Choose m > f(n) for each f ∈ G,
and let p = q ∪ {(n,m)}. Clearly (p,G) ∈ En and (p,G) ≤ (q, G), as desired.
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Now we apply MA(κ) to get a filter G on P intersecting all of these dense sets. Since G

is a filter, the relation g
def
=
⋃

(p,F )∈G p is a function. Since G∩En 6= ∅ for each n ∈ ω, g has

domain ω. Let f ∈ F . Choose (p, F ) ∈ G ∩Df . Let m ∈ ω be greater than each member
of dmn(p). We claim that f(n) < g(n) for all n ≥ m. For, suppose that n ≥ m. Choose
(q,H) ∈ G such that n ∈ dmn(q), and choose (r,K) ∈ G such that (r,K) ≤ (p, F ), (q,H).
Then f ∈ K since F ⊆ K. Also, n ∈ dmn(r) since q ⊆ r. So n ∈ dmn(r)\dmn(p). Hence
from (r,K) ≤ (p, F ) we get g(n) = r(n) > f(n).

As another illustration of iterated forcing, we now show that it is relatively consistent that
every almost unbounded subset of ωω has size 2ω, while ¬MA holds. This follows from the
following theorem, using the fact that MA implies that 2κ = 2ω for every infinite cardinal
κ < 2ω.

Theorem 29.3. There is a c.t.m. of ZFC with the following properties:
(i) 2ω = ω2.
(ii) 2ω1 = ω3.
(iii) Every almost unbounded set of functions from ω to ω has size 2ω.

Proof. Applying Theorem 24.15 to a model N of GCH, with λ = ω1 and κ = ω3, we
get a c.t.m. M of ZFC such that in M , 2ω = ω1 and 2ω1 = ω3. We are going to iterate
within M , and iterate ω2 times. At each successor step we will introduce a function almost
greater than each member of ωω at that stage. In the end, any subset of ωω of size less
than ω2 appears at an earlier stage, and is almost bounded.

(1) If Q is a ccc forcing order in M of size ≤ ω1, then there are at most ω1 nice Q-names
for subsets of (ω × ω)̌ .

To prove (1), recall that a nice Q-name for a subset of (ω × ω)̌ is a set of the form

⋃

{{ǎ} ×Aα : a ∈ ω × ω}

where for each a ∈ ω×ω, Aa is an antichain in Q. Now by ccc the number of antichains in
Q is at most

∑

µ<ω1
|Q|µ ≤ ω1 by CH in M . So the number of sets of the indicated form

is at most ωω1 = ω1. Hence (1) holds.

Now we are going to define by recursion functions P, π, and σ with domain ω2.
Let P0 be the trivial partial order ({0}, 0, 0).
Now suppose that Pα has been defined, so that it is a ccc forcing order in M of size

at most ω1. We now define πα, σα, and Pα+1. By (1), the set of all nice Pα-names for
subsets of (ω × ω)̌ has size at most ω1. We let {ταγ : γ < ω1} enumerate all of them.

(2) For every γ < ω1 there is a Pα-name σαγ such that

1Pα Pα σ
α
γ : ω̌ → ω̌ and [ταγ : ω̌ → ω̌ implies that σαγ = ταγ ].

In fact, clearly

1Pα Pα ∃W [W : ω̌ → ω̌ and [ταγ : ω̌ → ω̌ implies that W = ταγ ]],
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and so (2) follows from the maximal principle.
This defines σα.
Now for each H ∈ [ω1]<ω we define ραH = {(σαγ , 1Pα) : γ ∈ H}. So ραH is a Pα-name.
We now define

π0
α = {(op(p̌, ραH), 1) : p ∈ Fn(ω, ω, ω) and H ∈ [ω1]<ω}.

Let G be Pα-generic over M . Then

(3) (π0
α)G = {(p,K) : p ∈ Fn(ω, ω, ω) and K ∈ [ωω]<ω}.

In fact, first suppose that x ∈ (π0
α)G. Then there exist p ∈ Fn(ω, ω, ω) and H ∈ [ω1]<ω

such that x = (p, (ραH)G). Now (ραH)G = {(σαγ )G : γ ∈ H}, and (σαγ )G ∈ ωω for each γ by
(2). Thus x is in the right side of (3).

Second, suppose that p ∈ Fn(ω, ω, ω) and K ∈ [ωω]<ω. For each f ∈ K there is a
γ(f) < ω1 such that f = (τα

γ(f))G. Let H = {γ(f) : f ∈ K}. So H is a finite subset of ω1,

and hence is in N . By (1) we have f = (σαγ(f))G for each f ∈ K. Now (ραH)G = K, and so

(p,K) ∈ (π0
α)G, as desired. So (3) holds.

Next, we define

π1
α = {(op(op(p̌, ραH), op(p̌′, ραH′)), q) : p, p′ ∈ fin(ω, ω),

H,H ′ ∈ [ω1]<ω, p′ ⊆ p, H ′ ⊆ H, q ∈ Pα, and for all γ ∈ H ′

and all n ∈ dmn(p)\dmn(p′), q Pα σ
α
γ (ň) < (p(n))ˇ}.

Again, suppose that G is Pα-generic over M . Then

(π1
α)G = {((p,K), (p′, K ′)) : (p,K), (p′, K ′) ∈ (π0

α)G, p
′ ⊆ p, K ′ ⊆ K,(4)

and for all f ∈ K ′ and all n ∈ dmn(p)\dmn(p′), f(n) < p(n)}.

To prove this, first suppose that x ∈ (π1
α)G. Then there are q ∈ G, p, p′ ∈ Fn(ω, ω, ω)

and H,H ′ ∈ [ω1]<ω such that x = ((p, (ραH)G), (p′, (ραH′))G), p′ ⊆ p, H ′ ⊆ H, and for all
γ ∈ H ′ and all n ∈ dmn(p)\dmn(p′), q  σαγ (ň) < (p(n))̌ . Then with K = (ραH)G and
K ′ = (ραH′))G, the desired conditions clearly hold.

Second, suppose that p, p′, K,K ′ exist as on the right side of (4). Then by the def-
inition of π0

α, there are H,H ′ ∈ [ω1]<ω such that K = (ραH)G and K ′ = (ραH′)G. Then
K ′ = {(σαγ )G : γ ∈ H ′}. Hence for every γ ∈ H ′ and all n ∈ dmn(p)\dmn(p′) we have
(σαγ )G(n) < p(n). Since H ′ and dmn(p)\dmn(p′) are finite, there is a q ∈ G such that for
every γ ∈ H ′ and all n ∈ dmn(p)\dmn(p′) we have q Pα (σαγ )(ň) < p(n)̌ . It follows now
that ((p,K), (p′, K ′)) ∈ (p1

α)G, as desired.
Next, we let π2

α = {(op(0, 0), 1Pα)}. Then for any generic G, (π2
α)G = (0, 0). Finally,

let πα = op(op(π0
α, π

1
α), π2

α). This finishes the definition of πα.
By the argument in the proof of 29.2 we have

(5) 1Pα Pα πα is ω̌1 − cc.

414



Now Pα+1 is determined by (I7) and (I8).
At limit stages we take direct limits, so that ccc is maintained. So the construction is

finished, and Pκ is ccc.
Let G be Pκ-generic over M .

(6) In N [G], if F ⊆ ωω and |F | < ω2, then there is a g ∈ ωω such that f <ω g for all
f ∈ F .

For, let F = {fξ : ξ < ω1}, possibly with repetitions. Let

F
′ = {(ξ, i, j) : ξ < ω1, i, j ∈ ω, and fξ(i) = j}.

Now there is an α < ω2 such that F ′ ∈ N [i−1
αω2

[G]], and hence also F ∈ N [i−1
αω2

[G]]. For

brevity write Gξ = i−1
ξω2

[G] for every ξ < ω2. Let

Hα = {ηGα : η ∈ dmn(π0
α) and p⌢〈η〉 ∈ Gα+1 for some p}.

Let Qα = (πα)Gα . Thus by (3) and (4),

Qα = {(p,K) : p ∈ fin(ω, ω) and K ∈ [ωω]<ω};(7)

≤Qα = {((p,K), (p′, K ′)) : (p,K), (p′, K ′) ∈ (π0
α)G, p

′ ⊆ p, K ′ ⊆ K,(8)

and for all f ∈ K ′ and all n ∈ dmn(p)\dmn(p′), f(n) < p(n)}.

Hence Gα is P-generic over N , Hα ∈ N [Gα+1], and Hα is Qα-generic over N [Gα]. Let
g =

⋃

(p,F )∈Hα p. Clearly g is a function. For each m ∈ ω, let

Em = {(p,K) :∈ Qα : m ∈ dmn(p)}.

Then Em is dense. (See the proof of 29.2.) It follows that g ∈ ωω.

Now take any f ∈ ωω (in N [Gα]). The set D
def
= {(p,K) ∈ Qα : f ∈ K} is dense, by

the proof of 29.2. Hence we can choose (p,K) ∈ D ∩Hα. We claim that f(m) < g(m) for
all m such that m > n for each n ∈ dmn(p). For, suppose that such an m is given. Choose
(p′, K ′) ∈ Em ∩Hα, and then choose (p′′, K ′′) ∈ Hα with (p′′, K ′′) ≤ (p,K), (p′, K ′). Now
m ∈ dmn(p′) ⊆ dmn(p′′), and f ∈ K. so from (p′′, K ′′) ≤ (p,K) and m /∈ dmn(p) we get
f(m) < p′′(m) = g(m), as desired. This finishes the proof of (6).

By (6) we have ω2 ≤ 2ω.

(9) |Pα| ≤ ω1 for all α < ω2.

We prove this by induction on α. It is clear for α = 0. Assume that |Pα| ≤ ω1. Clearly
|π0
α| = ω1, so by (I7), |Pα+1| ≤ ω1. Suppose that α is limit, and |Pβ | ≤ ω1 for all β < α.

Since Pα is the direct limit of previous Pβs, clearly |Pα| ≤ ω1.

(10) |Pω2
| ≤ ω2.

This is clear from (8), since Pω2
is the direct limit of earlier Pβs.
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Now by Proposition 24.3, replacing κ, λ, µ there by ω2, ω1, ω, we get 2ω ≤ ω2. So by
the above, 2ω = ω2 in N [G]. By Proposition 24.3, replacing κ, λ, µ there by ω2, ω1, ω1, we
get 2ω1 ≤ ω3. Since 2ω1 = ω3 in N , it follows that 2ω1 = ω3 in N [G].

We want to generalize 29.3 to higher cardinals. This requires some preparation.

Lemma 29.4. Suppose that M is a c.t.m. of ZFC, and in M θ is a regular cardinal,
2<θ = θ, and 2θ = θ+. We define a partial order P in M as follows:

P = {(p, F ) : p ∈ Fn(θ, θ, θ), F ∈
[
θθ
]<θ}

(p, F ) ≤ (q, G) iff q ⊆ p, G ⊆ F, and ∀f ∈ G∀β ∈ dmn(p)\dmn(g)(p(β) > f(β));

1P = (0, 0).

Then the following conditions hold.
(i) |P | ≤ θ+.
(ii) P is θ-closed.
(iii) P has the θ+-cc.
(iv) P preserves cofinalities and cardinals.
(v) If G is P-generic over M , then there is a function g ∈ θθ in M [G] such that f <θ g

for all f ∈ (θθ)M .

Proof. Clearly (i) holds.
P satisfies the θ+-c.c.: Suppose that B ⊆ P with |B| ≥ θ+. Then since |Fn(θ, θ, θ)| =

θ, wlog there is a q such that p = q for all (p, F ) ∈ B, and so θ+-c.c. is clear.

P is θ-closed: Suppose that 〈(pα, Fα) : α < β〉 is decreasing, with β < θ. Let q =
⋃

α<β pα
and G =

⋃

α<β Fα. Suppose that α < β; we claim that (q, G) ≤ (pα, Fα). Suppose that
f ∈ Fα and δ ∈ dmn(q)\dmn(pα). Then there is a γ < β such that δ ∈ dmn(pγ). We may
assume that α < γ. Hence (pγ , Fγ) ≤ (pα, Fα), so q(δ) = pγ(δ) > f(δ), as desired.

Now it follows that (iv) holds.
Now suppose that G is P-generic over M . Define

g =
⋃

(p,F )∈G
p.

Clearly g is a function with domain and range included in θ. To show that g has domain
θ, take any α < θ. Let D = {(p, F ) : α ∈ dmn(p)}. Then D is dense. In fact, suppose
that (q,H) ∈ P. Wlog α /∈ dmn(q). Let p be the extension of g by adding α to its domain
and defining p(α) to be any ordinal less than θ which is greater than each f(α) for f ∈ H.
Clearly (p,H) ≤ (q,H) and (p,H) ∈ D. So g has domain θ.

Finally, we claim that f <∗ g for all f ∈ θθ∩M . In fact, clearly E
def
= {(p, F ) ∈ P : f ∈

F} is dense, and so we can choose (p, F ) ∈ E∩G. Take α < θ such that sup(dmn(p)) < α.
Take any β ∈ (α, θ). Choose (q,H) such that β ∈ dmn(q). Then choose (r,K) ∈ G such
that (r,K) ≤ (p, F ), (q,H). Then β ∈ dmn(r)\dmn(p), and f ∈ F , so g(β) = r(β) > f(β).
This shows that f <∗ g.
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If π is a P-name for a p.o., then we say that π is full for ↓θ-sequences iff the following
conditions (a)–(d) imply condition (e):

(a) p ∈ P.

(b) α < θ.

(c) ρξ ∈ dmn(π0) for each ξ < α.

(d) for all ξ, η < α, if ξ < η, then p  (ρξ ∈ π0) ∧ (ρη ∈ π0) ∧ (ρη ≤ ρξ).

(e) There is a σ ∈ dmn(π0) such that p  σ ∈ π and p  σ ≤ ρξ for each ξ < α.

Lemma 29.5. Let M be a c.t.m. of ZFC, and θ an infinite cardinal in M . Let I be
the ideal in P(θ) consisting of all sets of size less than θ. In M , let (P, π) be an α-stage
iterated forcing construction with supports in I (Kunen’s sense). Suppose that for each
ξ < α, the Pξ-name πξ is full for ↓θ-sequences. Then Pα is θ-closed.

Proof. Let 〈pν : ν < σ〉 be a sequence of elements of Pα such that pν ≤ pµ if
µ < ν < σ, and σ < θ. We will define pσ = 〈pσξ : ξ < α〉 by recursion so that the following
condition holds:

For all ξ < α, pσ ↾ ξ = 〈pση : η < ξ〉 ∈ Pξ and ∀µ < σ(pσ ↾ ξ ≤ pµ ↾ ξ) and

supp(pσ) =
⋃

ν<σ

supp(pν).

The induction step to a limit ordinal ξ is clear, as is the case ξ = 0. Now we define pσξ ,

given pσ ↾ ξ. By fullness we get ρσξ ∈ dmn(π0) such that

pσ ↾ ξ  ρσξ ∈ π and pσ ↾ ξ  ρσξ ≤ ρση for each η < ξ.

Clearly pσ is as desired.

Here is our generalization of 29.3.

Theorem 29.6. Let M be a c.t.m. of GCH, and let θ be an uncountable regular cardinal
in M . Then there is a generic extension N of M preserving cofinalities and cardinals such
that in N the following hold:

(i) 2θ = θ++.

(ii) 2(θ+) = θ+++.
(iii) Every subset of θθ of size less than 2θ is almost unbounded.

Proof. First we apply Corollary 24.16 with λ = θ+ and κ = θ+++ to get a generic
extension M ′ of M preserving cofinalities and cardinals in which 2<θ = θ, 2θ = θ+, and
2θ

+

= θ+++.
We are going to iterate within M ′, and iterate θ++ times. At each successor step we

will introduce a function almost greater than each member of θθ at that stage. In the end,
any subset of θθ of size less than θ++ appears at an earlier stage, and is almost bounded.
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(1) If Q is a θ+-cc forcing order in M ′ of size less ≤ θ+, then there are at most θ+ nice
Q-names for subsets of (θ × θ)̌ .

To prove (1), recall that a nice Q-name for a subset of (θ × θ)̌ is a set of the form

⋃

{{ǎ} ×Aα : a ∈ θ × θ}

where for each a ∈ θ× θ, Aa is an antichain in Q. Now by θ+-cc, the number of antichains
in Q is at most

∑

µ<θ+ |Q|µ ≤ θ+ by 2θ = θ+. So the number of sets of the indicated form

is at most (θ+)θ = θ+. Hence (1) holds.

Now we are going to define by recursion functions P, π, and σ with domain θ++.
Let P0 be the trivial partial order ({0}, 0, 0).
Now suppose that Pα has been defined, so that it is a θ+-cc forcing order in M ′ of

size at most θ+, it is θ-closed, and every element has support of size less than θ. Also we
assume that πξ has been defined for every ξ < α so that πξ is a Pξ-name for a forcing
order, and it is full for ↓θ-sequences. We now define πα, σα, and Pα+1. By (1), the set
of all nice Pα-names for subsets of (θ × θ)̌ has size at most θ+. We let {ταγ : γ < θ+}
enumerate all of them.

(2) For every γ < θ1 there is a Pα-name σαγ such that

1Pα Pα σ
α
γ : θ̌ → θ̌ and [ταγ : θ̌ → θ̌ implies that σαγ = ταγ ].

In fact, clearly

1Pα Pα ∃W [W : θ̌ → θ̌ and [ταγ : θ̌ → θ̌ implies that W = ταγ ]],

and so (2) follows from the maximal principle.
This defines σα.
Now for each H ∈ [θ+]<θ we define ραH = {(σαγ , 1Pα) : γ ∈ H}. So ραH is a Pα-name.
We now define

π0
α = {(op(p̌, ραH), 1) : p ∈ Fn(θ, θ, θ) and H ∈ [θ+]<θ}.

Let G be Pα-generic over M ′. Then

(3) ([θ+]<θ)M
′

= ([θ+]<θ)M
′[G].

In fact, ⊆ is clear. Now suppose that L ∈ ([θ+]<θ)M
′[G]. Then there exist an ordinal α < θ

and a bijection f from α onto L. Since Pα is θ-closed, by 11.1 we have f ∈M ′, and hence
L ∈M ′, as desired in (3). Similarly,

(4) (Fn(θ, θ, θ))M
′

= (Fn(θ, θ, θ))M
′[G].

(5) (π0
α)G = {(p,K) : p ∈ Fn(θ, θ, θ) and K ∈ [θθ]<θ}.

418



In fact, first suppose that x ∈ (π0
α)G. Then there exist p ∈ Fn(θ, θ, θ) and H ∈ [θ+]<θ such

that x = (p, (ραH)G). Now (ραH)G = {(σαγ )G : γ ∈ H}, and (σαγ )G ∈ θθ for each γ by (2).
Thus x is in the right side of (3).

Second, suppose that p ∈ Fn(θ, θ, θ) and K ∈ [θθ]<θ. For each f ∈ K there is a
γ(f) < θ+ such that f = (ταγ(f))G. Let H = {γ(f) : f ∈ K}. So H is a subset of θ+ of

size less than θ. By (2) we have f = (σαγ(f))G for each f ∈ K. Now (ραH)G = K, and so

(p,K) ∈ (π0
α)G, as desired. So (5) holds.

Next, we define

π1
α = {(op(op(p̌, ραH), op(p̌′, ραH′)), q) : p, p′ ∈ Fn(θ, θ, θ),

H,H ′ ∈ [θ+]<θ, p′ ⊆ p,H ′ ⊆ H, q ∈ Pα, and for all γ ∈ H ′

and all ξ ∈ dmn(p)\dmn(p′), q Pα σ
α
γ (ξ̌) < (p(ξ))ˇ}.

Again, suppose that G is Pα-generic over M ′. Then

(π1
α)G = {((p,K), (p′, K ′)) : (p,K), (p′, K ′) ∈ (π0

α)G, p
′ ⊆ p, K ′ ⊆ K,(6)

and for all f ∈ K ′ and all ξ ∈ dmn(p)\dmn(p′), f(ξ) < p(ξ)}.

To prove this, first suppose that x ∈ (π1
α)G. Then there are q ∈ G, p, p′ ∈ Fn(θ, θ, θ)

and H,H ′ ∈ [θ+]<θ such that x = ((p, (ραH)G), (p′, (ραH′))G), p′ ⊆ p, H ′ ⊆ H, and for all
γ ∈ H ′ and all n ∈ dmn(p)\dmn(p′), q  σαγ (ξ̌) < (p(ξ))̌ . Then with K = (ραH)G and
K ′ = (ραH′))G, the desired conditions clearly hold.

Second, suppose that p, p′, K,K ′ exist as on the right side of (4). Then by the
definition of π0

α, there are H,H ′ ∈ [θ+]<θ such that K = (ραH)G and K ′ = (ραH′)G.
Then K ′ = {(σαγ )G : γ ∈ H ′}. Hence for every γ ∈ H ′ and all ξ ∈ dmn(p)\dmn(p′)
we have (σαγ )G(ξ) < p(ξ). Let 〈(ξν , ψν) : ν < γ〉 enumerate all pairs (ξ, γ) such that
ξ ∈ dmn(p)\dmn(p′) and γ ∈ H ′, with β < θ, β limit. Now we define a system 〈qν : ν ≤ β〉
of members of Pα by recursion. Let q0 = 1. Suppose that qν has been defined so that
qν ∈ G. Now there is an r ∈ G such that r  σαγν (ξ̂ν) < (p(ξν))̌ . Let qν+1 ∈ G be such
that qν+1 ≤ r, qν . At limit stages ≤ β we use that θ-closed property of Pα to continue.
Clearly qβ is as desired, showing that ((p,K), (p′, K ′)) ∈ (p1

α)G.
Next, we let π2

α = {(op(0, 0), 1Pα)}. Then for any generic G, (π2
α)G = (0, 0). Finally,

let πα = op(op(π0
α, π

1
α), π2

α). This finishes the definition of πα.
Using (5) and (6) it is clear that πα is a Pα-name for a forcing order. To verify that

it is full for ↓θ-sequences, suppose that

p ∈ Pα, β < θ, ϕξ ∈ dmn(π0
α) for each ξ < β,(7)

and if ξ, η < β and ξ < η, then p Pα (ϕξ ∈ π0
α) ∧ (ϕη ∈ π0

α) ∧ (ϕη ≤πα ϕξ).(8)

We want to find ψ ∈ dmn(π0
α) such that

(9) p  ψ ∈ π0
α and p  ψ ≤πα ϕξ for each ξ < β.

Since ϕξ ∈ dmn(π0
α), there exist a qξ ∈ Fn(θ, θ, θ) and an Hξ ∈ [θ+]<θ such that ϕξ =

op(q̌ξ, ρ
α
Hξ

). Now if ξ < η < β, then p  ϕη ≤πα ϕξ; hence qξ ⊆ qη. Let r =
⋃

ξ<β ϕξ
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and K =
⋃

ξ<β Hξ. Thus r ∈ Fn(θ, θ, θ) and K ∈ [θ+]<θ. Let ψ = op(ř, ραK). Clearly

ψ ∈ dmn(π0
α). Suppose that ξ < β. To show that p  ψ ≤πα qξ, suppose that p ∈ G with

G Pα-generic over M ′. Then ψG = (r, (ραK)G), and clearly (ραK)G) = K. Suppose that
γ ∈ Hξ and ν ∈ dmn(r)\dmn(qξ). Say ν ∈ dmn(qη) with η < β. Clearly ξ < η. Since
(ϕη)G ≤ (ϕξ)G by (8), we have r(ν) = qη(ν) > (σαγ )G(ν). This proves that ψG ≤ (ϕξ)G,
and so (9) holds.

Now Pα+1 is defined by (I7) and (I8) in the definition of iteration. We now want to
show that Pα+1 is θ+-cc, and for this we will apply 15.10. we are assuming that Pα is
θ+-cc, so it suffices to prove that 1 Pα πα − cc. So, let G be Pα-generic over M ′. As
above, 2<θ = θ in M ′[G]. Now |Pα| ≤ θ+ by assumption. Hence 2θ = θ+ in M ′[G] by 9.6
(with κ, λ, µ replaced by θ+, θ+, θ respectively). Hence παG is θ+-cc by (5) and (6). So
Pα+1 is θ+-cc by 15.10.

Pα+1 is θ-closed by 29.5, since we have proved that πα is full for ↓θ-sequences. This
finishes the recursion step from α to α+ 1.

Now suppose that α is a limit ordinal ≤ θ++. We let

Pα = {p :p is a function with domain α, pξ ∈ Pξ for all ξ < α

and |{ξ < α : pξ 6= 1}| < θ}.

and for p, q ∈ Pα, p ≤ q iff pξ ≤ qξ for all ξ < α.

Now we show that Pα has the θ+-cc. Suppose that 〈pγ : γ < θ+〉 is a system of
members of Pα. Then we can apply the ∆-system theorem 10.1 to the system 〈supp(pγ) :

γ < θ+〉, with κ, λ replaced by θ, θ+ respectively. This gives us a set L ∈ [θ+]θ
+

and a
set K such that for all distinct ϕ, γ ∈ L, supp(pγ) ∩ supp(pδ) = K. For γ ∈ L and ξ ∈ K
we have pγ(ξ) 6= 1, so we can write pγ(ξ) = op(q̌γξ , ϕξ) with qγξ ∈ Fn(θ, θ, θ). Now for any

γ ∈ L, the function 〈aγξ : ξ ∈ K〉 is a member of
∏

ξ∈K Fn(θ, θ, θ), which has size at most

θ. So there exist L′ ∈ [L]θ+ and r such that 〈qγξ : ξ ∈ K〉 = 〈rξ : ξ ∈ K〉 for all γ ∈ L′.

Now it is clear that pγ and pδ are compatible for all γ, δ ∈ L′, as desired.

By 29.5, Pα is θ-closed. Clearly, for α < θ++ Pα has size at most θ+.

This finishes the construction. For brevity let R = Pθ++ .

Let G be R-generic over M ′.

(10) In M ′[G], if F ⊆ θθ and |F | < θ++, then there is a g ∈ θθ such that f <θ g for all
f ∈ F .

For, let F = {fξ : ξ < θ+}, possibly with repetitions. Let

F
′ = {(ξ, i, j) : ξ < θ1, i, j ∈ θ, and fξ(i) = j}.

By 26.14 there is an α < θ++ such that F ′ ∈ M ′[i−1
αθ++ [G]], and hence also F ∈

M ′[i−1
αθ++ [G]]. For brevity write Gξ = i−1

ξθ++ [G] for every ξ < θ++. Let

Hα = {ηGα : η ∈ dmn(π0
α) and p⌢〈η〉 ∈ Gα+1 for some p}.
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Let Qα = (πα)Gα . Thus by (5) and (6),

Qα = {(p,K) : p ∈ fin(θ, θ) and K ∈ [θθ]<θ};(11)

≤Qα = {((p,K), (p′, K ′)) : (p,K), (p′, K ′) ∈ (π0
α)G, p

′ ⊆ p, K ′ ⊆ K,(12)

and for all f ∈ K ′ and all ξ ∈ dmn(p)\dmn(p′), f(ξ) < p(ξ)}.

Now (10) follows from 29.4.
Replacing κ, λ, µ in 24.3 by θ++, θ+, θ respectively, we get 2θ ≤ θ++ in M ′[G]. Hence

by (10), 2θ = θ++ in M ′[G].

Replacing κ, λ, µ in 24.3 by θ++, θ+, θ+ respectively, we get 2θ
+ ≤ θ+++ in M ′[G].

Since 2θ
+

= θ+++ in M ′, it follows that 2θ
+

= θ+++ in M ′[G].
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30. Cofinality of posets

We begin the study of possible cofinalities of partially ordered sets—the PCF theory. In
this chapter we develop some combinatorial principles needed for the main results.

Ordinal-valued functions and their orderings

A filter on a set A is a collection F of subsets of A with the following properties:

(1) A ∈ F .
(2) If X ∈ F and X ⊆ Y ⊆ A, then Y ∈ F .
(3) If X, Y ∈ F then X ∩ Y ∈ F .

A filter F is proper iff F 6= P(A).
Suppose that F is a filter on a set A and R ⊆ On×On. Then for functions f, g ∈ AOn

we define
f RF g iff {i ∈ A : f(i)Rg(i)} ∈ F.

The most important cases of this notion that we will deal with are f <F g, f ≤F g, and
and f =F g. Thus

f <F g iff {i ∈ A : f(i) < g(i)} ∈ F ;

f ≤F g iff {i ∈ A : f(i) ≤ g(i)} ∈ F ;

f =F g iff {i ∈ A : f(i) = g(i)} ∈ F.

Sometimes we use this notation for ideals rather than filters, using the duality between
ideals and filters, which we now describe. An ideal on a set A is a collection I of subsets
of A such that the following conditions hold:

(4) ∅ ∈ I
(5) If X ⊆ Y ∈ I then X ∈ I.
(6) If X, Y ∈ I then X ∪ Y ∈ I.

An ideal I is proper iff I 6= P(A).
If F is a filter on A, let F ′ = {X ⊆ A : A\X ∈ F}. Then F ′ is an ideal on A. If I is

an ideal on A, let I∗ = {X ⊆ A : A\X ∈ I}. Then I∗ is a filter on A. If F is a filter on
A, then F ′∗ = F . If I is an ideal on A, then I∗′ = I.

Now if I is an ideal on A, then

f RI g iff {i ∈ A : ¬(f(i)RI g(i))} ∈ I;

f <I g iff {i ∈ A : f(i) ≥ g(i)} ∈ I;

f ≤I g iff {i ∈ A : f(i) > g(i)} ∈ I;

f =I g iff {i ∈ A : f(i) 6= g(i)} ∈ I.

Some more notation: RI(f, g) = {i ∈ I : f(i)Rg(i)}. In particular, <I (f, g) = {i ∈ I :
f(i) < g(i)} and ≤I (f, g) = {i ∈ I : f(i) ≤ g(i)}.

The following trivial proposition is nevertheless important in what follows.

Proposition 30.1. Let F be a proper filter on A. Then
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(i) <F is irreflexive and transitive.
(ii) ≤F is reflexive on AOn, and it is transitive.
(iii) f ≤F g <F h implies that f <F h.
(iv) f <F g ≤F h implies that f <F h.
(v) f <F g or f =F g implies f ≤F g.
(vi) If f =F g, then g ≤F f .
(vii) If f ≤F g ≤F f , then f =F g.

Some care must be taken in working with these notions. The following examples illustrate
this.

(1) An example with f ≤F g but neither f <F g nor f =F g nor f = g: Let A = ω,
F = {A}, and define f, g ∈ ωω by setting f(n) = n for all n and

g(n) =
{
n if n is even,
n+ 1 if n is odd.

(2) An example where f =F g but neither f <F g nor f = g: Let A = ω and let F consist
of all subsets of ω that contain all even natural numbers. Define f and g by

f(n) =

{
n if n is even,
1 if n is odd;

g(n) =
{
n if n is even,
0 if n is odd.

Products and reduced products

In the preceding section we were considering ordering-type relations on the proper classes
AOn. Now we restrict ourselves to sets. Suppose that h ∈ AOn. We specialize the general
notion by considering

∏

a∈A h(a) ⊆ AOn. To eliminate trivialities, we usually assume that
h(a) is a limit ordinal for every a ∈ A; then we call h non-trivial.

Proposition 30.2. If F is a proper filter on A, g, h ∈ AOn, h is non-trivial, and g <F h,
then there is a k ∈∏a∈A h(a) such that g =F k.

Proof. For any a ∈ A let

k(a) =
{
g(a) if g(a) < h(a),
0 otherwise.

Thus k ∈∏a∈A h(a). Moreover,

{a ∈ A : g(a) = k(a) ⊇ {a ∈ A : g(a) < h(a)} ∈ F,

so g =F k.

We will frequently consider the structure (
∏

a∈A h(a), <F ,≤F ) in what follows. For most
considerations it is equivalent to consider the associated reduced product, which we define
as follows. Note that =F is an equivalence relation on the set

∏

a∈A h(a). We define the
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underlying set of the reduced product to be the collection of all equivalence classes under
=F ; it is denoted by

∏

a∈A h(a)/F . Further, we define, for x, y ∈∏a∈A h(a)/F ,

x <F y iff ∃f, g ∈
∏

A[x = [f ], y = [g], and f <F g];

x ≤F y iff ∃f, g ∈
∏

A[x = [f ], y = [g], and f ≤F g].

Here [h] denotes the equivalence class of h ∈∏A under =F .

Proposition 30.3. Suppose that h ∈ AOn is nontrivial, and f, g ∈∏a∈A h(a). Then
(i) [f ] <F [g] iff f <F g.
(ii) [f ] ≤F [g] iff f ≤F g.

Proof. (i): The direction ⇐ is obvious. Now suppose that [f ] <F [g]. Then there are
f ′, g′ ∈ ∏A such that [f ] = [f ′], [g] = [g′], and f ′ <F g′. Hence

{κ ∈ A : f(κ) = f ′(κ)} ∩ {κ ∈ A : g(κ) = g′(κ)} ∩ {κ ∈ A : f ′(κ) < g′(κ)}
⊆ {κ ∈ A : f(κ) < g(κ)},

and it follows that {κ ∈ A : f(κ) < g(κ)} ∈ F , and so f <F g.
(ii): similarly.

A filter F on A is an ultrafilter iff F is proper, and is maximal under all the proper filters
on A. Equivalently, F is proper, and for any X ⊆ A, either X ∈ F or A\X ∈ F . The dual
notion to an ultrafilter is a maximal ideal.

If F is an ultrafilter on A, then
∏

a∈A h(a)/F is an ultraproduct of h.

Proposition 30.4. If h ∈A On is nontrivial and F is an ultrafilter on A, then <F is a
linear order on

∏

a∈A h(a)/F , and [f ] ≤F [g] iff [f ] <F [g] or [f ] = [g].

Proof. By Proposition 30.1(iii) and Proposition 30.3, <F is transitive. Also, from
Proposition 30.3 it is clear that <F is irreflexive. Now suppose that f, g ∈ ∏A; we want
to show that [f ] and [g] are comparable. Assume that [f ] 6= [g]. Thus {κ ∈ A : f(κ) =
g(κ)} /∈ F , so {κ ∈ A : f(κ) 6= g(κ)} ∈ F . Since

{κ ∈ A : f(κ) 6= g(κ)} = {κ ∈ A : f(κ) < g(κ)} ∪ {κ ∈ A : g(κ) < f(κ)},

it follows that [f ] < [g] or [g] < [f ].
Thus <F is a linear order on

∏
A/F .

Next,

{κ ∈ A : f(κ) ≤ g(κ)} = {κ ∈ A : f(κ) = g(κ)} ∪ {κ ∈ A : f(κ) < g(κ)},

so it follows by Proposition 30.3 that [f ] ≤F [g] iff [f ] = [g] or [f ] <F [g].
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Basic cofinality notions

In this section we allow partial orders P to be proper classes. We may speak of a partial
ordering P if the relation <P is clear from the context. Recall the essential equivalence of
the notion of a partial ordering with the “≤” version; see the easy exercise E13.15.

A double ordering is a system (P,≤P , <P ,=P ) such that the following conditions hold
(cf. Proposition 30.1):

(i) <P is irreflexive and transitive.

(ii) ≤P is reflexive on P , and it is transitive.

(iii) f ≤P g <P h implies that f <P h.

(iv) f <P g ≤P h implies that f <P h.

(v) f <P g or f =P g implies f ≤P g.

(vi) If f =P g, then g ≤P f .

(vii) If f ≤P g ≤P f , then f =P g.

Proposition 30.5. For any set A any proper filter F on A, and any P ⊆ AOn the system
(P,≤F , <F ,=F ) is a double ordering.

Proposition 30.6. Let h ∈ AOn, with h taking only limit ordinal values, and let F be a
proper filter on A. Then (

∏

a∈A h(a)/F,≤F , <F ,=) is a double ordering.

We now give some general definitions, applying to any double ordering (P,≤P , <P ) unless
otherwise indicated.

• A subclass X ⊆ P is cofinal in P iff ∀p ∈ P∃q ∈ X(p ≤P q). By the condition (3) above,
this is equivalent to saying that X is cofinal in P iff ∀p ∈ P∃q ∈ X(p <P q).

• Since clearly P itself is cofinal in P , we can make the basic definition of the cofinality
cf(P ) of P , for a set P :

cf(P ) = min{|X | : X is cofinal in P}.

Note that cf(P ) can be singular. For, let A = ω, h(a) = ωa for all a ∈ ω, I = {∅}, and
Y =

∏

a∈A h(a).. Suppose that X is cofinal in
∏

a∈A h(a). Take any a ∈ ω; we show that
ωa ≤ |X |. We define a one-one sequence 〈fα : α < ωi〉 of elements of X by recursion.
Suppose that fβ has been defined for all β < α. Let k be the member of

∏

a∈A h(a) such
that k(b) = 0 for all b 6= a, while k(a) ∈ ωa\{fβ(a) : β < α}. Choose fα ∈ X such that
k <I fα.

• A sequence 〈pξ : ξ < λ〉 of elements of P is <P -increasing iff ∀ξ, η < λ(ξ < η → pξ <P
pη). Similarly for ≤P -increasing.

• Suppose that P is a double order and is a set. We say that P has true cofinality iff P
has a linearly ordered subset which is cofinal.
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Proposition 30.7. Suppose that a set P is a double order, and 〈pα : α < λ〉 is strictly
increasing in the sense of P , is cofinal in P , and λ is regular. Then P has true cofinality,
and its cofinality is λ.

Proof. Obviously P has true cofinality. If X is a subset of P of size less than λ, for
each q ∈ X choose αq < λ such that q < pαq . Let β = supq∈X αq. Then β < λ since λ is
regular. For any q ∈ X we have q < pβ. This argument shows that cf(P ) = λ.

Proposition 30.8. Suppose that P is a double ordering, P a set, and P has true cofnality.
Then:

(i) cf(P ) is regular.
(ii) cf(P ) is the least size of a linearly ordered subset which is cofinal in P .
(iii) There is a <P -increasing, cofinal sequence in P of length cf(P ).

Proof. Let X be a linearly ordered subset of P which is cofinal in P , and let {yα :
α < cf(P )} be a subset of P which is cofinal in P ; we do not assume that 〈yα : α < cf(P )〉
is <P - or ≤P -increasing.

(iii): We define a sequence 〈xα : α < cf(P )〉 by recursion. Let x0 be any element of
X . If xα has been defined, let xα+1 ∈ X be such that xα, yα < xα+1; it exists since X is
cofinal, using condition (3). Now suppose that α < cf(P ) is limit and xβ has been defined
for all β < α. Then {xβ : β < α} is not cofinal in P , so there is a z ∈ P such that z 6≤ xβ
for all β < α. Choose xα ∈ X so that z < xα. Since X is linearly ordered, we must
then have xβ < xα for all β < α. This finishes the construction. Since yα < xα+1 for all
α < cf(P ), it follows that {xα : ξ < cf(P )} is cofinal in P . So (iii) holds.

(i): Suppose that cf(P ) is singular, and let 〈βξ : ξ < cf(cf(P ))〉 be a strictly increasing
sequence cofinal in cf(P ). With 〈xα : α < cf(P )〉 as in (iii), it is then clear that {xβξ :
ξ < cf(cf(P ))} is cofinal in P , contradiction (since cf(cf(P )) < cf(P ) because cf(P ) is
singular).

(ii): By (iii), there is a linearly ordered subset of P of size cf(P ) which is cofinal in
P ; by the definition of cofinality, there cannot be one of smaller size.

For P with true cofinality, the cardinal cf(P ) is called the true cofinality of P , and is
denoted by tcf(P ). We write tcf(P ) = λ to mean that P has true cofinality, and it is equal
to λ.

• P is λ-directed iff for any subset Q of P such that |Q| < λ there is a p ∈ P such that
q ≤P p for all q ∈ Q; equivalently, there is a p ∈ P such that q <P p for all q ∈ Q.

Proposition 30.9. (Pouzet) Assume that P is a double ordering which is a set. For any
infinite cardinal λ, we have tcf(P ) = λ iff the following two conditions hold:

(i) P has a cofinal subset of size λ.
(ii) P is λ-directed.

Proof. ⇒ is clear, remembering that λ is regular. Now assume that (i) and (ii) hold,
and let X be a cofinal subset of P of size λ.

First we show that λ is regular. Suppose that it is singular. Write X =
⋃

α<cf(λ) Yα
with |Yα| < λ for each α < cf(λ). Let pα be an upper bound for Yα for each α < cf(λ),
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and let q be an upper bound for {pα : α < cf(λ)}. Choose r > q. Then choose s ∈ X with
r ≤ s. Say s ∈ Yα. Then s ≤ pα ≤ q < r ≤ s, contradiction.

So, λ is regular. Let X = {rα : α < λ}. Now we define a sequence 〈pα : α < λ〉 by
recursion. Having defined pβ for all β < α, by (ii) let pα be such that pβ < pα for all
β < α, and rβ < pα for all β < α. Clearly this sequence shows that tcf(P,<P ) = λ.

Proposition 30.10. Let P be a set. If G is a cofinal subset of P , then cf(P ) = cf(G).
Moreover, tcf(P ) = tcf(G), in the sense that if one of them exists then so does the other,
and they are equal. (That is what we mean in the future too when we assert the equality
of true cofinalities.)

Proof. Let H be a cofinal subset of P of size cf(P ). For each p ∈ H choose qp ∈ G
such that p ≤P qp. Then {qp : p ∈ H} is cofinal in G. In fact, if r ∈ G, choose p ∈ H such
that r ≤P p. Then r ≤P qp, as desired. This shows that cf(G) ≤ cf(P ).

Now suppose that K is a cofinal subset of G. Then it is also cofinal in P . For, if p ∈ P
choose q ∈ G such that p ≤P q, and then choose r ∈ K such that q ≤P r. So p ≤P r, as
desired. This shows the other inequality.

For the true cofinality, we apply Theorem 30.9. So suppose that P has true cofinality
λ. By Theorem 30.9 and the first part of this proof, G has a cofinal subset of size λ, since
cofinality is the same as true cofinality when the latter exists. Now suppose that X ⊆ G
is of size < λ. Choose an upper bound p for it in P . Then choose q ∈ G such that p ≤P q.
So q is an upper bound for X , as desired. Thus since Theorem 30.9(i) and 30.9(ii) hold
for G, it follows from that theorem that tcf(G) = λ.

The other implication, that the existence of tcf(G,<) implies that of tcf(P,<) and
their equality, is even easier, since a sequence cofinal in G is also cofinal in P .

• A sequence 〈pξ : ξ < λ〉 of elements of P is persistently cofinal iff

∀h ∈ P∃ξ0 < λ∀ξ(ξ0 ≤ ξ < λ⇒ h <P pξ).

Proposition 30.11. (i) If 〈pξ : ξ < λ〉 is <P -increasing and cofinal in P , then it is
persistently cofinal.

(ii) If 〈pξ : ξ < λ〉 and 〈p′ξ : ξ < λ〉 are two sequences of members of P , 〈pξ : ξ < λ〉 is
persistently cofinal in P , and pξ ≤P p′ξ for all ξ < λ, then also 〈p′ξ : ξ < λ〉 is persistently
cofinal in P .

• If X ⊆ P , then an upper bound for X is an element p ∈ P such that q ≤P p for all q ∈ X .

• If X ⊆ P , then a least upper bound for X is an upper bound a for X such that a ≤P a′ for
every upper bound a′ for X . So if a and b are least upper bounds for X , then a ≤P b ≤P a.

It is possible here to have a 6= b. For example, let A = ω, h(a) = ω + ω for all
a ∈ ω, fn(m) = m + n for all m,n ∈ ω, I = {Y ⊆ ω : each member of Y is odd}.
X = {fn : n ∈ ω}. We consider the double order (

∏

a∈ω h(a),≤I , <I). Let

g(m) =
{
ω if m is even,
0 if m is odd

h(m) =
{
ω if m is even,
1 if m is odd
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Then g and h are least upper bounds for X , while g 6= h.

• If X ⊆ P , then a minimal upper bound for X is an upper bound a for X such that if b
is an upper bound for X and b ≤P a, then a ≤P b.

Proposition 30.12. If X ⊆ P and a is a least upper bound for X, then a is a minimal
upper bound for X.

Now we come to an ordering notion which is basic for pcf theory.

• If X ⊆ P and for every x ∈ X there is an x′ ∈ X such that x <P x′, then an element
a ∈ P is an exact upper bound of X provided

(1) a is a least upper bound for X , and

(2) X is cofinal in {p ∈ P : p <P a}.

Note that under the hypothesis here, a /∈ X , and hence x <F a for all x ∈ X by (1).
Here is an example of a set X with a least upper bound but no exact upper bound.

Let A = ω, h(a) = ω + ω for all a ∈ ω, and for m,n ∈ ω,

fn(m) =

{
n if m 6= n,
0 if m = n,

X = {fn : n ∈ ω}, I = {∅}. We consider the double order (
∏

a∈ω h(a),≤I , <I). Then a
least upper bound for X is the function a such that a(m) = ω for all m ∈ ω, but X does
not have an exact upper bound.

Ordinal-valued functions and exact upper bounds

In this section we give some simple facts about exact upper bounds in the case of most
interest to us—the partial ordering of ordinal-valued functions.

First we note that the rough equivalence between products and reduced products
continues to hold for the cofinality notions introduced above. We state this for the most
important properties above:

Proposition 30.13. Suppose that h ∈ AOn, and h takes only limit ordinal values. Then
(i) If X ⊆ ∏

a∈A h(a), then X is cofinal in (
∏

a∈A h(a), <I ,≤I) iff {[f ] : f ∈ X} is
cofinal in (

∏

a∈A h(a)/I, <I ,≤I).
(ii) cf(

∏

a∈A h(a), <I ,≤I) = cf(
∏

a∈A h(a)/I, <I ,≤I).
(iii) tcf(

∏

a∈A h(a), <I ,≤I) = tcf(
∏

a∈A h(a)/I, <I ,≤I).
(iv) If X ⊆ ∏a∈A h(a) and f ∈ ∏a∈A h(a), then f is an exact upper bound for X iff

[f ] is an exact upper bound for {[g] : g ∈ X}.
Proof. (i) is immediate from Proposition 30.3. For (ii), if X is cofinal in the sys-

tem (
∏

a∈A h(a), <I ,≤I), then clearly {[f ] : f ∈ X} is cofinal in (
∏

a∈A h(a)/I, <I ,≤I),
by Proposition 30.3 again; so ≥ holds. Now suppose that {[f ] : f ∈ Y } is cofinal in
(
∏

a∈A h(a)/I, <I ,≤I). Given g ∈ ∏a∈A h(a), choose f ∈ Y such that [g] <I [f ]. Then
g <I f . So Y is cofinal in (

∏

a∈A h(a), <I ,≤I), and ≤ holds.
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(iii) and (iv) are proved similarly.

The following obvious proposition will be useful.

Proposition 30.14. Suppose that F ∪ {f, g} ⊆ AOn, I is an ideal on A, and f =I g.
Suppose that f is an upper bound, least upper bound, minimal upper bound, or exact upper
bound for F under ≤I . Then also g is an upper bound, least upper bound, minimal upper
bound, or exact upper bound for F under ≤I , respectively.

Here is our simplest existence theorem for exact upper bounds.

• If X is a collection of members of AOn, then supX ∈ AOn is defined by

(supX)(a) = sup{f(a) : f ∈ X}.

Proposition 30.15. Suppose that λ > |A| is a regular cardinal, and f = 〈fξ : ξ < λ〉 is an
increasing sequence of members of AOn in the partial ordering < of everywhere dominance.
(That is, f < g iff f(a) < g(a) for all a ∈ A.) Then sup f is an exact upper bound for f ,
and cf((sup f)(a)) = λ for every a ∈ A.

Proof. For brevity let h = sup f . Then clearly h is an upper bound for f .
Now suppose that fξ ≤ g ∈ AOn for all ξ < λ. Then for any a ∈ A we have
h(a) = supξ<λ fξ(a) ≤ g(a), so h ≤ g. Thus h is a least upper bound for f . Now

suppose that k ∈ AOn and k < h. Then for every a ∈ A we have k(a) < h(a), and hence
there is a ξa < λ such that k(a) < fξa(a). Let η = supa∈A ξa. So η < λ since λ is regular
and greater than |A|. Clearly k < fη, as desired.

The next proposition gives equivalent definitions of least upper bounds for our special
partial order.

Proposition 30.16. Suppose that I is a proper ideal on A, F ⊆ AOn, and f ∈ AOn.
Then the following conditions are equivalent.

(i) f is a least upper bound of F under ≤I .
(ii) f is an upper bound of F under ≤I , and for any f ′ ∈ AOn, if f ′ is an upper

bound of F under ≤I and f ′ ≤I f , then f =I f
′.

(iii) f is a minimal upper bound of F under ≤I .
Proof. (i)⇒(ii): Assume (i) and the hypotheses of (ii). Hence f ≤I f ′, so f =I f

′ by
Proposition 30.1(vii).

(ii)⇒(iii): Assume (ii), and suppose that g ∈ AOn is an upper bound for F and
g ≤I f . Then g =I f by (ii), so f ≤I g.

(iii)⇒(i): Assume (iii). Let g ∈ AOn be any upper bound for F . Define h(a) =
min(f(a), g(a)) for all a ∈ A. Then h is an upper bound for F , since if k ∈ F , then
{a ∈ A : k(a) > f(a)} ∈ I and also {a ∈ A : k(a) > g(a)} ∈ I, and

{a ∈ A : k(a) > min(f(a), g(a))} ⊆ {a ∈ A : k(a) > f(a)} ∪ {a ∈ A : k(a) > g(a)} ∈ I,
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so k ≤I h. Also, clearly h ≤I f . So by (iii), f ≤I h, and hence f ≤I g, as desired.

In the next proposition we see that in the definition of exact upper bound we can weaken
the condition (1), under a mild restriction on the set in question.

Proposition 30.17. Suppose that F is a nonempty set of functions in AOn and ∀f ∈
F∃f ′ ∈ F [f <I f

′]. Suppose that h is an upper bound of F , and ∀g ∈A On, if g <I h then
there is an f ∈ F such that g <I f . Then h is an exact upper bound for F .

Proof. First note that {a ∈ A : h(a) = 0} ∈ I. In fact, choose f ∈ F . Then f <I h,
and so {a ∈ A : h(a) = 0} ⊆ {a ∈ A : f(a) ≥ h(a)} ∈ I, as desired.

Now we show that h is a least upper bound for F . Let k be any upper bound. Let

l(a) =
{
k(a) if k(a) < h(a),
0 otherwise.

Since {a ∈ A : l(a) ≥ h(a)} ⊆ {a ∈ A : h(a) = 0}, it follows by the above that {a ∈ A :
l(a) ≥ h(a)} ∈ I, and so l <I h. So by assumption, choose f ∈ F such that l <I f . Now
f ≤I k, so l <I k and hence

{a ∈ A : k(a) < h(a)} ⊆ {a ∈ A : l(a) ≥ k(a)} ∈ I,

so h ≤I k, as desired.
For the other property in the definition of exact upper bound, suppose that g <I h.

Then by assumption there is an f ∈ F such that g <I f , as desired.

Corollary 30.18. If h ∈ AOn is non trivial and F ⊆ ∏a∈A h(a), then h is an exact upper
bound of F with respect to an ideal I on A iff F is cofinal in

∏

a∈A h(a).

In the next proposition we use the standard notation I+ for A\I. The proposition shows
that exact upper bounds restrict to smaller sets A.

Proposition 30.19. Suppose that F is a nonempty subset of AOn, I is a proper ideal on
A, h is an exact upper bound for F with respect to I, and ∀f ∈ F∃f ′ ∈ F (f <I f

′). Also,
suppose that A0 ∈ I+. Then:

(i) J
def
= I ∩ P(A0) is a proper ideal on A0.

(ii) For any f, f ′ ∈ AOn, if f <I f
′ then f ↾ A0 <J f

′ ↾ A0.
(iii) h ↾ A0 is an exact upper bound for {f ↾ A0 : f ∈ F}.

(i) is clear. Assume the hypotheses of (ii). Then

{a ∈ A0 : f ′(a) ≤ f(a)} ⊆ {a ∈ A : f ′(a) ≤ f(a)} ∈ I,

and so f ↾ A0 <J f
′ ↾ A0.

For (iii), by (ii) we see that h ↾ A0 is an upper bound for {f ↾ A0 : f ∈ F}. To
see that it is an exact upper bound, we will apply Proposition 30.18. So, suppose that
k <J h ↾ A0. Fix f ∈ F . Now define g ∈ AOn by setting

g(a) =

{
f(a) if a ∈ A\A0,
k(a) if a ∈ A0.
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Then

{a ∈ A : g(a) ≥ h(a)} ⊆ {a ∈ A : f(a) ≥ h(a)} ∪ {a ∈ A0 : k(a) ≥ h(a)} ∈ I,

so g <I h. Hence there is an l ∈ F such that g <I l. Hence

{a ∈ A0 : k(a) ≥ l(a)} ⊆ {a ∈ A : g(a) ≥ l(a)} ∈ I,

so k <J l, as desired.

Next, increasing the ideal maintains exact upper bounds:

Proposition 30.20. Suppose that F is a nonempty subset of AOn, I is a proper ideal on
A, h is an exact upper bound for F with respect to I, and ∀f ∈ F∃f ′ ∈ F (f <I f

′).
Let J be a proper ideal on A such that I ⊆ J . Then h is an exact upper bound for F

with respect to J .

Proof. We will apply Proposition 30.17. Note that h is clearly an upper bound for
F with respect to J . Now suppose that g <J h. Let f ∈ F . Define g′ by

g′(a) =

{
g(a) if g(a) < h(a),
f(a) otherwise.

Then {a ∈ A : g′(a) ≥ h(a)} ⊆ {a ∈ A : f(a) ≥ h(a)} ∈ I, since f <I h. So g′ <I h.
Hence by the exactness of h there is a k ∈ F such that g′ <I k. So

{a : g(a) ≥ k(a)} ⊆{a ∈ A : h(a) > g(a) ≥ k(a)} ∪ {a ∈ A : h(a) ≤ g(a)}
⊆{a ∈ A : g′(a) ≥ k(a)} ∪ {a ∈ A : h(a) ≤ g(a)},

and this union is in J since the first set is in I and the second one is in J . Hence g <J k,
as desired.

Again we turn from the general case of proper classes AOn to the sets
∏

a∈A h(a), where
h ∈A On has only limit ordinal values. We prove some results which show that under a
weak hypothesis we can restrict attention to

∏
A for A a nonempty set of infinite regular

cardinals instead of
∏

a∈A h(a), as far as cofinality notions are concerned. Here
∏
A

consists of all choice functions f with domain A; f(a) ∈ a for all a ∈ A.

Proposition 30.21. Suppose that h ∈ AOn and h(a) is a limit ordinal for every a ∈ A.
For each a ∈ A, let S(a) ⊆ h(a) be cofinal in h(a) with order type cf(h(a)). Suppose that
I is a proper ideal on A. Then

(i) cf(
∏

a∈A h(a), <I) = cf(
∏

a∈A S(a), <I) and
(ii) tcf(

∏

a∈A h(a), <I) = tcf(
∏

a∈A S(a), <I).

Proof. For each f ∈∏h define gf ∈∏a∈A S(a) by setting

gf (a) = least α ∈ S(a) such that f(a) ≤ α.
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We prove (i): suppose that X ⊆∏h and X is cofinal in (
∏
h,<I); we show that {gf : f ∈

X} is cofinal in cf(
∏

a∈A S(a), <I), and this will prove ≥. So, let k ∈ ∏a∈A S(a). Thus
k ∈ ∏h, so there is an f ∈ X such that k <I f . Since f ≤ gf , it follows that k <I gf , as
desired. Conversely, suppose that Y ⊆∏a∈A S(a) and Y is cofinal in (

∏

a∈A S(a), <I); we
show that also Y is cofinal in

∏
h, and this will prove ≤ of the claim. Let f ∈∏h. Then

f ≤ gf , and there is a k ∈ Y such that gf <I k; so f <I k, as desired.

This finishes the proof of (i).

For (ii), first suppose that tcf(
∏
h,<I) exists; call it λ. Thus λ is an infinite regular

cardinal. Let 〈fi : i < λ〉 be a <I -increasing cofinal sequence in
∏
h. We claim that gfi ≤

gfj if i < j < λ. In fact, if a ∈ A and fi(a) < fj(a), then fi(a) < fj(a) ≤ gfj (a) ∈ S(a),
and so by the definition of gfi we get gfi(a) ≤ gfj (a). This implies that gfi ≤I gfj . Now
cf(
∏
h,<I) = λ, so for any B ∈ [λ]<λ there is a j < λ such that gfi <I fj ≤ gfj . It follows

that we can take a subsequence of 〈gfi : i < λ〉 which is strictly increasing modulo I; it is
also clearly cofinal, and hence λ = tcf(

∏

a∈A S(a), <I).

Conversely, suppose that tcf(
∏

a∈A S(a), <I) exists; call it λ. Let 〈fi : i < λ〉 be
a <I -increasing cofinal sequence in

∏

a∈A S(a). Then it is also a sequence showing that
tcf(
∏
h,<I) exists and equals tcf(

∏

a∈A S(a), <I).

Proposition 30.22. Suppose that 〈La : a ∈ A〉 and 〈Ma : a ∈ A〉 are systems of linearly
ordered sets such that each La and Ma has no last element. Suppose that La is isomorphic
to Ma for all a ∈ A. Let I be any ideal on A. Then

(
∏

a∈A
La, <I ,≤I

)

∼=
(
∏

a∈A
Ma, <I ,≤I

)

.

Putting the last two propositions together, we see that to determine cofinality and true
cofinality of (

∏
h,<I ,≤I), where h ∈ AOn and h(a) is a limit ordinal for all a ∈ A, it

suffices to take the case in which each h(a) is an infinite regular cardinal. (One passes
from h(a) to S(a) and then to cf(h(a)).) We can still make a further reduction, given in
the following useful lemma.

Lemma 30.23. (Rudin-Keisler) Suppose that c maps the set A into the class of regular
cardinals, and B = {c(a) : a ∈ A} is its range. For any ideal I over A, define its Rudin-
Keisler projection J on B by

X ∈ J iff X ⊆ B and c−1[X ] ∈ I.

Then J is an ideal on B, and there is an isomorphism h of
∏
B/J into

∏

a∈A c(a)/I such
that for any e ∈∏B we have h(e/J) = 〈e(c(a)) : a ∈ A〉/I.

If |A| < min(B), then the range of h is cofinal in
∏

a∈A c(a)/I, and we have

(i) cf(
∏
B/J) = cf(

∏

a∈A c(a)/I and

(ii) tcf(
∏
B/J) = tcf(

∏

a∈A c(a)/I).
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Proof. Clearly J is an ideal. Next, for any e ∈ ∏B let e = 〈e(c(a)) : a ∈ A〉. Then
for any e1, e2 ∈∏B we have

e1 =J e2 iff {b ∈ B : e1(b) 6= e2(b)} ∈ J

iff c−1[{b ∈ B : e1(b) 6= e2(b)}] ∈ I

iff {a ∈ A : e1(c(a)) 6= e2(c(a))} ∈ I

iff e1 =I e2.

This shows that h exists as indicated and is one-one. Similarly, h preserves <I in each
direction. So the first part of the lemma holds.

Now suppose that |A| < min(B). Let G be the range of h. By Proposition 30.11, (i)
and (ii) follow from G being cofinal in

∏

a∈A c(a)/I. Let g ∈ ∏a∈A c(a). Define e ∈ ∏B
by setting, for any b ∈ B,

e(b) = sup{g(a) : a ∈ A and c(a) = b}.

The additional supposition implies that e ∈ ∏
B. Now note that {a ∈ A : g(a) >

e(c(a))} = ∅ ∈ I, so that g/I ≤ h(e/J), as desired.

According to these last propositions, the calculation of true cofinalities for partial orders
of the form (

∏

a∈A h(a), <I), with h ∈ AOn and h(a) a limit ordinal for every a ∈ A, and
with |A| < min(cf(h(a)), reduces to the calculation of true cofinalities of partial orders of
the form (

∏
B,<J) with B a set of regular cardinals with |B| < min(B).

Lemma 30.24. If (Pi, <i) is a partial order with true cofinality λi for each i ∈ I and D
is an ultrafilter on I, then tcf(

∏

i∈I λi/D) = tcf(
∏

i∈I Pi/D).

Proof. Note that
∏

i∈I λi/D is a linear order, and so its true cofinality µ exists and
equals its cofinality. So the lemma is asserting that the ultraproduct

∏

i∈I Pi/D has µ as
true cofinality.

Let 〈gξ : ξ < µ〉 be a sequence of members of
∏

i∈I λi such that 〈gξ/D : ξ < µ〉 is
strictly increasing and cofinal in

∏

i∈I λi/D. For each i ∈ I let 〈fξ,i : ξ < λi〉 be strictly
increasing and cofinal in (Pi, <i). For each ξ < µ define hξ ∈ ∏i∈I Pi by setting hξ(i) =
fgξ(i),i. We claim that 〈hξ/D : ξ < µ〉 is strictly increasing and cofinal in

∏

i∈I Pi/D (as
desired).

To prove this, first suppose that ξ < η < µ. Then

{i ∈ I : hξ(i) < hη(i)} = {i ∈ I : fgξ(i),i <i fgη(i),i} = {i ∈ I : gξ(i) < gη(i)} ∈ D;

so hξ/D < hη/D.
Now suppose that k ∈ ∏

i∈I Pi; we want to find ξ < µ such that k/D < hξ/D.
Define l ∈ ∏i∈I λi by letting l(i) be the least ξ < µ such that k(i) < fξ,i. Choose ξ < µ
such that l/D < gξ/D. Now if l(i) < gξ(i), then k(i) < fl(i),i <i fgξ(i),i = hξ(i). So
k/D < hξ/D.
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Existence of exact upper bounds

We introduce several notions leading up to an existence theorem for exact upper bounds:
projections, strongly increasing sequences, a partition property, and the bounding projec-
tion property.

We start with the important notion of projections. By a projection framework we
mean a triple (A, I, S) consisting of a nonempty set A, an ideal I on A, and a sequence
〈Sa : a ∈ A〉 of nonempty sets of ordinals. Suppose that we are given such a framework. We
define sup S in the natural way: it is a function with domain A, and (sup S)(a) = sup(Sa)
for every a ∈ A. Thus sup S ∈ AOn. Now suppose also that we have a function f ∈ AOn.
Then we define the projection of f onto

∏

a∈A Sa, denoted by f+ = proj(f, S), by setting,
for any a ∈ A,

f+(a) =

{
min(Sa\f(a)) if f(a) < sup (Sa),
min(Sa) otherwise.

Thus

f+(a) =







f(a) if f(a) ∈ Sa and f(a) is not
the largest element of Sa,

least x ∈ Sa such that f(a) < x if f(a) /∈ Sa and f(a) < sup(Sa),

min(Sa) if sup(Sa) ≤ f(a).

Proposition 30.25. Let a projection framework be given, with the notation above.
(i) If f ∈ AOn, then f+ ∈ ∏a∈A Sa.
(ii) If f1, f2 ∈ AOn and f1 =I f2, then f+

1 =I f
+
2 .

(iii) If f ∈ AOn and f <I supS, then f ≤I f+, and for every g ∈∏a∈A Sa, if f ≤I g
then f+ ≤I g.

Proof. (i) and (ii) are clear. For (iii), suppose that f ∈ AOn and f <I supS.
Then if f(a) > f+(a) we must have f(a) ≥ sup(Sa). Hence f ≤I f+. Now suppose that
g ∈∏a∈A Sa and f ≤I g. If f(a) ≤ g(a) and f(a) < sup(Sa), then f+(a) ≤ g(a). Hence

{a ∈ A : g(a) < f+(a)} ⊆ {a ∈ A : f(a) > g(a)} ∪ {a ∈ A : f(a) ≥ sup(Sa)} ∈ I,

so f+ ≤I g.

Another important notion in discussing exact upper bounds is as follows. Let I be an ideal
over A, L a set of ordinals, and f = 〈fξ : ξ ∈ L〉 a sequence of members of AOn. Then we
say that f is strongly increasing under I iff there is a system 〈Zξ : ξ ∈ L〉 of members of
I such that

∀ξ, η ∈ L[ξ < η ⇒ ∀a ∈ A\(Zξ ∪ Zη)[fξ(a) < fη(a)]].

Under the same assumptions we say that f is very strongly increasing under I iff there is
a system 〈Zξ : ξ ∈ L〉 of members of I such that

∀ξ, η ∈ L[ξ < η ⇒ ∀a ∈ A\Zη[fξ(a) < fη(a)].
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Proposition 30.26. Under the above assumptions, f is very strongly increasing under I
iff for every ξ ∈ L we have

(∗) sup{fα + 1 : α ∈ L ∩ ξ} ≤I fξ.

Proof. ⇒: suppose that f is very strongly increasing under I, with sets Zξ as
indicated. Let ξ ∈ L. Suppose that a ∈ A\Zξ. Then for any α ∈ L ∩ ξ we have
fα(a) < fξ(a), and so sup{fα(a) + 1 : α ∈ L ∩ ξ} ≤ fξ(a); it follows that (∗) holds.

⇐: suppose that (∗) holds for each ξ ∈ L. For each ξ ∈ L let

Zξ = {a ∈ A : sup{fα(a) + 1 : α ∈ L ∩ ξ} > fξ(a)};

it follows that Zξ ∈ I. Now suppose that α ∈ L and α < ξ. Suppose that a ∈ A\Zξ. Then
fα(a) < fα(a) + 1 ≤ sup{fβ(a) + 1 : β ∈ L ∩ ξ} ≤ fξ(a), as desired.

Lemma 30.27. (The sandwich argument) Suppose that h = 〈hξ : ξ ∈ L〉 is strongly
increasing under I, L has no largest element, and ξ′ is the successor in L of ξ for every
ξ ∈ L. Also suppose that fξ ∈ AOn is such that

hξ <I fξ ≤I hξ′ for every ξ ∈ L.

Then 〈fξ : ξ ∈ L〉 is also strongly increasing under I.

Proof. Let 〈Zξ : ξ ∈ L〉 testify that h is strongly increasing under I. For every ξ ∈ L
let

Wξ = {a ∈ A : hξ(a) ≥ fξ(a) or fξ(a) > hξ′(a)}.
Thus by hypothesis we have Wξ ∈ I. Let Zξ = Wξ ∪ Zξ ∪ Zξ′ for every ξ ∈ L; so Zξ ∈ I.
Then if ξ1 < ξ2, both in L, and if a ∈ A\(Zξ1 ∪ Zξ2), then

fξ1(a) ≤ hξ′1(a) ≤ hξ2(a) < fξ2(a);

these three inequalities hold because a ∈ A\Wξ1 , a ∈ A\(Zξ′1 ∪ Zξ2), and a ∈ A\Wξ2

respectively.

Now we give a proposition connecting the notion of strongly increasing sequence with the
existence of exact upper bounds.

Proposition 30.28. Let I be a proper ideal over A, let λ > |A| be a regular cardinal, and
let f = 〈fξ : ξ < λ〉 be a <I increasing sequence of functions in AOn. Then the following
conditions are equivalent:

(i) f has a strongly increasing subsequence of length λ under I.
(ii) f has an exact upper bound h such that {a ∈ A : cf(h(a)) 6= λ} ∈ I.
(iii) f has an exact upper bound h such that cf(h(a)) = λ for all a ∈ A.
(iv) There is a sequence g = 〈gξ : ξ < λ〉 such that gξ < gη (everywhere) for ξ < η,

and f is cofinally equivalent to g, in the sense that ∀ξ < λ∃η < λ(fξ <I gη) and ∀ξ <
λ∃η < λ(gξ <I fη).
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Proof. (i)⇒(ii): Let 〈η(ξ) : ξ < λ〉 be a strictly increasing sequence of ordinals less
than λ, thus with supremum λ since λ is regular, and assume that 〈fη(ξ) : ξ < λ〉 is strongly
increasing under I. Hence for each ξ < λ let Zξ ∈ I be chosen correspondingly. We define
for each a ∈ A

h(a) = sup{fη(ξ)(a) : ξ < λ, a /∈ Zξ}.

To see that h is an exact upper bound for f , we are going to apply Proposition 30.17.
If fη(ξ)(a) > h(a), then a ∈ Zξ ∈ I. Hence fη(ξ) ≤I h for each ξ < λ. Then for any
ξ < λ we have fξ ≤I fη(ξ) ≤I h, so h bounds every fξ. Now suppose that d <I h. Let
M = {a ∈ A : d(a) ≥ h(a)}; so M ∈ I. For each a ∈ A\M we have d(a) < h(a), and so
there is a ξa < λ such that d(a) < fη(ξa)(a) and a /∈ Zξa . Since |A| < λ and λ is regular,

the ordinal ρ
def
= supa∈A\M ξa is less than λ. We claim that d <I fη(ρ). In fact, suppose

that a ∈ A\(M ∪ Zρ). Then a ∈ A\(Zξa ∪ Zρ), and so d(a) < fη(ξa)(a) ≤ fη(ρ)(a). Thus
d <I fη(ρ), as claimed. Now it follows easily from Proposition 30.17 that h is an exact
upper bound for f .

For the final portion of (ii), it suffices to show

(1) There is a W ∈ I such that cf(h(a)) = λ for all a ∈ A\W .

In fact, let

W = {a ∈ A : ∃ξa < λ∀ξ′ ∈ [ξa, λ)[a ∈ Zξ′ ]}.

Since |A| < λ, the ordinal ρ
def
= supa∈W ξa is less than λ. Clearly W ⊆ Zρ, so W ∈ I.

For a ∈ A\W we have ∀ξ < λ∃ξ′ ∈ [ξ, λ)[a /∈ Zξ′ ]. This gives an increasing sequence
〈σν : ν < λ〉 of ordinals less than λ such that a /∈ Zσν for all ν < λ. By the strong
increasing property it follows that fη(σ0)(a) < fη(σ1)(a) < · · ·, and so h(a) has cofinality
λ. This proves (1), and with it, (ii).

(ii)⇒(iii): Let W = {a ∈ A : cf(h(a)) 6= λ}; so W ∈ I by (ii). Since I is a proper
ideal, choose a0 ∈ A\W , and define

h′(a) =

{
h(a) if a ∈ A\W ,
h(a0) if a ∈ W .

Then h =I h
′, and it follows that h′ satisfies the properties needed.

(iii)⇒(iv): For each a ∈ A, let 〈µaξ : ξ < λ〉 be a strictly increasing sequence of ordinals
with supremum h(a). Define gξ(a) = µaξ for all a ∈ A and ξ < λ. Clearly gξ < gη if ξ < η.
Now suppose that ξ < λ. Then fξ <I h. For each a ∈ A such that fξ(a) < h(a) choose
ρa < λ such that fξ(a) < µaρa . Since |A| < λ, choose η < λ such that ρa < η for all a ∈ A.
Then for any a ∈ A such that fξ(a) < h(a) we have fξ(a) < µaη = gη(a). Hence fξ <I gη,
which is half of what is desired in (iv).

Now suppose that ξ < λ. Then gξ < h, so by the exactness of h, there is an η < λ
such that gξ <I fη, as desired.

(iv)⇒(i): Assume (iv). Define strictly increasing continuous sequences 〈η(ξ) : ξ < λ〉
and 〈ρ(ξ) : ξ < λ〉 of ordinals less than λ as follows. Let η(0) = 0, and choose ρ(0) so
that g0 <I fρ(0). If η(ξ) and ρ(ξ) have been defined, choose η(ξ + 1) > η(ξ) such that
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fρ(ξ) ≤I gη(ξ+1), and choose ρ(ξ + 1) > ρ(ξ) such that gη(ξ+1) <I fρ(ξ+1). Thus for every
ξ < λ we have

gη(ξ) <I fρ(ξ) ≤I gη(ξ+1).

since obviously 〈gη(ξ) : ξ < λ〉 is strongly increasing under I, Lemma 30.27 gives (i).

The notion of a strongly increasing sequence is clarified by giving an example of a sequence
such that no subsequence is strongly increasing. This example depends on the following
well-known lemma.

Lemma 30.29. If κ is a regular cardinal and I is the ideal [κ]<κ on κ, then there is a

sequence f
def
= 〈fξ : ξ < κ+〉 of members of κκ such that fξ <I fη whenever ξ < η < κ.

Proof. We construct the sequence by recursion. Let f0(α) = 0 for all α < κ. If fξ
has been defined, let fξ+1(α) = fξ(α) + 1 for all α < κ. Now suppose that ξ < κ is a
limit ordinal, and fη has been defined for every η < ξ. Let 〈η(β) : β < γ〉 be a strictly
increasing sequence of ordinals with supremum ξ, where γ = cf(ξ). Thus γ ≤ κ. Define

fξ(α) = (sup
β≤α

fη(β)(α)) + 1.

The sequence constructed this way is as desired. For example, if ξ is a limit ordinal as
above, then for each ρ < κ we have {α < κ : fη(ρ)(α) ≥ fξ(α)} ⊆ ρ, and so fη(ρ) <I fξ.

Now let A = κ and let I and f be as in the lemma. Suppose that f has a strongly
increasing subsequence of length κ+ under I. Then by proposition 30.28, f has an exact
upper bound h such that cf(h(α)) = κ+ for all α < κ. Now the function k with domain κ
taking the constant value κ is clearly an upper bound for f . Hence h ≤I k. Hence there
is an α < κ such that h(α) ≤ k(α) = κ, contradiction.

A further fact along these lines is as follows.

Lemma 30.30. Suppose that I = [ω]<ω and f
def
= 〈fξ : ξ < λ〉 is a <I -increasing sequence

of members of ωω which has an exact upper bound h, where λ is an infinite cardinal. Then
〈fξ : ξ < λ〉 is a scale, i.e., for any g ∈ ωω there is a ξ < λ such that g <I fξ.

Proof. Let k(m) = ω for all m < ω. Then k is an upper bound for f under <I ,
and so h ≤I k. Letting h′(m) = min(h(m), k(m)) for all m ∈ ω, we thus get h =I h

′. So
by Proposition 30.14, h′ is also an exact upper bound for f . Hence we may assume that
h(m) ≤ ω for every m < ω. Now we claim

(1) ∃n < ω∀p ≥ n(0 < h(p)).

In fact, the set {p ∈ ω : f0(p) ≥ h(p)} is in I, so there is an n such that f0(p) < h(p) for
all p ≥ n, as desired in (1).

Let n0 be as in (1).

(2) M
def
= {p ∈ ω : h(p) 6= ω} is finite.
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For, suppose that M is infinite. Define

l(p) =
{
h(p) − 1 if 0 < h(p) < ω,
0 otherwise.

We claim that l <I h. For, {p : l(p) ≥ h(p)} ⊆ {p : h(p) = 0} ∈ I. So our claim holds.
Now by exactness, choose ξ < κ such that l <I fξ. Then we can choose p ∈ M such that
l(p) < fξ(p) < h(p), contradiction.

Thus M is finite. Hence we may assume that h(p) = ω for all p, and the desired
conclusion of the lemma follows.

Now there is a model M of ZFC in which there are no scales (see for example Blass [∞]),

and yet it is easy to see that there is a sequence f
def
= 〈fξ : ξ < ω1〉 which is <I -increasing.

Hence by Lemma 30.30, this sequence does not have an exact upper bound.
Another fact which helps the intuition on exact upper bounds is as follows.

Lemma 30.31. Let κ be a regular cardinal, and let I = [κ]<κ. For each ξ < κ let fξ ∈ κκ

be defined by fξ(α) = ξ for all α < κ. Thus f
def
= 〈fξ : ξ < κ〉 is increasing everywhere.

Claim: f does not have a least upper bound under <I . (Hence it does not have an exact
upper bound.)

Proof. Suppose that h is an upper bound for f under <I . We find another upper
bound k for f under <I such that h is not ≤I k. First we claim

(1) ∀α < κ∃β < κ∀γ ≥ β(α ≤ h(γ)).

In fact, otherwise we get a ξ < κ such that for all β < κ there is a γ > β such that
ξ > h(γ). But then |{α < κ : fξ(α) > h(α)}| = κ, contradiction.

By (1) there is a strictly increasing sequence 〈βα : α < κ〉 of ordinals less than κ such
that for all α < κ and all γ ≥ βα we have α < h(γ). Now we define k ∈ κκ by setting, for
each γ < κ,

k(γ) =

{
α if βα+1 ≤ γ < βα+2,
h(γ) otherwise.

To see that k is an upper bound for f under <I , take any ξ < κ. If βξ+1 ≤ γ, then
h(γ) ≥ ξ + 1, and hence k(γ) ≥ ξ = fξ(γ), as desired. For each ξ < κ we have k(βξ+1) =
ξ < h(βξ+1), so h is not ≤I k.

Now we define a partition property. Suppose that I is an ideal over a set A, λ is an
uncountable regular cardinal > |A|, f = 〈fξ : ξ < λ〉 is a <I -increasing sequence of
members of AOn, and κ is a regular cardinal such that |A| < κ ≤ λ. The following
property of these things is denoted by (∗)κ:

(∗)κ
For all unbounded X ⊆ λ there is an X0 ⊆ X of order type κ

such that 〈fξ : ξ ∈ X0〉 is strongly increasing under I.

Proposition 30.32. Assume the above notation, with κ < λ. Then (∗)κ holds iff the set

{δ < λ :cf(δ) = κ and 〈fξ : ξ ∈ X0〉 is strongly increasing under I

for some unbounded X0 ⊆ δ}
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is stationary in λ.

Proof. Let S be the indicated set of ordinals δ.
⇒: Assume (∗)κ and suppose that C ⊆ λ is a club. Choose C0 ⊆ C of order type κ

such that 〈fξ : ξ ∈ C0〉 is strongly increasing under I. Let δ = sup(C0). Clearly δ ∈ C ∩S.
⇐: Assume that S is stationary in λ, and suppose that X ⊆ λ is unbounded. Define

C = {α ∈ λ : α is a limit ordinal and X ∩ α is unbounded in α}.

We check that C is club in λ. For closure, suppose that α < λ is a limit ordinal and C ∩α
is unbounded in α; we want to show that α ∈ C. So, we need to show that X ∩ α is
unbounded in α. To this end, take any β < α; we want to find γ ∈ X ∩α such that β < γ.
Since C ∩ α is unbounded in α, choose δ ∈ C ∩ α such that β < δ. By the definition of C
we have that X ∩ δ is unbounded in δ. So we can choose γ ∈ X ∩ δ such that β < γ. Since
γ < δ < α, γ is as desired. So, indeed, C is closed.

To show that C is unbounded in λ, take any β < λ; we want to find an α ∈ C such
that β < α. Since X is unbounded in λ, we can choose a sequence γ0 < γ1 < · · · of
elements of X with β < γ0. Now λ is uncountable and regular, so supn∈ω γn < λ, and it
is the member of C we need.

Now choose δ ∈ C∩S. This gives us an unbounded set X0 in δ such that 〈fξ : ξ ∈ X0〉
is strongly increasing under I. Now also X ∩ δ is unbounded, since δ ∈ C. Hence we can
define by induction two increasing sequences 〈η(ξ) : ξ < κ〉 and 〈ν(ξ) : ξ < κ〉 such that
each η(ξ) is in X0, each ν(ξ) is in X , and η(ξ) < ν(ξ) ≤ η(ξ + 1) for all ξ < κ. It follows

by the sandwich argument, Lemma 30.28, that X1
def
= {ν(ξ) : ξ < κ} is a subset of X as

desired in (∗)κ.

Finally, we introduce the bounding projection property.
Suppose that f = 〈fξ : ξ < λ〉 is a <I -increasing sequence of functions in AOn, with

λ a regular cardinal > |A|. Also suppose that κ is a regular cardinal and |A| < κ ≤ λ.
We say that f has the bounding projection property for κ iff whenever 〈S(a) : a ∈ A〉 is

a system of nonempty sets of ordinals such that each |S(a)| < κ and for each ξ < λ we have
fξ <I sup(S(a)), then for some ξ < λ, the function proj(fξ, 〈S(a) : a ∈ A〉) <I -bounds f .

We need the following simple result.

Proposition 30.33. Suppose that f = 〈fξ : ξ < λ〉 is a <I -increasing sequence of

functions in OnA, with λ a regular cardinal > |A|. Also suppose that κ is a regular
cardinal and |A| < κ ≤ λ. Assume that f has the bounding projection property for κ.

Also suppose that f ′ = 〈f ′
ξ : ξ < λ〉 is a sequence of functions in OnA, and fξ =I f

′
ξ

for every ξ < λ.
Then f ′ has the bounding projection property for κ.

Proof. Clearly f ′ is <I -increasing, so that the setup for the bounding projection
property holds. Now suppose that 〈S(a) : a ∈ A〉 is a system of nonempty sets of ordinals
such that each |S(a)| < κ and for each ξ < λ we have f ′

ξ <I sup(S). Then the same
is true for f , so by the bounding projection property for f we can choose ξ < λ such
that the function proj(fξ, 〈S(a) : a ∈ A〉) <I -bounds f . Now suppose that η < λ. Then
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fη ≤I proj(fξ, 〈S(a) : a ∈ A〉). Hence f ′
η ≤I proj(fξ, 〈S(a) : a ∈ A〉), and proj(fξ, 〈S(a) :

a ∈ A〉) = proj(f ′
ξ, 〈S(a) : a ∈ A〉), as desired.

The following proposition shows that we can weaken the bounded projection property
somewhat, by replacing “<I” by “< (everywhere)”.

Proposition 30.34. Suppose that f = 〈fξ : ξ < λ〉 is a <I -increasing sequence of

functions in OnA, with λ a regular cardinal > |A|. Also suppose that κ is a regular
cardinal and |A| < κ ≤ λ. Then the following conditions are equivalent:

(i) f has the bounding projection property for κ.
(ii) If 〈S(a) : a ∈ A〉 is a system of nonempty sets of ordinals such that each |S(a)| < κ

and for each ξ < λ we have fξ < sup(S) (everywhere), then for some ξ < λ, the function
proj(fξ, 〈S(a) : a ∈ A〉) <I -bounds f .

Proof. Obviously (i)⇒(ii). Now assume that (ii) holds, and suppose that 〈S(a) : a ∈
A〉 is a system of sets of ordinals such that each |S(a)| < κ and for each ξ < λ we have
fξ <I sup(S). Now for each a ∈ A let

γ(a) =

{
sup{fξ(a) + 1 : ξ < λ and fξ(a) ≥ sup(S(a))} if this set is nonempty,
sup(S(a)) + 1 otherwise;

S′(a) = S(a) ∪ {γ(a)}.

Note that fξ < sup(S′) everywhere. Hence by (ii), there is a ξ < λ such that the function
proj(fξ, 〈S′(a) : a ∈ A〉) <I -bounds f . Now let η < λ. If fξ(a) < sup(S(a)) and fη(a) <
(proj(fξ, 〈S′(a) : a ∈ A〉))(a), then

(proj(fξ, 〈S′(a) : a ∈ A〉))(a) = min(S′(a)\fξ(a))

= min(S(a)\fξ(a))

= (proj(fξ, 〈S(a) : a ∈ A〉))(a).

Hence fη <I proj(fξ, 〈S(a) : a ∈ A〉), as desired.

Lemma 30.35. (Bounding projection lemma) Suppose that I is an ideal over A, λ > |A|
is a regular cardinal, f = 〈fξ : ξ < λ〉 is a <I -increasing sequence satisfying (∗)κ for a
regular cardinal κ such that |A| < κ ≤ λ. Then f has the bounding projection property for
κ.

Proof. Assume the hypothesis of the lemma and of the bounding projection property
for κ. For every ξ < λ let

f+
ξ = proj(fξ, S).

Suppose that the conclusion of the bounding projection property fails. Then for every
ξ < λ, the function f+

ξ is not a bound for f , and so there is a ξ′ < λ such that fξ′ 6≤I f+
ξ .

Since fξ ≤I f+
ξ , we must have ξ < ξ′. Clearly for any ξ′′ ≥ ξ′ we have fξ′′ 6≤I f+

ξ . Thus

for every ξ′′ ≥ ξ′ we have <(f+
ξ , fξ′′) ∈ I+. Now we define a sequence 〈ξ(µ) : µ < λ〉 of
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elements of λ by recursion. Let ξ(0) = 0. Suppose that ξ(µ) has been defined. Choose
ξ(µ+ 1) > ξ(µ) so that <(f+

ξ(µ), fξ′′) ∈ I+ for every ξ′′ ≥ ξ(µ+ 1). If ν is limit and ξ(µ)

has been defined for all µ < ν, let ξ(ν) = supµ<ν ξ(µ). Then let X be the range of this
sequence. Thus

if ξ, ξ′ ∈ X and ξ < ξ′, then <(f+
ξ , fξ′) ∈ I+.

Since (∗)κ holds, there is a subset X0 ⊆ X of order type κ such that 〈fξ : ξ ∈ X0〉 is
strongly increasing under I. Let 〈Zξ : ξ ∈ X0〉 be as in the definition of strongly increasing
under I.

For every ξ ∈ X0, let ξ′ be the successor of ξ in X0. Note that

<(f+
ξ , fξ′)\(Zξ ∪ Zξ′ ∪ {a ∈ A : fξ(a) ≥ sup(S(a))}) ∈ I+,

and hence it is nonempty. So, choose

aξ ∈<(f+
ξ , fξ′)\(Zξ ∪ Zξ′ ∪ {a ∈ A : fξ(a) ≥ sup(S(a))}).

Note that this implies that f+
ξ (aξ) ∈ S(aξ). Since κ > |A|, we can find a single a ∈ A such

that a = aξ for all ξ in a subset X1 of X0 of size κ. Now for ξ1 < ξ2 with both in X1, we
have

f+
ξ1

(a) < fξ′1(a) ≤ fξ2(a) ≤ f+
ξ2

(a).

[The first inequality is a consequence of a = aξ1 ∈<(f+
ξ1
, fξ′1), the second follows from

ξ′1 ≤ ξ2 and the fact that

a = aξ1 = aξ2 ∈ A\(Zξ′1 ∪ Zξ2),

and the third is true by the definition of f+
ξ2

.]

Thus 〈f+
ξ (a) : ξ ∈ X1〉 is a strictly increasing sequence of members of S(a). This

contradicts our assumption that |S(a)| < κ.

The next lemma reduces the problem of finding an exact upper bound to that of finding a
least upper bound.

Lemma 30.36. Suppose that I is a proper ideal over A, λ ≥ |A|+ is a regular cardinal, and
f = 〈fξ : ξ ∈ λ〉 is a <I -increasing sequence of functions in AOn satisfying the bounding
projection property for |A|+. Suppose that h is a least upper bound for f . Then h is an
exact upper bound.

Proof. Assume the hypotheses, and suppose that g <I h; we want to find ξ < λ
such that g <I fξ. By increasing h on a subset of A in the ideal, we may assume that
g < h everywhere. Define Sa = {g(a), h(a)} for every a ∈ A. By the bounding projection

property we get a ξ < λ such that f+
ξ

def
= proj(fξ, 〈Sa : a ∈ A〉) is an upper bound for f .

We shall prove that g <I fξ, as required.

Since h is a least upper bound, it follows that h ≤I f+
ξ . Thus M

def
= {a ∈ A :

h(a) > f+
ξ (a)} ∈ I. Also, the set N

def
= {a ∈ A : fξ(a) ≥ supSa} is in I. Suppose that
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a ∈ A\(M ∪ N). Then g(a) < h(a) ≤ f+
ξ (a) = min(Sa\fξ(a)), and this implies that

g(a) < fξ(a). So g <I fξ, as desired.

Here is our first existence theorem for exact upper bounds.

Theorem 30.37. (Existence of exact upper bounds) Suppose that I is a proper ideal over
A, λ > |A|+ is a regular cardinal, and f = 〈fξ : ξ ∈ λ〉 is a <I -increasing sequence of
functions in AOn that satisfies the bounding projection property for |A|+. Then f has an
exact upper bound.

Proof. Assume the hypotheses. By Lemma 30.36 it suffices to show that f has a
least upper bound, and to do this we will apply Proposition 30.16(ii). Suppose that f
does not have a least upper bound. Since it obviously has an upper bound, this means, by
Proposition 30.16(ii):

(1) For every upper bound h ∈ AOn for f there is another upper bound h′ for f such that
h′ ≤I h and {a ∈ A : h′(a) < h(a)} ∈ I+.

In fact, Proposition 30.16(ii) says that there is another upper bound h′ for f such that
h′ ≤I h and it is not true that h =I h′. Hence {a ∈ A : h(a) < h′(a)} ∈ I and
{a ∈ A : h(a) 6= h′(a)} ∈ I+. So

{a ∈ A : h(a) 6= h′(a)}\{a ∈ A : h(a) < h′(a)} ∈ I+ and

{a ∈ A : h(a) 6= h′(a)}\{a ∈ A : h(a) < h′(a)} = {a ∈ A : h′(a) < h(a)},

so (1) follows.
Now we shall define by induction on α < |A|+ a sequence Sα = 〈Sα(a) : a ∈ A〉 of

sets of ordinals satisfying the following conditions:

(2) 0 < |Sα(a)| ≤ |A| for each a ∈ A;

(3) fξ(a) < supSα(a) for all ξ ∈ λ and a ∈ A;

(4) If α < β, then Sα(a) ⊆ Sβ(a), and if δ is a limit ordinal, then Sδ(a) =
⋃

α<δ S
α(a).

We also define sequences 〈hα : α < |A|+〉 and 〈h′α : α < |A|+〉 of functions and 〈ξ(α) : α <
|A|+〉 of ordinals.

The definition of Sα for α limit is fixed by (4), and the conditions (2)–(4) continue to
hold. To define S0, pick any function k that bounds f (everywhere) and define S0(a) =
{k(a)} for all a ∈ A; so (2)–(4) hold.

Suppose that Sα = 〈Sα(a) : a ∈ A〉 has been defined, satisfying (2)–(4); we define
Sα+1. By the bounding projection property for |A|+, there is a ξ(α) < λ such that

hα
def
= proj(fξ(α), S

α) is an upper bound for f under <I . Then

(5) if ξ(α) ≤ ξ′ < λ, then hα =I proj(fξ′ , S
α).

In fact, recall that hα(a) = min(Sα(a)\fξ(α)(a)) for every a ∈ A, using (3). Now suppose
that ξ(α) < ξ′ < λ. Let M = {a ∈ A : fξ(α)(a) ≥ fξ′(a)}. So M ∈ I. For any a ∈ A\M
we have fξ(α)(a) < fξ′(a), and hence

min(Sα(a)\fξ(α)(a)) ≤ min(Sα(a)\fξ′(a));
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it follows that hα ≤I proj(fξ′ , S
α). For the other direction, recall that hα is an upper

bound for f under <I . So fξ′ ≤I hα. If a is any element of A such that fξ′(a) ≤ hα(a)
then, since hα(a) ∈ Sα(a), we get min(Sα(a)\fξ′(a)) ≤ hα(a). Thus proj(fξ′ , S

α) ≤I hα.
This checks (5).
Now we apply (1) to get an upper bound h′α for f such that h′α ≤I hα and < (h′α, hα) ∈

I+. We now define Sα+1(a) = Sα(a) ∪ {h′α(a)} for any a ∈ A.

(6) If ξ(α) ≤ ξ < λ, then proj(fξ, S
α+1) =I h

′
α.

For, we have fξ ≤I h′α and, by (5), hα =I proj(fξ, S
α). If a ∈ A is such that fξ(a) ≤ h′α(a),

h′α(a) ≤ hα(a), and hα(a) = proj(fξ, S
α)(a), then min(Sα(a)\fξ(a)) = hα(a) ≥ h′α(a) ≥

fξ(a), and hence

proj(fξ, S
α+1)(a) = min(Sα+1(a)\fξ(a)) = h′α(a).

It follows that proj(fξ, S
α+1) =I h

′
α, as desired in (6).

Now since |A|+ < λ, let ξ < λ be greater than each ξ(α) for α < |A|+. Define
Hα = proj(fξ, S

α) for each α < |A|+. Since ξ > ξ(α), we have Hα =I hα by (5). Note that
Hα+1 = proj(fξ, S

α+1) =I h
′
α; so < (Hα+1, Hα) ∈ I+. Now clearly by the construction we

have Sα1(a) ⊆ Sα2(a) for all a ∈ A when α1 < α2 < |A|+. Hence we get

(7) if α1 < α2 < |A|+, then Hα2
≤ Hα1

, and < (Hα2
, Hα1

) ∈ I+.

Now for every α < |A|+ pick aα ∈ A such that Hα+1(aα) < Hα(aα). We have aα = aβ for
all α, β in some subset of |A|+ of size |A|+, and this gives an infinite decreasing sequence
of ordinals, contradiction.

Lemma 30.38. Suppose that I is a proper ideal over A, λ ≥ |A|+ is a regular cardinal,
f = 〈fξ : ξ < λ〉 is a <I -increasing sequence of functions in AOn, |A|+ ≤ κ ≤ λ, f
satisfies the bounding projection property for κ, and g is an exact upper bound for f . Then

{a ∈ A : g(a) is non-limit, or cf(g(a)) < κ} ∈ I.

Proof. Let P = {a ∈ A : g(a) is non-limit, or cf(g(a)) < κ}. If a ∈ P and g(a) is
a limit ordinal, choose S(a) ⊆ g(a) cofinal in g(a) and of order type < κ. If g(a) = 0 let
S(a) = {0}, and if g(a) = β + 1 for some β let S(a) = {β}. Finally, if g(a) is limit but is
not in P , let S(a) = {g(a)}.

Now for any ξ < λ let

Nξ = {a ∈ A : fξ(a) ≥ fξ+1(a)} and

Qξ = {a ∈ A : fξ+1(a) ≥ g(a)}.

Then clearly

(∗) If a ∈ A\(Nξ ∪Qξ), then fξ(a) < sup(S(a)).

It follows that {a ∈ A : fξ(a) ≥ sup S(a)} ⊆ Nξ ∪ Qξ ∈ I. Hence the hypothesis of

the bounding projection property holds. Applying it, we get ξ < λ such that f+
ξ

def
=
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proj(fξ, 〈S(a) : a ∈ A〉) <I -bounds f . Since g is a least upper bound for f , we get

g ≤I f+
ξ , and hence M

def
= {a ∈ A : f+

ξ (a) < g(a)} ∈ I. By (∗), for any a ∈ P\(Nξ ∪Qξ)
we have f+

ξ (a) = min(S(a)\fξ(a)) < g(a). This shows that P\(Nξ ∪ Qξ) ⊆ M , hence
P ⊆ Nξ ∪Qξ ∪M ∈ I, so P ∈ I, as desired.

Now we give our main theorem on the existence of exact upper bounds.

Theorem 30.39. Suppose that I is a proper ideal over A, λ > |A|+ is a regular cardinal,
f = 〈fξ : ξ < λ〉 is a <I -increasing sequence of functions in AOn, and |A|+ ≤ κ. Then
the following are equivalent:

(i) (∗)κ holds for f .
(ii) f satisfies the bounding projection property for κ.
(iii) f has an exact upper bound g such that

{a ∈ A : g(a) is non-limit, or cf(g(a)) < κ} ∈ I.

Proof. (i)⇒(ii): By the bounding projection lemma, Lemma 30.35.
(ii)⇒(iii): Since the bounding projection property for κ clearly implies the bounding

projection property for |A|+, this implication is true by Theorem 30.37 and Lemma 30.38.
(iii)⇒(i): Assume (iii). By modifying g on a set in the ideal we may assume that g(a)

is a limit ordinal and cf(g(a)) ≥ κ for all a ∈ A. Choose a club S(a) ⊆ g(a) of order type
cf(g(a)). Thus the order type of S(a) is ≥ κ. We prove that (∗)κ holds. So, assume that
X ⊆ λ is unbounded; we want to find X0 ⊆ X of order type κ over which f is strongly
increasing under I. To do this, we intend to define by induction on α < κ a function
hα ∈∏S and an index ξ(α) ∈ X such that

(1) hα <I fξ(α) ≤I hα+1.

(2) The sequence 〈hα : α < κ〉 is<-increasing (increasing everywhere; and hence it certainly
is strongly increasing under I).

(3) 〈ξ(α) : α < κ〉 is strictly increasing.

After we have done this, the sandwich argument (Lemma 30.27) shows that 〈fξ(α) : α < κ〉
is strongly increasing under I and of order type κ, giving the desired result.

The functions hα are defined as follows.

h0 ∈∏S is arbitrary.

For a limit ordinal δ < κ let hδ = supα<δ hα.

Having defined hα, we define hα+1 as follows. Since g is an exact upper bound and hα < g,
choose ξ(α) greater than all ξ(β) for β < α such that hα <I fξ(α). Also, since fξ <I g for

all ξ < λ, the projections f+
ξ = proj(f, S) are defined. We define

hα+1(a) =

{
max(hα(a), f+

ξ(α)(a)) + 1 if fξ(α)(a) < g(a),

hα(a) + 1 if fξ(α)(a) ≥ g(a).
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Thus we have

hα <I fξ(α) ≤I hα+1, for every α.

So conditions (1)–(3) hold.

Now we apply some infinite combinatorics to get information about (∗)κ.

Theorem 30.40. (Club guessing) Suppose that κ is a regular cardinal, λ is a cardinal such
that cf(λ) ≥ κ++, and Sλκ = {δ ∈ λ : cf(δ) = κ}. Then there is a sequence 〈Cδ : δ ∈ Sλκ〉
such that:

(i) For every δ ∈ Sλκ the set Cδ ⊆ δ is club, of order type κ.
(ii) For every club D ⊆ λ there is a δ ∈ D ∩ Sλκ such that Cδ ⊆ D.

The sequence 〈Cδ : δ ∈ Sλκ〉 is called a club guessing sequence for Sλκ .

Proof. First we take the case of uncountable κ. Fix a sequence C′ = 〈C′
δ : δ ∈ Sλκ〉

such that C′
δ ⊆ δ is club in δ of order type κ, for every δ ∈ Sλκ . For any club E of λ, let

C′ ↾ E = 〈C′
δ ∩ E : δ ∈ Sλκ ∩ E′〉,

where E′ = {δ ∈ E : E ∩ δ is unbounded in δ}. Clearly E′ is also club in λ. Also note that
C′
δ ∩ E is club in δ for each δ ∈ Sλκ ∩ E′. We claim:

(1) There is a club E of λ such that for every club D of λ there is a δ ∈ D ∩E′ ∩ Sλκ such
that C′

δ ∩E ⊆ D.

Note that if we prove (1), then the theorem follows by defining Cδ = C′
δ ∩ E for all

δ ∈ E′ ∩ Sλκ , and Cδ = C′
δ for δ ∈ Sκλ\E′.

Assume that (1) is false. Hence for every club E ⊆ λ there is a club DE ⊆ λ such
that for every δ ∈ DE ∩ E′ ∩ Sλκ we have

C′
δ ∩ E 6⊆ DE .

We now define a sequence 〈Eα : α < κ+〉 of clubs of λ decreasing under inclusion, by
induction on α:

(2) E0 = λ.

(3) If γ < κ+ is a limit ordinal and Eα has been defined for all α < γ, we set Eγ =
⋂

α<γ E
α.

Since γ < κ+ < cf(λ), Eγ is club in λ.

(4) If Eα has been defined, let Eα+1 be the set of all limit points of Eα ∩DEα , i.e., the
set of all ε < λ such that Eα ∩DEα ∩ ε is unbounded in ε.

This defines the sequence. Let E =
⋂

α<κ+ Eα. Then E is club in λ. Take any δ ∈ Sλκ ∩E.
Since |C′

δ| = κ and the sequence 〈Eα : α < κ+〉 is decreasing, there is an α < κ+ such that
C′
δ ∩ E = C′

δ ∩Eα. So C′
δ ∩Eα = C′

δ ∩ Eα+1. Hence C′
δ ∩ Eα ⊆ DEα , contradiction.

Thus the case κ uncountable has been finished.
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Now we take the case κ = ω. For S = Sλℵ0
fix C = 〈Cδ : δ ∈ S〉 so that Cδ is club in δ

with order type ω. We denote the n-th element of Cδ by Cδ(n). For any club E ⊆ λ and
any δ ∈ S ∩ E′ we define

CEδ = {max(E ∩ (Cδ(n) + 1)) : n ∈ ω},

where again E′ is the set of limit points of members of E. This set is cofinal in δ. In fact,
given α < δ, there is a β ∈ E ∩ δ such that α < β since δ ∈ E′, and there is an n ∈ ω such
that β < Cδ(n). Then α < max(E ∩ (Cδ(n) + 1)), as desired. There may be repetitions
in the description of CEδ , but max(E ∩ (Cδ(n) + 1)) ≤ max(E ∩ (Cδ(m) + 1)) if n < m, so
CEδ has order type ω. We claim

(5) There is a closed unbounded E ⊆ λ such that for every club D ⊆ λ there is a δ ∈
D ∩ S ∩E′ such that CEδ ⊆ D. [This proves the club guessing property.]

Suppose that (5) fails. Thus for every closed unbounded E ⊆ λ there exist a club DE ⊆ λ
such that for every δ ∈ DE ∩ S ∩ E′ we have CEδ 6⊆ D. Then we construct a descending
sequence Eα of clubs in λ as in the case κ > ω, for α < ω1. Thus for each α < ω1 and
each δ ∈ DEα ∩ S ∩ (Eα)′ we have CE

α

δ 6⊆ DEα . Let E =
⋂

α<ω1
Eα. Take any δ ∈ S ∩E.

For n ∈ ω and α < β we have

Eα ∩ (Cδ(n) + 1) ⊇ Eβ ∩ (Cδ(n) + 1),

and so max(Eα∩(Cδ(n)+1)) ≥ max(Eβ∩(Cδ(n)+1)); it follows that there is an αn < ω1

such that max(Eβ ∩ (Cδ(n) + 1)) = max(Eαn ∩ (Cδ(n) + 1)) for all β > αn. Choose γ
greater than all αn. Thus

(6) For all ε > γ and all n ∈ ω we have max(Eε ∩ (Cδ(n) + 1)) = max(Eγ ∩ (Cδ(n) + 1)).

But there is a ρ ∈ CE
γ

δ \DEγ ; say that ρ = max(Eγ ∩ (Cδ(n) + 1)). Then ρ = max(Eγ+1 ∩
(Cδ(n) + 1)) ∈ Eγ+1 = (Eγ ∩DEγ )′ ∈ DEγ , contradiction.

Lemma 30.41. Suppose that:
(i) I is an ideal over A.
(ii) κ and λ are regular cardinals such that |A| < κ and κ++ < λ.
(iii) f = 〈fξ : ξ < λ〉 is a sequence of length λ of functions in AOn that is <I -

increasing and satisfies the following condition:
For every δ < λ with cf(δ) = κ++ there is a club Eδ ⊆ δ such that for some
δ′ ≥ δ with δ′ < λ,

(⋆) sup{fα : α ∈ Eδ} ≤I fδ′ .

Under these assumptions, (∗)κ holds for f .

Proof. Assume the hypotheses. Let S = Sκ
++

κ ; so S is stationary in κ++. By
Theorem 30.40, let 〈Cδ : δ ∈ S〉 be a club guessing sequence for S; thus

(1) For every δ ∈ S, the set Cδ ⊆ δ is a club of order type κ.
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(2) For every club D ⊆ κ++ there is a δ ∈ D ∩ S such that Cδ ⊆ D.

Now let U ⊆ λ be unbounded; we want to find X0 ⊆ U of order type κ such that
〈fξ : ξ ∈ X0〉 is strongly increasing under I. To do this we first define an increasing

continuous sequence 〈ξ(i) : i < κ++〉 ∈ κ++

λ recursively.
Let ξ(0) = 0. For i limit, let ξ(i) = supk<i ξ(k).
Now suppose for some i < κ++ that ξ(k) has been defined for every k ≤ i; we define

ξ(i+ 1). For each α ∈ S we define

hα = sup{fη : η ∈ ξ[Cα ∩ (i+ 1)]} and

σα =

{
least σ ∈ (ξ(i), λ) such that hα ≤I fσ if there is such a σ,
ξ(i) + 1 otherwise.

Now we let ξ(i+ 1) be the least member of U which is greater than sup{σα : α ∈ S}. It
follows that

(3) If α ∈ S and the first case in the definition of σα holds, then hα <I fξ(i+1).

Now the set F
def
= {ξ(k) : k ∈ κ++} is closed, and has order type κ++. Let δ = supF .

Then F is a club of δ, and cf(δ) = κ++. Hence by the hypothesis (iii) of the lemma, there
is a club Eδ ⊆ δ and a δ′ ∈ [δ, λ) such that (⋆) in the lemma holds. Note that F ∩ Eδ is
club in δ.

Let D = ξ−1[F ∩ Eδ]. Since ξ is strictly increasing and continuous, it follows that D
is club in κ++. Hence by (2) there is an α ∈ D ∩ S such that Cα ⊆ D. Hence

Cα
def
= ξ[Cα] ⊆ F ∩ Eδ

is club in ξ(α) of order type κ. Then by (⋆) we have

sup{fρ : ρ ∈ Cα} ≤I fδ′ .

Now

(4) For every ρ < ρ′ both in Cα, we have sup{fζ : ζ ∈ Cα ∩ (ρ+ 1)} <I fρ′ .
To prove this, note that there is an i < κ++ such that ρ = ξ(i). Now follow the definition of
ξ(i+ 1). There Cα was considered (among all other closed unbounded sets in the guessing
sequence), and hα was formed at that stage. Now

hα = sup{fη : η ∈ ξ[Cα ∩ (i+ 1)]} ≤ sup{fη : η ∈ ξ[Cα]} = sup{fη : η ∈ Cα} ≤I fδ′ ,

so the first case in the definition of σα holds. Thus by (3), hα <I fξ(i+1). Clearly
ξ(i+ 1) ≤ ρ′, so (4) follows.

Now let 〈η(ν) : ν < κ〉 be the strictly increasing enumeration of Cα, and set

X0 = {η(ω · ρ+ 2m+ 1) : ρ < κ, 0 < m < ω},
X1 = {η(ω · ρ+ 2m) : ρ < κ, 0 < m < ω},

447



and for each β ∈ X1 let f ′
β = sup{fσ + 1 : σ ∈ X0 ∩ β}. Then for β < β′, both in X1,

we have f ′
β < f ′

β′ . Now suppose that ζ ∈ X0; say ζ = η(ω · ρ + 2m + 1) with ρ < κ and
0 < m < ω. Then

f ′
η(ω·ρ+2m) = sup{fσ + 1 : σ ∈ X0 ∩ η(ω · ρ+ 2m)} <I fζ by (4)

≤ sup{fσ + 1 : σ ∈ X0 ∩ η(ω · ρ+ 2m+ 2)}
= f ′

η(ω·ρ+2m+2).

Hence by Proposition 30.27, 〈fζ : ζ ∈ X0〉 is very strongly increasing under I.

Now we need a purely combinatorial proposition.

Proposition 30.42. Suppose that κ and λ are regular cardinals, and κ++ < λ. Suppose
that F is a function with domain contained in [λ]<κ and range contained in λ. Suppose
that for every δ ∈ Sλ

κ++ there is a closed unbounded set Eδ ⊆ δ such that [Eδ]
<κ ⊆ dmn(F ).

Then the following set is stationary:

{α ∈ Sλκ : there is a closed unbounded D ⊆ α such that for any a, b ∈ D

with a < b, {d ∈ D : d ≤ a} ∈ dmn(F ) and F ({d ∈ D : d ≤ a}) < b}

Proof. We follow the proof of Theorem 30.41 closely. Call the indicated set T . Let
U be a closed unbounded subset of λ. We want to find a member of T ∩ U .

Let S = Sκ
++

κ ; so S is stationary in κ++. By Theorem 30.40, let 〈Cδ : δ ∈ S〉 be a
club guessing sequence for S; thus

(1) For every δ ∈ S, the set Cδ ⊆ δ is a club of order type κ.

(2) For every club D ⊆ κ++ there is a δ ∈ D ∩ S such that Cδ ⊆ D.

We define an increasing continuous sequence 〈ξ(i) : i < κ++〉 ∈ κ++

λ recursively.
Let ξ(0) be the least member of U . For i limit, let ξ(i) = supk<i ξ(k).
Now suppose for some i < κ++ that ξ(k) has been defined for every k ≤ i; we define

ξ(i + 1). For each α ∈ S we consider two possibilities. If ξ[Cα ∩ (i + 1)] ∈ dmn(F ), we
let σα be any ordinal greater than both ξ(i) and F (ξ[Cα ∩ (i + 1)]). Otherwise, we let
σα = ξ(i) + 1. Since |S| < λ, we can let ξ(i+ 1) be the least member of U greater than all
σα for α ∈ S. Hence

(3) If α ∈ S and the first case in the definition of σα holds, then ξ[Cα ∩ (i+ 1)] ∈ dmn(F )
and F (ξ[Cα ∩ (i+ 1)]) < ξ(i+ 1).

Now the set G = rng(ξ) is closed and has order type κ++. Let δ = sup(G). Hence
by the hypothesis of the proposition, there is a closed unbounded set Eδ ⊆ δ such that
[Eδ]

<κ ⊆ dmn(F ). Note that G ∩ Eδ is also closed unbounded in δ.
Let H = ξ−1[G ∩ Eδ]. Thus H is club in κ++. Hence by (2) there is an α ∈ H ∩ S

such that Cα ⊆ H. Hence Cα
def
= ξ[Cα] ⊆ G∩Eδ is club in ξ(α) of order type κ. We claim

that Cα is as desired in the proposition. For, suppose that a, b ∈ Cα and a < b. Write
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a = ξ(i). Then {d ∈ Cα : d ≤ a} = ξ[Cα ∩ (i + 1)] ⊆ Eδ, and so (3) gives the desired
conclusion.

Next we give a condition under which (∗)κ holds.

Lemma 30.43. Suppose that I is a proper ideal over a set A of regular cardinals such that
|A| < min(A). Assume that λ > |A| is a regular cardinal such that (

∏
A,<I) is λ-directed,

and 〈gξ : ξ < λ〉 is a sequence of members of
∏
A.

Then there is a <I -increasing sequence f = 〈fξ : ξ < λ〉 of length λ in
∏
A such that:

(i) gξ < fξ+1 for every ξ < λ.
(ii) (∗)κ holds for f , for every regular cardinal κ such that κ++ < λ and {a ∈ A : a ≤

κ++} ∈ I.

Proof. Let f0 be any member of
∏
A. At successor stages, if fξ is defined, let fξ+1

be any function in
∏
A that <-extends fξ and gξ.

At limit stages δ, there are three cases. In the first case, cf(δ) ≤ |A|. Fix some Eδ ⊆ δ
club of order type cf(δ), and define

fδ = sup{fi : i ∈ Eδ}.

For any a ∈ A we have cf(δ) ≤ |A| < min(A) ≤ a, and so fδ(a) < a. Thus fδ ∈
∏
A.

In the second case, cf(δ) = κ++, where κ is regular, |A| < κ, and {a ∈ A : a ≤
κ++} ∈ I. Then we define f ′

δ as in the first case. Then for any a ∈ A with a > κ++ we
have f ′

δ(a) < a, and so {a ∈ A : a ≤ f ′
δ(a)} ∈ I, and we can modify f ′

δ on this set which is
in I to obtain our desired fδ.

In the third case, neither of the first two cases holds. Then we let fδ be any ≤I -upper
bound of {fξ : ξ < δ}; it exists by the λ-directedness assumption.

This completes the construction. Obviously (i) holds. For (ii), suppose that κ is a
regular cardinal such that κ++ < λ and {a ∈ A : a ≤ κ++} ∈ I. If |A| < κ, the desired
conclusion follows by Lemma 30.41. In case κ ≤ |A|, note that 〈fξ : ξ < κ〉 is <-increasing,
and so is certainly strongly increasing under I.

Now we apply these results to the determination of true cofinality for some important
concrete partial orders.

Notation. For any set X of cardinals, let

X(+) = {α+ : α ∈ X}.

Theorem 30.44. (Representation of µ+ as a true cofinality, I) Suppose that µ is a singular
cardinal with uncountable cofinality. Then there is a club C in µ such that C has order
type cf(µ), every element of C is greater than cf(µ), and

µ+ = tcf
(∏

C(+), <Jbd

)

,

where Jbd is the ideal of all bounded subsets of C(+).

449



Proof. Let C0 be any closed unbounded set of limit cardinals less than µ such that
|C0| = cf(µ) and all cardinals in C0 are above cf(µ). Then

(1) all members of C0 which are limit points of C0 are singular.

In fact, suppose on the contrary that κ ∈ C0, κ is a limit point of C0, and κ is regular. Thus
C0 ∩ κ is unbounded in κ, so |C0 ∩ κ| = κ. But cf(µ) < κ and |C0| = cfµ, contradiction.
So (1) holds. Hence wlog every member of C0 is singular.

Now we claim

(2) (
∏
C

(+)
0 , <Jbd) is µ-directed.

In fact, suppose that F ⊆ ∏
C

(+)
0 and |F | < µ. For a ∈ C

(+)
0 with |F | < a let h(a) =

supf∈F f(a); so h(a) ∈ a. For a ∈ C
(+)
0 with a ≤ |F | let h(a) = 0. Clearly f ≤Jbd h for all

f ∈ F . So (2) holds.

(3) (
∏
C

(+)
0 , <Jbd) is µ+-directed.

In fact, by (2) it suffices to find a bound for a subset F of
∏
C

(+)
0 such that |F | = µ. Write

F =
⋃

α<cf(µ)Gα, with |Gα| < µ for each α < cf(µ). By (2), each Gα has an upper bound

kα under <Jbd . Then {kα : α < cf(µ)} has an upper bound h under <Jbd . Clearly h is an
upper bound for F .

Now we are going to apply Lemma 30.43 to Jbd, C
(+)
0 , and µ+ in place of I, A, and

λ; and with anything for g. Clearly the hypotheses hold, so we get a <Jbd-increasing

sequence f = 〈fξ : ξ < µ+〉 in
∏
C

(+)
0 such that (∗)κ holds for f and the bounding

projection property holds for κ, for every regular cardinal κ < µ. It also follows that the
bounding projection property holds for |A|+, and hence by 30.37, f has an exact upper
bound h. Then by Lemma 30.38, for every regular κ < µ we have

(⋆) {a ∈ C
(+)
0 : h(a) is non-limit, or cf(h(a)) < κ} ∈ Jbd.

Now the identity function k on C
(+)
0 is obviously is an upper bound for f , so h ≤Jbd k. By

modifying h on a set in Jbd we may assume that h(a) ≤ a for all a ∈ C
(+)
0 . Now we claim

(⋆⋆) The set C1
def
= {α ∈ C0 : h(α+) = α+} contains a club of µ.

Assume otherwise. Then for every club K, K ∩ (µ\C1) 6= 0. This means that µ\C1 is

stationary, and hence S
def
= C0\C1 is stationary. For each α ∈ S we have h(α+) < α+.

Hence cf(h(α+)) < α since α is singular. Hence by Fodor’s theorem 〈cf(h(α+)) : α ∈ C0〉
is bounded by some κ < µ on a stationary subset of S. This contradicts (⋆).

Thus (⋆⋆) holds, and so there is a club C ⊆ C0 such that h(α+) = α+ for all α ∈ C.
Now 〈fξ ↾ C(+) : ξ < µ+〉 is <Jbd-increasing. We claim that it is cofinal in (

∏
C(+), <Jbd).

For, suppose that g ∈∏C(+). Let g′ be the extension of g to
∏
C

(+)
0 such that g′(a) = 0

for any a ∈ C0\C. Then g′ <Jbd h, and so there is a ξ < µ+ such that g′ <Jbd fξ. So
g <Jbd fξ ↾ C(+), as desired. This shows that µ+ = tcf(

∏
C(+), <Jbd).
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Theorem 30.45. (Representation of µ+ as a true cofinality, II) If µ is a singular cardinal
of countable cofinality, then there is an unbounded set D ⊆ µ of regular cardinals such that

µ+ = tcf
(∏

D,<Jbd

)

.

Proof. Let C0 be a set of uncountable regular cardinals with supremum µ, of order
type ω.

(1)
∏
C0/J

bd is µ-directed.

For, let X ⊆∏C0 with |X | < µ. For each a ∈ C0 such that |X | < a, let h(a) = sup{f(a) :
f ∈ X}, and extend h to all of C0 in any way. Clearly h ∈∏C0 and it is an upper bound
in the <Jbd sense for X .

From (1) it is clear that
∏
C0/J

bd is also µ+-directed. By Lemma 30.43 we then get
a <Jbd-increasing sequence 〈fξ : ξ < µ+〉 which satisfies (∗)κ for every regular κ < µ+. By
Theorems 30.37 and 30.38 f has an exact upper bound h such that {a ∈ C0 : h(a) is non-
limit or cf(h(a)) < κ} ∈ Jbd for every regular κ < µ+. We may assume that h(a) ≤ a for all
a ∈ C0, since the identity function is clearly an upper bound for f ; and we may assume that
each h(a) is a limit ordinal of uncountable cofinality since {a ∈ C0 : cf(h(a)) < ω1} ∈ Jbd.

(2) tcf
(∏

a∈C0
cf(h(a)), <Jbd

)
= µ+.

To prove this, for each a ∈ C0 let Da be club in h(a) of order type cf(h(a)), and let
〈ηaξ : ξ < cf(h(a))〉 be the strictly increasing enumeration of Da. For each ξ < µ+ we
define f ′

ξ ∈
∏

a∈C0
cf(h(a)) as follows. Since fξ <Jbd h, the set {a ∈ C0 : fξ(a) ≥ h(a)} is

bounded, so choose a0 ∈ C0 such that for all b ∈ C0 with a0 ≤ b we have fξ(b) < h(b). For
such a b we define f ′

ξ(b) to be the least ν such that fξ(b) < ηbν . Then we extend f ′
α in any

way to a member of
∏

a∈C0
cf(h(a))).

(3) ξ < σ < µ+ implies that f ′
ξ ≤Jbd f ′

σ.

This is clear by the definitions.
Now for each l ∈ ∏a∈C0

cf(h(a))) define kl ∈
∏
C0 by setting kl(a) = ηal(a) for all a.

So kl < h. Since h is an exact upper bound for f , choose ξ < µ+ such that kl <Jbd fξ.
Choose a such that kl(b) < fξ(b) < h(b) for all b ≥ a. Then for all b ≥ a, ηbl(b) < ηbf ′

ξ
(b),

and hence l(b) < f ′
ξ(b). This proves that l <Jbd f ′

ξ. This proves the following statement.

(4) {f ′
ξ : ξ < µ+} is cofinal in

(∏

a∈C0
cf(h(a)), <Jbd

)
.

Now (3) and (4) yield (2).
Now let B = {cf(h(a)) : a ∈ C0}. Define

X ∈ J iff X ⊆ B and h−1[cf−1[X ]] ∈ Jbd.

By Lemma 30.24 we get tcf(
∏
B/J) = µ+. It suffices now to show that J is the ideal of

bounded subsets of B. Suppose that X ∈ J , and choose a ∈ C0 such that h−1[cf−1[X ]] ⊆
{b ∈ C0 : b < a}. Thus X ⊆ {b ∈ A : cf(h(b)) < a} ∈ Jbd, so X is bounded. Conversely, if
X is bounded, choose a ∈ B such that X ⊆ {b ∈ B : b ≤ a}. Now

h−1[cf−1[X ]] = {b ∈ C0 : cf(h(b)) ∈ X}
⊆ {b ∈ C0 : cf(h(b)) ≤ a},
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and this is bounded by the choice of h.

EXERCISES

E30.1. Let κ and λ be regular cardinals, with κ < λ. We define two statements CG(κ, λ)
and MAJ(κ, λ):

CG(κ, λ) iff there is a sequence 〈Cα : α ∈ Sλκ〉 such that:

(i) ∀α ∈ Sλκ [Cα ⊆ α is club, of order type κ];

(ii) ∀D ⊆ λ[D club implies that ∃α ∈ Sκλ(Cα ⊆ D)];

MAJ(κ, λ) iff there is a sequence 〈fα : α ∈ Sλκ〉 such that:

(i) ∀α ∈ Sλκ [fα : κ→ λ is strictly increasing;

(ii) ∀g : λ<κ → λ∃α ∈ Sλκ∀β < κ[g(〈fα(γ) : γ < β〉) < fα(β)].

Thus Theorem 30.40 implies that CG(κ, κ++) holds for any regular cardinal κ.
Prove that CG(κ, λ) implies MAJ(κ, λ).

E30.2. Recall the condition ♦:

There are sets Aα ⊆ α for each α < ω1 such that for every A ⊆ ω1 the set {α < ω1 :
A ∩ α = Aα} is stationary.

We do not need any properties of ♦, but it is of interest that it follows from V = L and
implies CH.

Prove that ♦ implies CG(ω, ω1). (It is consistent that CG(ω, ω1) fails, but this is not
part of this exercise.)

E30.3. Suppose that A is infinite, h ∈ AOn is a function having only limit ordinals as
values, and F is a nonprincipal ultrafilter on A. [This means that each cofinite subset of
A is in F ; cofinite = complement of finite.] Prove that

∏

a∈A h(a)/F is infinite.

E30.4. An ultrafilter F on a set A is countably incomplete iff there is a countably infinite
partition P of A such that A\a ∈ F for every a ∈ A. Show that if F is countably
incomplete, then

∏

a∈A h(a)/F has size at least 2ω. Hint: Let 〈pi : i ∈ ω〉 enumerate P ,
and for each i ∈ ω let bi =

⋃

i≤j<ω pj ; thus bi ∈ F . For each a ∈ A, let ca = {i ∈ ω : a ∈ bi};
hence ca is a finite set. Use these sets to solve the problem.

E30.5. (Continuing E30.3) Suppose that F is a countably incomplete ultrafilter on A.
Show that

∏

a∈A h(a)/F is not well-ordered.

E30.6. Let F = {ω, ω\1}, a filter on ω. Define a subset X of ωω which has two distinct
least upper bounds under ≤F .

E30.7. Give an example of a set A, a collection F ⊆ AOn, and an ideal I on A, such that
there is a subset X of F which has a unique least upper bound under <I , but no exact
upper bound. (See the example on page 121.)

E30.8. Suppose that P and Q are partially ordered sets. Show that the following two
conditions are equivalent:
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(i) There is a function f : P → Q such that ∀q ∈ Q∃p ∈ P∀r ∈ P [p ≤ r implies that
q ≤ f(r)].

(ii) There is a function g : Q→ P such that ∀X ⊆ Q[X unbounded in Q implies that
g[X ] is unbounded in P ].

E30.9. (Continuing E30.8) A partially ordered set P is directed iff ∀p, q ∈ P∃r ∈ P [p ≤ r
and q ≤ r]. Suppose that P and Q are directed. If either of the conditions of E30.8 hold,
we write P ≤ Q.

Assume that P ≤ Q ≤ P . Show that there exist f ′ : P → Q and g′ : Q → P such
that for any p ∈ P and q ∈ Q the following conditions hold:

(a) If g′(q) ≤ p, then q ≤ f ′(p).
(b) If f ′(p) ≤ q, then p ≤ g′(q).

E30.10. (Continuing E30.9) Suppose that P and Q are directed partially ordered sets.
Show that the following conditions are equivalent:

(a) P ≤ Q and Q ≤ P .
(b) There is a partially ordered set R such that both P and Q can be embedded in R

as cofinal subsets. That is, there is an injection f : P → R such that ∀p, p′ ∈ P [p ≤P p′ iff
f(p) ≤R f(p′), with f [P ] cofinal in R, and similarly for Q: there is an injection g : Q→ R
such that ∀q, q′ ∈ Q[q ≤P q′ iff g(q) ≤R g(q′), with g[Q] cofinal in R.

Hint: (b)⇒(a) is easy. For (a)⇒(b), assume (a), and suppose that f ′, g′ are as in E30.9.
Also assume wlog that P ∩Q = ∅, let R′ = P ∪Q, and let the order on R′ extend both of
the orders on P and Q, and in addition write, for p ∈ P and q ∈ Q,

p ≤R′ q iff ∃p′ ≥P p[f ′(p′) ≤Q q];

q ≤R′ p iff ∃q′ ≥Q q[g′(q′) ≤P p].

Then ≤R′ is a quasiorder on R′, and one can let R be the associated partial order.

E30.11. Suppose that κ, λ, µ are cardinals such that (1) κ = 1 or κ is infinite; (2) κ ≤ λ;
(3) λ and µ are infinite. For f, g ∈ λµ we define f ≤κ g iff |{α < λ : f(α) > g(α)}| < κ.
Let

bκ.λ.µ = min{|B| : B is a ≤κ-unbounded subset of λµ};

dκ,λ,µ = min{|B| : B is a ≤κ-cofinal subset of λµ}.

Prove that bκ,λ,µ is regular, and bκ,λ,µ ≤ cf(dκ,λ,µ).

E30.12. Suppose that λ > |A|+ is a regular cardinal and f = 〈fξ : ξ < λ〉 is a <I -
increasing sequence. Consider the following property of f and a regular cardinal κ such
that |A| < κ ≤ λ:

Badκ: There exist:
(a) nonempty sets Sa of ordinals for a ∈ A, each of size less than κ, such that fα <I

〈sup(Sa) : a ∈ A〉 for all α < λ, and
(b) an ultrafilter D over A extending the dual of I
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such that for every α < λ there is a β < λ such that proj(fα, S) <D fβ .

Show that the bounding projection property for κ implies ¬Badκ.

E30.13. (Continuing E30.12) Suppose that λ > |A|+ is a regular cardinal and f = 〈fξ : ξ <
λ〉 is a <I -increasing sequence. Also suppose that κ is a regular cardinal and |A| < κ ≤ λ.
Let Ugly be the following statement:

There exists a function g ∈A On such that, defining tα = {a ∈ A : g(a) < fα(a)}, the
sequence 〈tα : α < λ〉 does not stabilize modulo I. That is, for every α there is a β > α in
λ such that tβ\tα ∈ I+.

Show that if Ugly holds, then 〈tα : α < λ〉 is ⊆I -increasing, i.e., if α < β < λ then
tα\tβ ∈ I.

Also show that if the bounding projection property holds for κ, then ¬Ugly.

E30.14. (Continuing E30.13) Suppose that λ > |A|+ is a regular cardinal and f = 〈fξ : ξ <
λ〉 is a <I -increasing sequence. Also suppose that κ is a regular cardinal, with |A| < κ ≤ λ.
Suppose that ¬Badκ and ¬Ugly. Show that the bounding projection property holds for
κ.

Hint: Suppose that it does not hold. For brevity write f+
α for proj(fα, S). For all

ξ, α < λ let tξα = {a ∈ A : f+
ξ (a) < fα(a)}. Prove:

(1) For every ξ < λ there is a βξ > ξ such that tξβξ ∈ I+ and for all γ > βξ we have

tξγ\tξβξ ∈ I.

Now by (1) define strictly increasing sequences 〈ξ(ν) : ν < λ〉 and 〈β(ν) : ν < λ〉 such that

for all ν < λ, t
ξ(ν)
β(ν) ∈ I+, ξ(ν) < β(ν), β(ν) < ξ(ρ) if ν < ρ < λ, and t

ξ(ν)
γ \tξ(ν)

β(ν) ∈ I for all

γ > β(ν). Prove:

(2) If ν < ρ < λ, then

t
ξ(ρ)
β(ρ) ⊆

(

t
ξ(ν)
β(ν) ∩ t

ξ(ρ)
β(ρ)

)

∪
(

t
ξ(ν)
β(ρ)\t

ξ(ν)
β(ν)

)

∪
{

a ∈ A : f+
ξ(ρ)(a) < f+

ξ(ν)(a)
}

.

Next, prove

(3) If ν1 < · · · < νm < λ, then t
ξ(ν1)
β(ν1)

∩ . . . ∩ tξ(νm)
β(νm) ∈ I+.

By (3), the set I∗∪{tξ(ν)
β(ν) : ν < λ} has fip, and hence is contained in an ultrafilter D. This

easily leads to a contradiction.

E30.15 (Continuing E30.14; The Trichotomy theorem) Suppose that λ > |A|+ is a regular
cardinal and f = 〈fξ : ξ < λ〉 is a <I -increasing sequence. Also let κ be a regular cardinal
such that |A| < κ ≤ λ. Let Goodκ be the statement that there exists an exact upper
bound g for f such that cf(g(a)) ≥ κ for every a ∈ A.

Prove that Badκ, Ugly, or Goodκ.
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31. Basic properties of PCF

For any set A of regular cardinals define

pcf(A) =
{

cf
(∏

A/D
)

: D is an ultrafilter on A
}

.

By definition, pcf(∅) = ∅. We begin with a very easy proposition which will be used a lot
in what follows.

Proposition 31.1. Let A and B be sets of regular cardinals.
(i) A ⊆ pcf(A).
(ii) If A ⊆ B, then pcf(A) ⊆ pcf(B).
(iii) pcf(A ∪B) = pcf(A) ∪ pcf(B).
(iv) If B ⊆ A, then pcf(A)\pcf(B) ⊆ pcf(A\B).
(v) If A is finite, then pcf(A) = A.
(vi) If B ⊆ A, B is finite, and A is infinite, then pcf(A) = pcf(A\B) ∪B.
(vii) min(A) = min(pcf(A)).
(viii) If A is infinite, then the first ω members of A are the same as the first ω members

of pcf(A).

Proof. (i): For each a ∈ A, the principal ultrafilter with {a} as a member shows that
a ∈ pcf(A).

(ii): Any ultrafilter F on A can be extended to an ultrafilter G on B. The mapping
[f ] 7→ [f ] is easily seen to be an isomorphism of

∏
A/F onto

∏
B/G. Note here that [f ]

is used in two senses, one for an element of
∏
A/F , where each member of [f ] is in

∏
A,

and the other for an element of
∏
B/G, with members in the larger set

∏
B.

(iii): ⊇ holds by (ii). Now suppose that D is an ultrafilter on A ∪B. Then A ∈ D or
B ∈ D, and this proves ⊆.

(iv): Suppose that B ⊆ A and λ ∈ pcf(A)\pcf(B). Let D be an ultrafilter on A
such that λ = cf(

∏
A/D). Then B /∈ D, as otherwise λ ∈ pcf(B). So A\B ∈ D, and so

λ ∈ pcf(A\B).
(v): If A is finite, then every ultrafilter on A is principal.
(vi): We have

pcf(A) = pcf(A\B) ∪ pcf(B) by (iii)

= pcf(A\B) ∪B by (v)

(vii): Let a = min(A). Thus a ∈ pcf(A) by (i). Suppose that λ ∈ pcf(A) with λ < a;
we want to get a contradiction. Say 〈[gξ] : ξ < λ〉 is strictly increasing and cofinal in
∏
A/D. Now define h ∈ ∏A as follows: for any b ∈ A, h(b) = sup{gξ(b) + 1 : ξ < λ}.

Thus [gξ] < [h] for all ξ < λ, contradiction.
(viii): Suppose that λ ∈ pcf(A)\A. Suppose that λ∩A is finite, and let a = min(A\λ).

So λ ≤ a, and if b ∈ A ∩ a then b < λ. Thus A ∩ λ = A ∩ a. Hence λ ∈ pcf(A) =
pcf(A\a) ∪ (A ∩ λ) by (vi), and so a ≤ λ by (vii). So λ = a, contradiction. Thus λ ∩ A is
infinite, and this proves (viii).

The following result gives a connection with earlier material; of course there will be more
connections shortly.
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Proposition 31.2. If A is a collection of regular cardinals, F is a proper filter on A, and
λ = tcf(

∏
A/F ), then λ ∈ pcf(A).

Proof. Let 〈fξ : ξ < λ〉 be a <F -increasing cofinal sequence in
∏
A/F . Let D be any

ultrafilter containing F . Then clearly 〈fξ : ξ < λ〉 is a <D-increasing cofinal sequence in
∏
A/D.

Definitions. A set A is progressive iff A is an infinite set of regular cardinals and |A| <
min(A).

If α < β are ordinals, then (α, β)reg is the set of all regular cardinals κ such that
α < κ < β. Similarly for [α, β)reg, etc. All such sets are called intervals of regular
cardinals.

Proposition 31.3. Assume that A is a progressive set, then
(i) Every infinite subset of A is progressive.
(ii) If α is an ordinal and A ∩ α is unbounded in α, then α is a singular cardinal.
(iii) If A is an infinite interval of regular cardinals, then A does not have any weak

inaccessible as a member, except possibly its first element. Moreover, there is a singular
cardinal λ such that A ∩ λ is unbounded in λ and A\λ is finite.

Proof. (i): Obvious.
(ii): Obviously α is a cardinal. Now A∩α is cofinal in α and |A∩α| ≤ |A| < min(A) <

α. Hence α is singular.
(iii): If κ ∈ A, then by (ii), A ∩ κ cannot be unbounded in κ; hence κ is a successor

cardinal, or is the first element of A. For the second assertion of (iii), let sup(A) = ℵα+n

with α a limit ordinal. Since A is an infinite interval of regular cardinals, it follows that
A∩ℵα is unbounded in ℵα, and hence by (ii), ℵα is singular. Hence the desired conclusion
follows.

Theorem 31.4. (Directed set theorem) Suppose that A is a progressive set, and λ is a
regular cardinal such that sup(A) < λ. Suppose that I is a proper ideal over A containing
all proper initial segments of A and such that (

∏
A,<I) is λ-directed. Then there exist a

set A′ of regular cardinals and a proper ideal J over A′ such that the following conditions
hold:

(i) A′ ⊆ [min(A), sup(A)) and A′ is cofinal in sup(A).
(ii) |A′| ≤ |A|.
(iii) J contains all bounded subsets of A′.
(iv) λ = tcf(

∏
A′, <J).

Proof. First we note:

(∗) A does not have a largest element.

For, suppose that a is the largest element of A. Note that then I = P(A\{a}). For each
ξ < a define fξ ∈

∏
A by setting

fξ(b) =

{
0 if b 6= a,
ξ if b = a.
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Since a < λ, choose g ∈∏A such that fξ <I g for all ξ ∈ a. Thus {b ∈ A : fξ(b) ≥ g(b)} ∈
I, so fξ(a) < g(a) for all ξ < a. This is clearly impossible. So (∗) holds.

Now by Lemma 30.43 there is a <I -increasing sequence f = 〈fξ : ξ < λ〉 in
∏
A which

satisfies (∗)κ for every κ ∈ A. Hence by 30.37–30.39, f has an exact upper bound h ∈ AOn
such that

(1) {a ∈ A : h(a) is non-limit or cf(h(a)) < κ} ∈ I

for every κ ∈ A. Now the identity function k on A is clearly an upper bound for f , so
h ≤I k; and by (1), {a ∈ A : h(a) is non-limit or cf(h(a)) < min(A)} ∈ I. Hence by
changing h on a set in the ideal we may assume that

(2) min(A) ≤ cf(h(a)) ≤ a for all a ∈ A.

Now f shows that (
∏
h,<I) has true cofinality λ. Let A′ = {cf(h(a)) : a ∈ A}. By Lemma

30.23 there is a proper ideal J on A′ such that (
∏
A′, <J) has true cofinality λ; namely,

X ∈ J iff X ⊆ A′ and h−1[cf−1[X ]] ∈ I.

Clearly (ii) and (iv) hold. By (2) we have A′ ⊆ [min(A), sup(A)). Now to show that
A′ is cofinal in sup(A), suppose that κ ∈ A; we find µ ∈ A′ such that κ ≤ µ. In fact,
{a ∈ A : cf(h(a)) < κ} ∈ I by (1). Let X = {b ∈ A′ : b < κ}. Then

h−1[cf−1[X ]] = {a ∈ A : cf(h(a)) < κ} ∈ I,

and so X ∈ J . Taking any µ ∈ A′\X we get κ ≤ µ. Thus (i) holds. Finally, for (iii),

suppose that µ ∈ J ; we want to show that Y
def
= {b ∈ A′ : b < µ} ∈ J . By (i), choose

κ ∈ A such that µ ≤ κ. Then Y ⊆ {b ∈ A′ : b < κ}, and by the argument just given, the
latter set is in J . So (iii) holds.

Corollary 31.5. Suppose that A is progressive, is an interval of regular cardinals, and λ
is a regular cardinal > sup(A). Assume that I is a proper ideal over A such that (

∏
A,<I)

is λ-directed. Then λ ∈ pcf(A).

Proof. We may assume that I contains all proper initial segments of A. For, suppose
that this is not true. Then there is a proper initial segment B of A such that B /∈ I. With
a ∈ A\B we then have B ⊆ A ∩ a, and so A ∩ a /∈ I. Let a be the smallest element of A

such that A ∩ a /∈ I. Then J
def
= I ∩ P(A ∩ a) is a proper ideal that contains all proper

initial segments of A ∩ a. we claim that (
∏

(A ∩ a), J) is λ-directed. For, suppose that
X ⊆ ∏

(A ∩ a) with |X | < λ. For each g ∈ X let g+ ∈ ∏A be such that g+ ⊇ g and
g+(b) = 0 for all b ∈ A\a. Choose f ∈ ∏A such that g+ ≤I f for all g ∈ X . So if g ∈ X
we have

{b ∈ A ∩ a : g(b) > f(b)} = {b ∈ A : g+(b) > f(b)} ∈ I ∩ P(A ∩ a),

and so g ≤J (f ↾ (A ∩ a) for all g ∈ X , as desired.
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Now the corollary follows from the theorem.

The ideal J<λ

Let A be a set of regular cardinals. We define

J<λ[A] = {X ⊆ A : pcf(X) ⊆ λ}.

In words, X ∈ J<λ[A] iff X is a subset of A such that for any ultrafilter D over A, if
X ∈ D, then cf(

∏
A,<D) < λ. Thus X “forces” the cofinalities of ultraproducts to be

below λ.
Clearly J<λ[A] is an ideal of A. If λ < min(A), then J<λ[A] = {∅} by 31.1(vii). If

λ < µ, then J<λ[A] ⊆ J<µ[A]. If λ /∈ pcf(A), then J<λ[A] = J<λ+ [A]. If λ is greater than
each member of pcf(A), then J<λ[A] is the improper ideal P(A). If λ ∈ pcf(A), then
A /∈ J<λ[A].

If A is clear from the context, we simply write J<λ.
If I and J are ideals on a set A, then I + J is the smallest ideal on A which contains

I ∪ J ; it consists of all X such that X ⊆ Y ∪ Z for some Y ∈ I and Z ∈ J .

Lemma 31.6. If A is an infinite set of regular cardinals and B is a finite subset of A,
then for any cardinal λ we have

J<λ[A] = J<λ[A\B] + P(B ∩ λ).

Proof. Let X ∈ J<λ[A]. Thus pcf(X) ⊆ λ. Using 31.1(vi) we have pcf(X) =
pcf(X\B) ∪ (X ∩ B), so X\B ∈ J<λ[A\B] and X ∩ B ⊆ B ∩ λ, and it follows that
X ∈ J<λ[A\B] + P(B ∩ λ).

Now suppose that X ∈ J<λ[A\B] + P(B ∩ λ). Then there is a Y ∈ J<λ[A\B] such
that X ⊆ Y ∪ (B ∩ λ). Hence by 31.1(vi) again, pcf(X) ⊆ pcf(Y ) ∪ (B ∩ λ) ⊆ λ, so
X ∈ J<λ[A].

Recall that for any ideal on a set Y , I∗ = {a ⊆ Y : Y \a ∈ I} is the filter corresponding to
I.

Proposition 31.7. If A is a collection of regular cardinals and λ is a cardinal, then

J∗
<λ[A] =

⋂{

D : D is an ultrafilter and cf
(∏

A/D
)

≥ λ
}

.

The intersection is to be understood as being equal to P(A) if there is no ultrafilter D such
that cf(

∏
A/D) ≥ λ.

Proof. Note that for any X ⊆ A, X ∈ J∗
<λ[A] iff A\X ∈ J<λ[A] iff pcf(A\X) ⊆ λ.

Now suppose that X ∈ J∗
<λ[A] and D is an ultrafilter such that cf(

∏
A/D) ≥ λ. If

X /∈ D, then A\X ∈ D and hence pcf(A\X) 6⊆ λ, contradiction. Thus X is in the
indicated intersection.
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If X is in the indicated intersection, we want to show that A\X ⊆ λ. To this end,
suppose that D is an ultrafilter such that A\X ∈ D, and to get a contradiction suppose
that cf(

∏
A/D) ≥ λ. Then X ∈ D by assumption, contradiction.

Note that the argument gives the desired result in case there are no ultrafilters D
as indicated in the intersection; in this case, pcf(A\X) ⊆ λ for every X ⊆ A, and so
J∗
<λ[A] = P(A).

Theorem 31.8. (λ-directedness) Assume that A is progressive. Then for every cardinal
λ, the partial order (

∏
A,<J<λ[A]) is λ-directed.

Proof. We may assume that there are infinitely many members of A less than λ. For,
suppose not. Let F ⊆∏A with |F | < λ. We define g ∈∏A by setting, for any a ∈ A,

g(a) =
{

sup{f(a) : f ∈ F} if |F | < a,
0 otherwise.

We claim that f ≤ g mod J<λ[A] for all f ∈ F . For, if f(a) > g(a), then λ > |F | ≥ a; thus
{a : f(a) > g(a)} ⊆ λ ∩ A. Now pcf(λ ∩ A) = λ ∩ A ⊆ λ, so {a : f(a) > g(a)} ∈ J<λ[A].

So, we make the indicated assumption. By this assumption, the set B
def
= A ∩ {|A|+,

|A|++, |A|+++, |A|++++} ⊆ λ. Suppose that we have shown that (
∏

(A\B), J<λ(A\B))
is λ-directed. Now let Y ⊆ ∏

A with |Y | < λ. Choose g ∈ ∏
(A\B) such that f ↾

(A\B) <J<λ[A\B] g for all f ∈ Y . Let g+ ∈ ∏A be an extension of g. Then

{a : f(a) > g+(a)} = {a ∈ A\B : f(a) > g(a)} ∪ {a ∈ B : f(a) > g+(a)}
∈ J<λ[A\B] + P(B ∩ λ)

= J<λ[A] by Lemma 31.6.

Thus g+ is an upper bound for Y mod J<λ[A].
Hence we may assume that |A|+3 < min(A).
Now we prove by induction on the cardinal λ0 that if λ0 < λ and F = {fi : i < λ0} ⊆

∏
A is a family of functions of size λ0, then F has an upper bound in (

∏
A,<J<λ). So,

we assume that this is true for all cardinals less than λ0. If λ0 < min(A), then sup(F ) is
as desired. So, assume that min(A) ≤ λ0.

First suppose that λ0 is singular. Let 〈αi : i < cf(λ0)〉 be increasing and cofinal in λ0,
each αi a cardinal. By the inductive hypothesis, let gi be a bound for {fξ : ξ < αi} for
each i < cfλ0, and then let h be a bound for {gi : i < cfλ0}. Clearly h is a bound for F .

So assume that λ0 is regular. We are now going to define a <J<λ -increasing sequence
〈f ′
ξ : ξ < λ0〉 which satisfies (∗)κ, with κ = |A|+, and such that fi ≤ f ′

i for all i < λ0. To

do this choose, for every δ ∈ Sλ0

κ++ a club Eδ ⊆ δ of order type κ++. Now for such a δ we
define

f ′
δ = sup({f ′

j : j ∈ Eδ} ∪ {fδ}).

For ordinals δ < λ0 of cofinality 6= κ++ we apply the inductive hypothesis to get f ′
δ such

that f ′
ξ <J<λ f

′
δ for every ξ < δ and also fδ <J<λ f

′
δ.

This finishes the construction. By Lemma 30.41, (∗)|A|+ holds for f , and hence by

Theorem 30.39, f has an exact upper bound g ∈ AOn with respect to <J<λ . The identity
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function on A is an upper bound for f , so we may assume that g(a) ≤ a for all a ∈ A.

Now we shall prove that B
def
= {a ∈ A : g(a) = a} ∈ J<λ[A], so a further modification of g

yields the desired upper bound for f .
To get a contradiction, suppose that B /∈ J<λ[A]. Hence pcf(B) 6⊆ λ, and so there is

an ultrafilter D over A such that B ∈ D and cf(
∏
A/D) ≥ λ. Clearly D ∩ J<λ[A] = ∅, as

otherwise cf(
∏
A/D) < λ. Now f has length λ0 < λ, and so it is bounded in

∏
A/D; say

that fi <D h ∈ ∏A for all i < λ0. Thus h(a) < a = g(a) for all a ∈ B. Now we define
h′ ∈∏A by

h′(a) =
{
h(a) if a ∈ B,
0 otherwise.

Then h′ <J<λ g, since

{a ∈ A : h′(a) ≥ g(a)} = {a ∈ A : g(a) = 0} ⊆ {a ∈ A : f0(a) ≥ g(a)} ∈ J<λ.

Hence by the exactness of g it follows that h′ <J<λ fi for some i < λ0. But B ∈ D and
hence h =D h′. So h <D fi, contradiction.

Corollary 31.9. Suppose that A is progressive, D is an ultrafilter over A, and λ is a
cardinal. Then:

(i) cf(
∏
A/D) < λ iff J<λ[A] ∩D 6= ∅.

(ii) cf(
∏
A/D) = λ iff J<λ+ ∩D 6= ∅ = J<λ ∩D.

(iii) cf(
∏
A/D) = λ iff λ+ is the first cardinal µ such that J<µ ∩D 6= ∅.

Proof. (i): ⇒: Assuming that J<λ[A] ∩ D = ∅, the fact from Theorem 31.8 that
<J<λ is λ-directed implies that also

∏
A/D is λ-directed, and hence cf(

∏
A/D) ≥ λ.

⇐: Assume that J<λ[A] ∩ D 6= ∅. Choose X ∈ J<λ ∩ D. Then by definition,
pcf(A) ⊆ λ, and hence cf(

∏
A/D) < λ.

(ii): Immediate from (i).
(iii): Immediate from (ii).

We now give two important theorems about pcf.

Theorem 31.10. If A is progressive, then |pcf(A)| ≤ 2|A|.

Proof. By Corollary 31.9, for each λ ∈ pcf(A) we can select an element f(λ) ∈
J<λ+\J<λ. Clearly f is a one-one function from pcf(A) into P(A).

Notation. We write J≤λ in place of J<λ+ .

Theorem 31.11. (The max pcf theorem) If A is progressive, then pcf(A) has a largest
element.

Proof. Let
I =

⋃

λ∈pcf(A)

J<λ[A].

Now clearly each ideal J<λ is proper (since for example {λ} /∈ J<λ), so I is also proper.
Extend the dual of I to an ultrafilter D, and let µ = cf(

∏
A/D). Then for each λ ∈ pcf(A)

we have J<λ ∩D = ∅ since I ∩D = ∅, and by Corollary 31.9 this means that µ ≥ λ.
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Corollary 31.12. Suppose that A is progressive. If λ is a limit cardinal, then

J<λ[A] =
⋃

θ<λ

J≤θ[A].

Proof. The inclusion ⊇ is clear. Now suppose that X ∈ J<λ[A]. Thus pcf(X) ⊆ λ.
Let µ be the largest element of pcf(X). Then µ ∈ λ, and pcf(X) ⊆ µ+, so X ∈ J<µ+ , and
the latter is a subset of the right side.

Theorem 31.13. (The interval theorem) If A is a progressive interval of regular cardinals,
then pcf(A) is an interval of regular cardinals.

Proof. Let µ = sup(A). By 31.3(iii) and 31.1(vi) we may assume that µ is singular.
By Theorem 31.11 let λ0 = max(pcf(A)). Thus we want to show that every regular cardinal
λ in (µ, λ0) is in pcf(A). By Theorem 31.8, the partial order (

∏
A,<J<λ) is λ-directed.

Clearly J<λ is a proper ideal, so λ ∈ pcf(A) by Corollary 31.5.

Definition. If κ is a cardinal ≤ |A|, then we define

pcfκ(A) =
⋃

{pcf(X) : X ⊆ A and |X | = κ}.

Theorem 31.14. If A is an interval of regular cardinals and κ < min(A), then pcfκ(A)
is an interval of regular cardinals.

Note here that we do not assume that A is progressive.

Proof. Let λ0 = sup pcfκ(A). Note that each subset X of A of cardinality κ is
progressive, and so max(pcf(X)) exists by Theorem 31.11. Thus

λ0 = sup{max(pcf(X)) : X ⊆ A and |X | = κ}.

To prove the theorem it suffices to take any regular cardinal λ such that min(A) < λ < λ0

and show that λ ∈ pcfκ(A). In fact, this will show that pcfκ(A) is an interval of regular
cardinals, whether or not λ0 is regular. Since λ < λ0, there is an X ⊆ A of size κ such that
λ ≤ max(pcf(X)). Hence X /∈ J<λ[X ]. If there is a proper initial segment Y of X which
is not in J<λ[X ], we can choose the smallest a ∈ X such that X ∩ a /∈ J<λ[X ] and work
with X ∩ a rather than X . So we may assume that every proper initial segment of X is in
J<λ[X ]. If λ ∈ A, clearly λ ∈ pcfκ(A). So we may assume that λ /∈ A. If λ < sup(X), then
λ ∈ A, contradiction. If λ = sup(X), then λ = sup(A) since λ /∈ A, and this contradicts
Proposition 31.3(ii). So sup(X) < λ. Since J<λ[X ] is λ-directed by Theorem 31.8, we can
apply 31.4 to obtain λ ∈ pcf(X), and hence λ ∈ pcfκ(A), as desired.

Another of the central results of pcf theory is as follows.

Theorem 31.15. (Closure theorem.) Suppose that A is progressive, B ⊆ pcf(A), and B
is progressive. Then pcf(B) ⊆ pcf(A). In particular, if pcf(A) itself is progressive, then
pcf(pcf(A)) = pcf(A).
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Proof. Suppose that µ ∈ pcf(B), and let E be an ultrafilter on B such that µ =
cf(
∏
B/E). For every b ∈ B fix an ultrafilter Db on A such that b = cf(

∏
A/Db). Define

F by
X ∈ F iff X ⊆ A and {b ∈ B : X ∈ Db} ∈ E.

It is straightforward to check that F is an ultrafilter on A. The rest of the proof consists
in showing that µ = cf(

∏
A/F ).

By Proposition 30.22 we have

µ = cf

(
∏

b∈B

(∏

A/Db

)

/E

)

.

Hence it suffices by Proposition 30.10 to show that
∏
A/F is isomorphic to a cofinal subset

of this iterated ultraproduct. To do this, we consider the Cartesian product B × A and
define

H ∈ P iff H ⊆ B ×A and {b ∈ B : {a ∈ A : (b, a) ∈ H} ∈ Db} ∈ E.

Again it is straightforward to check that P is an ultrafilter over B ×A. Let r(b, a) = a for
any (b, a) ∈ B ×A. Then

(∗)




∏

(b,a)∈B×A
a



 /P ∼=
∏

b∈B

(∏

A/Db

)

/E.

To prove (∗), for any f ∈ ∏〈b,a〉∈B×A a we define f ′ ∈∏b∈B(
∏
A/Db) by setting

f ′(b) = 〈f(b, a) : a ∈ A〉/Db.

Then for any f, g ∈∏〈b,a〉∈B×A a we have

f =P g iff {(b, a) : f(b, a) = g(b, a)} ∈ P

iff {b : {a : f(b, a) = g(b, a)} ∈ Db} ∈ E

iff {b : f ′(b) = g′(b)} ∈ E

iff f ′ =E g′.

Hence we can define k(f/P ) = f ′/E, and we get a one-one function. To show that it is
a surjection, suppose that h ∈ ∏b∈B(

∏
A/Db). For each b ∈ B write h(b) = h′b/Db with

h′b ∈
∏
A. Then define f(b, a) = h′b(a). Then

f ′(b) = 〈f(b, a) : a ∈ A〉/Db = 〈h′b(a) : a ∈ A〉/Db = h′b/Db = h(b),

as desired. Finally, k preserves order, since

f/P < g/P iff {(b, a) : f(b, a) < g(b, a)} ∈ P

iff {b : {a : f(b, a) < g(b, a)} ∈ Db} ∈ E

iff {b : f ′(b) < g′(b)} ∈ E

iff k(f/P ) < k(g/P ).
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So (∗) holds.
Now we apply Lemma 30.23, with r, B × A,A, P in place of c, A,B, I respectively.

Then F is the Rudin-Keisler projection on A, since for any X ⊆ A,

X ∈ F iff {b ∈ B : X ∈ Db} ∈ E

iff {b ∈ B : {a ∈ A : r(b, a) ∈ X} ∈ Db} ∈ E

iff {b ∈ B : {a ∈ A : (b, a) ∈ r−1[X ]} ∈ Db} ∈ E

iff r−1[X ] ∈ P.

Thus by Lemma 30.23 we get an isomorphism h of
∏
A/F into

∏

(b,a)∈B×A a/P such that

h(e/F ) = 〈e(r(b, a)) : (b, a) ∈ B × A〉/P for any e ∈ ∏A. So now it suffices now to show
that the range of h is cofinal in

∏

(b,a)∈B×A a/P . Let g ∈ ∏(b,a)∈B×A a. For every b ∈ B

define gb ∈ ∏A by gb(a) = g(b, a). Let λ = min(B). Since B is progressive, we have
|B| < λ. Hence by the λ-directness of

∏
A/J<λ[A] (Theorem 31.8), there is a function

k ∈∏A such that gb <J<λ k for each b ∈ B. Now λ ≤ b for all b ∈ B, so J<λ∩Db = ∅, and
so gb <Db k. It follows that g/P <P h(k/D). In fact, let H = {(b, a) : g(b, a) < k(r(b, a))}.
Then

{b ∈ B : {a ∈ A : (b, a) ∈ H} ∈ Db} = {b ∈ B : {a ∈ A : gb(a) < k(a)} ∈ Db} = B ∈ E,

as desired.

Generators for J<λ

If I is an ideal on a set A and B ⊆ A, then I +B is the ideal generated by I ∪ {B}; that
is, it is the intersection of all ideals J on A such that I ∪ {B} ⊆ J .

Proposition 31.16. Suppose that I is an ideal on A and B,X ⊆ A. Then the following
conditions are equivalent:

(i) X ∈ I +B.
(ii) There is a Y ∈ I such that X ⊆ Y ∪B.
(iii) X\B ∈ I.

Proof. Clearly (ii)⇒(i). The set

{Z ⊆ A : ∃Y ∈ I[Z ⊆ Y ∪B]}

is clearly an ideal containing I ∪ {B}, so (i)⇒(ii). If Y is as in (ii), then X\B ⊆ Y , and
hence X\B ∈ I; so (ii)⇒(iii). If X\B ∈ I, then X ⊆ (X\B) ∪ B, so X satisfies the
condition of (ii). So (iii)⇒(ii).

The following easy lemma will be useful later.

Lemma 31.17. Suppose that A is progressive and B ⊆ A.
(i) P(B) ∩ J<λ[A] = J<λ[B].
(ii) If f, g ∈∏A and f <J<λ[A] g, then (f ↾ B) <J<λ[B] (g ↾ B).
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Proof. (i): Suppose that X ∈ P(B)∩J<λ[A] and X ∈ D, an ultrafilter on B. Extend
D to an ultrafilter E on A. Then

∏
B/D ∼=

∏
A/E, and cf(

∏
A/E) < λ. So X ∈ J<λ[B].

The converse is proved similarly.
(ii): Assume that f, g ∈∏A and f <J<λ[A] g. Then

{a ∈ B : g(b) ≤ f(b)} ∈ P(B) ∩ J<λ[A] = J<λ[B]

by (i), as desired.

Definitions. If there is a set X such that J≤λ[A] = J<λ + X , then we say that λ is
normal.

Let A be a set of regular cardinals, and λ a cardinal. A subset B ⊆ A is a λ-generator
over A iff J≤λ[A] = J<λ[A] + B. We omit the qualifier “over A” if A is understood from
the context.

Suppose that λ ∈ pcf(A). A universal sequence for λ is a sequence f = 〈fξ : ξ < λ〉
which is <J<λ[A]-increasing, and for every ultrafilter D over A such that cf(

∏
A/D) = λ,

the sequence f is cofinal in
∏
A/D.

Theorem 31.18. (Universal sequences) Suppose that A is progressive. Then every λ ∈
pcf(A) has a universal sequence.

Proof. First,

(1) We may assume that |A|+ < min(A) < λ.

In fact, suppose that we have proved the theorem under the assumption (1), and now take
the general situation. Recall from Proposition 3.19(vii) that min(A) ≤ λ. If λ = min(A),
define fξ ∈ ∏A, for ξ < λ, by fξ(a) = ξ for all a ∈ A. Thus f is <-increasing, hence
<J<λ[A]-increasing. Suppose that D is an ultrafilter on A such that cf(

∏
A/D) = λ. Then

{min(A)} ∈ D, as otherwise A\{min(A)} ∈ D and hence cf(
∏
A/D) > λ by Proposition

31.1(vii). Thus for any g ∈ ∏A, let ξ = g(min(A)) + 1. Then {a ∈ A : g(a) < fξ(a)} ⊇
{min(A)} ∈ D, so [g] < [fξ]. Hence 〈[fξ] : ξ < λ〉 is cofinal in

∏
A/D.

Now suppose that min(A) < λ. Let a0 = minA. Let A′ = A\{a0}. If D is an
ultrafilter such that λ = cf(

∏
A/D), then A′ ∈ D since a0 < λ, hence {a0} /∈ D. It

follows that λ ∈ pcf(A′). Clearly |A′|+ < minA′ ≤ λ. Hence by assumption we get a
system 〈fξ : ξ < λ〉 of members of

∏
A′ which is increasing in <J<λ[A′] such that for every

ultrafilter D over A′ such that λ = cf(
∏
A′/D), f is cofinal in

∏
A′/D. Extend each fξ

to gξ ∈
∏
A by setting gξ(a0) = 0. If ξ < η < λ, then

{a ∈ A : gξ(a) ≥ gη(a)} ⊆ {a ∈ A′ : fξ(a) ≥ fη(a)} ∪ {a0},

and {a ∈ A′ : fξ(a) ≥ fη(a)} ∈ J<λ[A′] ⊆ J<λ[A] and also {a0} ∈ J<λ[A] since a0 < λ,
so gξ <J<λ gη. Now let D be an ultrafilter over A such that λ = cf(

∏
A/D). As above,

A′ ∈ D; let D′ = D∩P(A′). Then λ = cf(
∏
A′/D′). To show that g is cofinal in

∏
A/D,

take any h ∈∏A. Choose ξ < λ such that (h ↾ A′)/D′ < fξ/D
′. Then

{a ∈ A : h(a) ≥ gξ(a)} ⊇ {a ∈ A′ : h(a) ≥ fξ(a)},
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so h/D < gξ/D, as desired.
Thus we can make the assumption as in (1). Suppose that there is no universal

sequence for λ. Thus

(2) For every <J<λ -increasing sequence f = 〈fξ : ξ < λ〉 there is an ultrafilter D over A
such that cf(

∏
A/D) = λ but f is not cofinal in

∏
A/D.

We are now going to construct a <J<λ -increasing sequence fα = 〈fαξ : ξ < λ〉 for each

α < |A|+. We use the fact that
∏
A/J<λ is λ-directed (Theorem 31.8).

Using this directedness, we start with any <J<λ -increasing sequence f0 = 〈f0
ξ : ξ < λ〉.

For δ limit < |A|+ we are going to define f δξ by induction on ξ so that the following
conditions hold:

(3) f δi <J<λ f
δ
ξ for i < ξ,

(4) sup{fαξ : α < δ} ≤ f δξ .

Suppose that f δi has been defined for all i < ξ. By λ-directedness, choose g such that
f δi <J<λ g for all i < ξ. Now for any a ∈ A we have sup{fαξ (a) : α < δ} < a, since

δ < |A|+ < minA ≤ a. Hence we can define

f δξ (a) = max{g(a), sup{fαξ (a) : α < δ}}.

Clearly the conditions (3), (4) hold.
Now suppose that fα has been defined and is <J<λ -increasing; we define fα+1. By

(2), choose an ultrafilter Dα over A such that

(5) cf(
∏
A/Dα) = λ;

(6) The sequence fα is bounded in <Dα .

By (6), choose fα+1
0 which bounds fα in <Dα ; in addition, fα+1

0 ≥ fα0 . Let 〈hξ/Dα : ξ < λ〉
be strictly increasing and cofinal in

∏
A/Dα. Now we define fα+1

ξ by induction on ξ when

ξ > 0. First, by λ-directness, choose k such that fα+1
i <J<λ k for all i < ξ. Then for any

a ∈ A let

fα+1
ξ (a) = max(k(a), hξ(a), fαξ (a)).

Then the following conditions hold:

(7) fα+1 is strictly increasing and cofinal in
∏
A/Dα;

(8) fα+1
i ≥ fαi for every i < λ.

This finishes the construction. Clearly we then have

(9) If i < λ and α1 < α2 < |A|+, then fα1
i ≤ fα2

i .

(10) fα is bounded in
∏
A/Dα by fα+1

0 .

(11) fα+1 is cofinal in
∏
A/Dα.
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Now let h = supα<|A|+ f
α
0 . Then h ∈ ∏

A, since |A|+ < min(A). By (11), for each

α < |A|+ choose iα < λ such that h <Dα f
α+1
iα

. Since λ > |A|+ is regular, we can choose
i < λ such that iα < i for all α < |A|+. Now define

Aα = {a ∈ A : h(a) ≤ fα(a)}.

By (9) we have Aα ⊆ Aβ for α < β < |A|+. We are going to get a contradiction by showing
that Aα ⊂ Aα+1 for every α < |A|+.

In fact, this follows from the following two statements.

(12) Aα /∈ Dα.

This holds because fαi <Dα f
α+1
i ≤ h.

(13) Aα+1 ∈ Dα.

This holds because h <Dα f
α+1
i by the choice of i and (7).

Proposition 31.19. If A is a set of regular cardinals, λ is the largest member of pcf(A),
and 〈fξ : ξ < λ〉 is universal for λ, then it is cofinal in (

∏
A, J<λ).

Proof. Assume the hypotheses. Fix g ∈ ∏
A; we want to find ξ < λ such that

g <J<λ fξ. Suppose that no such ξ exists. Then, we claim, the set

(1) J∗
<λ ∪ {{a ∈ A : g(a) ≥ fξ(a)} : ξ < λ}

has fip. For, suppose that it does not have fip. Then there is a finite nonempty subset F
of λ such that

(2)
⋃

ξ∈F
{a ∈ A : g(a) < fξ(a)} : ξ < λ} ∈ J∗

<λ.

Let η be the largest member of F . Note that the set

{a ∈ A : fξ(a) < fρ(a) for all ξ, ρ ∈ F such that ξ < ρ}

is also a member of J∗
<λ; intersecting this set with the set of (2), we get a member of J∗

<λ

which is a subset of {a ∈ A : g(a) < fη(a)}, so that g <J<λ fη, contradiction.
Thus the set (1) has fip. Let D be an ultrafilter containing it. Then cf(

∏
A/D) = λ,

so by hypothesis there is a ξ < λ such that g <D fξ. Thus {a ∈ A : g(a) < fξ(a)} ∈ D.
But also {a ∈ A : g(a) ≥ fξ(a)} ∈ D, contradiction.

Theorem 31.20. If A is progressive, then cf(
∏
A,<) = max(pcf(A)). In particular,

cf(
∏
A,<) is regular.

Proof. First we prove ≥. Let λ = max(pcf(A)), and let D be an ultrafilter on A such
that λ = cf(

∏
A/D). Now for any f, g ∈ ∏A, if f < g then f <D g. Hence any cofinal

set in (
∏
A,<) is also cofinal in (

∏
A,<D), and so λ = cf(

∏
A,<D) ≤ cf(

∏
A,<).
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To prove ≤, we exhibit a cofinal subset of (
∏
A,<) of size λ. For every µ ∈ pcf(A)

fix a universal sequence fµ = 〈fµi : i < µ〉 for µ, by Theorem 31.18. Let F be the set of all
functions of the form

sup{fµ1

i1
, fµ2

i2
, . . . , fµnin },

where µ1, µ2, . . . , µn is a finite sequence of members of pcf(A), possibly with repetitions,
and ik < µk for each k = 1, . . . , n. We claim that F is cofinal in (

∏
A,<); this will

complete the proof.
To prove this claim, let g ∈∏A. Let

I = {>(f, g) : f ∈ F}.

(Recall that >(f, g) = {a ∈ A : f(a) > g(a)}.) Now I is closed under unions, since

>(f1, g)∪ >(f2, g) =>(sup(f1, f2), g).

If A ∈ I, then A = > (f, g) for some f ∈ F , as desired. So, suppose that A /∈ I. Now

J
def
= {A\X : X ∈ I} has fip since I is closed under unions, and so this set can be extended

to an ultrafilter D over A. Let µ = cf(
∏
A/D). Then fµ is cofinal in (

∏
A,<D) since it

is universal for µ. But fµi ≤I g for all i < µ, since fµi ∈ F and so > (fµi , g) ∈ I. This is a
contradiction.

Note that Theorem 31.20 is not talking about true cofinality. In fact, clearly any increasing
sequence of elements of

∏
A under < must have order type at most min(A), and so true

cofinality does not exist if A has more than one element.

Lemma 31.21. Suppose that A is progressive, λ ∈ pcf(A), and f ′ = 〈f ′
ξ : ξ < λ〉 is a

universal sequence for λ. Suppose that f = 〈fξ : ξ < λ〉 is <J<λ -increasing, and for every
ξ′ < λ there is a ξ < λ such that f ′

ξ′ ≤J<λ fξ. Then f is universal for λ.

Proof. This is clear, since for any ultrafilter D over A such that cf(
∏
A/D) = λ we

have D ∩ J<λ = ∅, and hence f ′
ξ′ ≤J<λ fξ implies that f ′

ξ′ ≤D fξ.

For the next result, note that if A is progressive, then |A| < min(A), and hence |A|+ ≤
min(A). So A ∩ |A|+ = ∅ ∈ J<λ for any λ. So if µ is an ordinal and A ∩ µ /∈ J<λ, then
|A|+ < µ.

Lemma 31.22. Suppose that A is a progressive set of regular cardinals and λ ∈ pcf(A).
(i) Let µ be the least ordinal such that A ∩ µ /∈ J<λ[A]. Then there is a universal

sequence for λ that satisfies (∗)κ for every regular cardinal κ such that κ < µ.
(ii) There is a universal sequence for λ that satisfies (∗)|A|+.

Proof. First note that (ii) follows from (i) by the remark preceding this lemma. Now
we prove (i). Note by the minimality of µ that either µ = ρ+ 1 for some ρ ∈ A, or µ is a
limit cardinal and A ∩ µ is unbounded in µ.

(1) µ ≤ λ+ 1.
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For, let D be an ultrafilter such that λ = cf(
∏
A/D). Then A∩ (λ+ 1) ∈ D, as otherwise

{a ∈ A : λ < a} ∈ D, and so cf(
∏
A/D) > λ by 31.1(vii), contradiction. Thus λ ∈

pcf(A ∩ (λ+ 1)), and hence pcf((A ∩ (λ+ 1)) 6⊆ λ, proving (1).

(2) µ 6= λ.

For, |A| < min(A) ≤ λ, so A ∩ λ is bounded in λ because λ is regular. Hence µ 6= λ by an
initial remark of this proof.

Now we can complete the proof for the case in which µ is ρ + 1 for some ρ ∈ A. In
this case, actually ρ = λ. For, we have A ∩ ρ ∈ J<λ[A] while A ∩ (ρ+ 1) /∈ J<λ[A]. Let D
be an ultrafilter on A such that A ∩ (ρ + 1) ∈ D and cf(

∏
A/D) ≥ λ. Then A ∩ ρ /∈ D,

since A ∩ ρ ∈ J<λ[A], so {ρ} ∈ D, and so ρ ≥ λ. By (1) we then have ρ = λ.
Now define, for ξ < λ and a ∈ A,

fξ(a) =

{
0 if a < λ,
ξ if λ ≤ a.

Thus fξ ∈ ∏
A. The sequence 〈fξ : ξ < λ〉 is <J<λ[A]-increasing, since if ξ < η < λ

then {a ∈ A : fξ(a) ≥ fη(a)} ⊆ A ∩ λ ∈ J<λ[A]. It is also universal for λ. For, suppose
that D is an ultrafilter on A such that cf(

∏
A/D) = λ. Suppose that g ∈ ∏A. Now

|A| < min(A) ≤ λ, so ξ
def
= (supa∈A g(a)) + 1 is less than λ. Now {a ∈ A : g(a) < fξ(a)} =

A ∈ D, so g <D fξ, as desired. Finally, 〈fξ : ξ < λ〉 satisfies (∗)λ, since it is itself strongly
increasing under J<λ[A]. In fact, if ξ < η < λ and a ∈ A\λ, then fξ(a) = ξ < η = fη(a),
and A ∩ λ ∈ J<λ[A].

Hence the case remains in which µ < λ and A ∩ µ is unbounded in µ. Let 〈f ′
ξ :

ξ < λ〉 be any universal sequence for λ. We now apply Lemma 30.43 with I replaced by
J<λ[A]. (Recall that (

∏
A, I<λ[A] is λ-directed by Theorem 31.8.) This gives us a <J<λ[A]-

increasing sequence f = 〈fξ : ξ < λ〉 such that f ′
ξ < fξ+1 for every ξ < λ, and (∗)κ holds

for f , for every regular cardinal κ such that κ++ < λ and {a ∈ A : a ≤ κ++} ∈ J<λ[A].
Clearly then f is universal for λ. If κ is a regular cardinal less than µ, then κ++ < µ < λ,
and {a ∈ A : a ≤ κ++} ⊆ J<λ[A] by the minimality of µ, so the conclusion of the lemma
holds.

Lemma 31.23. Suppose that A is a progressive set of regular cardinals, B ⊆ A, and λ is
a regular cardinal. Then the following conditions are equivalent:

(i) J≤λ[A] = J<λ[A] +B.
(ii) B ∈ J≤λ[A], and for every ultrafilter D on A, if cf(

∏
A/D) = λ, then B ∈ D.

Proof. (i)⇒(ii): Assume (i). Obviously, then, B ∈ J≤λ[A]. Now suppose that D is
an ultrafilter on A and cf(

∏
A/D) = λ. By Corollary 31.9(ii) we have J≤λ[A] ∩D 6= ∅ =

J<λ[A]∩D. Choose X ∈ J≤λ[A]∩D. Then by Proposition 31.16, X\B ∈ J<λ[A], so since
J<λ[A] ∩D = ∅, we get B ∈ D.

(ii)⇒(i): ⊇ is clear. Now suppose that X ∈ J≤λ[A]. If X ⊆ B, then obviously
X ∈ J<λ[A] +B. Suppose that X 6⊆ B, and let D be any ultrafilter such that X\B ∈ D.
Then cf(

∏
A/D) ≤ λ since pcf(X) ⊆ λ+, and so cf(

∏
A/D) < λ by the second assumption

in (ii). This shows that pcf(X\B) ⊆ λ, so X\B ∈ J<λ[A], and hence X ∈ J<λ[A] +B by
Proposition 31.16.
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Theorem 31.24. If A is progressive, then every member of pcf(A) has a generator.

Proof. First suppose that we have shown the theorem if |A|+ < min(A). We show
how it follows when |A|+ = min(A). The least member of pcf(A) is |A|+ by 31.1(vii).
We have J<|A|+ [A] = {∅} and J≤|A|+ [A] = {∅, {|A|+}} = J<|A|+ [A] + |A|+, so |A|+ is a
|A|+-generator. Now suppose that λ ∈ pcf(A) with λ > |A|+. Let A′ = A\{|A|+}. By
31.1(vi) we also have λ ∈ pcf(A′). By the supposed result there is a b ⊆ A′ such that
J≤λ[A′] = J<λ[A′] + b. Hence, applying Lemma 31.6 to λ+ and {|A|+},

J≤λ[A] = J≤λ[A′] + {|A|+}
= J<λ[A′] + b+ {|A|+}
= J<λ[A] + b,

as desired.
Thus we assume henceforth that |A|+ < min(A). Suppose that λ ∈ pcf(A). First we

take the case λ = |A|++. Hence by Lemma 31.1(vii) we have λ ∈ A. Clearly

J≤λ[A] = {∅, {λ}} = {∅} + {λ} = J<λ[A] + {λ},

so λ has a generator in this case. So henceforth we assume that |A|++ < λ.
By Lemma 31.22, there is a universal sequence f = 〈fξ : ξ < λ〉 for λ such that (∗)|A|+

holds. Hence by Lemma 8.40, f has an exact upper bound h with respect to <J<λ . Since
h is a least upper bound for f and the identity function on A is an upper bound for f , we
may assume that h(a) ≤ a for all a ∈ A. We now define

B = {a ∈ A : h(a) = a}.

Thus we can finish the proof by showing that

(⋆) J≤λ[A] = J<λ[A] +B

First we show that B ∈ J≤λ[A], i.e., that pcf(B) ⊆ λ+. Let D be any ultrafilter over A
having B as an element; we want to show that cf(

∏
A/D) ≤ λ. If D ∩ J<λ 6= ∅, then

cf(
∏
A/D) < λ by the definition of J<λ. Suppose that D ∩ J<λ = ∅. Now since f is

<J<λ -increasing and D ∩ J<λ = ∅, the sequence f is also <D-increasing. It is also cofinal;
for let g ∈∏A. Define

g′(a) =
{
g(a) if a ∈ B,
0 otherwise.

Then {a ∈ A : g′(a) ≥ h(a)} ⊆ {a ∈ A : h(a) = 0} ⊆ {a ∈ A : f0(a) ≥ h(a)} ∈ J<λ.
So g′ <J<λ h. Since h is an exact upper bound for f , there is hence a ξ < λ such
that g′ <J<λ fξ. Hence g′ <D fξ, and clearly g =D g′, so g <D fξ. This proves that
cf(
∏
A/D) = λ. So we have proved ⊇ in (⋆).

For ⊆, we argue by contradiction and suppose that there is an X ∈ J≤λ such that
X /∈ J<λ[A] + B. Hence (by Proposition 31.16), X\B /∈ J<λ. Hence J∗

<λ ∪ {X\B} has
fip, so we extend it to an ultrafilter D. Since D ∩ J<λ = ∅, we have cf(

∏
A/D) ≥ λ. But
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also X ∈ D since X\B ∈ D, and X ∈ J≤λ, so cf(
∏
A/D) = λ. By the universality of f it

follows that f is cofinal in cf(
∏
A/D). But A\B ∈ D, so {a ∈ A : h(a) < a} ∈ D, and so

there is a ξ < λ such that h <D fξ. This contradicts the fact that h is an upper bound of
f under <J<λ .

Now we state some important properties of generators.

Lemma 31.25. Suppose that A is progressive, λ ∈ pcf(A), and B ⊆ A.
(i) If B is a λ-generator, D is an ultrafilter on A, and cf(

∏
A/D) = λ, then B ∈ D.

(ii) If B is a λ-generator, then λ /∈ pcf(A\B).
(iii) If B ∈ J≤λ and λ /∈ pcf(A\B), then B is a λ-generator.
(iv) If λ = max(pcf(A)), then A is a λ-generator on A.
(v) If B is a λ-generator, then the restrictions to B of any universal sequence for λ

are cofinal in (
∏
B,<J<λ[B]).

(vi) If B is a λ-generator, then tcf(
∏
B,<J<λ[B]) = λ.

(vii) If B is a λ-generator on A, then λ = max(pcf(B)).
(viii) If B is a λ-generator on A and D is an ultrafilter on A, then cf(

∏
A/D) = λ

iff B ∈ D and D ∩ J<λ = ∅.
(ix) If B is a λ-generator on A and B =J<λ C, then C is a λ-generator on A. [Here

X =I Y means that the symmetric difference of X and Y is in I, for any ideal I.]
(x) If B is a λ-generator, then so is B ∩ (λ+ 1).
(xi) If B and C are λ-generators, then B =J<λ C.
(xii) If λ = max(pcf(A)) and B is a λ-generator, then A\B ∈ J<λ.

Proof. (i): By Corollary 31.9(ii), choose C ∈ J≤λ ∩D. Hence C ⊆ X ∪ B for some
X ∈ J<λ. By Corollary 31.9(ii) again, J<λ ∩ D = ∅, so X /∈ D. Thus C\X ⊆ B and
C\X ∈ D, so B ∈ D.

(ii): Clear by (i).
(iii): Assume the hypothesis. We need to show that every member C of J≤λ is a

member of J<λ + B. Now pcf(C) ⊆ λ+. Hence pcf(C\B) ⊆ λ, so C\B ∈ J<λ, and the
desired conclusion follows from Proposition 31.16.

(iv): By (iii).
(v): Suppose not. Let f = 〈fξ : ξ < λ〉 be a universal sequence for λ such that there

is an h ∈∏B such that h is not bounded by any fξ ↾ B. Thus ≤ (fξ ↾ B, h) /∈ J<λ[B] for
all ξ < λ. Now suppose that ξ < η < λ. Then

≤ (fη ↾ B, h)\(≤ (fξ ↾ B, h)) = {a ∈ B : fη(a) ≤ h(a) < fξ(a)}
⊆ {a ∈ A : fη(a) < fξ(a)} ∈ J<λ[A].

Hence by Lemma 31.17(i) we have ≤ (fη ↾ B, h)\(≤ (fξ ↾ B, h)) ∈ J<λ[B]. It follows that
if N is a finite subset of λ with largest element less than η, then

(∗) (≤ (fη ↾ B, h))\
⋂

ξ∈N
(≤ (fξ ↾ B, h)) ∈ J<λ[B].

We claim now that
M

def
= {≤ (fξ ↾ B, h) : ξ < λ} ∪ (J<λ[B])∗
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has fip. Otherwise, there is a finite subset N of λ and a set C ∈ J<λ[B] such that




⋂

ξ∈N
≤ (fξ ↾ B, h)



 ∩ (B\C) = ∅;

hence if ξ is the largest member of N we get ≤ (fξ ↾ B, h) ∈ J<λ[B] by (∗), contradiction.
So we extend the set M to an ultrafilter D on B, then to an ultrafilter E on A. Note
that B ∈ E. Also, E ∩ J<λ[A] = ∅. In fact, if X ∈ E ∩ J<λ[A], then X ∩ B ∈ J<λ[A],
so X ∩ B ∈ D ∩ J<λ[B] by Lemma 31.17(i). But D ∩ J<λ[B] = ∅ by construction. Now
B ∈ E∩J≤λ[A], so cf(

∏
A/E) = λ, and h bounds all fξ in this ultraproduct, contradicting

the universality of f .
(vi): By Lemma 31.17 and (v).
(vii): By (i) we have λ ∈ pcf(B). Now B ∈ J≤λ[A], so pcf(B) ⊆ λ+. The desired

conclusion follows.
(viii): For ⇒, suppose that cf(

∏
A/D) = λ. Then B ∈ D by (i), and obviously

D ∩ J<λ = ∅. For ⇐, assume that B ∈ D and D ∩ J<λ = ∅. Now B ∈ J≤λ, so
cf(
∏
A/D) = λ by Corollary 31.9(ii).

(ix): We have B ∈ J≤λ and C = (C\B) ∪ (C ∩ B), so C ∈ J≤λ. Suppose that
λ ∈ pcf(A\C). Let D be an ultrafilter on A such that cf(

∏
A/D) = λ and A\C ∈ D. Now

B ∈ D by (i), so B\C ∈ D. This contradicts B\C ∈ J<λ. So λ /∈ pcf(A\C). Hence C is a
λ-generator, by (iii).

(x): Let B′ = B ∩ (λ + 1). Clearly B′ ∈ J≤λ. Suppose that λ ∈ pcf(A\B′). Say
λ = cf(

∏
A/D) with A\B′ ∈ D. Also A ∩ (λ+ 1) ∈ D, since A\(λ+ 1) ∈ D would imply

that cf(
∏
A/D) > λ by Proposition 31.1(vii). Since clearly

(A\B′) ∩ (A ∩ (λ+ 1)) ⊆ A\B,

this yields A\B ∈ D, contradicting (ii). Therefore, λ /∈ pcf(A\B′). So B′ is a λ-generator,
by (iii).

(xi): This is clear from Proposition 31.16.
(xii): Clear by (iv) and (xi).

Lemma 31.26. Suppose that A is a progressive set, F is a proper filter over A, and λ is
a cardinal. Then the following are equivalent.

(i) tcf(
∏
A/F ) = λ.

(ii) λ ∈ pcf(A), F has a λ-generator on A as an element, and J∗
<λ ⊆ F .

(iii) cf(
∏
A/D) = λ for every ultrafilter D extending F .

Proof. (i)⇒(iii): obvious.
(iii)⇒(ii): Obviously λ ∈ pcf(A). Let B be a λ-generator on A. Suppose that

B /∈ F . Then there is an ultrafilter D on A such that A\B ∈ D and D extends F . Then
cf(
∏
A/D) = λ by (iii), and this contradicts Lemma 31.25(i).

(ii)⇒(i): Let B ∈ F be a λ-generator. By Lemma 31.25(vi) we have tcf(
∏
B/J<λ) =

λ, and hence tcf(
∏
A/F ) = λ since B ∈ F and J∗

<λ ⊆ F .
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Proposition 31.27. Suppose that A is a progressive set of regular cardinals, and λ is any
cardinal. Then the following conditions are equivalent:

(i) λ = max(pcf(A)).
(ii) λ = tcf(

∏
A/J<λ[A]).

(iii) λ = cf(
∏
A/J<λ[A]).

Proof. (i)⇒(ii): By Lemma 31.25(iv),(vi).
(ii)⇒(iii): Obvious.
(iii)⇒(ii): Assume (iii). Let µ = max(pcf(A)). By (i)⇒(iii) we have λ = µ.

Lemma 31.28. Suppose that A is progressive, A0 ⊆ A, and λ ∈ pcf(A0). Suppose that B
is a λ-generator on A. Then B ∩ A0 is a λ-generator on A0.

Proof. Since B ∈ J≤λ[A], we have pcf(B) ⊆ λ+ and hence pcf(B ∩ A0) ⊆ λ+ and
so B ∩ A0 ∈ J≤λ[A0]. If λ ∈ pcf(A0\B), then also λ ∈ pcf(A\B), and this contradicts
Lemma 31.25(ii). Hence λ /∈ pcf(A0\B), and hence B ∩ A0 is a λ-generator for A0 by
Lemma 31.25(iii).

Definition. If A is progressive, a generating sequence for A is a sequence 〈Bλ : λ ∈ pcf(A)〉
such that Bλ is a λ-generator on A for each λ ∈ pcf(A).

Theorem 31.29. Suppose that A is progressive, 〈Bλ : λ ∈ pcf(A)〉 is a generating sequence
for A, and X ⊆ A. Then there is a finite subset N of pcf(X) such that X ⊆ ⋃µ∈N Bµ.

Proof. We show that for all X ⊆ A, if λ = max(pcf(X)), then there is a finite subset
N as indicated, using induction on λ. So, suppose that this is true for every cardinal µ < λ,
and now suppose that X ⊆ A and max(pcf(X)) = λ. Then λ /∈ pcf(X\Bλ) by Lemma
31.25(ii), and so pcf(X\Bλ) ⊆ λ. Hence max(pcf(X\Bλ)) < λ. Hence by the inductive
hypothesis there is a finite subset N of pcf(X\Bλ) such that X\Bλ ⊆ ⋃µ∈N Bµ. Hence

X ⊆ Bλ ∪
⋃

µ∈N
Bµ,

and {λ} ∪N ⊆ pcf(X).

Corollary 31.30. Suppose that A is progressive, 〈Bλ : λ ∈ pcf(A)〉 is a generating
sequence for A, and X ⊆ A. Suppose that λ is any infinite cardinal. Then X ∈ J<λ[A] iff
X ⊆ ⋃µ∈N Bµ for some finite subset N of λ ∩ pcf(A).

Proof. ⇒: Assume that X ∈ J<λ[A]. Thus pcf(X) ⊆ λ, and Theorem 31.29 gives
the desired conclusion.

⇐: Assume that a set N is given as indicated. Suppose that ρ ∈ pcf(X). Say
ρ = cf(

∏
A/D) with X ∈ D. Then Bµ ∈ D for some µ ∈ N . By the definition of

generator, Bµ ∈ J≤µ[A], and hence ρ ≤ µ < λ. Thus we have shown that pcf(X) ⊆ λ, so
X ∈ J<λ[A].

Lemma 31.31. Suppose that A is progressive and 〈Bλ : λ ∈ pcf(A)〉 is a generating
sequence for A. Suppose that D is an ultrafilter on A. Then there is a λ ∈ pcf(A) such
that Bλ ∈ D, and if λ is minimum with this property, then λ = cf(

∏
A/D).
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Proof. Let µ = cf(
∏
A/D). Then µ ∈ pcf(A) and Bµ ∈ D by Lemma 31.25(i).

Suppose that Bλ ∈ D with λ < µ. Now Bλ ∈ J≤λ ⊆ J<µ, contradicting Lemma 31.25(viii),
applied to µ.

Lemma 31.32. If A is progressive and also pcf(A) is progressive, and if λ ∈ pcf(A) and
B is a λ-generator for A, then pcf(B) is a λ-generator for pcf(A).

Proof. Note by Theorem 31.15 that pcf(pcf(B)) = pcf(B) and pcf(pcf(A\B)) =
pcf(A\B). Since B ∈ J≤λ[A], we have pcf(B) ⊆ λ+, and hence pcf(pcf(B)) ⊆ λ+ and
so pcf(B) ∈ J≤λ[pcf(A)]. Now suppose that λ ∈ pcf(pcf(A)\pcf(B)). Then by Lemma
31.1(iv) we have λ ∈ pcf(pcf(A\B)) = pcf(A\B), contradicting Lemma 31.25(ii). So
λ /∈ pcf(pcf(A)\pcf(B)). It now follows by Lemma 31.25(iii) that pcf(B) is a λ-generator
for pcf(A).

The following result is relevant to Theorem 30.44. Let µ be a singular cardinal, C a club
of µ, and suppose that X ∈ J<µ[C(+)]. Now pcf(X) has a maximal element, and so there
is an α < µ such that X ⊆ pcf(X) ⊆ α. Thus J<µ[C(+)] ⊆ Jbd.

Lemma 31.33. If µ is a singular cardinal of uncountable cofinality, then there is a club
C ⊆ µ such that tcf(

∏
C(+)/J<µ[C(+)]) = µ+.

Proof. Let C0 be a club in µ such that such that µ+ = tcf(
∏
C

(+)
0 /Jbd), by Theorem

30.44. Let C1 ⊆ C0 be such that the order type of C1 is cf(µ), C1 is cofinal in µ, and

∀κ ∈ C1[cf(µ) < κ]. Hence C
(+)
1 is progressive. Now µ+ ∈ pcf(C

(+)
1 ) by Lemma 31.26.

Let B be a µ+-generator for C
(+)
1 . Define C = {δ ∈ C1 : δ+ ∈ B}. Now C1\C is

bounded. Otherwise, let X = C
(+)
1 \B = (C1\C)(+). So X is unbounded, and hence

clearly µ+ = tcf(
∏
X/Jbd). Hence µ+ ∈ pcf(X). This contradicts Lemma 31.25(ii).

So, choose ε < µ such that C1\C ⊆ ε. Hence C1\ε ⊆ C\ε ⊆ C1\ε, so C1\ε =
C\ε. Clearly µ+ = tcf(

∏
(C1\ε)(+)/Jbd), so µ+ ∈ pcf((C1\ε)(+)). We claim that

tcf(
∏

(C1\ε)(+)/J<µ+ [(C1\ε)(+)]) = µ+. To show this, we apply Lemma 31.26. Sup-

pose that D is any ultrafilter on (C1\ε)(+) such that J<µ+ [(C1\ε)(+)] ∩ D = ∅. Now

by Lemma 31.28, B ∩ (C1\ε)(+) is a µ+-generator for (C1\ε)(+). Note that C+ ⊆ B.
Now B ∩ (C1\ε)(+) = B ∩ (C\ε)(+) = (C\ε)(+). It follows by Lemma 31.25(viii) that
cf(
∏

(C1\ε)(+)/D) = µ+. This proves that tcf(
∏

(C0\ε)(+)/J<µ+ [(C1\ε)(+)]) = µ+. Now

we claim that J<µ+ [(C1\ε)(+)] = J<µ[(C1\ε)(+)]. For, suppose that X ∈ J<µ+ [(C1\ε)(+)].

So pcf(X) ⊆ µ+. Since X is progressive (because C1\ε)(+) is), we have max(pcf(X)) < µ,
hence pcf(X) ⊆ µ.

By essentially the same proof as for Lemma 31.33 we get

Lemma 31.34. If µ is a singular cardinal of countable cofinality, then there is an un-
bounded subset C of µ consisting of regular cardinals such that tcf(

∏
C/J<µ[C]) = µ+.

Proof. Let C0 be an unbounded collection of regular cardinals in µ such that µ+ =
tcf(

∏
C0/J

bd), by Theorem 30.45. Let C1 ⊆ C0 be such that the order type of C1 is cf(µ),
C1 is cofinal in µ, and ∀κ ∈ C1[ω < κ]. Hence C1 is progressive. Now µ+ ∈ pcf(C1)
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by Lemma 31.26. Let B be a µ+-generator for C1. Define C = B ∩ C1. Now C1\C is
bounded. Otherwise, let X = C1\B = C1\C. So X is unbounded, and hence clearly
µ+ = tcf(

∏
X/Jbd). Hence µ+ ∈ pcf(X). This contradicts Lemma 31.25(ii).

So, choose ε < µ such that C1\C ⊆ ε. Hence C1\ε ⊆ C\ε ⊆ C1\ε, so
C1\ε = C\ε. Clearly µ+ = tcf(

∏
(C1\ε)/Jbd), so µ+ ∈ pcf(C1\ε). We claim that

tcf(
∏

(C1\ε)/J<µ+ [C1\ε] = µ+. To show this, we apply Lemma 31.26. Suppose that
D is any ultrafilter on C1\ε such that J<µ+ [C1\ε] ∩ D = ∅. Now by Lemma 31.28,
B ∩ (C1\ε) is a µ+-generator for C1\ε. Note that C ⊆ B. Now B ∩ (C1\ε) = B ∩ (C\ε) =
(C\ε). It follows by Lemma 31.25(viii) that cf(

∏
(C1\ε)/D) = µ+. This proves that

tcf(
∏

(C0\ε)/J<µ+ [C1\ε]) = µ+. Now we claim that J<µ+ [C1\ε] = J<µ[C1\ε]. For, sup-
pose that X ∈ J<µ+ [C1\ε]. So pcf(X) ⊆ µ+. Since X is progressive (because C1\ε is), we
have max(pcf(X)) < µ, hence pcf(X) ⊆ µ.

Proposition 31.35. Suppose that F is a proper filter over a progressive set A of regular
cardinals. Define

pcfF (A) =
{

cf
(∏

A/D
)

: D is an ultrafilter extending F
}

.

Then:
(i) max(pcfF (A)) exists.
(ii) cf(

∏
A/F ) = max(pcfF (A)).

(iii) If B ⊆ pcfF (A) is progressive, then pcf(B) ⊆ pcfF (A).
(iv) If A is a progressive interval of regular cardinals with no largest element, and

F = {X ⊆ A : A\X is bounded}

is the filter of co-bounded subsets of A, then pcfF (A) is an interval of regular cardinals.

Proof. (i): Clearly pcfF (A) ⊆ pcf(A), and so if λ = max(pcf(A)), then A ∈ F ∩
J<λ+ [A]. Hence we can choose µ minimum such that F ∩J<µ[A] 6= ∅. By Corollary 31.12,
µ is not a limit cardinal; write µ = λ+. Then F ∩ J<λ = ∅, and so F ∪ J∗

<λ has fip; let D
be an ultrafilter containing this set. Then D ∩ J≤λ ⊇ F ∩ J≤λ 6= ∅, while D ∩ J<λ = ∅.
Hence cf(

∏
A/D) = λ by Corollary 31.9. On the other hand, since F ∩ J≤λ[A] 6= ∅, any

ultrafilter E containing F must be such that cf(
∏
A/E) ≤ λ.

(ii): Cf. the proof of Theorem 31.20. Let λ = max(pcfF (A)), and let D be an
ultrafilter extending F such that λ = cf(

∏
A/D). Let 〈fα : α < λ〉 be strictly increasing

and cofinal mod D. Now if g < h mod F , then also g < h mod D. So a cofinal subset of
∏
A mod F is also a cofinal subset mod D, so λ ≤ cf(

∏
A/F ). Hence it suffices to exhibit

a cofinal subset of
∏
A mod F of size λ. For every µ ∈ pcfF (A) fix a universal sequence

fµ = 〈fµi : i < µ〉 for µ, by Theorem 31.18. Let G be the set of all functions of the form

sup{fµ1

i1
, fµ2

i2
, . . . , fµnin },

where µ1, µ2, . . . , µn is a finite sequence of members of pcfF (A), possibly with repetitions,
and ik < µk for each k = 1, . . . , n. We claim that G is cofinal in (

∏
A,<F ); this will

complete the proof of (ii).
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To prove this claim, let g ∈∏A. Suppose that g 6< f mod F for all f ∈ G. Then, we
claim, the set

(∗) F ∪ {{a ∈ A : f(a) ≤ g(a)} : f ∈ G}

has fip. For, suppose not. Then there is a finite subset G′ of G such that
⋃

g∈G′{a ∈ A :
g(a) < f(a)} ∈ F . Let h = supf∈G′ f . Then g < h mod F and h ∈ G, contradiction.
Thus (∗) has fip, and we let D be an ultrafilter containing it. Let µ = cf(

∏
A/D). Then

µ ∈ pcfF (A), and f ≤ g mod D for all f ∈ G. Since the members of a universal sequence
for µ are in G, this is a contradiction. This completes the proof of (ii).

For (iii), we look at the proof of Theorem 31.15. Let F ′ be the ultrafilter named F at
the beginning of that proof. Since B ⊆ pcfF (A), each b ∈ B is in pcfF (A), and hence the
ultrafilters Db can be taken to extend F . Hence F ⊆ F ′, and so µ ∈ pcfF (A), as desired
in (iii).

Finally, we prove (iv). Let λ0 = min(pcfF (A)) and λ1 = max(pcfF (A)), and suppose
that µ is a regular cardinal such that λ0 < µ < λ1. Let D be an ultrafilter such that
F ⊆ D and cf(

∏
A/D) = λ1. Then by Corollary 31.9(ii), D∩J<λ1

= ∅, so J∗
λ1

⊆ D. Thus

F ∪ J∗
<µ ⊆ F ∪ J∗

<λ1
⊆ D, so F ∪ J+

<µ generates a proper filter G. Since (
∏
A,<J<µ) is

µ-directed by Theorem 31.8, so is (
∏
A,<G). Note that if a ∈ A, then {b ∈ A : a < b} ∈ F .

It follows that sup(A) ≤ λ0 < µ. Hence we can apply Theorem 31.4 and get a subset A′

of A (since A is an interval of regular cardinals) and a proper ideal K over A′ such that
A′ is cofinal in A, K contains all proper initial segments of A′, and tcf(

∏
A,<K) = µ.

Let 〈fα : α < µ〉 be strictly increasing and cofinal mod K. Extend K∗ to a filter L on A,
and extend each function fα to a function f+

α on A. Then clearly 〈f+
α : α < µ〉 is strictly

increasing and cofinal mod L, and L contains F . This shows that µ ∈ pcfF (A).

EXERCISES

E31.1. A set A of regular cardinals is almost progressive iff A is infinite, and A ∩ |A| is
finite. Prove the following:

(i) Every progressive set is almost progressive.
(ii) If A is an infinite set of regular cardinals and |A| < ℵω, then A is almost progres-

sive.
(iii) Every infinite subset of an almost progressive set is almost progressive.
(iv) If A is almost progressive, then A\|A|+ is progressive, A ∩ |A|+ is finite, and

A = (A\|A|+) ∪ (A ∩ |A|+).
(v) If α is an ordinal, A is almost progressive, and A ∩ α is unbounded in α, then α

is a singular cardinal.
(vi) If A is an almost progressive interval of regular cardinals, then A does not have

any weak inaccessible as a member, except possibly its first element. If in addition A is
infinite, then there is a singular cardinal λ such that A ∩ λ is unbounded in λ and A\λ is
finite.

E31.2. Show that Theorem 31.4 and Corollary 31.5 also hold if A is almost progressive.

E31.3. Suppose that A is progressive and κ ≤ |A| is regular. Show that sup(pcfκ(A)) ≤
sup(A)κ.
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E31.4. Suppose that A is progressive, and ν is a cardinal such that A∩ ν is unbounded in
ν. Show that ν+ ∈ pcf(A).

E31.5. Assume GCH and suppose that A is progressive. Show that

pcf(A) = A ∪ {ν+ : ν a cardinal, A ∩ ν unbounded in ν}.

E31.6. Suppose that α is a limit ordinal and A is an infinite set such that |A| < cf(α).
Determine all regular cardinals λ such that l = cf(Aα/D) for some ultrafilter D on A.

E31.7. Suppose that κ is a regular cardinal and D is an ultrafilter on κ such that κ\α ∈ D
for every α < κ. Show that cf(κκ/D) > κ.

E31.8. Let A be a progressive set of regular cardinals and λ an infinite cardinal. Suppose
that J is an ideal on A. Show that the following conditions are equivalent:

(i) J = I<λ[A].
(ii) J is the intersection of all ideals K on A which satisfy the following condition:

For each X ⊆ A with X /∈ K there is an ultrafilter D on X such that D ∩ K = ∅ and
cf(
∏
X/D) ≥ λ.

E31.9. Suppose that A is progressive and J is a proper ideal on A.
(i) Show that if X ∈ P(A)\J , then J + (A\X) is proper.
(ii) Show that there is an X ∈ P(A)\J such that tcf(

∏
A,<J+(A\X)) exists.

E31.10. Suppose that A is progressive and κ is an infinite cardinal with κ ≤ |A|. Then
|pcfκ(A)| ≤ |A|κ.
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32. Main cofinality theorems

The sets HΨ

We will shortly give several proofs involving the important general idea of making elemen-
tary chains inside the sets HΨ. Recall that HΨ, for an infinite cardinal Ψ, is the collection
of all sets hereditarily of size less than Ψ, i.e., with transitive closure of size less than Ψ.
We consider HΨ as a structure with ∈ together with a well-ordering <∗ of it, possibly with
other relations or functions, and consider elementary substructures of such structures.

Recall that A is an elementary substructure of B iff A is a subset of B, and for
every formula ϕ(x0, . . . , xm−1) and all a0, . . . , am−1 ∈ A, A |= ϕ(a0, . . . , am−1) iff B |=
ϕ(a0, . . . , am−1).

The basic downward Löwenheim-Skolem theorem will be used a lot. This theorem
depends on the following lemma.

Lemma 32.1. (Tarski) Suppose that A and B are first-order structures in the same
language, with A a substructure of B. Then the following conditions are equivalent:

(i) A is an elementary substructure of B.
(ii) For every formula of the form ∃yϕ(x0, . . . , xm−1, y) and all a0, . . . , am−1 ∈ A, if

B |= ∃yϕ(a0, . . . , am−1, y) then there is a b ∈ A such that B |= ϕ(a0, . . . , am−1, b).

Proof. (i)⇒(ii): Assume (i) and the hypotheses of (ii). Then by (i) we see that
A |= ∃yϕ(a0, . . . , am−1, y), so we can choose b ∈ A such that A |= ϕ(a0, . . . , am−1, b).
Hence B |= ϕ(a0, . . . , am−1, b), as desired.

(ii)⇒(i): Assume (ii). We show that for any formula ϕ(x0, . . . , xm−1) and any elements
a0, . . . , am−1 ∈ A, A |= ϕ(a0, . . . , am−1) iff B |= ϕ(a0, . . . , am−1), by induction on ϕ. It
is true for ϕ atomic by our assumption that A is a substructure of B. The induction
steps involving ¬ and ∨ are clear. Now suppose that A |= ∃yϕ(a0, . . . , am−1, y), with
a0, . . . , am−1 ∈ A. Choose b ∈ A such that A |= ϕ(a0, . . . , am−1, b). By the inductive
assumption, B |= ϕ(a0, . . . , am−1, b). Hence B |= ∃yϕ(a0, . . . , am−1, y), as desired.

Conversely, suppose that B |= ∃yϕ(a0, . . . , am−1, y). By (ii), choose b ∈ A such that
B |= ϕ(a0, . . . , am−1, b). By the inductive assumption, A |= ϕ(a0, . . . , am−1, b). Hence
A |= ∃yϕ(a0, . . . , am−1, y), as desired.

Theorem 32.2. Suppose that A is an L-structure, X is a subset of A, κ is an infinite
cardinal, and κ is ≥ both |X | and the number of formulas of L , while κ ≤ |A|. Then A
has an elementary substructure B such that X ⊆ B and |B| = κ.

Proof. Let a well-order ≺ of A be given. We define 〈Cn : n ∈ ω〉 by recursion. Let C0

be a subset of A of size κ with X ⊆ C0. Now suppose that Cn has been defined. Let Mn

be the collection of all pairs of the form (∃yϕ(x0, . . . , xm−1, y), a) such that a is a sequence
of elements of Cn of length m. For each such pair we define f(∃yϕ(x0, . . . , xm−1, y), a) to
be the ≺-least element b of A such that A |= ϕ(a0, . . . , am−1, b), if there is such an element,
and otherwise let it be the least element of Cn. Then we define

Cn+1 = Cn ∪ {f(∃yϕ(x0, . . . , xm−1, y), a) : (∃yϕ(x0, . . . , xm−1, y), a) ∈Mn}.
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Finally, let B =
⋃

n∈ω Cn.
By induction it is clear that |Cn| = κ for all n ∈ ω, and so also |B| = κ.
Now to show that B is an elementary substructure of A we apply Lemma 32.1. First

we show that B is a substructure of A; this amounts to showing that B is closed under
each fundamental operation FA. Say F is m-ary, and b0, . . . , bm−1 ∈ B. Then there is
an n such that b0, . . . , bm−1 ∈ Cn. Now (∃y[Fx0 . . . xm−1 = y], 〈b0, . . . , bm−1〉) ∈ Mn. Let
c = FA(b0, . . . , bm−1); so f((∃y[Fx0 . . . xm−1 = y], 〈b0, . . . , bm−1〉) = c ∈ Cn+1 ⊆ B.

Now suppose that we are given a formula of the form ∃yϕ(x0, . . . , xm−1, y) and
elements a0, . . . , am−1 of B, and A |= ∃yϕ(a0, . . . , am−1, y). Clearly there is an
n ∈ ω such that a0, . . . , am−1 ∈ Cn. Then (∃yϕ(x0, . . . , xm−1, y), a) ∈ Mn, and
f(∃yϕ(x0, . . . , xm−1, y), a) is an element b of Cn+1 ⊆ B such that A |= ϕ(a0, . . . , am−1, b).
This is as desired in Lemma 32.1.

Given an elementary substructure A of a set HΨ, we will frequently use an argument of
the following kind. A set theoretic formula holds in the real world, and involves only sets
in A. By absoluteness, it holds in HΨ, and hence it holds in A. Thus we can transfer a
statement to A even though A may not be transitive; and the procedure can be reversed.

To carry this out, we need some facts about transitive closures first of all.

Lemma 32.3. (i) If X ⊆ A, then tr cl(X) ⊆ tr cl(A).
(ii) tr cl(P(A)) = P(A) ∪ tr cl(A).
(iii) If tr cl(A) is infinite, then |tr cl(P(A))| ≤ 2|tr cl(A)|.
(iv) tr cl(A ∪B) = tr cl(A) ∪ tr cl(B).
(v) tr cl(A×B) = (A×B)∪{{a} : a ∈ A}∪{{a, b} : a ∈ A, b ∈ B}∪tr cl(A)∪tr cl(B).
(vi) If tr cl(A) or tr cl(B) is infinite, then |tr cl(A×B)| ≤ max(tr cl(A), tr cl(B).
(vii) tr cl(AB) ⊆ (AB) ∪ tr cl(A×B).
(viii) If tr cl(A) or tr cl(B) is infinite, then |tr cl(AB)| ≤ 2max(|tr cl(A)|,|tr cl(A)|).
(ix) If tr cl(A) is infinite, then |tr cl(

∏
A)| ≤ 2|tr cl(A)|.

(x) If tr cl(A) or tr cl(B) is infinite, then |tr cl(A(
∏
B))| ≤ 22max(|tr cl(A)|,|tr cl(B)|)

.
(xi) If A is an infinite set of regular cardinals, then |tr cl(pcf(A))| ≤ 2|tr cl(A)|.

Proof. (i)–(viii) are clear. For (ix), note that
∏
A ⊆ A

⋃
A, so (ix) follow from (viii).

For (x),

|tr cl
(
A
(∏

B
))

| ≤ 2max(|tr cl(A),|tr cl(
∏

B)|) by (viii)

≤ 2max(|tr cl(A),2|tr cl(B)|)

≤ 22max(|tr cl(A)|,|tr cl(B)|)

.

Finally, for (xi), note that tr cl(pcf(A)) = pcf(A) ∪ ⋃pcf(A). Now |pcf(A)| ≤ 2|A| ≤
2|tr cl(A)| by Theorem 31.10.

We also need the fact that some rather complicated formulas and functions are absolute
for sets HΨ. Note that HΨ is transitive. Many of the indicated formulas are not absolute
for HΨ in general, but only under the assumptions given that Ψ is much larger than the
sets in question.
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Lemma 32.4. Suppose that Ψ is an uncountable regular cardinal. Then the following
formulas (as detailed in the proof) are absolute for HΨ.

(i) B = P(A).

(ii) “D is an ultrafilter on A”.

(iii) κ is a cardinal.

(iv) κ is a regular cardinal.

(v) “κ and λ are cardinals, and λ = κ+”.

(vi) κ = |A|.
(vii) B =

∏
A.

(viii) A = BC.

(ix) “A is infinite”, if Ψ is uncountable.

(x) “A is an infinite set of regular cardinals and D is an ultrafilter on A and λ is a
regular cardinal and f ∈ λ

∏
A and f is strictly increasing and cofinal modulo D”, provided

that 2|tr cl(A)| < Ψ.

(xi) “A is an infinite set of regular cardinals, and B = pcf(A)”, if 2|tr cl(A)| < Ψ.

(xii) “A is an infinite set of regular cardinals and f = 〈J<λ[A] : λ ∈ pcf(A)〉”, provided
that 2|tr cl(A)| < Ψ.

(xiii) “A is an infinite set of regular cardinals and B = 〈Bλ : λ ∈ pcf(A)〉 and

∀λ ∈ pcf(A)(Bλ is a λ-generator)”, if 22|tr cl(A)|

< Ψ.

Proof. Absoluteness follows by easy arguments upon producing suitable formulas, as
follows.

(i): Suppose that A,B ∈ HΨ. We may take the formula B = P(A) to be

∀x ∈ B[∀y ∈ x(y ∈ A)] ∧ ∀x[∀y ∈ x(y ∈ A) → x ∈ B].

The first part is obviously absolute for HΨ. If the second part holds in V it clearly holds in
HΨ. Now suppose that the second part holds in HΨ. Suppose that x ⊆ A. Hence x ∈ HΨ

and it follows that x ∈ B.

(ii): Assume that A,D ∈ HΨ. We can take the statement “D is an ultrafilter on A”
to be the following statement:

∀X ∈ D(X ⊆ A) ∧ A ∈ D ∧ ∀X, Y ∈ D(X ∩ Y ∈ D) ∧ ∅ /∈ D

∧ ∀Y ∀X ∈ D[X ⊆ Y ∧ Y ⊆ A→ Y ∈ D] ∧ ∀Y [Y ⊆ A→ Y ∈ D ∨ (A\Y ) ∈ D].

Again this is absolute because Y ⊆ A implies that Y ∈ HΨ.

(iii): Suppose that κ ∈ HΨ. Then

κ is a cardinal iff κ is an ordinal and ∀f [f is a function and

dmn(f) = κ and rng(f) ∈ κ→ f is not one-to-one].

Note here that if f is a function with dmn(f) = κ and rng(f) ⊆ κ, then f ⊆ κ × κ, and
hence f ∈ HΨ.
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(iv): Assume that κ ∈ HΨ. Then

κ is a regular cardinal iff κ is a cardinal, 1 < κ, and ∀f [f is a function

and dmn(f) ∈ κ and rng(f) ⊆ κ and

∀α, β ∈ dmn(f)(α < β → f(α) < f(β))

→ ∃γ < κ∀α ∈ dmn(f)(f(α) ∈ γ)].

(v): Assume that κ, λ ∈ HΨ. Then (κ and λ are cardinals and λ = κ+) iff

κ is a cardinal and λ is a cardinal and κ < λ

and ∀α < λ[κ < α→ ∃f [f is a function and dmn(f) = κ

and rng(f) = α and f is one-one and rng(f) = α]].

(vi): Suppose that κ,A ∈ HΨ. Then

κ = |A| iff κ is a cardinal and ∃f [f is a function

and dmn(f) = κ and rng(f) = A and f is one-to-one]

(vii): Assume that A,B ∈ HΨ. Then

B =
∏

A iff ∀f ∈ B[f is a function and dmn(f) = A and

∀x ∈ A[f(x) ∈ x]] and ∀f [f is a function and

dmn(f) = A and ∀x ∈ A[f(x) ∈ x] → f ∈ B].

Note that if f is a function with domain A and f(x) ∈ x for all x ∈ A, then f ⊆ A×⋃A,
and hence f ∈ HΨ.

(viii): Suppose that A,B,C ∈ HΨ. Then

A = BC iff ∀f ∈ A[f is a function and dmn(f) = B

and rng(f) ⊆ C] and ∀f [f is a function

and dmn(f) = B and rng(f) ⊆ C → f ∈ A].

(ix): “A is infinite” iff ∃f(f is a one-one function, dmn(f) = ω, and rng(f) ⊆ A).
(x): Suppose that A,D, λ, f ∈ HΨ, and 2|tr cl(A)| < Ψ. Then

∏
A ∈ HΨ by Lemma

32.3(ix). Now

A is an infinite set of regular cardinals and D is an ultrafilter on A

and λ is a regular cardinal and f ∈ λ
∏

A and f is strictly

increasing and cofinal modulo D

iff
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A is infinite and ∀x ∈ A[x is a regular cardinal] and D is an ultrafilter on A and

λ is a regular cardinal and ∃B
[

B =
∏

A and f is a function

and dmn(f) = λ and rng(f) ⊆ B and

∀ξ, η < λ∀X ⊆ A[∀a ∈ A[a ∈ X ⇔ fξ(a) < fη(a)] → X ∈ D]

and ∀g ∈ B∃ξ < λ∀X ⊆ A[∀a ∈ A[a ∈ X ⇔ g(a) < fξ(a)] → X ∈ D]

]

.

(xi): Assume that 2|tr cl(A)|) < Ψ, and A,B ∈ HΨ. Let ϕ(A,D, λ, f) be the statement
of (x). Note:

(1) If ϕ(A,D, λ, f), then D, λ, f ∈ HΨ, and max(λ, |tr cl(A)|) ≤ 2|tr cl(A)|.

In fact, D ⊆ P(A), so tr cl(D) ⊆ tr cl(P(A)) = P(A) ∪ tr cl(A), and so |tr cl(D)| < Ψ
by Lemma 32.3(iii); so D ∈ HΨ. Now f is a one-one function from λ into

∏
A, so

λ ≤ |∏A| < Ψ, and hence λ ∈ HΨ and max(λ, |tr cl(A)|) ≤ 2|tr cl(A)|. Finally, f ⊆ λ×∏A,
so it follows that f ∈ HΨ.

Thus (1) holds. Hence the following equivalence shows the absoluteness of the state-
ment in (xi):

A is an infinite set of regular cardinals and B = pcf(A)

iff

A is infinite, and ∀µ ∈ A(µ is a regular cardinal) ∧ ∀λ ∈ B∃D∃fϕ(A,D, λ, f)

∧ ∀D∀λ∀f [ϕ(A,D, λ, f) → λ ∈ B].

(xii): Assume that 2|tr cl(A)|) < Ψ. By Lemma 32.3(xi) we have pcf(A) ∈ HΨ. Hence

A is an infinite set of regular cardinals ∧ f = 〈J<λ[A] : λ ∈ pcf(A)〉

iff

A is infinite and ∀κ ∈ A(κ is a regular cardinal and

f is a function and ∃B[B = pcf(A) ∧B = dmn(f)]

∀λ ∈ dmn(f)∀X ⊆ A[A ∈ f(λ) iff ∃C[C = pcf(X) ∧ C ⊆ λ]]

(xiii): Assume that 22|tr cl(A)|

< Ψ, and A,B ∈ HΨ. Note as above that pcf(A) ∈
HΨ. Note that for any cardinal λ we have J<λ[A] ⊆ P(A) and, with f as in (xi),
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f ⊆ pcf(A) × P(P(A)); so f ∈ HΨ. Let ϕ(f, A) be the formula of (xii). Thus

A is a set of regular cardinals and B = 〈Bλ : λ ∈ pcf(A)〉
and ∀λ ∈ pcf(A)(Bλ is a λ-generator)

iff

B is a function and ∃C[C = pcf(A) ∧ C = dmn(B)] ∧ ∃f [ϕ(f, A)∧
∀λ ∈ dmn(B)∀µ ∈ dmn(B)[λ is a cardinal and µ is a cardinal and

µ = λ+ → Bλ ∈ f(µ) ∧ ∀X ⊆ A[X ∈ f(µ) iff X\Bλ ∈ f(λ)]]]

Now we turn to the consideration of elementary substructures of HΨ. The following lemma
gives basic facts used below.

Lemma 32.5. Suppose that Ψ is an uncountable cardinal, and N is an elementary sub-
structure of HΨ (under ∈ and a well-order of HΨ).

(i) For every ordinal α, α ∈ N iff α+ 1 ∈ N .
(ii) ω ⊆ N .
(iii) If a ∈ N , then {a} ∈ N .
(iv) If a, b ∈ N , then {a, b}, (a, b) ∈ N .
(v) If A,B ∈ N , then A×B ∈ N .
(vi) If A ∈ N then

⋃
A ∈ N .

(vii) If f ∈ N is a function, then dmn(f), rng(f) ∈ N .
(viii) If f ∈ N is a function and a ∈ N ∩ dmn(f), then f(a) ∈ N .
(ix) If X, Y ∈ N , X ⊆ N , and |Y | ≤ |X |, then Y ⊆ N .
(x) If X ∈ N and X 6= ∅, then X ∩N 6= ∅.
(xi) P(A) ∈ N if A ∈ N and 2|tr cl(A)| < Ψ.
(xii) If ρ is an infinite ordinal, |ρ|+ < Ψ, and ρ ∈ N , then |ρ| ∈ N and |ρ|+ ∈ N .
(xiii) If A ∈ N , then

∏
A ∈ N if 2|tr cl(A)| < Ψ.

(xiv) If A ∈ N , A is a set of regular cardinals, and A ⊆ HΨ, then pcf(A) ∈ N if
2|tr cl(A)| < Ψ.

(xv) If A ∈ N , A is a set of regular cardinals, then 〈J<λ[A] : λ ∈ pcf(A)〉 ∈ N if

22|tr cl(A)|

< Ψ.
(xvi) If A ∈ N and A is a set of regular cardinals, then there is a function 〈Bλ : λ ∈

pcf(A)〉 ∈ N , where for each λ ∈ pcf(A), the set Bλ is a λ-generator, if 22|tr cl(A)|

< Ψ.

Proof. (i): Let α be an ordinal, and suppose that α ∈ N . Then α ∈ HΨ, and hence
α ∪ {α} ∈ HΨ. By absoluteness, HΨ |= ∃x(x = α ∪ {α}), so N |= ∃x(x = α ∪ {α}).
Choose b ∈ N such that N |= b = α ∪ {α}. Then HΨ |= b = α ∪ {α}, so by absoluteness,
b = α ∪ {α}. This proves that α ∪ {α} ∈ N .

The method used in proving (i) can be used in the other parts; so it suffices in most
other cases just to indicate a formula which can be used.

(ii): An easy induction, using the formulas ∃x∀y ∈ x(y 6= y) and ∃x[a ⊆ x ∧ a ∈
x ∧ ∀y ∈ x[y ∈ a ∨ y = a]].
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(iii): Use the formula ∃x[∀y ∈ x(y = a) ∧ a ∈ x].
(iv): Similar to (ii).
(v): Use the formula

∃C[∀a ∈ A∀b ∈ B[(a, b) ∈ C] ∧ ∀x ∈ C∃a ∈ A∃b ∈ B[x = (a, b)]].

(vi): Use the formula ∃B[∀x ∈ A[x ⊆ B] ∧ ∀y ∈ B∃x ∈ A(y ∈ x)].
(vii): Use the formula ∃A[∀x∀y[(x, y) ∈ f → x ∈ A] ∧ ∀x ∈ A∃y[(x, y) ∈ f ]]. Note

that this formula is absolute for HΨ for example (x, y) ∈ f ∈ HΨ implies that x, y ∈ HΨ.
(viii): Use the formula ∃x[(a, x) ∈ f ].
(ix): Let f be a function mapping X onto Y (assuming, as we may, that Y 6= ∅).

Then f ∈ HΨ, so by the above method, we get another function g ∈ N which maps X
onto Y . Now (viii) gives the conclusion of (ix).

(x): Use the formula ∃x ∈ X [x = x].
(xi): P(A) ∈ HΨ by Lemma 32.3(iii). Hence we can use the formula

∃B[∀x ∈ B(x ⊆ A) ∧ ∀x[x ⊆ A→ x ∈ B]].

(xii): Assume that ρ is an infinite ordinal and ρ ∈ N . Then

HΨ |= ∃α ≤ ρ[(∃f : ρ→ α, a bijection) ∧ ∀β ≤ ρ[(∃g : ρ→ β, a bijection) → α ≤ β]].

Hence by the standard argument, there are α, f ∈ N such that

HΨ |= f : ρ→ α is a bijection ∧ ∀β ≤ ρ[(∃g : ρ→ β, a bijection) → α ≤ β].

Clearly then α = |ρ|.
For |ρ|+, use the formula

∃β∃Γ

[

∀γ ∈ Γ∃f [f is a bijection from ρ onto γ]

∧ ∀γ∀f [f is a bijection from ρ onto γ → γ ∈ Γ]

∧ β =
⋃

Γ

]

.

(xiii): Note that
∏
A ∈ HΨ by Lemma 32.3(ix). Then use the formula

∃B
[

∀f ∈ B(f is a function ∧ dmn(f) = A ∧ ∀a ∈ A(f(a) ∈ a))

∧ ∀f [f is a function ∧ dmn(f) = A ∧ ∀a ∈ A(f(a) ∈ a) → f ∈ B]

]

.

(xiv): pcf(A) ∈ HΨ by Lemma 32.3(xi), so by Lemma 32.4(xi) we can use the formula
∃B[B = pcf(A)].
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(xv): We have pcf(A) ∈ HΨ and P(P(HΨ)) by Lemma 32.3(iii),(xi). It follows
that 〈J<λ[A] : λ ∈ pcf(A)〉 ∈ HΨ. Hence by Lemma 32.4(xii) we can use the formula
∃f [f = 〈J<λ[A] : λ ∈ pcf(A)〉].

(xvi): By Lemma 32.3(iii),(xi) and Lemma 32.4(xiii) we can use the formula

∃B[B : pcf(A) → P(A) ∧ ∀λ ∈ pcf(A)[Bλ is a λ generator for A]].

Definition. Let κ be a regular cardinal. An elementary substructure N of HΨ is κ-
presentable iff there is an increasing and continuous chain 〈Nα : α < κ〉 of elementary
substructures of HΨ such that:

(1) |N | = κ and κ+ 1 ⊆ N .

(2) N =
⋃

α<κNα.

(3) For every α < κ, the function 〈Nβ : β ≤ α〉 is a member of Nα+1.

It is obvious how to construct a κ-presentable substructure of HΨ.

Lemma 32.6. If N is a κ-presentable substructure of HΨ, with notation as above, and if
α < κ, then α+ ω ⊆ Nα ∈ Nα+1.

Proof. First we show that α ⊆ Nα for all α < κ, by induction. It is trivial for α = 0,
and the successor step is immediate from the induction hypothesis and Lemma 32.5(vii).
The limit step is clear.

Now it follows that α + ω ⊆ Nα by an inductive argument using Lemma 32.5(i).
Finally, Nα ∈ Nα+1 by (3) and Lemma 32.5(viii).

For any set M , we let M be the set of all ordinals α such that α ∈M or M∩α is unbounded
in α.

Lemma 32.7. If N is a κ-presentable substructure of HΨ, with notation as above, then
(i) If α < κ, then Nα ⊆ N .
(ii) If κ < α ∈ N\N , then α is a limit ordinal and cf(α) = κ, and in fact there is a

closed unbounded subset E of α such that E ⊆ N and E has order type κ.

Proof. First we consider (i). Suppose that γ ∈ Nα. We may assume that γ /∈ Nα.
Case 1. γ = sup(Nα ∩ On). Then

HΨ |= ∃γ′[∀δ(δ ∈ Nα → δ ≤ γ′) ∧ ∀ε[∀δ(δ ∈ Nα → δ ≤ ε) → γ′ ≤ ε]];

in fact, our given γ is the unique γ′ for which this holds. Hence this statement holds in
N , as desired.

Case 2. ∃θ ∈ Nα(γ < θ). We may assume that θ is minimum with this property. Now
for any β ∈ Nα we can let ρ(β) be the supremum of all ordinals in Nα which are less than
β. So ρ(θ) = γ. By absoluteness we get

HΨ |=∀β ∈ Nα∃ρ[∀ε ∈ Nα(ε < β → ε < ρ)

∧ ∀χ[∀ε ∈ Nα(ε < β → ε < χ) → ρ ≤ χ]];
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Hence N models this formula too; applying it to θ in place of β, we get ρ ∈ N such that

N |=∀ε ∈ Nα(ε < θ → ε < ρ)

∧ ∀χ[∀ε ∈ Nα(ε < θ → ε < χ) → ρ ≤ χ].

Thus γ = ρ ∈ N , as desired. This proves (i).
For (ii), suppose that κ < α ∈ N\N . Let E = {sup(α ∩ Nξ) : ξ < κ}. Note that if

ξ < κ, then by (i), sup(α∩Nξ) ∈ N . So E ⊆ N . It is clearly closed in α. It is unbounded,
since for any β ∈ α∩N there is a ξ < κ such that β ∈ Nξ, and so β ≤ sup(α∩Nξ) ∈ N .

For any set N we define the characteristic function of N ; it is defined for each regular
cardinal µ as follows:

ChN (µ) = sup(N ∩ µ).

Proposition 32.8. Let κ be a regular cardinal, let N be a κ-presentable substructure of
HΨ, and let µ be a regular cardinal.

(i) If µ ≤ κ, then ChN (µ) = µ ∈ N .
(ii) If κ < µ, then ChN (µ) /∈ N , ChN (µ) < µ, and ChN (µ) has cofinality κ.
(iii) For every α ∈ N ∩ µ we have α ≤ ChN (µ).

Proof. (i): True since κ+ 1 ⊆ N .
(ii): Since |N | = κ < µ and µ is regular, we must have ChN (µ) /∈ N and ChN (µ) < µ.

Then ChN (µ) has cofinality κ by Lemma 32.7.
(iii): clear.

Theorem 32.9. Suppose that M and N are elementary substructures of HΨ and κ < µ
are cardinals, with µ < Ψ.

(i) If M ∩κ ⊆ N ∩κ and sup(M ∩ν+) = sup(M ∩N ∩ν+) for every successor cardinal
ν+ ≤ µ such that ν+ ∈M , then M ∩ µ ⊆ N ∩ µ.

(ii) If M and N are both κ-presentable and if sup(M ∩ ν+) = sup(N ∩ ν+) for every
successor cardinal ν+ ≤ µ such that ν+ ∈M , then M ∩ µ = N ∩ µ.

Proof. (i): Assume the hypothesis. We prove by induction on cardinals δ in the
interval [κ, µ] that M ∩ δ ⊆ N ∩ δ. This is given for δ = κ. If, inductively, δ is a limit
cardinal, then the desired conclusion is clear. So assume now that δ is a cardinal, κ ≤ δ < µ,
and M ∩ δ ⊆ N ∩ δ. If δ+ /∈M , then by Lemma 32.5(xii), [δ, δ+] ∩M = ∅, so the desired
conclusion is immediate from the inductive hypothesis. So, assume that δ+ ∈M . Then the
hypothesis of (i) implies that there are ordinals in [δ, δ+] which are in M ∩N , and hence
by Lemma 32.5(xii) again, δ+ ∈ N . Now to show that M ∩ [δ, δ+] ⊆ N ∩ [δ, δ+], take any
ordinal γ ∈M∩[δ, δ+]. We may assume that γ < δ+. Since sup(M∩δ+) = sup(M∩N∩δ+)
by assumption, we can choose β ∈M ∩N ∩ δ+ such that γ < β. Let f be the <∗-smallest
bijection from β to δ. So f ∈ M ∩ N . Since γ ∈ M , we also have f(γ) ∈ M by Lemma
32.5(viii). Now f(γ) < δ, so by the inductive assumption that M ∩ δ ⊆ N ∩ δ, we have
f(γ) ∈ N . Since f ∈ N , so is f−1, and f−1(f(γ)) = γ ∈ N , as desired. This finishes the
proof of (i).

(ii): Assume the hypothesis. Now we want to check the hypothesis of (i). By the
definition of κ-presentable we have κ = M ∩ κ = N ∩ κ. Now suppose that ν is a cardinal
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and ν+ ≤ µ with ν+ ∈ M . We may assume that κ < ν+. Let γ = ChM (ν+); this is
the same as ChN (ν+) by the hypothesis of (ii). By Lemma 32.8 we have γ /∈ M ∪ N ;
hence by Lemma 32.7 there are clubs P,Q in γ such that P ⊆ M and Q ⊆ N . Hence
sup(M ∩ ν+) = sup(M ∩ ν+) = sup(M ∩N ∩ ν+). This verifies the hypothesis of (i) for
the pair M,N and also for the pair N,M . So our conclusion follows.

Minimally obedient sequences

Suppose that A is progressive, λ ∈ pcf(A), and B is a λ-generator for A. A sequence
〈fξ : ξ < λ〉 of members of

∏
A is called persistently cofinal for λ,B provided that 〈(fξ ↾

B) : ξ < λ〉 is persistently cofinal in (
∏
B,<J<λ[B]). Recall that this means that for all

h ∈∏B there is a ξ0 < λ such that for all ξ, if ξ0 ≤ ξ < λ, then h <J<λ[B] (fξ ↾ B).

Lemma 32.10. Suppose that A is progressive, λ ∈ pcf(A), and B and C are λ-generators
for A. A sequence 〈fξ : ξ < λ〉 of members of

∏
A is persistently cofinal for λ,B iff it is

persistently cofinal for λ, C.

Proof. Suppose that 〈fξ : ξ < λ〉 is persistently cofinal for λ,B, and suppose that
h ∈ ∏C. Let k ∈ ∏B be any function such that h ↾ (B ∩ C) = k ↾ (B ∩ C). Choose
ξ0 < λ such that for all ξ ∈ [ξ0, λ) we have k <J<λ[B] (fξ ↾ B). Then for any ξ ∈ [ξ0, λ) we
have

{a ∈ C : h(a) ≥ fξ(a)} = {a ∈ B ∩ C : h(a) ≥ fξ(a)} ∪ {a ∈ C\B : h(a) ≥ fξ(a)}
⊆ {a ∈ B : k(a) ≥ fξ(a)} ∪ (C\B);

Now (C\B) ∈ J<λ[A] by Lemma 31.25(xi), so h <J<λ[C] (fξ ↾ C). By symmetry the
lemma follows.

Because of this lemma we say that f is persistently cofinal for λ iff it is persistently cofinal
for λ,B for some λ-generator B.

Lemma 32.11. Suppose that A is progressive, λ ∈ pcf(A), and f
def
= 〈fξ : ξ < λ〉 is

universal for λ. Then f is persistently cofinal for λ.

Proof. Let B be a λ-generator. Then by Lemma 31.25(vii), λ is the largest member
of pcf(B). By Lemma 31.17, 〈(fξ ↾ B) : ξ < λ〉 is strictly increasing under <J<λ[B], and by
Lemma 31.25(v) it is cofinal in (

∏
B,<J<λ[B]). By Proposition 30.11, it is thus persistently

cofinal in (
∏
B,<J<λ[B]).

Lemma 32.12. Suppose that A is progressive, λ ∈ pcf(A), and A ∈ N , where N is a
κ-presentable elementary substructure of HΨ, with |A| < κ < min(A) and 2|tr cl(A)| < Ψ.
Suppose that f = 〈fξ : ξ < λ〉 is a sequence of functions in

∏
A.

Then for every ξ < λ there is an α < κ such that for any a ∈ A,

fξ(a) < ChN (a) iff fξ(a) < ChNα(a).
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Proof.
ChN (a) = sup(N ∩ a)

=
⋃

(N ∩ a)

=
⋃
(

a ∩
⋃

α<κ

Nα

)

=
⋃

α<κ

⋃

(Nα ∩ a)

=
⋃

α<κ

ChNα(a).

Hence for every a ∈ A for which fξ(a) < ChN (a), there is an αa < κ such that fξ(a) <
ChNαa (a). Hence the existence of α as indicated follows.

Lemma 32.13. Suppose that A is progressive, κ is regular, λ ∈ pcf(A), and A, λ ∈ N ,
where N is a κ-presentable elementary substructure of HΨ, with |A| < κ < min(A) and
Ψ is big. Suppose that f = 〈fξ : ξ < λ〉 ∈ N is a sequence of functions in

∏
A which is

persistently cofinal in λ. Then for every ξ ≥ ChN (λ) the set

{a ∈ A : ChN (a) ≤ fξ(a)}

is a λ-generator for A.

Proof. Assume the hypothesis, including ξ ≥ ChN (λ). Let α be as in Lemma
32.12. We are going to apply Lemma 31.25(ix). Since A, f, λ ∈ N , we may assume that
A, f, λ ∈ N0, by renumbering the elementary chain if necessary. Now κ ⊆ N , and |A| < κ,
so we easily see that there is a bijection f ∈ N mapping an ordinal α < κ onto A; hence
A ⊆ N by Lemma 32.5(viii), and so A ⊆ Nβ for some β < κ. We may assume that A ⊆ N0.
By Lemma 32.5(xvi),(viii), there is a λ-generator B which is in N0.

Now the sequence f is persistently cofinal in
∏
B/J<λ, and hence

HΨ |= ∀h ∈
∏

B∃η < λ∀ρ ≥ η[h ↾ B <J<λ fρ ↾ B]; hence

N |= ∀h ∈
∏

B∃η < λ∀ρ ≥ η[h ↾ B <J<λ fρ ↾ B];

Hence for every h ∈ N , if h ∈ ∏
B then there is an η < λ with η ∈ N such that

N |= ∀ρ ≥ η[h ↾ B <J<λ fϕ ↾ B]; going up, we see that really for every h ∈ N ∩∏A there
is an ηh ∈ N ∩ λ such that for all ρ with ρ ≥ ηh we have h ↾ B <J<λ fρ ↾ B. Since ξ, as
given in the statement of the Lemma, is ≥ each member of N ∩ λ, hence ≥ ηh for each
h ∈ N ∩∏A, we see that

(1) h ↾ B <J<λ fξ ↾ B for every h ∈ N ∩∏A.

Now we can apply (1) to h = ChNα , since this function is clearly in N . So ChNα ↾

B <J<λ[B] fξ ↾ B. Hence by the choice of α (see Lemma 32.12)

(2) ChN ↾ B ≤J<λ[B] fξ ↾ B.
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Note that (2) says that B\{a ∈ A : ChN (a) ≤ fξ(a)} ∈ J<λ[A].
Now λ /∈ pcf(A\B) by Lemma 31.25(ii), and hence J<λ[A\B] = J≤λ[A\B]. So by

Theorem 31.8 we see that
∏

(A\B)/J<λ[A\B] is λ+-directed, so 〈fξ ↾ (A\B) : ξ < λ〉 has
an upper bound h ∈ ∏(A\B). We may assume that h ∈ N , by the usual argument. Hence

fξ ↾ (A\B) <J<λ[A\B] h < ChN ↾ (A\B);

hence {a ∈ A\B : ChN (a) ≤ fξ(a)} ∈ J<λ[A], and together with (2) and using Lemma
31.25(ix) this finishes the proof.

Now suppose that A is progressive, δ is a limit ordinal, f = 〈fξ : ξ < δ〉 is a sequence of
members of

∏
A, |A|+ ≤ cf(δ) < min(A), and E is a club of δ of order type cf(δ). Then

we define
hE = sup{fξ : ξ ∈ E}.

We call hE the supremum along E of f . Thus hE ∈∏A, since cf(δ) < min(A). Note that
if E1 ⊆ E2 then hE1

≤ hE2
.

Lemma 32.14. Let A, δ, f be as above. Then there is a unique function g in
∏
A such

that the following two conditions hold.
(i) There is a club C of δ of order type cf(δ) such that g = hC .
(ii) If E is any club of C of order type cf(δ), then g ≤ hE .

Proof. Clearly such a function g is unique if it exists.
Now suppose that there is no such function g. Then for every club C of δ of order

type cf(δ) there is a club D of order type cf(δ) such that hC 6≤ hD, hence hC 6≤ hC∩D.
Hence there is a decreasing sequence 〈Eα : α < |A|+〉 of clubs of δ such that for every
α < |A|+ we have hEα 6≤ hEα+1

. Now note that

|A|+ =
⋃

a∈A
{α < |A|+ : hEα(a) > hEα+1

(a)}.

Hence there is an a ∈ A such that M
def
= {α < |A|+ : hEα(a) > hEα+1

(a)} has size |A|+.
Now hEα(a) ≥ hEβ (a) whenever α < β < |A|+, so this gives an infinite decreasing sequence
of ordinals, contradiction.

The function g of this lemma is called the minimal club-obedient bound of f .

Corollary 32.15. Suppose that A is progressive, δ is a limit ordinal, f = 〈fξ : ξ < δ〉
is a sequence of members of

∏
A, |A|+ ≤ cf(δ) < min(A), J is an ideal on A, and f is

<J -increasing. Let g be the minimal club-obedient bound of f . Then g is a ≤J -bound for
f .

Now suppose that A is progressive, λ ∈ pcf(A), and κ is a regular cardinal such that
|A| < κ < min(A). We say that f = 〈fα : α < λ〉 is κ-minimally obedient for λ iff f is a
universal sequence for λ and for every δ < λ of cofinality κ, fδ is the minimal club-obedient
bound of f .
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A sequence f is minimally obedient for λ iff |A|+ < min(A) and f is minimally
obedient for every regular κ such that |A| < κ < min(A).

Lemma 32.16. Suppose that |A|+ < min(A) and λ ∈ pcf(A). Then there is a minimally
obedient sequence for λ.

Proof. By Theorem 31.18, let 〈f0
ξ : ξ < λ〉 be a universal sequence for λ. Now

by induction we define functions fξ for ξ < λ. Let f0 = f0
0 , and choose fξ+1 so that

max(fξ, f
0
ξ ) < fξ+1.

For limit δ < λ such that |A| < cf(δ) < min(A), let fδ be the minimally club-obedient
bound of 〈fξ : ξ < δ〉.

For other limit δ < λ, use the λ-directedness (Theorem 31.8) to get fδ as a <J<λ -bound
of 〈fξ : ξ < δ〉.

Thus we have assured the minimally obedient property, and it is clear that 〈fξ : ξ < λ〉
is universal.

Lemma 32.17. Suppose that A is progressive, and κ is a regular cardinal such that
|A| < κ < min(A). Also assume the following:

(i) λ ∈ pcf(A).
(ii) f = 〈fξ : ξ < λ〉 is a κ-minimally obedient sequence for λ.
(iii) N is a κ-presentable elementary substructure of HΨ, with Ψ large, such that

λ, f, A ∈ N .

Then the following conditions hold:
(iv) For every γ ∈ N ∩ λ\N we have:

(a) cf(γ) = κ.
(b) There is a club C of γ of order type κ such that fγ = sup{fξ : ξ ∈ C} and

C ⊆ N .
(c) fγ(a) ∈ N ∩ a for every a ∈ A.

(v) If γ = ChN (λ), then:
(a) γ ∈ N ∩ λ\N ; hence we let C be as in (iv)(b), with fγ = sup{fξ : ξ ∈ C}.
(b) fξ ∈ N for each ξ ∈ C.
(c) fγ ≤ (ChN ↾ A).

(vi) γ = ChN (λ) and C is as in (iv)(b), with fγ = sup{fξ : ξ ∈ C}, and B is a λ
generator, then for every h ∈ N ∩∏A there is a ξ ∈ C such that (h ↾ B) <J<λ (fξ ↾ B).

Proof. Assume (i)–(iii). Note that A ⊆ N , by Lemma 32.5(ix).
For (iv), suppose also that γ ∈ N ∩ λ\N . Then by Lemma 32.7 we have cf(γ) = κ,

and there is a club E in γ of order type κ such that E ⊆ N . By (ii), we have fγ = fC for
some club C of γ of order type κ. By the minimally obedient property we have fC = fC∩E,
and thus we may assume that C ⊆ E. For any ξ ∈ C and a ∈ A we have fξ(a) ∈ N by
Lemma 32.5(viii). So (iv) holds.

For (v), suppose that γ = ChN (λ). Then γ ∈ N∩λ\N because |N | = κ < min(A) ≤ λ.
For each ξ ∈ C we have fξ ∈ N by Lemma 32.5(viii). For (c), if a ∈ A, then fγ(a) =
supξ∈C fξ(a) ≤ ChN (a), since fξ(a) ∈ N ∩ a for all ξ ∈ C.
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Next, assume the hypotheses of (vi). By Lemma 32.11, f is persistently cofinal in λ,
so by Lemma 32.13, B′ is a λ-generator. By Lemma 31.25(v) there is a ξ ∈ C such that
h ↾ B′ <J<λ fξ ↾ B′. Now B =J<λ[A] B

′ by Lemma 31.25(xi), so

{a ∈ B : h(a) ≥ fξ(b)} ⊆ (B\B′) ∪ {a ∈ B′ : h(a) ≥ fξ(b)} ∈ J<λ[A].

We now define some abbreviations.

H1(A, κ,N,Ψ) abbreviates

A is a progressive set of regular cardinals, κ is a regular cardinal such that |A| < κ <
min(A), and N is a κ-presentable elementary substructure of HΨ, with Ψ big and A ∈ N .

H2(A, κ,N,Ψ, λ, f, γ) abbreviates

H1(A, κ,N,Ψ), λ ∈ pcf(A), f = 〈fξ : ξ < λ〉 is a sequence of members of
∏
A, f ∈ N ,

and γ = ChN (λ).

P1(A, κ,N,Ψ, λ, f, γ) abbreviates

H2(A, κ,N,Ψ, λ, f, γ) and {a ∈ A : ChN (a) ≤ fγ(a)} is a λ-generator.

P2(A, κ,N,Ψ, λ, f, γ) abbreviates

H2(A, κ,N,Ψ, λ, f, γ) and the following hold:
(i) fγ ≤ (ChN ↾ A).
(ii) For every h ∈ N ∩∏A there is a d ∈ N ∩∏A such that for any λ-generator B,

(h ↾ B) <J<λ (d ↾ B) and d ≤ fγ .

Thus H1(A, κ,N,Ψ) is part of the hypothesis of Lemma 32.17, and H2(A, κ,N,Ψ, λ, f, γ)
is a part of the hypotheses of Lemma 32.17(v).

Lemma 32.18. If H2(A, κ,N,Ψ, λ, f, γ) holds and f is persistently cofinal for λ, then
P1(A, κ,N,Ψ, λ, f, γ) holds.

Proof. This follows immediately from Lemma 32.13.

Lemma 32.19. If H2(A, κ,N,Ψ, λ, f, γ) holds and f is κ-minimally obedient for λ, then
both P1(A, κ,N,Ψ, λ, f, γ) and P2(A, κ,N,Ψ, λ, f, γ) hold.

Proof. Since f is κ-minimally obedient for λ, it is a universal sequence for λ, by
definition. Hence by Lemma 32.11 f is persistently cofinal for λ, and so property P1

follows from Lemma 32.18.
For P2, note that λ,A ∈ N since f ∈ N , by Lemma 32.5(vii),(ix). Hence the hypothe-

ses of Lemma 32.17(v) hold. So (i) in P2 holds by Lemma 32.17(v)(c). For condition (ii),
suppose that h ∈ N ∩∏A. Take B and C as in Lemma 32.17(vi), and choose ξ ∈ C such
that h ↾ B <J<λ fξ ↾ B. Let d = fξ. Clearly this proves condition (ii).

The following obvious extension of Lemma 32.19 will be useful below.
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Lemma 32.20. Assume H1(A, κ,N,Ψ), and also assume that γ = ChN (λ) and

(i) f
def
= 〈fλ : λ ∈ pcf(A)〉 is a sequence of sequences 〈fλξ : ξ < λ〉 each of which is a

κ-minimally obedient for λ.

Then for each λ ∈ N ∩ pcf(A), P1(A, κ,N,Ψ, λ, fλ, γ) and P2(A, κ,N,Ψ, λ, fλ, γ) hold.

Lemma 32.21. Suppose that P1(A, κ,N,Ψ, λ, f, γ) and P2(A, κ,N,Ψ, λ, f, γ) hold. Then
(i) {a ∈ A : ChN (a) = fγ(a)} is a λ-generator.
(ii) If λ = max(pcf(A)), then

< (fγ,ChN ↾ A) = {a ∈ A : fγ(a) < ChN (a)} ∈ J<λ[A].

Proof. By (i) of P2(A, κ,N,Ψ, λ, f, γ) we have fγ ≤ (ChN ↾ A), so (i) holds by
P1(A, κ,N,Ψ, λ, f, γ). (ii) follows from P1(A, κ,N,Ψ, λ, f, γ) and Lemma 31.25(xii).

Lemma 32.22. Assume that P1(A, κ,N,Ψ, λ, f, γ) and P2(A, κ,N,Ψ, λ, f, γ) hold. Let

b = {a ∈ A : ChN (a) = fγ(a)}.

Then
(i) b is a λ-generator.
(ii) There is a set b′ ⊆ b such that:

(a) b′ ∈ N ;
(b) b\b′ ∈ J<λ[A];
(c) b′ is a λ-generator.

Proof. (i) holds by Lemma 32.21(i). For (ii), by Lemma 32.12 choose α < κ such
that, for every a ∈ A,

(1) fγ(a) < ChN (a) iff fγ(a) < ChNα(a).

Now by (i) of P2(A, κ,N,Ψ, λ, f, γ) we have fγ ≤ (ChN ↾ A). Hence by (1) we see that for
every a ∈ A,

(2) a ∈ b iff ChNα(a) ≤ fγ(a).

Now by (ii) of P2(A, κ,N,Ψ, λ, f, γ) applied to h = ChNα ↾ A, there is a d ∈ N ∩∏A such
that the following conditions hold:

(3) (ChNα ↾ b) <J<λ (d ↾ b).

(4) d ≤ fγ .

Now we define

b′ = {a ∈ A : ChNα(a) ≤ d(a)}.
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Clearly b′ ∈ N . Also, by (3),

b\b′ = {a ∈ b : d(a) < ChNα(a)} ∈ J<λ,

and so (ii)(b) holds. Thus b ⊆J<λ b′. If a ∈ b′, then ChNα(a) ≤ d(a) ≤ fγ(a) by (4), so
a ∈ b by (2). Thus b′ ⊆ b. Now (ii)(c) holds by Lemma 31.25(ix).

Lemma 32.23. Assume H1(A, κ,N,Ψ) and A ∈ N . Suppose that 〈fλ : λ ∈ pcf(A)〉 ∈ N
is an array of sequences 〈fλξ : ξ < λ〉 with each fλξ ∈ ∏A. Also assume that for every

λ ∈ N ∩ pcf(A), both P1(A, κ,N,Ψ, λ, fλ, γ(λ)) and P2(A, κ,N,Ψ, λ, fλ, γ(λ)) hold.
Then there exist cardinals λ0 > λ1 > · · · > λn in pcf(A) ∩N such that

(ChN ↾ A) = sup{fλ0

γ(λ0)
, . . . , fλn

γ(λn)}.

Proof. We will define by induction a descending sequence of cardinals λi ∈ pcf(A)∩N
and sets Ai ∈ P(A)∩N (strictly decreasing under inclusion as i grows) such that if Ai 6= ∅
then λi = max(pcf(Ai)) and

(1) (ChN ↾ (A\Ai+1)) = sup{(fλ0

γ(λ0)
↾ (A\Ai+1)), . . . , (fλi

γ(λi)
↾ (A\Ai+1))}.

Since the cardinals are decreasing, there is a first i such that Ai+1 = ∅, and then the lemma
is proved. To start, A0 = A and λ0 = max(pcf(A)). Clearly λ0 ∈ N . Now suppose that
λi and Ai are defined, with Ai 6= 0. By Lemma 32.22(i) and Lemma 31.25(x), the set

{a ∈ A ∩ (λi + 1) : ChN (a) = fλi
γ(λi)

(a)}

is a λi-generator. Hence by Lemma 32.22(ii) we get another λi-generator b′λi such that

(2) b′λi ∈ N .

(3) b′λi ⊆ {a ∈ A ∩ (λi + 1) : ChN (a) = fλi
γ(λi)

(a)}.

Note that b′λi 6= ∅. Let Ai+1 = Ai\b′λi . Thus Ai+1 ∈ N . Furthermore,

(4) A\Ai+1 = (A\Ai) ∪ b′λ1
.

Now by Lemma 9.25(ii) and λi = max(pcf(Ai)) we have λi /∈ pcf(Ai+1). If Ai+1 6= ∅, we
let λi+1 = max(pcf(Ai+1)). Now by (i) of P2(A, κ,N,Ψ, λ, fλj , γ(λj)) we have

(5) f
λj
γ(λj)

≤ (ChN ↾ A) for all j ≤ i.

Now suppose that a ∈ A\Ai+1. If a ∈ Ai, then by (4), a ∈ b′λ1
, and so by (3), ChN (a) =

fλi
γ(λ1)

(a), and (1) holds for a. If a /∈ Ai, then A 6= Ai, so i 6= 0. Hence by the inductive

hypothesis for (1),

ChN (a) = sup{fλ0

γ(λ0)
(a), . . . , f

λi−1

γ(λi−1)
(a)},

and (1) for a follows by (5).
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The cofinality of ([µ]κ,⊆)

First we give some simple properties of the sets [µ]κ, not involving pcf theory.

Proposition 32.24. If κ ≤ µ are infinite cardinals, then

(∗) |[µ]κ| = cf([µ]κ,⊆) · 2κ.

Proof. Let λ = cf([µ]κ,⊆), and let 〈Yi : i < λ〉 be an enumeration of a cofinal subset
of cf([µ]κ,⊆). For each i < λ let fi be a bijection from Yi to κ. Now the inequality ≥ in (∗)
is clear. For the other direction, we define an injection g of [µ]κ into λ×P(κ), as follows.
Given E ∈ [µ]κ, let i < λ be minimum such that E ⊆ Yi, and define g(E) = (i, fi[E]).
Clearly g is one-one.

Proposition 32.25. (i) If κ1 < κ2 ≤ µ, then

cf([µ]κ1,⊆) ≤ cf([µ]κ2 ,⊆) · cf([κ2]κ1 ,⊆).

(ii) cf([κ+]κ,⊆) = κ+.

(iii) If κ+ ≤ µ, then cf([µ]κ,⊆) ≤ cf([µ]κ
+

,⊆) · κ+.
(iv) If κ ≤ µ1 < µ2, then cf([µ1]κ,⊆) ≤ cf([µ2]κ,⊆).
(v) If κ ≤ µ, then cf([µ+]κ,⊆) ≤ cf([µ]κ,⊆) · µ+.
(vi) cf([ℵ0]ℵ0 ,⊆) = 1, while for m ∈ ω\1, cf([ℵm]ℵ0) = ℵm.
(vii) cf([µ]≤κ,⊆) = cf([µ]κ,⊆).

Proof. (i): Let M ⊆ [µ]κ2 be cofinal in ([µ]κ2 ,⊆) of size cf([µ]κ2 ,⊆), and let N ⊆
([κ2]κ1 ,⊆) be cofinal in ([κ2]κ1 ,⊆) of size cf([κ2]κ1 ,⊆). For each X ∈M let fX : κ2 → X
be a bijection. It suffices now to show that {fX [Y ] : X ∈M,Y ∈ N} is cofinal in ([µ]κ1 ,⊆).
Suppose that W ∈ [µ]κ1 . Choose X ∈ M such that W ⊆ X . Then f−1

X [W ] ∈ [κ2]κ1 , so
there is a Y ∈ N such that f−1

X [W ] ⊆ Y . Then W ⊆ fX [Y ], as desired.
(ii): The set {γ < κ+ : |γ\κ| = κ} is clearly cofinal in ([κ+]κ. If M is a nonempty

subset of [κ+]κ of size less than κ+, then |⋃M | = κ, and (
⋃
M) + 1 is a member of [κ+]κ

not covered by any member of M . So (ii) holds.
(iii): Immediate from (i) and (ii).
(iv): Let M ⊆ [µ2]κ be cofinal of size cf([µ2]κ,⊆). Let N = {X∩µ1 : X ∈M}\[µ1]<κ.

It suffices to show that N is cofinal in cf([µ1]κ,⊆). Suppose that X ∈ [µ1]κ. Then also
X ∈ [µ2]κ, so we can choose Y ∈ M such that X ⊆ Y . Clearly X ⊆ Y ∩ µ1 ∈ N , as
desired.

(v): For each γ ∈ [µ, µ+) let fγ be a bijection from γ to µ. Let E ⊆ [µ]κ be cofinal in
([µ]κ,⊆) and of size cf([µ]κ,⊆). It suffices to show that {f−1

γ [X ] : γ ∈ [µ, µ+), X ∈ E} is
cofinal in ([µ+]κ,⊆). So, take any Y ∈ [µ+]κ. Choose γ ∈ [µ, µ+) such that Y ⊆ γ. Then
fγ [Y ] ∈ [µ]κ, so we can choose X ∈ E such that f [Y ] ⊆ X . Then Y ⊆ f−1

γ [X ], as desired.

(vi): Clearly cf([ℵ0]ℵ0 ,⊆) = 1. By induction it is clear from (v) that cf([ℵm]ℵ0) ≤ ℵm.
For m > 0 equality must hold, since if X ⊆ [ℵm]ℵ0 and |X | < ℵm, then

⋃
X < ℵm, and

no denumerable subset of ℵm\
⋃
X is contained in a member of X .

(vii): Clear.
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The following elementary lemmas will also be needed.

Lemma 32.26. If α < β are limit ordinals, then

|[α, β]| = |{γ : α < γ < β, γ a successor ordinal}|.

Proof. For every δ ∈ [α, β) let f(δ) = δ+ 1. Then f is a one-one function from [α, β)
onto {γ : α < γ < β, γ a successor ordinal}.

Lemma 32.27. If α < θ ≤ β with θ limit, then

|[α, β]| = |{γ : α ≤ γ ≤ β, γ a successor ordinal}|.

Proof. Write β = δ +m with δ limit and m ∈ ω. Then

[α, β] = [α, α+ ω) ∪ [α+ ω, δ] ∪ (δ, β],

and the desired conclusion follows easily from Lemma 32.26.

Theorem 32.28. Suppose that µ is singular and κ < µ is an uncountable regular cardinal

such that A
def
= (κ, µ)reg has size < κ. Then

cf([µ]κ,⊆) = max(pcf(A)).

Proof. Note by the progressiveness of A that every limit cardinal in the interval (κ, µ)
is singular, and hence every member of A is a successor cardinal.

First we prove ≥. Suppose to the contrary that cf([µ]κ,⊆) < max(pcf(A)). For
brevity write max(pcf(A)) = λ. let {Xi : i ∈ I} ⊆ [µ]κ be cofinal and of cardinality less
than λ. Pick a universal sequence 〈fξ : ξ < λ〉 for λ by Theorem 31.18. For every ξ < λ,
rng(fξ) is a subset of µ of size ≤ |A| ≤ κ, and hence rng(fξ) is covered by some Xi. Thus
λ =

⋃

i∈I{ξ < λ : rng(fξ) ⊆ Xi}, so by |I| < λ and the regularity of λ we get an i ∈ I such
that |{ξ < λ : rng(fξ) ⊆ Xi}| = λ. Now define for any a ∈ A,

h(a) = sup(a ∩Xi).

Since κ < a for each a ∈ A, we have h ∈ ∏A. Now the sequence 〈fξ : ξ < λ〉 is cofinal in
∏
A under <J<λ by Lemma 31.25(v),(iv). So there is a ξ < λ such that h <J<λ fξ. Thus

there is an a ∈ A such that h(a) < fξ(a) ∈ Xi, contradicting the definition of h.
Second we prove ≤, by exhibiting a cofinal subset of [µ]κ of size at most max(pcf(A)).

Take N and Ψ so that H1(A, κ,N,Ψ). Let M be the set of all κ-presented elementary
substructures M of HΨ such that A ⊆M , and let

F = {M ∩ µ : M ∈ M }\[µ]<κ.
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Since |M | = κ, we have |M ∩ µ| ≤ κ, and so ∀M ∈ F (|M ∩ µ| = κ).

(1) F is cofinal in [µ]κ.

In fact, for any X ∈ [µ]κ we can find M ∈ M such that X ⊆M , and (1) follows.
By (1) it suffices to prove that |F | ≤ max(pcf(A)).

Claim. If M,N ∈ M are such that ChM ↾ A = ChN ↾ A, then M ∩ µ = N ∩ µ.

For, if ν+ is a successor cardinal ≤ µ, then sup(M ∩ ν+) = ChM (ν+) = ChN (ν+) =
sup(N ∩ ν+). So the claim holds by Theorem 32.9.

Now for each M ∈ M , let g(M) be the sequence 〈(λ0, γ0), . . . , (λn, γn)〉 given by
Lemma 32.23. Clearly the range of g has size ≤ max(pcf(A)). Now for each X ∈ F ,
choose MX ∈ M such that X = MX ∩ µ. Then for X, Y ∈ F and X 6= Y we have
MX ∩ µ 6= MY ∩ µ, hence by the claim ChMX

↾ A 6= ChMY
↾ A, and hence by Lemma

32.23, g(MX) 6= g(MY ). This proves that |F | ≤ max(pcf(A)).

Corollary 32.29. Let A = {ℵm : 0 < m < ω}. Then for any m ∈ ω we have cf([ℵω]ℵm) =
max(pcf(A)).

Elevations and transitive generators

We start with some simple general notions about cardinals. If B is a set of cardinals, then
a walk in B is a sequence λ0 > λ1 > · · · > λn of members of B. Such a walk is necessarily
finite. Given cardinals λ0 > λ in B, a walk from λ0 to λ is a walk as above with λn = λ.
We denote by Fλ0,λ(B) the set of all walks from λ0 to λ.

Now suppose that A is progressive and λ0 ∈ pcf(A). A special walk from λ0 to λn in
pcf(A) is a walk λ0 > · · · > λn in pcf(A) such that λi ∈ A for all i > 0. We denote by
F ′
λ0,λ

(A) the collection of all special walks from λ0 to λ in pcf(A).

Next, suppose in addition that f
def
= 〈fλ : λ ∈ pcf(A)〉 is a sequence of sequences,

where each fλ is a sequence 〈fλξ : ξ < λ〉 of members of
∏
A. If λ0 > · · · > λn is a special

walk in pcf(A), and γ0 ∈ λ0, then we define an associated sequence of ordinals by setting

γi+1 = fλiγi (λi+1)

for all i < n. Note that γi < λi for all i = 0, . . . , n. Then we define

Elλ0,...,λn(γ0) = γn.

Now we define the elevation of the sequence f , denoted by fe
def
= 〈fλ,e : λ ∈ pcf(A)〉, by

setting, for any λ0 ∈ pcf(A), any γ0 ∈ λ0, and any λ ∈ A,

fλ0,e
γ0

(λ) =







fλ0
γ0

(λ) if λ0 ≤ λ,

max({Elλ0,...,λn(γ0) : (λ0, . . . , λn) ∈ F ′
λ0,λ

}) if λ < λ0,
and this maximum exists,

fλ0
γ0

(λ) if λ < λ0, otherwise.
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Note here that the superscript e is only notational, standing for “elevated”.

Lemma 32.30. Assume the above notation. Then fλ0
γ0

≤ fλ0,e
γ0

for all λ0 ∈ pcf(A) and all
γ0 ∈ λ0.

Proof. Take any γ0 ∈ λ0 and any λ ∈ A. If λ0 ≤ λ, then fλ0,e
γ0

(λ) = fλ0
γ0

(λ). Suppose

that λ < λ0. If the above maximum does not exist, then again fλ0,e
γ0

(λ) = fλ0
γ0

(λ). Suppose
the maximum exists. Now (λ0, λ) ∈ F ′

λ0,λ
(A), so

fλ0
γ0

(λ) = Elλ0,λ(γ0) ≤ max({Elλ0,...,λn(γ0) : (λ0, . . . , λn) ∈ F ′
λ0,λ

}) = fλ0,e
γ0

(λ).

Lemma 32.31. Suppose that A is progressive, κ is a regular cardinal such that |A| <
κ < min(A), and f

def
= 〈fλ : λ ∈ pcf(A)〉 is a sequence of sequences fλ such that fλ is

κ-minimally obedient for λ. Assume also H1(A, κ,N,Ψ) and f ∈ N .
Then also fe ∈ N .

Proof. The proof is a more complicated instance of our standard procedure for going
from V to HΨ to N and then back. We sketch the details.

Assume the hypotheses. In particular, A ∈ N . Hence also pcf(A) ∈ N . Also, |A| < κ,
so A ⊆ N . Now clearly F ′ ∈ N . Also, El ∈ N . (Note that El depends upon A.) Then by
absoluteness,

HΨ |= ∃g g is a function, dmn(g) = pcf(A) ∧ ∀λ0 ∈ pcf(A)∀γ0 ∈ λ0∀λ ∈ A

g(λ) =







fλ0
γ0

(λ) if λ0 ≤ λ,

max({Elλ0,...,λn(γ0) : (λ0, . . . , λn) ∈ F ′
λ0,λ

}) if λ < λ0,
and this maximum exists,

fλ0
γ0

(λ) if λ < λ0, otherwise.

Now the usual procedure can be applied.

Lemma 32.32. Suppose that A is progressive, κ is a regular cardinal such that |A| <
κ < min(A), and f

def
= 〈fλ : λ ∈ pcf(A)〉 is a sequence of sequences fλ such that fλ is

κ-minimally obedient for λ. Assume H1(A, κ,N,Ψ) and f ∈ N .
Suppose that λ0 ∈ pcf(A) ∩N , and let γ0 = ChN (λ0).
(i) If λ0 > · · · > λn is a special walk in pcf(A), and γ1, . . . , γn are formed as above,

then γi ∈ N for all i = 0, . . . , n.
(ii) For every λ ∈ A ∩ λ0 we have fλ0,e

γ0
(λ) ∈ N .

Proof. (i): By Lemma 32.17(iv)(c), fλ0
γ0

(λ) ∈ N , and (i) follows by induction using
Lemma 32.17(iv)(c).

(ii): immediate from (i).

Lemma 32.33. Assume the hypotheses of Lemma 32.32. Then
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(i) For any special walk λ0 > · · · > λn = λ in F ′
λ0,λ

, we have

Elλ0,...,λn(γ0) ≤ ChN (λ).

(ii) fλ0,e
γ0

≤ ChN ↾ A for every γ0 < λ0.
(iii) If there is a special walk λ0 > · · · > λn = λ in F ′

λ0,λ
such that

Elλ0,...,λn(γ0) = ChN (λ),

then
ChN (λ) = fλ0,e

γ0
(λ).

(iv) Suppose that ChN (λ) = fλ0,e
γ0

(λ) = γ. If there is an a ∈ A∩λ such that fλ,eγ (a) =

ChN (a), then also fλ0,e
γ0

(a) = ChN (a).

Proof. (i) is immediate from Lemma 32.32(i) and Lemma 32.8(iii). (ii) and (iii) follow
from (i). For (iv), by Lemma 32.32(i) and (i) there are special walks λ0 > · · · > λn = λ
and λ = λ′0 > · · · > λ′m = a such that

fλ0,e
γ0

(λ) = ChN (λ) = Elλ0,...,λn(γ0) and

fλ,eγ (a) = ChN (a) = Elλ′
0,...,λ

′
m

(a).

It follows that
Elλ0,...,λn,λ

′
1,...,a

(γ0) = ChN (a),

and (iii) then gives fλ0,e
γ0

(a) = ChN (a).

Definition. Suppose that A is progressive and A ⊆ P ⊆ pcf(A). A system 〈bλ : λ ∈ P 〉
of subsets of A is transitive iff for all λ ∈ P and all µ ∈ bλ we have bµ ⊆ bλ.

Theorem 32.34. Suppose that H1(A, κ,N,Ψ), and f = 〈fλ : λ ∈ pcf(A)〉 is a system of
functions, and each fλ is κ-minimally obedient for λ. Let fe be the derived elevated array.
For every λ0 ∈ pcf(A) ∩N put γ0 = ChN (λ0) and define

bλ0
= {a ∈ A : ChN (a) = fλ0,e

γ0
(a)}.

Then the following hold for each λ0 ∈ pcf(A) ∩N :
(i) bλ0

is a λ0-generator.
(ii) There is a b′λ0

⊆ bλ0
such that

(a) bλ0
\b′λ0

∈ J<λ0
[A].

(b) b′λ0
∈ N (each one individually, not the sequence).

(c) b′λ0
is a λ0-generator.

(iii) The system 〈bλ : λ ∈ pcf(A) ∩N〉 is transitive.

Proof. Note that H2(A, κ,N,Ψ, λ0, f
λ0,e, γ0) holds by Lemma 32.31. By definition,

minimally obedient implies universal, so fλ0 is persistently cofinal by Lemma 32.11. Hence
by Lemma 32.24, fλ0,e is persistently cofinal, and so P1(A, κ,N,Ψ, λ0, f

λ0,e, γ0) holds by
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Lemma 32.18. Also, by Lemma 32.19 P2(A, κ,N,Ψ, λ0, f
λ0 , γ0) holds, so the condition

P2(A, κ,N,Ψ, λ0, f
λ0,e, γ0) holds by Lemmas 32.30 and 32.33(ii). Now (i) and (ii) hold by

Lemma 32.22.

Now suppose that λ0 ∈ pcf(A) ∩N and λ ∈ bλ0
. Thus

ChN (λ) = fλ0,e
γ0

(λ),

where γ0 = ChN (λ0). Write γ = ChN (λ). We want to show that bλ ⊆ bλ0
. Take any

a ∈ bλ. So ChN (a) = fλ,eγ (a). By Lemma 32.33(iv) we get fλ0,e
γ0

(a) = ChN (a), so a ∈ bλ0
,

as desired.

Localization

Theorem 32.35. Suppose that A is a progressive set. Then there is no subset B ⊆ pcf(A)
such that |B| = |A|+ and, for every b ∈ B, b > max(pcf(B ∩ b)).

Proof. Assume the contrary. We may assume that |A|+ < min(A). In fact, if we
know the result under this assumption, and now |A|+ = min(A), suppose that B ⊆ pcf(A)
with |B| = |A|+ and ∀b ∈ B[b > max(pcf(B ∩ b))]. Let A′ = A\{|A|+}. Then let
B′ = B\{|A|+}. Hence we have B′ ⊆ pcf(A′). Clearly |B′| = |A′|+ and ∀b ∈ B′[b >
max(pcf(B′ ∩ b))], contradiction.

Also, clearly we may assume that B has order type |A|+.

Let E = A ∪ B. Then |E| < min(E). Let κ = |E|. By Lemma 32.16, we get an
array 〈fλ : λ ∈ pcf(E)〉, with each fλ κ-minimally obedient for λ. Choose N and Ψ so
that H1(A, κ,N,Ψ), with N containing A,B,E, 〈fλ : λ ∈ pcf(E)〉. Now let 〈bλ : λ ∈
pcf(E) ∩ N〉 be the set of transitive generators as guaranteed by Theorem 32.34. Let
b′λ ∈ N be such that b′λ ⊆ bλ and bλ\b′λ ∈ J<λ.

Now let F be the function with domain {a ∈ A : ∃β ∈ B(a ∈ bβ)} such that for each
such a, F (a) is the least β ∈ B such that a ∈ bβ . Define B0 = {γ ∈ B : ∃a ∈ dmn(F )(γ ≤
F (a)}. Thus B0 is an initial segment of B of size at most |A|. Clearly B0 ∈ N . We let
β0 = min(B\B0); so B0 = B ∩ β0.

Now we claim

(1) There exists a finite descending sequence λ0 > · · · > λn of cardinals in N ∩ pcf(B0)
such that B0 ⊆ bλ0

∪ . . . ∪ bλn .

We prove more: we find a finite descending sequence λ0 > · · · > λn of cardinals in
N ∩ pcf(B0) such that B0 ⊆ b′λ0

∪ . . . ∪ b′λn . Let λ0 = max(pcf(B0)). Since B0 ∈ N ,

we clearly have λ0 ∈ N and hence b′λ0
∈ N . So B1

def
= B0\b′λ0

∈ N . Now suppose that
Bk ⊆ B0 has been defined so that Bk ∈ N . If Bk = ∅, the construction stops. Suppose that

Bk 6= ∅. Let λk = max(pcf(Bk)). Clearly λk ∈ N , so b′λk ∈ N and Bκ+1
def
= Bk\b′λk ∈ N .

Since Bκ+1 = Bk\b′λk and b′λk is a λk-generator, from Lemma 9.25(xii) it follows that
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λ0 > λ1 > · · ·. So the construction eventually stops; say that Bn+1 = ∅. So Bn ⊆ b′λn . So

B0 ⊆ b′λ0
∪ (B0\b′λ0

)

= b′λ0
∪B1

⊆ b′λ0
∪ b′λ1

∪B2

. . . . . . . . .

⊆ b′λ0
∪ b′λ1

∪ . . . ∪Bn
⊆ b′λ0

∪ b′λ1
∪ . . . ∪ b′λn .

This proves (1).
Note that β0 > max(pcf(B ∩ β0) = max(pcf(B0)) ≥ λ0, . . . , λn by the initial assump-

tion of the proof. Next, we claim

(2) bβ0
⊆ bλ0

∪ . . . ∪ bλn .

To prove this, first note that bβ0
⊆ A ∪ B0. For, bβ0

⊆ E by definition, and E = A ∪ B;
bβ0

∩ B = B0, so indeed bβ0
⊆ A ∪ B0. Also, B0 ⊆ bλ0

∪ . . . ∪ bλn . So it suffices to prove
that bβ0

∩A ⊆ bλ0
∪ . . . ∪ bλn .

Consider any cardinal a ∈ bβ0
∩ A. Since β0 ∈ B, we have a ∈ dmn(F ), and since

β0 /∈ B0 we have F (a) < β0. Let β = F (a). So a ∈ bβ , and β < β0, so by the minimality
of β0, β ∈ B0. Since B0 ⊆ bλ0

∪ . . .∪ bλn , it follows that β ∈ bλi for some i = 0, . . . , n. But
transitivity implies that bβ ⊆ bλi , and hence a ∈ bλi , as desired. So (2) holds.

By (2) we have
pcf(bβ0

) ⊆ pcf(bλ0
) ∪ . . . ∪ pcf(bλn),

and hence by Lemma 31.25(vii) we get β0 = max(pcf(bβ0
)) ≤ max{λi : i = 0, . . . , n} < β0,

contradiction.

Theorem 32.36. (Localization) Suppose that A is a progressive set of regular cardinals.
Suppose that B ⊆ pcf(A) is also progressive. Then for every λ ∈ pcf(B) there is a B0 ⊆ B
such that |B0| ≤ |A| and λ ∈ pcf(B0).

Proof. We prove by induction on λ that if A and B satisfy the hypotheses of the
theorem, then the conclusion holds. Let C be a λ-generator over B. Thus C ⊆ B and
λ = max(pcf(C)) by Lemma 31.25(vii). Now C ⊆ pcf(A) and C is progressive. It suffices
to find B0 ⊆ C with |B0| ≤ |A| and λ ∈ pcf(B0).

Let C0 = C and λ0 = λ. Suppose that C0 ⊇ · · · ⊇ Ci and λ0 > · · · > λi have
been constructed so that λ = max(pcf(Ci)) and Ci is a λ-generator over B. If there
is no maximal element of λ ∩ pcf(Ci) we stop the construction. Otherwise, let λi+1 be
that maximum element, let Di+1 be a λi+1-generator over B, and let Ci+1 = Ci\Di+1.
Now Di+1 ∈ J≤λi+1

[B] ⊆ J<λ[B], so Ci+1 is still a λ-generator of B by Lemma 9.25(ix),
and λ = max(pcf(Ci+1)) by Lemma 31.25(vii). Note that λi+1 /∈ pcf(Ci+1), by Lemma
31.25(ii).

This construction must eventually stop, when λ∩Ci does not have a maximal element;
we fix the index i.
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(1) There is an E ⊆ λ ∩ pcf(Ci) such that |E| ≤ |A| and λ ∈ pcf(E).

In fact, suppose that no such E exists. We now construct a strictly increasing sequence
〈γj : j < |A|+〉 of elements of pcf(Ci) such that γk > max(pcf({γj : j < k}〉 for all
k < |A|+. (This contradicts Theorem 32.35.) Suppose that {γj : j < k} = E has been
defined. Now λ /∈ pcf(E) by the supposition after (1), and λ < max(pcf(E)) is impossible
since pcf(E) ⊆ pcf(Ci) and λ = max(pcf(Ci)). So λ > max(pcf(E)). Hence, because λ∩Ci
does not have a maximal element, we can choose γk ∈ λ∩Ci such that γk > max(pcf(E)),
as desired. Hence (1) holds.

We take E as in (1). Apply the inductive hypothesis to each γ ∈ E and to A,E in place
of A,B; we get a set Gγ ⊆ E such that |Gγ | ≤ |A| and γ ∈ pcf(Gγ). Let H =

⋃

γ∈E Gγ .
Note that |H| ≤ |A|. Thus E ⊆ pcf(H). Since pcf(E) ⊆ pcf(H) by Theorem 9.15, we
have λ ∈ pcf(H), completing the inductive proof.

The size of pcf(A)

Theorem 32.37. If A is a progressive interval of regular cardinals, then |pcf(A)| < |A|+4.

Proof. Assume that A is a progressive interval of regular cardinals but |pcf(A)| ≥
|A|+4. Let ρ = |A|. We will define a set B of size ρ+ consisting of cardinals in pcf(A) such
that each cardinal in B is greater than max(pcf(B ∩ b)). This will contradict Theorem
32.35.

Let S = Sρ
+3

ρ+
; so S is a stationary subset of ρ+3. By Theorem 30.40 let 〈Ck : k ∈ S〉

be a club guessing sequence. Thus

(1) Ck is a club in k of order type ρ+, for each k ∈ S.

(2) If D is a club in ρ+3, then there is a k ∈ D ∩ S such that Ck ⊆ D.

Let σ be the ordinal such that ℵσ = sup(A). Now pcf(A) is an interval of regular cardinals
by Theorem 31.13. So pcf(A) contains all regular cardinals in the set {ℵσ+α : α < ρ+4}.

Now we are going to define a strictly increasing continuous sequence 〈αi : i < ρ+3〉 of
ordinals less than ρ+4.

1. Let α0 = ρ+3.
2. For i limit let αi =

⋃

j<i αj .
3. Now suppose that αj has been defined for all j ≤ i; we define αi+1. For each k ∈ S

let ek = {ℵσ+αj : j ∈ Ck ∩ (i+ 1)}. Thus e
(+)
k is a subset of pcf(A). If max(pcf(e

(+)
k )) <

ℵσ+ρ+4 , let βk be an ordinal such that max(pcf(e
(+)
k )) < ℵσ+βk and βk < ρ+4; otherwise

let βk = 0. Let αi+1 be greater than αi and all βk for k ∈ S, with αi+1 < ρ+4. This is
possible because |S| = ρ+3. Thus

(3) For every k ∈ S, if max(pcf(e
(+)
k )) < ℵσ+ρ+4 , then max(pcf(e

(+)
k )) < ℵσ+αi+1

.

This finishes the definition of the sequence 〈αi : i < ρ+3〉. Let D = {αi : i < ρ+3}, and
let δ = sup(D). Then D is club in δ. Let µ = ℵσ+δ. Thus µ has cofinality ρ+3, and
it is singular since δ > α0 = ρ+3. Now we apply Corollary 9.35: there is a club C0 in

µ such that µ+ = max(pcf(C
(+)
0 )). We may assume that C0 ⊆ [ℵσ, µ). so we can write

C0 = {ℵσ+i : i ∈ D0} for some club D0 in δ. Let D1 = D0 ∩D. So D1 is a club of δ. Let
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E = {i ∈ ρ+3 : αi ∈ D1}. It is clear that E is a club in ρ+3. So by (2) choose k ∈ E ∩ S
such that Ck ⊆ E. Let C′

k = {β ∈ Ck : there is a largest γ ∈ Ck such that γ < β}. Set
B = {ℵ+

σ+αi
: i ∈ C′

k}. We claim that B is as desired. Clearly |B| = ρ+.
Take any j ∈ C′

k. We want to show that

(∗) ℵ+
σ+αj

> max(pcf(B ∩ ℵ+
σ+αj

)).

Let i ∈ Ck be largest such that i < j. So i+ 1 ≤ j. We consider the definition given above
of αi+1. We defined ek = {ℵσ+αl : l ∈ Ck ∩ (i+ 1)}. Now

(4) B ∩ ℵ+
σ+αj

⊆ e
(+)
k .

For, if b ∈ B ∩ ℵ+
σ+αj

, we can write b = ℵ+
σ+αl

with l ∈ C′
k and l < j. Hence l ≤ i and so

b = ℵ+
σ+αl

∈ e
(+)
k . So (4) holds.

Now if l ∈ Ck ∩ (i + 1), then l ∈ E, and so αl ∈ D1 ⊆ D0. Hence ℵσ+αl ∈ C0. This

shows that e
(+)
k ⊆ C

(+)
0 . So max(pcf(e

(+)
k )) ≤ max(pcf(C

(+)
0 )) = µ+ < ℵσ+ρ+4 . Hence by

(3) we get max(pcf(e
(+)
k )) < ℵσ+αi+1

. So

max(pcf(B ∩ ℵ+
σ+αj

)) ≤ max(pcf(e
(+)
k )) by (4)

< ℵ+
σ+αi+1

≤ ℵ+
σ+αj ,

which proves (∗).

Theorem 32.38. If ℵδ is a singular cardinal such that δ < ℵδ, then

cf([ℵδ]|δ|,⊆) < ℵ|δ|+4 .

Proof. Let κ = |δ|+ and A = (κ,ℵδ)reg. By Lemma 32.25(iii) and Lemma 32.28,

cf([ℵδ]|δ|,⊆) ≤ max(|δ|+, cf([ℵδ]|δ|
+

,⊆))

≤ max(|δ|+,max(pcf(A))).

Hence it suffices to show that max(pcf(A)) < ℵ|δ|+4 .
By Theorem 32.37, |pcf(A)| < |A|+4. Write max(pcf(A)) = ℵα and κ = ℵβ . We want

to show that α < |δ|+4. Now pcf(A) = (κ,max(pcf(A))]reg = (ℵβ,ℵα]reg. By Lemma
32.27, |(β, α)| = |pcf(A)| < |A|+4 ≤ |δ|+4. Also, β ≤ ℵβ = κ = |δ|+ < |δ|+4. So
|α| < |δ|+4, and hence α < |δ|+4.

Theorem 32.39. If δ is a limit ordinal, then

ℵcf(δ)
δ < max

((

|δ|cf(δ)
)+

,ℵ|δ|+4

)

.
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Proof. If δ = ℵδ, then |δ| = ℵδ and the conclusion is obvious. So assume that δ < ℵδ.
Now

(1) ℵcf(δ)
δ ≤ |δ|cf(δ) · cf([ℵδ]|δ|,⊆).

In fact, let B ⊆ [ℵδ]|δ| be cofinal and of size cf([ℵδ]|δ|,⊆). Now cf(δ) ≤ |δ|, so

[ℵδ]cf(δ) =
⋃

Y ∈B
[Y ]cf(δ),

and (1) follows. Hence the theorem follows by Theorem 32.38.

Corollary 32.40. ℵℵ0
ω < max

(
(2ℵ0)+,ℵω4

)
.
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33. ωω and P(ω)/fin

We define f ≤ g iff f, g ∈ ωω and f(m) ≤ g(m) for all m ∈ ω.
We define f ≤∗ g iff f, g ∈ ωω and ∃m∀n ≥ m[f(n) ≤ g(n)].
A family D ⊆ ωω is almost dominating iff ∀f ∈ ωω∃g ∈ D [f ≤∗ g]. Let d be the

smallest size of a almost dominating family; this is the dominating number.
A family B ⊆ ωω is almost unbounded iff there is no f ∈ ωω such that ∀g ∈ B[g ≤∗ f ].

Let b be the smallest size of an almost unbounded family.

Theorem 33.1. ℵ1 ≤ cf(b) = b ≤ cf(d) ≤ d ≤ 2ω.

Proof. If {fn : n ∈ ω} ⊆ ωω, define g ∈ ωω by setting g(n) = sup{fm(n) : m ≤ n}
for all n ∈ ω. Thus if m ≤ n, then fm(n) ≤ g(n), so fm ≤∗ g. Hence g is a ≤∗ bound
for {fn : n ∈ ω} ⊆ ωω. This argument shows that ℵ1 ≤ b. Suppose that cf(b) < b. Let
X be almost unbounded with |X | = b. Then we can write X =

⋃

α<cf(b) Yα with |Yα| < b

for all α < cf(b). Choose a bound gα for Yα for each α < cf(b), and then by the above
argument choose a bound h for {gα : α < cf(b)}. Then h is a bound for X , contradiction.
Thus cf(b) = b.

To prove that b ≤ cf(d), let D be a almost dominating family of size d, and write
D =

⋃

α<cf(d)Eα, with each Eα of size less than d. Since then Eα is not almost dominating,

there is an fα ∈ ωω such that for all g ∈ Eα we have fα 6≤∗ g. Suppose that cf(d) < b,
and accordingly let h ∈ ωω be such that fα ≤∗ h for all α < cf(d). Choose k ∈ D such
that h ≤∗ k. Say k ∈ Eα. But fα ≤∗ h ≤∗ k, contradiction.

Finally, obviously ωω is almost dominating, so d ≤ 2ω.

An interval partition is a partition P of ω whose members are finite intervals. For such a
partition, we introduce the following notation:

P = {[iPn , i
P
n+1) : n ∈ ω},

where 0 = iP0 < iP1 < · · ·. Given two interval partitions P,Q, we say that P almost

dominates Q iff ∃m∀n ≥ m∃k[[iQk , i
Q
k+1) ⊆ [iPn , i

P
n+1)].

Now with each interval partition P we associate a function funcP ∈ ωω as follows. For
each x ∈ ω, choose n such that x ∈ [iPn , i

P
n+1), and let funcP (x) = iPn+2 − 1. Conversely,

with each g ∈ ωω we associate an interval partition partg = Q as follows. We define

〈iQk : k ∈ ω〉 by recursion. Let iQ0 = 0. If iQk has been defined, let iQk+1 be minimum such

that iQk+1 > iQk and for any x ≤ iQk we have g(x) < iQk+1.

Theorem 33.2. (i) If P is an interval partition and g ∈ ωω, and if funcP ≤∗ g, then
partg almost dominates P .

(ii) If P is an interval partition and g ∈ ωω, and if P almost dominates partg, then
g ≤∗ funcP .

(iii) d is the smallest size of a family P of interval partitions such that every interval
partition is almost dominated by some member of P.

(iv) b is the smallest size of a family P of interval partitions such that there is no
interval partition which almost dominates each member of P.
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Proof. For both (i) and (ii) let, for brevity, Q = partg.
(i) Choose p such that funcP (n) ≤ g(n) for all n ≥ p. Take any n ≥ p. Choose k such

that iQn ∈ [iPk , i
P
k+1). Take any x ∈ [iPk+1, i

P
k+2). Then p ≤ n ≤ iQn , so

iQn < iPk+1 ≤ x ≤ iPk+2 − 1 = f(iQn ) ≤ g(iQn ) < iQn+1.

Thus [iPk+1, i
P
k+2) ⊆ [iQn , i

Q
n+1), as desired.

(ii) By definition, choose m so that for all n ≥ m there is a k such that [iQk , i
Q
k+1) ⊆

[iPn , i
P
n+1). Take any x ≥ iPm; we claim that g(x) ≤ funcP (x). For take n such that

x ∈ [iPn , i
P
n+1). Then n+1 ≥ m, so we can choose k ∈ ω such that [iQk , i

Q
k+1) ⊆ [iPn+1, i

P
n+2))

Now x < iPn+1 ≤ iQk , so g(x) ≤ iQk+1 − 1 ≤ iPn+2 − 1 = funcP (x), as desired.
(iii) and (iv) follow immediately from (i) and (ii).

Given X, Y ∈ [ω]ω, we say that X splits Y iff Y ∩ X and Y \X are infinite. A splitting
family is a subset S ⊆ [ω]ω such that every Y ∈ [ω]ω is split by some member of S. The
splitting number s is the smallest cardinality of a splitting family.

If P is an interval partition, let ϕ(P ) =
⋃

n∈ω[iP2n, i
P
2n+1). If X ∈ [ω]ω define an interval

partition ψ(X) = Q as follows:

iQ0 = 0;

iQn+1 = least j > iQn such that [iQn , j) ∩X 6= ∅.

Lemma 33.3. If P almost dominates ψ(X), then ϕ(P ) splits X.

Proof. Let Ψ(X) = Q, as above. Choose m such that ∀n ≥ m∃k[[iQk , i
Q
k+1) ⊆

[iPn , i
P
n+1)]; hence ∀n[X ∩ [iPn , i

P
n+1) 6= ∅]. So the lemma follows.

Theorem 33.4. s ≤ d.

Proof. Let D be an almost dominating family of interval partitions, with |D| = d.
Then {ϕ(P ) : P ∈ D} is a splitting family by Lemma 33.3.

A family X ⊆ [ω]ω is unsplittable iff there is no a ∈ [ω]ω such that ∀x ∈ X [x∩ a is infinite
and x\a is infinite].

Proposition 33.5. [ω]ω is unsplittable.

Proof. Suppose, on the contrary that a splits [ω]ω. Applying this to a itself gives a
contradiction.

We define the reaping number r to be the smallest cardinality of an unsplittable family.

Proposition 33.6. b ≤ r.

Proof. Let R ⊆ [ω]ω be unsplittable with |R| = r. We claim that no interval partition
P almost dominates each member of {ψ(X) : X ∈ R}. In fact, otherwise by Lemma 33.3,
ϕ(P ) splits R, contradiction. So the proposition follows by Theorem 33.2(iv).
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If F is a family of sets, a pseudo-intersection of F is an infinite set A such that A ⊆∗ B
for all B ∈ F .

A tower is a sequence 〈Tξ : ξ < α〉 with the following properties:

(1) α is an ordinal, and each Tξ is an infinite subset of ω.

(2) If ξ < η < α, then Tη ⊆∗ Tξ.

(3) {Tξ : ξ < α} does not have a pseudo-intersection.

The tower number t is the smallest ordinal α which is the length of a tower.

A set D ⊆ [ω]ω is open iff ∀X, Y ∈ [ω]ω[X ⊆∗ Y ∈ D → X ∈ D ]. D is dense iff
∀Y ∈ [ω]ω∃X ∈ D [X ⊆ Y ]. Obviously [ω]ω itself is dense open. We say that D is weakly
dense iff ∀Y ∈ [ω]ω∃X ∈ D [X ⊆∗ Y ].

Proposition 33.7. If D is weakly dense, then there is a D ′ such that D ⊆ D ′ ⊆ [ω]ω,
|D | = |D ′|, and D ′ is dense.

Proof. Let D ′ = {X ∈ [ω]ω : there is a finite F ⊆ ω such that X ∪ F ∈ D}.

Proposition 33.8. For every X ∈ [ω]ω there is a dense open family D such that X /∈ D.

Proof. Let X = Y ∪ Z with Y, Z ∈ [ω]ω and Y ∩ Z = ∅. Define

D = {W ∈ [ω]ω : W ⊆∗ Y or W ⊆∗ Z or W ∩X is finite}.

Clearly D is as desired.

We now consider the Boolean algebra P(ω)/fin. A partition of this algebra is a system
of pairwise disjoint nonzero elements with sum 1. A partition 〈ai : i ∈ I〉 is a refinement
of a partition 〈bj : j ∈ J〉 provided that ∀j ∈ J∃i ∈ I[aj ≤ bi]. We say that P(ω)/fin is
(κ,∞)-distributive iff every family of at most κ partitions has a common refinement. h is
the least κ such that P(ω)/fin is not (κ,∞)-distributive, or 0 if there is no such κ.

Proposition 33.9. h = min{|A | : A is a family of open weakly dense sets and
⋂

A = ∅.
Proof. Let h′ = min{|A | : A is a family of open weakly dense sets and

⋂
A = ∅}.

h′ ≤ h: Suppose that P(ω)/fin is not (κ,∞)-distributive. So there is a family P of
partitions of P(ω)/fin such that |P| ≤ κ and P does not have a common refinement. Let
Q be maximal subject to the following conditions: Q is a family of pairwise disjoint nonzero
members of P(ω)/fin and ∀a ∈ Q∀P ∈ P∃b ∈ P [a ≤ b]. Then Q is not a partition, as
otherwise it would refine P. Let X ∈ [ω]ω be such that a · [X ] = 0 for all a ∈ Q. Let
f : ω → X be a bijection. For each P ∈ P let

DP = {Y ∈ [ω]ω : ∃Z ∈ [ω]ω([Z] ∈ P and [f [Y ]] ≤ [Z])}.

We claim that DP is dense open. It is clearly open. Now suppose that W ∈ [ω]ω. Since
[f [W ]] 6= 0, there is a Z ∈ [ω]ω such that [Z] ∈ P and [f [W ]]·[Z] 6= 0. Let Y = W ∩f−1[Z].
Then Y ∈ [ω]ω and [f [Y ]] ≤ [Z]. So Y ∈ DP . So the claim is established.
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Now suppose that
⋂

P∈P
DP 6= ∅; we will get a contradiction, and this will prove

h ≤ h′′. Take Y ∈ ⋂P∈P
DP . For any P ∈ P we have Y ∈ DP , and so we can choose

Z ∈ [ω]ω such that [Z] ∈ P and [f [Y ]] ≤ [Z]. Then [f [Y ]] ≤ [X ] and Q ∪ {[f [Y ]]} satisfies
the conditions defining Q, contradiction.

h ≤ h′: Suppose that A is a family of open weakly dense sets with empty intersection.
Let κ = |A |. We show that P(ω)/fin is not (κ,∞)-distributive, and this will prove h ≤ h′.
If D ∈ A , let PD be a maximal set of nonzero pairwise disjoint elements of P(ω)/fin such
that ∀a ∈ P∃X ∈ D(a ≤ [X ]). Clearly PD is a partition. Suppose that Q is a common
refinement of {DP : P ∈ A }; we will get a contradiction, which will finish the proof. Take
any [X ] ∈ Q. If D ∈ A , then there is a [Y ] ∈ PD such that [X ] ≤ [Y ]. By the definition
of PD , there is a Z ∈ D such that [Y ] ≤ [Z]. Then X ∈ D since D is open. So X ∈ ⋂A ,
contradiction.

Proposition 33.10. t ≤ h.

Proof. Suppose that A is a family of dense open sets with |A | < t; we want to find
a member of

⋂
A . Write A = {Dα : α < κ} with κ < t. We now define a sequence

〈Tα : α ≤ κ} by recursion. Let T0 = ω. If Tα ∈ [ω]ω has been chosen, let Tα+1 ∈ Dα

be a subset of Tα; this is possible because Dα is dense. For α ≤ κ limit, let Tα be a
pseudo-intersection of {Tβ : β < α}; this is possible because α < t. This finishes the
construction.

By openness we have Tκ ∈ A .

Let n ∈ ω\1, k ∈ ω\2, f : [ω]n → k, and H ⊆ ω. Then H is homogeneous for f iff f ↾ [H]n

is constant; it is almost homogeneous for f iff there is a finite set F ⊆ H such that H\F
is homogeneous for f .

Proposition 33.11. If n ∈ ω\1 and k ∈ ω\2, then there is no H ∈ [ω]ω such that H is
almost homogeneous for all f ∈ [ω]nk.

Proof. Suppose that such an H exists. Let H = {m0, m1, . . .} with m0 < m1 < · · ·.
Define f : [ω]n → k by setting, for each Y ∈ [ω]n,

f(Y ) =

{
0 if Y /∈ [H]n,
0 if Y ∈ [H]n and min(Y ) has the form m2i for some i,
1 otherwise.

Clearly H is not almost homogeneous for f , contradiction.

We now define, for every positive integer n,

parn = min{|F | : F ⊆ [ω]n2 : ¬∃X ∈ [ω]ω∀f ∈ F [X is almost homogeneous for f}.

Proposition 33.12. s = par1.

Proof. First suppose that F satisfies the condition in the definiton of par1, with
|F | = par1. For each f ∈ F let Pf = {m ∈ ω : f(m) = 1}, and let M = {Pf : f ∈ F}. We
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claim that M is a splitting family; this will prove s ≤ par1. So, suppose that Y ∈ [ω]ω.
Choose f ∈ F such that Y is not almost homogeneous for f . Then Y ∩ Pf is infinite, as
otherwise, since f has the constant value 0 on Y \Pf , Y \Pf would be homogeneous for f .
Similarly Y \Pf is infinite.

Second, suppose that S is a splitting family. Let F be the collection of all characteristic
functions of members of S. So if we show that F satisfies the conditions in the definition
of parn, this will prove that s ≥ par1. Suppose that Y ∈ [ω]ω, and choose M ∈ S which
splits Y . Let f be the characteristic function of M . If N is any finite subset of Y , then
(Y \N) ∩ S and (Y \N)\S are both infinite, and so f is not constant on Y \N .

Proposition 33.13. Suppose that 2 ≤ k ∈ ω and n is a positive integer. Then

parn = min{|F | : F ⊆ [ω]nk : ¬∃X ∈ [ω]ω∀f ∈ F [X is almost homogeneous for f ]}

Proof. If F is as in the definition of parn, clearly F works as in the right side. So
≥ holds. Now suppose that F is as in the right side. For each f ∈ F and i < k define
gfi : [ω]n → 2 by setting, for any x ∈ [ω]n,

gfi(x) =
{

0 if f(x) = i,
1 otherwise.

Thus G
def
= {gfi : f ∈ F, i < k} has the same size as X , so it suffices, in order to prove ≤,

to show that G satisfies the condition in the definition of parn. So suppose that X ∈ [ω]ω

and X is almost homogeneous for each gfi. We claim that X is almost homogeneous for
each f ∈ F (contradiction). For, take any f ∈ F . For each i < k let Mi be a finite subset
of X such that gfi is constant on [X\Mi]

n. We claim that f is constant on
[
X\⋃i<kMi

]
,

as desired. For, take any two x, y ∈ X\⋃i<kMi. Say f(x) = i. Then since x, y ∈ X\Mi,
we get gfi(y) = gfi(x) = 0, and hence f(y) = i, as desired.

Example 33.14. If n is a positive integer and k ∈ ω\2, then there is a countable F ⊆ [ω]nk
such that there is no M ∈ [ω]ω such that M is homogeneous for each f ∈ F .

Proof. Let [ω]n = {aα : α < ω}, with aα 6= aβ if α 6= β. For each α < ω we define
gα : [ω]n → k by setting, for each x ∈ [ω]n,

gα(x) =
{

1 if x = aα,
0 otherwise.

Let F = {gα : α < ω}. Suppose that M ∈ [ω]ω. Choose α < ω so that aα ∈ [M ]n, and
choose x ∈ [M ]n with x 6= aα. Then gα(aα) = 1 and gα(x) = 0, so M is not homogeneous
for gα.

Lemma 33.15. If m ≤ n, then parn ≤ parm.

Corollary 33.16. parn ≤ s for every positive integer n.

Theorem 33.17. ω < s.
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Proof. Suppose that {Yi : i < ω} is a splitting family. It is clear how to construct by

recursion an ε ∈ ω2 such that
⋂

j<i Y
ε(j)
j is infinite for every i < ω. Now construct 〈mi :

i < ω by letting mi ∈
⋂

j<i Y
ε(j)
j \{mj : j < i} for every i < ω. Clearly Z

def
= {mi : i < ω}

is not split by any Yi.

Theorem 33.18. For every integer n ≥ 2, parn = min(b, s).

Proof. By Corollary 33.16, parn ≤ s. Next we show that parn ≤ b. By Lemma
33.15 it suffices to take the case n = 2. Let B be an almost unbounded subset of ωω with
|B| = b. We may assume that each member of B is strictly increasing. For each g ∈ B

define fg : [ω]2 → 2 by setting for any {x, y} ∈ [ω]2 with x < y,

fg({x, y}) =
{

1 if g(x) < y,
0 otherwise.

We claim that there is no set H ∈ [ω]ω which is almost homogeneous for all fg’s; this will
prove parn ≤ b. Suppose that there is such an H.

(1) If K ⊆ ω and fg[[K]2] ⊆ {0}, then K is finite.

For, assume that K 6= ∅, and let x be its first element. If z ∈ K\{x}, then fg({x, z}) = 0,
and hence z ≤ g(x). So (1) holds.

Now we define h, k : ω → ω as follows. For any x ∈ ω, h(x) and k(x) are the first and
second elements of H which are greater than x. Now take any g ∈ B; we will show that
g <∗ k (contradiction). Let F be a finite subset of H such that fg ↾ [H\F ] is constant. By
(1), this constant value is 1. Thus if x > F , we have h(x), k(x) ∈ H\F and h(x) < k(x), so
fg({h(x), k(x)}) = 1, and hence g(h(x)) < k(x). So g(x) < g(h(x)) < k(x). Thus g <∗ k,
as desired.

So we have shown ≤ in the theorem.
For ≥, we prove the following statement by induction on n:

(2) If n is a positive integer, 〈fξ : ξ < κ〉 is a system of members of [ω]n2, and κ < min(s, b),
then there is a set homogeneous for all of the fξ’s.

This holds for n = 1 by Proposition 33.12. Now suppose that n > 2 and we know the result
for n− 1. Suppose that 〈fξ : ξ < κ〉 is a sequence of members of [ω]n2 with κ < min(b, s).
We want to find a set almost homogeneous for all of them. Let c : ω → [ω]n−1 be a
bijection. For each ξ < κ and p ∈ ω let

fξ,p(m) =
{
fξ(c(p) ∪ {m}) if m /∈ c(p),
0 otherwise.

Thus {fξ,p : ξ < κ, p ∈ ω} is a family of less than s functions mapping ω into 2 (using
Theorem 33.17). Hence by Proposition 33.12 there is an infinite set A almost homogeneous
for all of them. So for each ξ < κ and p ∈ ω we can choose gξ(p) ∈ ω and jξ(p) ∈ 2 such
that fξ,p(x) = jξ(p) for all x ∈ A such that x ≥ gξ(p). Write A = {mi : i < ω}, m
strictly increasing. For each a ∈ [ω]n−1 let cξ(a) = jξ(c

−1({mi : i ∈ a})). By the inductive
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hypothesis, let M be an infinite set almost homogeneous for each jξ. Choose bξ and kξ
such that cξ takes on the constant value kξ on [M\bξ]n−1. Let B = {mi : i ∈M}.

(3) If a ∈ [B\mbξ ]
n−1 then jξ(c

−1(a)) = kξ.

In fact, write a = {mi : i ∈ s}. Then s ⊆ M , and mi ≥ mbξ and hence i ≥ bξ, for each
i ∈ s. So s ∈ [M\bξ]n−1, so kξ = cξ(s) = jξ(c

−1({mi : i ∈ s})) = jξ(c
−1(a)). So (3) holds.

Since κ < b, choose h such that gξ ≤∗ h for all ξ < κ. Choose aξ so that gξ(p) ≤ h(p)
for all p ≥ aξ.

Now we define x0 < x1 < · · · in B by recursion. Suppose that xs has been defined for
all s < t. Choose xt ∈ B so that xs < xt for all s < t, and also h(p) < xt for all p such that
c(p) ∈ [{x0, . . . , xt−1}]n−1. Let H = {xi : i < ω}. We claim that H is almost homogeneous
for each fξ. Let ξ < κ. Choose t such that t > c(p) for each p < aξ, and also t ≥ mbξ .
Suppose that a ∈ [H\t]n. Let m be the largest element of a, and let p = c−1(a\{m}).
Then c(p) consists of members of H which are ≥ t, so aξ ≤ p. Thus gξ(p) ≤ h(p) < m.
Also note that a\{m} ∈ [B\mbξ ]

n−1. So

fξ(a) = fξ,p(m) = jξ(p) = jξ(c
−1(a\{m})) = kξ.

Proposition 33.19. h ≤ b, s.

Proof. By Proposition 33.18 it suffices to show that h ≤ par2. So, suppose that

F ⊆ [ω]22 and |F | < h; we want to find X ∈ [ω]ω which is almost homogeneous for all
f ∈ F . For each f ∈ F let Df = {X ∈ [ω]ω : X is almost homogeneous for f}. We claim
that each Df is dense open. For openness, suppose that X ⊆∗ Y ∈ Df . Choose G,H finite
such that f ↾ [Y \G]2 is constant and X\Y = H. Then f ↾ [X\(G ∪H)]2 ⊆ f ↾ [Y \G]2 is
constant; so X ∈ Gf . For denseness, take any Y ∈ [ω]ω. Then f ↾ [Y ]2 : [Y ]2 → 2, so by
Ramsey’s theorem there is an infinite X ⊆ Y such that f ↾ [X ]2 is constant; so X ∈ Df ,
as desired.

Take H ∈ ⋂f∈F Df . Clearly H is almost homogeneous for all f ∈ F , as desired.

A family F ⊆ [ω]ω has the strong finite intersection property, SFIP, iff the intersection of
any finite subset of F is infinite. We define

p = min{|F | : F ⊆ [ω]ω, F has SFIP, but has no pseudo-intersection}.

Proposition 33.20. ℵ1 ≤ p ≤ t.

Proof. Obviously p ≤ t. Now suppose that F = {Am : m ∈ ω} has SFIP; we show
that it has a pseuodo-intersection, thus proving the first inequality in the proposition. Let
Bm = A0 ∩ . . . ∩Am for all m ∈ ω. Each Bm is infinite. By the argument for the proof of
Theorem 33.17, {Bm : m ∈ ω} has a pseudo-intersection. Hence so does F .

Sets a, b ∈ [ω]ω are almost disjoint iff A ∩ B is finite. A set A ⊆ [ω]ω is maximal almost
disjoint, MAD, iff any two distinct members of A are almost disjoint, and A is maximal
under inclusion with this property. a is the least size of a MAD family.
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Proposition 33.21. b ≤ a.

Proof. Suppose that A is an infinite MAD family. Let 〈Cn : n ∈ ω〉 be a one-one
enumeration of some of the members of A . We define

D0 = C0 ∪
(

ω\
⋃

n∈ω
Cn

)

;

Dn+1 = Cn+1\
⋃

m≤n
Cm.

Clearly 〈Dn : n ∈ ω〉 is a partition of ω into infinite subsets. For each n ∈ ω, let
fn : Dn → ω be a bijection. Let A ′ = A \{Cn : n ∈ ω}. For each A ∈ A define gA : ω → ω
by letting gA(n) be the least natural number such that ∀m ∈ A∩Dn(fn(m) < gA(n)), for
any n ∈ ω. We claim that {gA : A ∈ A ′} is unbounded, as desired.

To see this, suppose that gA ≤∗ h for all A ∈ A ′. Define X = {f−1
n (h(n)) : n ∈ ω}.

Thus |Dn∩X | = 1 for all n ∈ ω. Hence X is infinite. Now take any A ∈ A ′; we show that
X ∩ A is finite. Choose p ∈ ω so that gA(n) ≤ h(n) for all n ≥ p. Then, we claim,

(∗) A ∩X ⊆
⋃

n<p

(A ∩Dn).

(Hence A ∩X is finite, as desired.) To prove (∗), suppose that m ∈ A ∩X . Choose n ∈ ω
so that m = f−1

n (h(n)). Then m ∈ A ∩Dn, so fn(m) < gA(n). But fn(m) = h(n), so it
follows that n < p.

A set X ⊆ [ω]ω is independent iff for any finite disjoint F,G ⊆ X we have
⋂
F ∩

⋂

a∈G(ω\a) 6= ∅. We let i be the least size of a maximal independent set.

Proposition 33.22. r ≤ i.

Proof. Let I ⊆ [ω]ω be maximal independent, with size i. Let R be the set of all
monomials over I . By maximality, R satisfies the conditions defining r.

Lemma 33.23. Suppose that 〈Cn : n ∈ ω〉 is a sequence of infinite subsets of ω such that
Cn ⊆∗ Cm if m < n. Suppose that A is a family of size less than d of infinite subsets
of ω, each of which has infinite intersection with each Cn. Then {Cn : n ∈ ω} has a
pseudo-intersection B that has infinite intersection with each member of A .

Proof. Let C′
n =

⋂

m≤n Cm for all n ∈ ω. If A ∈ A , then

A ∩ C′
n = (A ∩ Cn)\

⋃

m<n

(Cn\Cm),

so A ∩ C′
n is still infinite. So it suffices to work with the C′

n’s rather than the Cn’s.
For each h ∈ ωω let Bh =

⋃

n∈ω(C′
n ∩ h(n)). Then Bh\C′

n ⊆ ⋃

m<n h(m), so that
Bh ⊆∗ C′

n. Hence it suffices to find h ∈ ωω so that Bh has infinite intersection with each
member of A .
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For each A ∈ A and each n ∈ ω, let fA(n) be the n-th element of the infinite set
A ∩ C′

n (starting the numbering at 0). Since |A | < d, the set {fA : A ∈ A } is not almost
dominating, and so we can choose h ∈ ωω such that h 6≤∗ fA for all A ∈ A . Thus for each
A ∈ A , the set {n ∈ ω : h(n) > fA(n)} is infinite, so that h(n) ∩ A ∩ C′

n has at least n
elements for infinitely many n, and so Bh ∩ A is infinite, as desired.

Proposition 33.24. d ≤ i.

Proof. Suppose that I ⊆ [ω]ω is independent and |I | < d; we show that it is not
maximal.

Let 〈Dn : n ∈ ω〉 be a one-one enumeration of some of the elements of I , and let
I ′ = I \{Dn : n ∈ ω}. For each ε ∈ ω2 and each n ∈ ω define

Cεn =
⋂

k<n

D
ε(k)
k .

Let

A =

{
⋂

X∈F
X ∩

⋂

X∈G
(ω\X) : F,G are finite disjoint subsets of I

}

.

We apply Lemma 33.23 to 〈Cεn : n ∈ ω〉 and A to get a pseudo-intersection Bε of {Cεn :
n ∈ ω} which has infinite intersection with each element of A . Thus

(1) Bε ⊆∗ ⋂
k<nD

ε(k)
k for all n ∈ ω.

(2) Bε has infinite intersection with each element of A .

(3) Bε ∩Bδ is finite for distinct ε, δ ∈ ω2.

This is clear from (1).

(4) There are countable disjoint Q,Q′ ⊆ ω2 such that for every p ∈ <ω2 there are f ∈ Q
and g ∈ Q′ such that p ⊆ f and p ⊆ g.

In fact, enumerate <ω2 as 〈pn : n ∈ ω}. Now we define functions fn, gn ∈ ω2 by induction
as follows: they are distinct elements of the set

{h ∈ ω2 : pn ⊆ h}\{fm, gm : m < n}.

Then we let Q = {fn : n ∈ ω} and Q′ = {gn : n ∈ ω}. Clearly (4) holds.

(5) There exists 〈Eε : ε ∈ Q ∪Q′〉 such that the Eε’s are pairwise disjoint, Eε ⊆ Bε, and
Bε\Eε is finite.

To prove this, enumerate Q ∪ Q′ as 〈εn : n ∈ ω〉 without repetitions, and let Eεn =
Bεn\⋃m<nBεm for all m; clearly (5) then holds.

Now we define
Z =

⋃

ε∈Q
Eε, and Z ′ =

⋃

ε∈Q′

Eε.
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(6) Z has infinite intersection with each set
(⋂

X∈F X
)
∩
(⋂

X∈G(ω\X)
)

with F,G finite
disjoint subsets of I .

In fact, take such F,G. Let F ′ = F ∩ I ′ and G′ = G ∩ I ′. Choose n ∈ ω such that for
all k ∈ ω, if Dk ∈ F ∪G then k < n. Define p ∈ n2 by setting, for each k < n,

p(k) =
{

1 if Dk ∈ F ,
0 otherwise.

Choose ε ∈ Q such that p ⊆ ε. Then

(
⋂

X∈F
X

)

∩
(
⋂

X∈G
(ω\X)

)

=

(
⋂

X∈F ′

X

)

∩
(
⋂

X∈G′

(ω\X)

)

∩
(

⋂

Dk∈F∪G
D
ε(k)
k

)

⊇
(
⋂

X∈F ′

X

)

∩
(
⋂

X∈G′

(ω\X)

)

∩
(
⋂

k<n

D
ε(k)
k

)

⊇∗
(
⋂

X∈F ′

X

)

∩
(
⋂

X∈G′

(ω\X)

)

∩Bε.

⊇∗
(
⋂

X∈F ′

X

)

∩
(
⋂

X∈G′

(ω\X)

)

∩Eε.

The last intersection is infinite, and is a subset of Z since ε ∈ Q, as desired; (6) holds.
Similarly,

(7) Z ′ has infinite intersection with each set
⋂

X∈F X ∩ ⋂X∈G(ω\X), with F,G finite
disjoint subsets of I .

Since ω\Z ⊇ Z ′, this finishes the proof.

u is the least size of a set which filter-generates a nonprincipal ultrafilter on P(ω)/fin.

Proposition 33.25. r ≤ u.

Proof. Let X filter-generate a nonprincipal ultrafilter U . We may assume that X is
closed under ∩. For any a ⊆ ω, either a ∈ U or (ω\a) ∈ U ; so there is a b ∈ X such that
b ⊆ a or b ⊆ (ω\a).

A set X ⊆ [ω]ω is ideal independent iff ∀F ∈ [X ]<ω∀a ∈ X\F [a\⋃F is infinite]. Let
smm = min{|X | : X is maximal ideal independent}.

Proposition 33.26. r ≤ smm.

Proof. Denote by [x] the equivalence class of x ⊆ ω in the algebra A
def
= P(ω)/fin.

Suppose that X ⊆ A is maximal ideal independent. Let

Y = X ∪ {−
∑

F : F ∈ [X ]<ω} ∪ {b · −
∑

F : b /∈ F, F ∪ {b} ∈ [X ]<ω}.
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Clearly the members of Y are nonzero. We claim that Y is weakly dense in A. For, suppose
that a ∈ A\X . Then X ∪ {a} is no longer ideal independent, so we have two cases.

Case 1. a ≤∑F for some F ∈ [X ]<ω. Then −∑F ≤ −a, as desired.
Case 2. There exist a finite subset F of X and a b ∈ X\F such that b ≤ ∑

F + a.
Then b · −∑F ≤ a, as desired.

Theorem 33.27. d ≤ smm.

Proof. Suppose, in order to get a contradiction, that smm < d. Let X ⊆ [ω]ω be
such that {[x] : x ∈ X} is maximal ideal independent and ω ≤ |X | < d, with [x] 6= [y] for
x, y ∈ X and x 6= y, where [x] is the equivalence class of x mod finite. Let 〈Ai : i ∈ ω〉 be
a sequence of distinct elements of X . Define A′

i = Ai ∪ {i}. Let

X ′ = (X\{Ai : i ∈ ω}) ∪ {A′
i : i ∈ ω}

Define Ci = A′
i\
⋃

j<iA
′
j for each i ∈ ω. By ideal independence, each Ci is infinite.

(1) If F ∈ [X ′]<ω, B ∈ X ′\(F ∪ {A′
i : i ∈ ω}), and n ∈ ω, then there is a j ≥ n such that

Cj ∩B\⋃F 6= ∅.

In fact, otherwise we have
(
⋃

j≥n Cj
)

∩ B\⋃F ) = ∅, hence B\
(
⋃

j<n Cj ∪
⋃
F
)

= ∅,

hence B\
(
⋃

j<nAj ∪
⋃
F
)

= ∅, contradicting ideal independence.

By (1) we can make the following definition. For F ∈ [X ′]<ω, B ∈ X ′\(F ∪ {A′
i : i ∈

ω}) and n ∈ ω, let

ϕFB(n) = min{k ∈ ω : ∃j ≥ n[Cj ∩B ∩ k\
⋃

F 6= ∅]}.

The number of pairs (F,B) as above is less than d, so the set of all such functions ϕFB is
not dominating. Hence there is a function h0 ∈ ωω not dominated by any of them. We
may assume that h0 is strictly increasing. For each n ∈ ω let Dn = Cn\h0(n).

(2) If F ∈ [X ′]<ω and n ∈ ω, then there is a j ≥ n such that Dj\
⋃
F 6= ∅.

In fact, otherwise we have
(
⋃

j≥nDj
)

\⋃F = ∅, i.e.,
(
⋃

j≥n(Cj\h0(j))
)

\⋃F = ∅. Hence
(
⋃

j≥n(Cj\h0(j))
)

⊆ ⋃
F . Choose j ≥ n so that A′

j /∈ F . Then Cj\h0(j) ⊆ ⋃
F , i.e.,

(A′
j\
⋃

k<j A
′
k)\h0(j) ⊆ ⋃

F . Hence A′
j ⊆∗ ⋃

k<j A
′
k ∪

⋃
F , contradicting ideal indepen-

dence.
By (2) we can make the following definition. For F ∈ [X ′]<ω and n ∈ ω let

ϕ′
F (n) = min{k : ∃j ≥ n[Dj ∩ k\

⋃

F 6= ∅]}.

Again, there are fewer than d of these functions ϕ′
F , so there is a function k ∈ ωω not

dominated by any of them. For any n ∈ ω let

h1(n) = min{h1(n− 1) + 1, k(n) + 1,min(Cn\h0(n)) + 1),
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with h1(n− 1) + 1 omitted if n = 0.
Now let

Y =
⋃

n∈ω
[Dn ∩ h1(n)].

We claim that [Y ] /∈ {[a] : a ∈ X ′} and {[Y ]} ∪ {[a] : a ∈ X ′} is ideal independent.
(Contradiction.)

(3) ∀F ∈ [X ′]<ω[Y 6⊆∗ ⋃F ]; in particular, [Y ] /∈ {[a] : a ∈ X ′}.

In fact, let n ∈ ω; we will find j ≥ n such that Dj ∩ h1(j)\⋃F 6= ∅. We have k 6≤∗

ϕ′
F , so choose m ≥ n so that ϕ′

F (m) < k(m). By the definition of ϕ′
F (m), there is a

j ≥ m such that Dj ∩ ϕ′
F (m)\⋃F 6= ∅. We have ϕ′

F (m) < k(m) < h1(m) < h1(j), so
Dj ∩ h1(j)\⋃F 6= ∅. This proves (3).

(4) For all F ∈ [X ′]<ω and all n ∈ ω with A′
n /∈ F we have A′

n 6⊆∗ Y ∪⋃F .

In fact, assume otherwise. Now for m > n we have An ∩Cm = ∅, and hence An ∩Dm = ∅.
Hence An ⊆∗ ⋃

m≤n[Dn ∩ h1(n)] ∪⋃F . Since
⋃

m≤n[Dn ∩ h1(n)] is finite, it follows that
An ⊆∗ ⋃F , contradiction.

(5) If F ∈ [X ′]<ω and B ∈ X ′\(F ∪ {A′
n : n ∈ ω}), then B 6⊆∗ Y ∪⋃F .

In fact, let n ∈ ω. We will find j ≥ n such that Cj ∩ B ∩ h0(j)\⋃F 6= ∅. Since
Cj ∩B ∩ h0(j)\⋃F ⊆ B\(Y ∪⋃F ), this suffices to prove (5). Since h0 is not dominated
by ϕFB, choose m ≥ n such that ϕFB(m) < h0(m). Then by definition of ϕFB there
is a j ≥ m such that Cj ∩ B ∩ ϕFB(m)\⋃F 6= ∅. So Cj ∩ B ∩ h0(m)\⋃F 6= ∅, hence
Cj ∩B ∩ h0(j)\⋃F 6= ∅.

A free sequence is a sequence 〈aξ : ξ < α〉 of members of [ω]ω such that for any finite
F,G ⊆ α such that ∀ξ ∈ F∀η ∈ G[ξ < η] we have

⋂

ξ∈F aξ ∩
⋂

η∈G(ω\aη) 6= ∅. We let f be
the least |α| such that there is a maximal free sequence of infinite length α.

Theorem 33.28. r ≤ f.

Proof. Suppose that 〈aξ : ξ < α〉 is a maximal free sequence in P(ω)/fin. We claim
that 





∏

ξ∈F
aξ : F ∈ [α]<ω






∪







∏

ξ∈F
aξ ·

∏

ξ∈G
−aξ : F,G ∈ [α]<ω, F < G







is weakly dense. To see this, let b ∈ P(ω)/fin. of A. If
∏

ξ∈F aξ ·
∏

ξ∈G−aξ · −b = 0 for
some finite F < G, this is as desired. If there is a finite F ⊆ α such that

∏

ξ∈F aξ · b = 0,
this is also as desired.

A forcing order P is centered iff for every finite F ⊆ P there is a p ∈ P such that
∀q ∈ F [p ≤ q]. P is σ-centered iff it is a countable union of centered subsets. Clearly a
σ-centered forcing order is ccc. We define

mσ = min{κ : there is a σ-centered forcing order P and a system

D of dense subsets of P with |P | ≤ κ such that there

does not exist a filter on P which intersects each member of D}
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Lemma 33.29. Let κ be an infinite cardinal. Suppose that for every σ-centered forcing
order P of size ≤ κ and for every family A of dense subsets of P with |A | ≤ κ there is a
filter on P which intersects each member of A .

Then for every σ-centered forcing order P and for every family A of dense subsets of
P with |A | ≤ κ there is a filter on P which intersects each member of A .

Proof. We prove the contrapositive. Thus suppose that P is a σ-centered forcing
order, A is a family of dense subsets of P with |A | ≤ κ, and there is no filter on P which
intersects each member of A . By the downward Löwenheim, Skolem, Tarski theorem,

let Q
def
= (Q,≤, 1, D′)D∈A be an elementary substructure of P

def
= (P,≤, 1, D)D∈A with

|Q| ≤ κ. Write P =
⋃

B, where B is countable and each of its members is centered.
Then Q =

⋃

A∈B
(A∩Q). Moreover, if A ∈ B and q0, . . . , qm−1 ∈ A∩Q, then the formula

∃x[x ≤ q0 ∧ . . .∧ z ≤ qm−1]] holds in P, and hence in Q. Hence Q is σ-centered. Now take
any D ∈ A . Then ∀x∃y ∈ D[y ≤ x] holds in P, and hence in Q. It follows that D ∩Q is
dense in Q.

Suppose that G is a filter on Q such that G ∩ D ∩ Q 6= ∅ for all D ∈ A . Let
G′ = {p ∈ P : ∃q ∈ G[q ≤ p]}. Then G′ is a filter on P , and G′ ∩D 6= ∅ for all D ∈ A ,
contradiction. Thus there does not exist such a G. So we have shown that the hypothesis
of the Lemma is false.

A subset X of a forcing order P is open iff ∀p ∈ X∀q ≤ p[q ∈ X ].
A subset X of a forcing order P is linked iff any two members of X are compatible.

Lemma 33.30. Let κ be an infinite cardinal. Suppose that P is a forcing order, and for
every family A of dense open subsets of P with |A | ≤ κ there is a linked G ⊆ P such that
G ∩D 6= ∅ for all D ∈ A .

Then for every family A of dense subsets of P with |A | ≤ κ there is a filter G ⊆ P
such that G ∩D 6= ∅ for all D ∈ A .

Proof. First note:

(1) If D ⊆ P is dense, and E ⊆ D is maximal among subsets of D consisting of pairwise
incompatible elements, then E is maximal incompatible in P .

In fact, suppose that p /∈ E, and p is incompatible with each element of E. Choose q ∈ D
with q ≤ p. Then q is incompatible with each element of E and q ∈ D, contradiction.

Now assume the hypothesis of the lemma, and suppose that A is a family of dense
subsets of P with |A | ≤ κ. For each X ⊆ P let X↓ = {p ∈ P : ∃q ∈ X [p ≤ q]}. For
each D ∈ A the set D↓ is dense open. For each D ∈ A let D′ ⊆ (D↓) be maximal
among the subsets of D↓ consisting of pairwise incompatible elements. By (1), each D′

is maximal incompatible in P . Clearly D′↓ is dense open. Let F0 = {D′↓ : D ∈ A }.
Now suppose that Fn has been defined and consists of dense open sets. For each pair
(B,C) ∈ Fn × Fn, the intersection B ∩ C is dense open; let EBC be maximal among
subsets of B ∩ C consisting of pairwise incompatible elements. Then EBC is maximal
incompatible in P . Let Fn+1 = Fn∪{EBC↓ : (B,C) ∈ Fn×Fn}. Let H =

⋃

n∈ω Fn. Note
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that if B,C ∈ H, then there is a dense open set D ∈ H such that D ⊆ B∩C. The members
of H are dense open. Each D ∈ H has the form MD↓ for some maximal incompatible set
MD. By the hypothesis of the Lemma let L ⊆ P be linked with L ∩D 6= ∅ for all D ∈ H.
Choose pD ∈ L ∩ D for all D ∈ H. Then choose qD ∈ MD such that pD ≤ qD. Then
{pD : D ∈ H} is linked, and so also {qD : D ∈ H} is linked.

(2) ∀D,E ∈ H∃X ∈ H[qX ≤ qD, qE ].

For, choose X ∈ H such that X ⊆ D ∩ E. Suppose that qX 6≤ qD. Now qX ∈MX ⊆ X ⊆
D ∩ E, so qX ∈ D = (MD ↓). Hence choose t ∈ MD such that qX ≤ t. Now qD, t ∈ MD,
qX ≤ t, and qX 6≤ qD. So qX 6= t. Hence qX and t are incompatible. But qX and QD are
compatible, and qD ≤ t, contradiction. Hence qX ≤ qD. Similarly qX ≤ qE .

Now let G = {s ∈ P : ∃D ∈ H[qD ≤ s]}. Then by (2), G is a filter. If D ∈ A , then
D′↓ ∈ F0 ⊆ H. Hence qD′↓ ∈ G. Now qD′↓ ∈MD′↓ = D′↓ ⊆ D↓, so there is an s ∈ D such
that qD′↓ ≤ s. Thus s ∈ G ∩D.

Theorem 33.31. mσ = p.

Proof. First we prove that mσ ≤ p; in fact, fix any κ < mσ; we show that κ < p. Let
A ⊆ [ω]ω have SFIP with |A | = κ; we want to find a pseudo-intersection of A . Let

P = {(s,W ) : s ∈ [ω]<ω, W ∈ [A ]<ω}
(s,W ) ≤ (s′,W ′) iff s ⊇ s′, W ⊇W ′, ∀x ∈W ′[(s\s′) ⊆ x].

For each p ∈ P let p = (sp,Wp). Note that if t ∈ [ω]<ω, then {p ∈ P : sp = t} is centered;
so P is σ-centered.

For each n ∈ ω let Dn = {p ∈ P : |sp| ≥ n}. Then each Dn is dense. For, suppose that
p ∈ P . Then

⋂
Wp is infinite by the SFIP, so choose t ∈ [

⋂
Wp]

n. Then (sp ∪ t,Wp) ≤ p
and (sp ∪ t,Wp) ∈ Dn.

For each a ∈ A let Ea = {p ∈ P : a ∈ Wp}. Then Ea is dense. For suppose that
p ∈ P . Then (sp,Wp ∪ {a}) ≤ p and (sp,Wp ∪ {a}) ∈ Ea.

Now let G be a filter on P intersecting each of these dense sets. Let b =
⋃

p∈G sp.
Then b is infinite since Dn ∩G 6= ∅ for all n ∈ ω. We claim that b is a pseudo-intersection
of A . For, suppose that a ∈ A ; we want to show that b\a is finite. Fix p ∈ Ea ∩ G. We
claim that b\a ⊆ sp (as desired). It suffices to show that b\sp ⊆ a. Take any x ∈ b\sp.
Say x ∈ sq with q ∈ G. Choose r ∈ G such that r ≤ p, q. Since r ≤ q, we have x ∈ sr.
Since r ≤ p and a ∈Wp we have sr\sp ⊆ a. Hence x ∈ a.

This proves that mσ ≤ p.
For the other direction, fix κ < p. To show that κ < mσ it suffices by Lemmas 13.27

and 13.28 to take a σ-centered forcing order P of size ≤ κ, let 〈Dα : α < κ〉 be a system
of dense open subsets of P , and find a linked G ⊆ P which intersects each Dα.

If there is a p ∈ P such that ∀q, r ≤ p q and r are compatible, let G = {q ∈ P : p ≤ q};
then G is as desired. So we assume that ∀p ∈ P∃q, r ≤ p[ q and r are incompatible].

Let P =
⋃

l∈ω Cl, where each Cl is centered. We may assume that 1 ∈ Cl for each
l ∈ ω. For α < κ and p ∈ P, let

(1) Bα(p) = {l ∈ ω : Dα ∩ Cl ∩ p↓6= ∅}.
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Now we claim that for each m ∈ ω, the set {Bα(p) : p ∈ Cm and α < κ} has SFIP. For,
suppose that 〈pi : i ∈ n〉 is a system of elements of Cm and 〈αi : i < n〉 is a system of
members of κ; we want to show that

⋂

i<nBαi(pi) is infinite. Let E =
⋂

i<nDαi . So E is
dense open. Since Cm is centered, choose q so that q ≤ pi for each i. Then

(2) I
def
= {l ∈ ω : E ∩ Cl ∩ q↓6= ∅} ⊆

⋂

i<n

Bαi(p).

In fact, if l ∈ I and i < n, then E ∩ Cl ∩ q↓⊆ Dαi ∩ Ci ∩ pi↓, and so Dαi ∩ Cl ∩ pi↓6= ∅, as
desired.

Clearly there is a system 〈aj : j ∈ ω〉 of pairwise incompatible elements ≤ q. Choose
bj ≤ aj with bj ∈ E for every j ∈ ω. Say bj ∈ Clj for all j ∈ ω. Since the bj ’s are pairwise
incompatible, the sequence 〈lj : j ∈ ω〉 is one-one. Clearly each lj is in I. So our claim
follows from (2).

Now by the claim, since κ < p, for each m ∈ ω let Zm ∈ [ω]ω be such that Zm ⊆∗ Bα(p)
for all p ∈ Cm and all α < κ.

For each τ ∈ <ωω let Λ(τ) = ∅ if τ = ∅, and otherwise let Λ(τ) = τ(dmn(τ) − 1).
Let T = {τ ∈ <ωω : ∀n < dmn(τ)[τ(n) ∈ ZΛ(τ↾n)]}. Thus ∅ ∈ T . If τ ∈ T and

m ∈ ZΛ(τ), then τ⌢〈m〉 ∈ T .
For each α < κ fix ∆α : T → P with the following properties:

(3) ∆α(∅) = 11.

(4) If τ⌢〈l〉 ∈ T , then
(a) If l ∈ Bα(∆α(τ)), then ∆α(τ⌢〈l〉) ∈ Dα ∩ Cl ∩ ∆α(τ)↓.
(b) If l /∈ Bα(∆α(τ)), then ∆α(τ⌢〈l〉) = 11.

Note that

(5) ∀τ ∈ T [∆α(τ) ∈ CΛ(τ)],

In fact, if τ 6= ∅ and τ(dmn(τ) − 1) ∈ Bα(∆α(τ ↾ (dmn(τ) − 1))), then this follows from
(4)(a). Otherwise it follows since 11 ∈ CΛ(τ).

(6) ∀α∀τ ∈ T [ZΛ(τ) ⊆∗ Bα(∆α(τ))].

In fact, suppose that α < κ and τ ∈ T . Since ∆α(τ) ∈ CΛ(τ) by (5), it follows that
ZΛ(τ) ⊆∗ Bα(∆α(τ)), proving (6).

(7) ∀α∀τ ∈ T∀l ∈ ω[τ⌢〈l〉 ∈ T → l ∈ ZΛ(τ)].

This follows from the definition of T .
By (6), for each α < κ there is a function Φα : T → ω such that:

(8) ∀τ ∈ T∀l ∈ ZΛ(τ)[l ≥ Φα(τ) → l ∈ Bα(∆α(τ))].
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Now |T | = ω; let h : ω → T be a bijection. Also, κ < p ≤ b, so there is a Γ : ω → ω such
that Φα ◦ h ≤∗ Γ for all α < κ.

(9) ∀τ ∈ T∀m ∈ ω∃l ≥ m[τ⌢〈l〉 ∈ T ].

In fact, ZΛ(τ) is infinite, so (9) follows.
By (9), there is a function g : ω → ω such that g ↾ n ∈ T for all n ∈ ω and g(n) is the

least l ≥ Γ(h−1(g ↾ n)) such that (g ↾ n)⌢〈l〉 ∈ T .
Since Φα ◦ h ≤∗ Γ, there is a k : κ → ω such that Φα(h(n)) ≤ Γ(n) for all n ≥ kα.

Hence if h−1(g ↾ n) ≥ kα then g(n) ≥ Γ(h−1(g ↾ n)) ≥ Φa(g ↾ n); hence by (8), g(n) ∈
Bα(∆a(g ↾ n)).

Now (g ↾ n)⌢〈g(n)〉 = g ↾ (n+ 1) ∈ T and g(n) ∈ Bα(∆α(g ↾ n)), so by (4)(a) we get

(10 ∆α(g ↾ (n+ 1)) ∈ Dα ∩ Cg(n) ∩ ∆α(g ↾ n)↓,

and in particular

(11) ∆α(g ↾ (n+ 1)) ≤ ∆α(g ↾ n).

Let pα = ∆α(g ↾ (kα + 1)). So pα ∈ Dα ∩ Cg(kα) ∩ [∆α(g ↾ kα)). Let L = {Lα : α < κ}.
Hence L ∩ Dα 6= ∅ for all α. To show that L is linked, suppose that α, β < κ. Say
kα ≤ kβ . If kα = kβ , then pα, pβ ∈ Cg(kα), hence pα 6⊥ pβ . Suppose that kα < kβ . By (11),
∆α(g ↾ (kβ + 1)) ≤ ∆α(g ↾ (kα + 1)) = pα. Now ∆α(g ↾ (kβ + 1)),∆β(g ↾ kβ+1)) ∈ Cg(kβ)

by (10), so pα 6⊥ pβ .
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For p = t see the next chapter.
34. p = t

For the proof we need many-sorted forms of  Loś’s theorem on ultraproducts. We give
a proof of this theorme in the case of certain two-sorted structures; the general case of
finitely many sorts is treated similarly. The language is as follows. There are two sorts
of variables: v0, v1, . . . and w0, w1, . . .. There is a four-place relation symbol Q. Atomic
formulas have the form vi = vj , wi = wj , or Qviwjwkwl. We have connectives ¬, →,
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∀vi, and ∀wi. A structure for this language is a triple (A,B,C) such that A and B are
nonempty sets and C ⊆ A×B×B×B. Given a ∈ ωA and b ∈ ωB and any formula ϕ, we
define (A,B,C) |= ϕ[a, b] as follows:

(A,B,C) |=(vi = vj)[a, b] iff ai = aj ;

(A,B,C) |=(wi = wj)[a, b] iff bi = bj ;

(A,B,C) |=(¬ϕ)[a, b] iff not((A,B,C) |= ϕ[a, b])

(A,B,C) |=(ϕ→ ψ)[a, b] iff not((A,B,C) |= ϕ[a, b]) or ((A,B,C) |= ϕ)[a, b])

(A,B,C) |=∀viϕ[a, b] iff for all u ∈ A((A,B,C) |= ϕ[aiu, b])

(A,B,C) |=∀wiϕ[a, b] iff for all u ∈ B((A,B,C) |= ϕ[a, biu])

Suppose that 〈(Ai, Bi, Ci) : i ∈ I〉 is a system of structures, and F is an ultrafilter on
I. For each i ∈ I let Mi = (Ai, Bi, Ci). Further, let A′ =

∏

i∈I Ai, B
′ =

∏

i∈I Bi, and
C′ = {(a, b, c, d) : a ∈ A′, b, c, d ∈ B′}. We define

a ≡0 b iff a, b ∈ A′ and {i ∈ I : ai = bi} ∈ F ;

c ≡1 d iff c, d ∈ B′ and {i ∈ I : ci = di} ∈ F.

It is easy to check that ≡0 is an equivalence relation on A′ and ≡1 is an equivalence relation
on B′. We let A′′ be the set of all ≡0-classes, and B′′ the set of all ≡1-classes. We also
define

C′′ = {([a], [b], [c], [d]) : {i ∈ I : (ai, bi, ci, di) ∈ Ci} ∈ F}.

Proposition 34.1. For any (a, b, c, d) ∈ A′ ×B′ ×B′ ×B′ the following are equivalent:
(i) ([a], [b], [c], [d]) ∈ C′′.
(ii) {i ∈ I : (ai, bi, ci, di) ∈ Ci} ∈ F .

Proof. (ii)⇒(i) holds by definition. Now assume (i). Then there are a′ ∈ A′ and
b′, c′, d′ ∈ B′ such that [a] = [a′], [b] = [b′], [c] = [c′], [d] = [d′] and {i ∈ I : (a′i, b

′
i, c

′
i, d

′
i) ∈

Ci} ∈ F . Then {i ∈ I : ai = a′i} ∈ F , {i ∈ I : bi = b′i} ∈ F , {i ∈ I : ci = c′i} ∈ F , and
{i ∈ I : di = d′i} ∈ F . Now

{i ∈ I : ai = a′i} ∩ {i ∈ I : bi = b′i} ∩ {i ∈ I : ci = c′i} ∩ {i ∈ I : di = d′i}∩
{i ∈ I : (a′i, b

′
i, c

′
i, d

′
i) ∈ Ci} ⊆ {i ∈ I : (ai, bi, ci, di) ∈ Ci};

it follows that {i ∈ I : (ai, bi, ci, di) ∈ Ci} ∈ F .

The ultraproduct of 〈Mi : i ∈ I〉 is the structure (A′′, B′′, C′′); it is denoted by
∏

i∈IMi/F .

Theorem 34.2. ( Loś) Let 〈Mi : i ∈ I〉 be a system of structures as above, and let F be
an ultrafilter on I. Suppose that a ∈ ωA′ and b ∈ ωB′. Let π : A′ → A′′ be the natural
map; we use π also for the natural map from B′ to B′′. Then the following conditions are
equivalent:

(i)
∏

i∈IMi/F |= ϕ[π ◦ a, π ◦ b].
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(ii) {i ∈ I : Mi |= ϕ[pri ◦ a, pri ◦ b]} ∈ F .

Proof. For brevity let N =
∏

i∈IMi/F . We prove the theorem by induction on ϕ:

N |= (vk = vj)[π ◦ a, π ◦ b] iff (π ◦ a)(k) = (π ◦ a)(j)

iff [ak] = [aj]

iff {i ∈ I : ak(i) = aj(i)} ∈ F

iff {i ∈ I : (pri ◦ a)(k) = (pri ◦ a)(j)} ∈ F

iff {i ∈ I : Mi |= (vk = vj)[pri ◦ a, pri ◦ b]} ∈ F ;

similarly for wk = wj

N |= ¬ϕ[π ◦ a, π ◦ b] iff not(N |= ϕ[π ◦ a, π ◦ b])
iff not({i ∈ I : Mi |= ϕ[pri ◦ a, pri ◦ b]} ∈ F )

iff (I\{i ∈ I : Mi |= ϕ[pri ◦ a, pri ◦ b]}) ∈ F

iff {i ∈ I : Mi |= ¬ϕ[pri ◦ a, pri ◦ b]} ∈ F

N |= (ϕ→ ψ)[π ◦ a, π ◦ b] iff

not(N |= ϕ[π ◦ a, π ◦ b]) or N |= ψ[π ◦ a, π ◦ b]
iff

{i ∈ I : Mi |= ¬ϕ[pri ◦ a, pri ◦ b]} ∈ F

or {i ∈ I : Mi |= ψ[pri ◦ a, pri ◦ b]} ∈ F

iff

{i ∈ I : Mi |= ¬ϕ[pri ◦ a, pri ◦ b]} ∪ {i ∈ I : Mi |= ψ[pri ◦ a, pri ◦ b]} ∈ F

iff {i ∈ I : Mi |= (¬ϕ ∨ ψ)[pri ◦ a, pri ◦ b]} ∈ F

iff {i ∈ I : Mi |= (ϕ→ ψ)[pri ◦ a, pri ◦ b]} ∈ F.

Now suppose that not(N |= (∀vkϕ)[π◦a, π◦b]). Then there is a u ∈M ′ such that not(N |=
ϕ[π◦aku, π◦b]), so by the inductive hypothesis we get {i ∈ I : Mi |= ϕ[pri ◦aku, pri ◦b]} /∈ F .
Since

{i ∈ I : Mi |= ∀vkϕ[pri ◦ a, pri ◦ b]} ⊆ {i ∈ I : Mi |= ϕ[pri ◦ aku, pri ◦ b]},
it follows that {i ∈ I : Mi |= ∀vkϕ[pri ◦ a, pri ◦ b]} /∈ F .

On the other hand, suppose that {i ∈ I : Mi |= ∀vkϕ[pri ◦ a, pri ◦ b]} /∈ F . Then

P
def
= {i ∈ I : Mi |= ∃vk¬ϕ[pri ◦ a, pri ◦ b]} ∈ F . For each i ∈ P choose ui ∈ Ai such that

Mi |= ¬ϕ[(pri ◦ a)kui , pri ◦ b]. For i ∈ I\P let ui ∈ Ai be arbitrary. Then for each i ∈ P we
have Mi |= ¬ϕ[pri ◦ aku, pri ◦ b], so {i ∈ I : Mi |= ¬ϕ[pri ◦ aku, pri ◦ b]} ∈ F , hence {i ∈ I :
Mi |= ϕ[pri ◦ aku, pri ◦ b]} /∈ F , hence by the inductive hypothesis not(N |= ϕ[π ◦ aku, π ◦ b]),
so not(N |= (∀vkϕ)[π ◦ a, π ◦ b]).

The case ∀wkϕ is similar.

Let µ be an infinite cardinal. We define

L(µ, F ) =

{
∏

α<µ

Lα/F : each Lα is a finite linear order, and
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F is an ultrafilter on µ and ∀n ∈ ω[{α < µ : |Lα| > n} ∈ F ]

}

P (µ, F ) =

{
∏

α<µ

Pα/F : each Pα is a finite tree with a unique root, and

F is an ultrafilter on µ and ∀n ∈ ω[{α < µ : |Pα| > n} ∈ F ]

}

Proposition 34.3. (i) L(µ, F ) ⊆ P (µ, F ).
(ii) If A ∈ P (µ, F ), then A has a maximal element, a unique minimum element,

every non maximal element has at least one immediate successor, and every non-minimum
element has a unique immediate predecessor. A is a pseudo-tree, and any two elements of
A have a glb.

(iii) If A ∈ L(µ, F ), then A has a maximum element, a minimum element, and every
non maximum element has an immediate successor, and every non minimum element has
an immediate predecessor. A is a linear order.

Proof. Mostly these facts are easy applications of  Loś’s theorem. To prove in (ii)

that A is a pseudo-tree, suppose that [x], [y], [z] ∈ A and [x], [y] ≤ [z]. Thus M
def
= {α ∈

µ : xα ≤ zα} ∈ F and N
def
= {α ∈ µ : yα ≤ zα} ∈ F . If i ∈ M ∩ N then xα, yα ≤ zα, so

xα ≤ yα or yα ≤ xα. Thus

M ∩N ⊆ {α ∈ µ : xα ≤ yα} ∪ {α ∈ µ : yα ≤ xα}.

It follows easily that [x] ≤ [y] or [y] ≤ [x].
To show that any two elements [x], [y] have a glb, define zα = min{xα, yα} for all α ∈ µ.

Then [z] ≤ [x], [y]. Suppose that also [w] ≤ [x], [y]. Then M
def
= {α < µ : wα ≤ xα} ∈ F

and N
def
= {α < µ : wα ≤ yα} ∈ F . We have M ∩N ⊆ {α < µ : wα ≤ zα}. Hence [w] ≤ [z].

In (iii), we show that any non-maximal element [x] has an immediate successor. In

fact, M
def
= {α < µ : xα not maximal} ∈ F . For each α ∈ M let yα be the immediate

successor of xα, with yα arbitrary otherwise. Then [x] < [y]. Suppose that [x] < [z]. Then

N
def
= {α < µ : xα < zα} ∈ F . If α ∈M ∩N , then yα ≤ zα. It follows that [y] ≤ [z].

If A ∈ L(µ, F ), then 1 is the greatest element of A, and 0 the least element. If x ∈ A and
it has at least n successors, we denote its n-th successor by x+ n. x is near 1 iff there is
an n ∈ ω such that x+ n = 1.

Proposition 34.4. In any A ∈ L(µ, F ), 0 is not near 1.

Proof. Suppose that 0 is near 1; say 0+n = 1. Then A has only n+1 elements.

For infinite regular cardinals κ, λ, and a linear order (X,<), a (κ, λ)-gap in (X,<) is a
pair (a, b) with a ∈ κX and b ∈ λX such that:
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(1) ∀α, β < κ∀γ, δ < λ[α < β and γ < δ imply that aα < αβ < bδ < bγ ].

(2) There is no x ∈ X such that ∀α < κ∀β < λ[aα < x < bβ ].

We define

C(µ, F ) = {(κ, λ) : there is a (κ, λ)-gap in some (X,<) ∈ L(µ, F )};

p(µ, F ) = min{κ : ∃(κ1, κ2) ∈ C(µ, F )[max(κ1, κ2) = κ]};

t(µ, F ) = min{κ ≥ ω : κ is regular and there is a strictly increasing

unbounded x ∈ κA for some (A,≤) ∈ P (µ, F )};

D(µ, F ) = {(κ, λ) ∈ C(µ, F ) : max(κ, λ) < t(µ, F )}

Proposition 34.5. If X ∈ L(µ, F ) and langleaξ : ξ < µ〉 is a strictly increasing sequence
of elements of X, with µ a limit ordinal less than p(µ, F ), then there is a b ∈ X not near
to 1 such that ∀ξ < µ[aξ < b].

Proof. Clearly each aξ is not near to 1. Let b0 be the maximum element of X , and
let cn+1 = cn− 1 for all n ∈ ω. Then (a, c) is not a gap, and this gives the desired element
b.

A subset M of
∏

α<µAα/F is internal iff there is a system 〈Bα : α < µ〉 such that
∀α < µ[∅ 6= Bα ⊆ Aα] and M = {[x] : {α < µ : xα ∈ Bα} ∈ F}.

A function f : m(
∏

α<µAα/F ) → (
∏

α<µAα/F is internal iff there is a system 〈fα :
α < µ〉 such that each fα : mAα → Aα and for all x0, . . . , xm−1, y ∈∏α<µAα we have

f([x0], . . . , [xm−1]) = [y] iff {α < µ : fα(x0α, . . . , xm−1,α) = yα} ∈ F.

Proposition 34.6. Let 〈Aα : α < µ〉 be a system of finite linear orders. Then every
nonempty internal subset of

∏

α<µAα/F has a greatest and least element.

Proof. Say M is internal, as above. For each α < µ let xα be the least element of
Bα. Then {α < µ : xα is the least element of Bα} = µ ∈ F . Thus {α < µ : (Aα, Bα) |= [xα
is the least element of Bα]} = µ ∈ F , so by  Loś’s theorem,

∏

α<µ(Aα, Bα)/F |= [[x] is the
least element of

∏

α<µBα/F ]. Similarly for the greatest element.

Proposition 34.7. The collection of internal subsets of
∏

α<µAα/F is a field of subsets
of
∏

α<µAα/F containing all singletons.

Proof. Let X and Y be internal subsets of
∏

α<µAα/F , say given by 〈Bα : α < µ〉 and
〈Cα : α < µ〉. For each α < µ let Dα = Bα ∪ Cα. Let Z = {[y] : {α < µ : yα ∈ Dα} ∈ F}.
We claim that X ∪ Y = Z. First suppose that a ∈ X . Then there is an x ∈ ∏α<µAα
such that a = [x] and {α < µ : xα ∈ Bα} ∈ F . So also {α < µ : xα ∈ Dα} ∈ F ; so a ∈ Z.
Similarly, a ∈ Y implies that a ∈ Z.

Now suppose that a ∈ Z. Say a = [y] with {α < µ : yα ∈ Dα} ∈ F . Then

{α < µ : yα ∈ Bα} ∪ {α < µ : yα ∈ Cα} ∈ F,
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so we have two cases.

Case I. W
def
= {α < µ : yα ∈ Bα} ∈ F . Then a ∈ X

Case II. {α < µ : yα ∈ Cα} ∈ F . Similarly, a ∈ Y .

Thus X ∪ Y = Z.

Now let X be an internal subset of
∏

α<µAα/F , say given by 〈Bα : α < µ〉. Let Cα =
Aα\Bα for all α < µ, and let Y = {[y] : {α < µ : yα ∈ Cα} ∈ F}. Suppose that a ∈ X ∩Y .
Say a = [f ] with {α < µ : fα ∈ Bα} ∈ F and x = [g] with {α < µ : gα ∈ Cα} ∈ F . Then
[f ] = [g], so {α < µ : fα = gα} ∈ F . Then

∅ = {α < µ : fα ∈ Bα} ∩ {α < µ : gα ∈ Cα} ∩ {α < µ : fα = gα} ∈ F,

contradiction.

Now
∏

α<µAα/F = X ∪ Y by the argument for unions. So (
∏

i∈I Aα/F )\X = Y .

So we have a field of sets.

Given [f ] ∈∏α<µ Aα/F , {[f ]} is internal, given by 〈{fα} : α < µ〉.

If ψ(v0) is a formula with one free variable v0 and X is a structure, then ψ(X) = {x ∈ X :
X |= ψ[x]}.

Proposition 34.8. Let X =
∏

α<µAα/F , and let ψ(v0) be a formula with one free
variable v0. Then ψ(X) is an internal subset of X.

Proof. We claim that 〈ψ(Aα) : α < µ〉 shows that ψ(X) is internal. In fact,

[x] ∈ ψ(X) iff X |= ψ[[x]]

iff {α < µ : Aα |= [xα]} ∈ F

iff {α < µ : xα ∈ ψ(Aα)} ∈ F.

Proposition 34.9. If κ is uncountable regular, κ < t(µ, F ), and κ ≤ p(µ, F ), then
(κ, κ) /∈ C(µ, F ).

Proof. Suppose not. Let 〈Lα : α < µ〉 be a system of finite linear orders, and
X =

∏

α<µ Lα/F . Suppose that X has a (κ, κ)-gap a, b ∈ κX . For each α < µ let Pα be
the set of all functions p such that:

(1) dmn(p) is an initial segment of Lα, and rng(p) ⊆ Lα × Lα.

(2) ∀d, d′ ∈ dmn(p)[d <α d
′ → π0(p(d)) <α π0(p(d′)) <α π1(p(d′)) <α π1(p(d))].

The partial order on Pα is inclusion. Clearly this gives a tree with the unique root ∅. Let
(Q,≤Q) =

∏

α<µ Pα/F .

For each α < µ let Gα = {(p, c, d, e) : p ∈ Pα, c, d, e ∈ Lα, c ∈ dmn(p), p(c) = (d, e)}.
Let H = {([p], [c].[d], [e]) : {α < µ : (pα, cα, dα, dα) ∈ Gα} ∈ F}. For details below it is
convenient to apply  Loś’s Theorem to the two-sorted structure A = (Q,X,≤Q,≤X , H).
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Note that H ⊆ Q×X ×X ×X . Now suppose that q ∈ Q, x, y, z ∈ X , and (q, x, y, z) ∈ H.
Say q = [q∗], x = [x∗], y = [y∗], and z = [z∗]. Then

{α < µ : (q∗α, x
∗
α, y

∗
α, z

∗
α) ∈ Gα} ∈ F, i.e.,

{α < µ : q∗α ∈ Pα, x
∗
α, y

∗
α, z

∗
α ∈ Lα, x

∗
α ∈ dmn(q∗α), q∗α(x∗α) = (y∗α, z

∗
α)} ∈ F

{α < µ : q∗α ∈ Pα, x
∗
α, y

∗
α, z

∗
α ∈ Lα, x

∗
α ∈ dmn(q∗α), q∗α(x∗α) = (y∗α, z

∗
α)}

⊆ {α < µ : q∗α ∈ Pα, x
∗
α ∈ Lα, x

∗
α ∈ dmn(q∗α), ∃ unique u, v ∈ Pα[q∗α(x∗α) = (u, v)}.

Hence using A, if q ∈ Q, x ∈ X , and there are y, z ∈ X such that (q, x, y, z) ∈ H, then
there are unique u, v ∈ X such that (q, x, u, v) ∈ H. Hence we can make the following
definition. For any q ∈ Q let dmn(fq) = {x ∈ X : ∃y, z ∈ X [(q, x, y, z) ∈ H]}, and set
fq(x) = (y, z) with (q, x, y, z) ∈ H.

(3) If d, d′ ∈ dmn(fq) and d < d′, then π0(fq(d)) < π0(fq(d
′)) < π1(fq(d

′)) < π1(fq(d)).

In fact, let fq(d) = (r, s) and fq(d
′) = (t, u). Thus (q, d, r, s), (q, d′, t, u) ∈ H. Write

x = [x∗] for any x in X or Q. Hence the following sets are in F :

{α < µ : q∗α ∈ Pα, d
∗
α, r

∗
α, s

∗
α ∈ Lα, d

∗
α ∈ dmn(q∗α), q∗α(d∗α) = (r∗α, s

∗
α)};

{α < µ : q∗α ∈ Pα, d
′∗
α , t

∗
α, u

∗
α ∈ Lα, d

′∗
α ∈ dmn(q∗α), q∗α(d′∗α ) = (t∗α, u

∗
α)};

{α < µ : d∗α < d′∗α }.

Take any α in the intersection of these three sets. Then by (2) we have r∗α < t∗α < u∗α < s∗α.
Hence (3) follows.

(4) ∀q ∈ Q[dmn(fq) has a maximal element].

For, let q ∈ Q. Say q = [q′]. Then for all α < µ, q′α ∈ Pα and so dmn(q′α) has a maximal
element dα. Thus

∃b, c[(q′α, dα, b, c) ∈ Gα ∧ ∀e, b′, c′[(q′α, e, b′, c′) ∈ Gα → e ≤ dα].

It follows that

∃b, c[(q, [dα], b, c) ∈ H] ∧ ∀e, b′, c′[(q, e, b′, c′) ∈ H → dα ≤ e].

Now (4) follows.

(5) ∀q, r ∈ Q[q < r → fq ⊆ fr].

In fact, suppose that q, r ∈ Q and q < r. Write q = [q′] and r = [r′]. Then M
def
= {α < µ :

q′α ⊆ r′α} ∈ F . For any α ∈M we have

∀a, b, c[(q′α, a, b, c) ∈ Gα → (r′α, a, b, c) ∈ Gα];

hence
∀a, b, c[(q, a, b, c) ∈ H → (r, a, b, c) ∈ H];
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(5) follows.
Now we define cα ∈ Q for α < κ. Let aα = [a′α] and bα = [b′α] for all α < κ. For each

α < µ let pα = {(minLα, (a
′
0α, b

′
0α))}, and set c0 = [〈pα : α < µ〉]. Note that for each α < µ

we have (pα,minLα, a
′
0α, b

′
0α) ∈ Gα, so (c0, 0, a0, b0) ∈ H. Hence fc0 = {(0, (a0, b0))}. By

Proposition 34.4, 0 is not near to 1. Now suppose that cα = [c′α] has been defined so that
dmn(fcα) has a maximum element dα = [d′α] which is not near to 1. Let

M
def
= {β < µ : d′αβ is the maximum element of dmn(c′αβ)

and d′αβ is not the maximum element of Lα} ∈ F.

For β ∈M let c′α+1,β = c′αβ∪{(d′αβ+1, (a′α+1,β, b
′
α+1,β))}, with c′α+1,β arbitrary otherwise.

Let cα+1 = [〈c′α+1,β : β < µ〉]. Then fcα+1
= fcα ∪ {(dα + 1, (aα+1, bα+1))}. Note that the

maximum element dα + 1 of dmn(fcα+1
) is not near to 1.

Now suppose that α is a limit ordinal less than κ and cβ has been defined for all
β < α, with cβ < cγ for β < γ < α; also, for all β < α the domain of the function fcβ has
a maximum element dβ which is not near to 1. Since α < κ < t(µ, F ), there is an e ∈ Q
such that cβ < e for all β < α. Say e = [e′]. For each γ < µ let g′γ be the maximal member
of dmn(e′γ), and set g = [g′]. Let

N = {γ < µ : g′γ is the maximum member of dmn(e′γ) and a′0γ < a′αγ < b′αγ < b′0γ}.

Thus N ∈ F . Now

N ⊆ {γ < µ : ∃s ≤ g′γ∃u, v[(e′γ , s, u, v) ∈ Gγ ∧ u < a′αγ < b′αγ < v]}.

The set on the right is thus in F . For each γ ∈ N let w′
γ be the maximum s as indicated.

and let wγ be arbitrary for γ not in this set. Then w
def
= [〈w′

γ : γ < µ〉] is maximum such
that w ≤ g and (e, w, u, v) ∈ H for some u, v with u < aα < bα < v. Now {γ < µ : w′

γ ∈
dmn(e′γ)} ∈ F . For any γ in this set, let q′γ = e′γ ↾ w′

γ . Thus q′γ ∈ Pγ . Then

∀s, t, u[Gγ(q′γ , s, t, u) → Gγ(e′γ , s, t, u)]∧ ∀s[∃t, u[Gγ(q′γ , s, t, u)] ↔ s < w′
γ ].

Then by  Loś’s theorem we have

∀s, t, h[H([q′], s, t, u) → H(e, s, t, u)]∧ ∀s[∃t, u[H([q′], s, t, u) ↔ s < w].

Thus f[q′] = fe ↾ w.
Case 1. w is not near to 1. For any γ < µ let c′αγ = q′γ ∪ {(w′

γ , (a
′
αγ, b

′
αγ))}. Let

cα = [c′α]. Now if β < α, then cβ < e and dβ < w, so cβ < cα. This completes the recursive
definition. Since κ < t(µ, F ), there is a u ∈ Q such that cα < u for all α < κ. Let v be the
largest element of the domain of fu. Then for any α < κ we have

aα = π0(fu(α)) < π0(fu(v)) < p1(fu(v)) < π1(fu(α)) = bα,

contradicting a, b being a gap.
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Case 2. w is near to 1. Let 〈βξ : ξ < cf(α)〉 be strictly increasing with supremum
α. Now 〈dβξ : ξ < cf(α)〉, 〈w − n : n ∈ ω〉 is not a (cf(α), ω)-gap since κ is uncountable

and ≤ p(µ, F ), so there is a d̃α ∈ X such that ∀ξ < cf(α)∀n ∈ ω[dβξ < d̃α < w − n〉.
Now we get a contradiction as in Case 1. Namely, for each γ < µ let q′′γ = e′γ ↾ d̃αγ and

c′αγ = q′′γ ∪ {(d̃αγ, (a
′
αγ, b

′
αγ))} and cα = [c′], then proceed as before to get a contradiction.

If L is a linear order and X is any nonempty set, then X<L is the set of all functions f
such that the domain of f is an initial segment of L and the range of f is contained in X .
Under ⊆, X<L is a pseudo-tree with a unique root, the empty set.

Theorem 34.10. Every finite tree with a unique root can be isomorphically embedded in
X<L for some finite linear order L and some finite set X.

Proof. Let T be a finite tree with a unique root r. Let κ be the height of T , and let
L = κ under its natural order. Let X = Y \{r}. For each t ∈ T let f(t) = 〈a0, . . . , am〉
where a0, . . . , am is a list in strictly increasing order of all elements different from r which
are ≤ t. In particular, f(r) = ∅. Clearly f is the desired isomorphic embedding.

Proposition 34.11. If κ = t(µ, F ), then (κ, κ) ∈ C(µ, F ).

Proof. Let P =
∏

α<µ Pα/F , each Pα a finite tree with a unique root, with c ∈ κP

strictly increasing and unbounded. By Theorem 34.10 we may assume that Pα ⊆ X<Mα
α

where Mα is a finite linear order and Xα is a finite set. For each α < µ let <α be a well-
order on Xα and ≪α a well-order on Mα. If p, q ∈ Pα are incomparable, then χ(p, q) is the

≪α-least i ∈Mα such that pi 6= qi. Now we define a relation ≺α on Qα
def
= Pα × {0, 1}:

(p, ε) ≺α (q, δ) iff one of the following holds:
(1) ε = 0 and δ = 1.
(2) p ⊂ q and ε = δ = 0.
(3) p ⊃ q and ε = δ = 1.
(4) p and q are incomparable and pχ(p,q) <α qχ(p,q).

Now we claim:

(5) ≺α is a linear order on Qα.

In fact, clearly ≺α is irreflexive, and any two distinct elements of Q are comparable. Now
suppose that (p, l) ≺α (q, j) ≺α (r, k). The following cases can be distinguished, and either
the case is impossible, or (p, l) ≺α (r, k).

Case 1. p = q. Then l = 0 and j = 1.
Subcase 1.1. q = r, Not possible.
Subcase 1.2. q ⊂ r. Not possible.
Subcase 1.3. q ⊃ r. Then k = 1.
Subcase 1.4. q and r are incomparable.

Case 2. p ⊂ q. Then l = j = 0.
Subcase 2.1. q = r. Then k = 1.
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Subcase 2.2. q ⊂ r. Then k = 0.
Subcase 2.3. q ⊃ r. Not possible.
Subcase 2.4. q and r are incomparable.

Subsubcase 2.4.1. p ⊂ r.
Subsubcase 2.4.2. p and r are incomparable.

Case 3. p ⊃ q. Then l = j = 1.
Subcase 3.1. q = r. Not possible.
Subcase 3.2. q ⊂ r. Not possible.
Subcase 3.3. q ⊃ r.
Subcase 3.4. q and r are incomparable. Then p and r are incomparable.

Case 4. p and q are incomparable.
Subcase 4.1. q = r.
Subcase 4.2. q ⊂ r. Then p and r are incomparable.
Subcase 4.3. q ⊃ r. Then j = k = 1.

Subsubcase 4.3.1. r ⊂ p.
Subsubcase 4.3.2. p and r are incomparable.

This completes the proof of (5).
Now let Q =

∏

α<µQα/F . For each α < κ let cα = [c′α]. Note that c′α ∈ ∏β<µ Pβ.
and so c′αβ ∈ Pβ for all β < µ. Now define

c′0α = 〈(c′αβ, 0) : β < µ〉 ∈
∏

β<µ

Qβ ,

c′1α = 〈(c′αβ, 1) : β < µ〉 ∈
∏

β<µ

Qβ .

Now we claim

(6) (〈[c′0α ] : α < κ〉, 〈[c′1α ] : α < κ〉) is a (κ, κ)-gap in Q.

In fact, take β < α < κ. Then cβ < cα, so [c′β] < [c′α], hence {γ < µ : c′βγ ⊂ c′αγ} ∈ F .
Now

{γ < µ : c′βγ ⊂ c′αγ} ⊆ {γ < µ : c′0βγ ≺γ c′0αγ ≺γ c′1αγ ≺γ c′1βγ}.
It follows that for β < α < κ we have [c′0β ] < [c′0α ] < [c′1α ] < [c′1β ].

Now suppose that q ∈ Q and [c′0α ] < q < [c′1α ] for all α < κ. Write q = [q′] with
q′ ∈ ∏β<µQβ. Say q′β = (pβ, εβ) for all β < µ. Now [〈pβ : β < µ〉] is not a bound for
〈cα : α < κ〉, so there is an α < κ such that cα 6< [〈pβ : β < µ〉]. Hence the following sets
are in F :

R
def
= {β < µ : c′αβ 6⊆ pβ};

N
def
= {β < µ : (c′αβ, 0) ≺β (pβ, εβ)};

S
def
= {β < µ : (pβ, εβ) ≺β (c′αβ , 1)}.

Now {β < µ : εβ = 0} ∪ {β < µ : εβ = 1} = µ ∈ F , so we have two cases.
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Case 1. M
def
= {β < µ : εβ = 0} ∈ F . Now suppose that β ∈ M ∩N ∩ R ∩ S. Then

(c′αβ, 0) ≺β (pβ, 0) and c′αβ 6⊆ pβ .
Subcase 1.1. pβ ⊂ c′αβ . Then (pβ, 0) ≺β (c′αβ , 0) ≺β (pβ , 0), hence (pβ , 0) ≺β

(pβ , 0), contradiction.
Subcase 1.2. pβ and c′αβ are incomparable. Since (c′αβ , 0) ≺β (pβ , 0), it follows

that
(c′αβ)χ(c′

αβ
,pβ) <β (pβ)χ(c′

αβ
,pβ).

Then (c′αβ , 1) ≺β (pβ , 0) ≺β (c′αβ, 1), hence (c′αβ, 1) ≺β (c′αβ, 1), contradiction.

Case 2. M
def
= {β < µ : εβ = 1} ∈ F . Now suppose that β ∈ M ∩N ∩ R ∩ S. Then

(pβ , 1) ≺β (c′αβ, 1). Since c′αβ 6⊆ pβ , it follows that c′αβ and pβ are incomparable, and

(pβ)χ(pβ ,c
′
αβ

) <β (c′αβ)χ(pβ ,c
′
αβ

)

Hence (c′αβ , 0) ≺β (pβ , 1) ≺β (c′αβ, 0), hence (c′αβ, 0) ≺β (c′αβ, 0), contradiction.

Corollary 34.12. p(µ, F ) ≤ t(µ, F ).

Proposition 34.13. If L is a linear order, a, b is a κ, λ-gap in L, and a, c is a κ, µ-gap
in L, then λ = µ.

Proof. Say λ < µ. For each ξ < λ there is an η < µ such that cη < bξ, as otherwise bξ
would be below each cη and hence would fill the gap a, c. So for each ξ < λ choose ηξ < µ
such that cηξ < bξ. Let θ = supξ<λ ηξ +1. Then cθ is below each bξ, again a contradiction.
(Recall that κ, λ, µ are regular.)

Proposition 34.14. If Lα is a finite linear order for each α < µ, then we have

(
∏

α<µ

Lα/F,≤
)

∼=
(
∏

α<µ

Lα/F,≥
)

.

Proof. For each α < µ let hα be an isomorphism of (Lα,≤) onto (Lα,≥). Define
k :
∏

α<µ Lα/F → ∏

α<µ Lα/F by setting h([x]) = [y], where yα = hα(xα) for all α < µ.
Clearly k is a well-defined bijection. Now take any x, y ∈∏α<µ Lα.

[x] ≤ [y] iff {α < µ : xα ≤ yα} ∈ F

iff {α < µ : hα(xα) ≥ hα(yα)} ∈ F

iff k([x]) ≥ k([y]).

Theorem 34.15. Suppose that κ is regular and κ ≤ p(µ, F ). Let 〈Lα : α < µ〉 be a
system of finite linear orders, let F be an ultrafilter on µ, and suppose that ∀n ∈ ω[{α <
µ : |Lα| > n} ∈ F ]. Let (L,≤) =

∏

α<µ Lα/F . Then there is a regular θ such that (L,≤)
has a (κ, θ)-gap; and there is a regular θ′ such that (L,≤) has a (θ′, κ)-gap.
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Proof. By Proposition 34.4, L has an infinite increasing sequence 〈cn : n ∈ ω〉. Thus
each cn is not near to 1. Now suppose that α < κ and cα has been defined and is not
near to 1. Let cα+1 = cα + 1. Suppose that α < κ is limit and cβ has been defined for
all β < α, each cβ not near to 1. Now (〈cβ : β < α〉, 〈1 − n : n ∈ ω〉) is not a gap,
since |α|, ω < κ ≤ p(µ, F ). Hence there is a cα not near to 1 such that cβ < cα for all
β < α. So we have constructed c ∈ κL strictly increasing with no element near to 1. Let
A = {d ∈ L : ∀α < κ[cα < d]}. Note that A is nonempty, since e.g. 1 ∈ A. If A has a first
element d, then there is an α < κ such that d− 1 ≤ cα < cα+1 < d, contradiction. So A
does not have a first element. Let 〈eξ : ξ < θ〉 be a strictly decreasing coinitial sequence of
elements of A. This gives θ as required in the theorem; for the second conclusion, apply
Proposition 34.14.

Theorem 34.16. Suppose that κ is uncountable and regular, κ < t(µ, F ), and κ ≤ p(µ, F ).
Then there is a unique regular θ such that (κ, θ) ∈ C(µ, F ).

Proof. Existence was proved in Theorem 34.15. Now suppose that 〈Mα : α < µ〉
and 〈Nα : α < µ〉 are systems of finite linear orders, ∀n ∈ ω[{α < µ : |Mα| > n} ∈ F ],
∀n ∈ ω[{α < µ : |Nα| > n} ∈ F ], M =

∏

α<µMα/F , N =
∏

α<µNα/F , a0 ∈ κM ,

b0 ∈ θ0M , (a0, b0) is a (κ, θ0)-gap, a1 ∈ κN , b1 ∈ θ1N , and (a1, b1) is a (κ, θ1)-gap. We
may assume that Mα ∩ Nα = ∅ for all α < µ, and we define an order on Mα ∪ Nα by
putting each member of Mα before each member of Nα. For each α < µ let Pα be the set
of all functions p such that

(1) dmn(p) is a nonempty initial segment of Mα ∪Nα, and rng(p) ⊆Mα ×Nα.

(2) ∀d, d′ ∈ dmn(p)[d < d′ → π0(p(d)) < π0(p(d′)) and π1(p(d)) < π1(p(d′))].

We now consider the two-sorted structure (Pα,Mα ∪Nα, Gα) where Gα = {(p, a, b, c, d) :
p ∈ Pα, a ∈ dmn(p), p(a) = (b, c), d = max(dmn(p))}. Let P =

∏

α<µ Pα/F and X =
∏

α<µ(Mα ∪Nα)/F . For each α < µ let

H = {([p], [x], [y], [z], [w]) : {α < µ : (pα, xα, yα, zα, wα) ∈ Gα} ∈ F}.

We claim

(3) ∀p ∈ P∀x ∈ X∀y, z, u, v, s, t ∈ X [(p, x, y, z, s) ∈ H and (p, x, u, v, t) ∈ H → y = u,
z = v and s = t].

In fact, suppose that p ∈ P , x, y, z, u, v, s, t ∈ X , (p, x, y, z, s) ∈ H, and (p, x, u, v, t) ∈ H.
Say p = [p′], x = [x′], y = [y′], u = [u′], v = [v′], s = [s′], and t = [t′]. Then

{α < µ : (p′α, x
′
α, y

′
α, z

′
α, s

′
α) ∈ Gα} ∈ F and {α < µ : (p′α, x

′
α, u

′
α, v

′
α, t

′
α) ∈ Gα} ∈ F.

If α is in both of the sets here, then p′α ∈ Pα, x′α ∈ dmn(p′α), p′α(x′α) = (y′α, z
′
α) = (u′α, v

′
α),

and s′α = t′α = max(dmn(p′α). Hence y′α = u′α and z′α = v′α. So {α < µ : y′α = u′α} ∈ F ; so
y = u. Similarly z = v and s = t. So (3) holds.

Now for any p ∈ P let dmn(fp) = {x : ∃y, z, s[(p, x, y, z, s) ∈ H}, and set fp(x) =
(y, z). This is justified by (3). Note that dmn(fp) has a maximum element; we denote it
by sp.
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(4) Let d, e ∈ dmn(fp) and d < e. Say fp(d) = (x, y) and fp(e) = (u, v). Then x < u and
y < v.

In fact, write p = [p′], d = [d′], x = [x′], y = [y′], e = [e′], u = [u′], v = [v′] and sp = [sp′].
Now (p, d, x, y, sp), (p, e, u, v, sp) ∈ H, so

{α < µ : (p′α, d
′
α, x

′
α, y

′
α, s

p′
α ) ∈ Gα} ∈ F and {α < µ : (p′α, e

′
α, u

′
α, v

′
α, s

p′
α ) ∈ Gα} ∈ F.

For α in the intersection of these two sets we have p′α(d′α) = (x′α, y
′
α) and p′α(e′α) = (u′α, v

′
α).

Hence by (2), x′α < u′α and y′α < v′α. Then (4) follows.
We now construct 〈cα : α < κ〉 ∈ κP stictly increasing such that the following condi-

tion holds:

(5) scα is not near to 1.

Now if ξ < κ, then a0
ξ ∈ M and a1

ξ ∈ N . Say a0
ξ = [a0′

ξ ] and a1
ξ = [a1′

ξ ]. Thus ∀ξ <
κ[a0′

ξ ∈ ∏α<µMα] and ∀ξ < κ[a1′
ξ ∈ ∏α<µNα]. For each α < µ let 0α be the smallest

element of Mα ∪Nα. For each α < µ let pα = {(0α, ((a
0′)0)α, (a

1′)0)α))}. Thus pα ∈ Pα.
Let c0 = [〈pα : α < µ〉]. Note that 0 is not near to 1, since F is nonprincipal. Now
for any α < µ we have (pα, 0, (a

0′
0 )α, (a

1′
0 )α, 0) ∈ Gα. Hence (c0, 0, a

0
0, a

1
0, 0) ∈ H. Hence

fc0 = {(0, (a0
0, a

1
0)}. Thus sc0 = 0.

If cα has been defined so that the maximum member scα of dmn(fcα) is not near to
1, let cα = [c′α], scα = [d′α]. Then

Q
def
= {β < µ : d′αβ is the maximum element of dmn(c′α)

but is not the greatest element of Mα ∪Nα} ∈ F.

Then for β ∈ Q let c′α+1,β = c′αβ ∪{(d′αβ + 1, (a0′
α+1, a

1′
α+1))}. c′α+1,β is arbitrary otherwise.

Then (c′α+1,β, d
′
αβ, a

0′
α+1,β, a

1′
α+1,β, d

′
αβ) ∈ Gβ , and so

fcα+1
= fcα ∪ {(scα + 1, (a0

α+1, a
1
α+1))}.

Thus scα+1 = scα + 1.
Now suppose that α is limit. Since α < κ < t(µ, F ), there is an e ∈ P such that

∀β < α[cβ < e]. Let se = [d′] and e = [e′]. Let

Q = {γ < µ : d′γ is the maximum member of dmn(e′γ) and a0′
0 < a0′

γ and a1′
0 < a1′

γ }.

Thus Q ∈ F . Now

Q ⊆ {γ < µ : ∃s ≤ d′γ∃u, v, w[(e′γ, s, u, v, w) ∈ Gγ ∧ u < a0′
αγ and v < a1′

αγ}.

The set on the right is thus in F . For each γ ∈ Q let w′
γ be the maximum s as indicated.

and let wγ be arbitrary for γ not in this set. Then w
def
= [〈w′

γ : γ < µ〉] is maximum such
that w ≤ d and (e, w, u, v, x) ∈ H for some u, v, x with u < a0

α and v < a1
α. Thus w is the
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maximum member of P which is ≤ dmn(fe) such that π0(fe(w)) < a0
α and π1(fe(w)) < a1

α.
Now {γ < µ : w′

γ ∈ dmn(e′γ)} ∈ F . For any γ in this set, let qγ = e′γ ↾ w′
γ . Then

∀s, t, u, v[Gγ(qγ , s, t, u, v) → Gγ(e′γ , s, t, u, v)]∧ ∀s[∃t, u, v[Gγ(qγ , s, t, u, v)] ↔ s < w′
γ ].

Then by  Loś’s theorem we have

∀s, t, u, v[H([q], s, t, u, v) → H(e, s, t, u, v)]∧ ∀s[∃t, u, v[H([q], s, t, u, v) ↔ s < w]].

Thus f[q] = fe ↾ w.
Case 1. w is not near to 1. For any γ < µ let c′αγ = qγ ∪ {(w′

γ , (a
′
αγ, b

′
αγ))}. Then

[c′α] = [q] ∪ {(w, (aα, bα))}. Let scα = w. Let cα = [c′α].
Case 2. w is near to 1. Let 〈βξ : ξ < cf(α)〉 be strictly increasing with supremum α.

Now 〈scβξ : ξ < cf(α)〉, 〈w − n : n ∈ ω〉 is not a (cf(α), ω)-gap since κ is uncountable and
≤ p(µ, F ), so there is an scα ∈ X such that ∀ξ < cf(α)∀n ∈ ω[scβξ < scα < w − n]〉. As in
Case 1 we get c′ such that [c′α] = [q] ∪ {(scα , (aα, bα))}. Let cα = [c′α].

Note that for each α < κ, scα is the maximum member of dmn(cα). For brevity we
let u = 〈scγ : γ < κ〉.

Since κ < t(µ, F ), there is an e ∈ P such that ∀α < κ[cα < e]. Let t = max(dmn(fe)).
We construct d0 ∈ θ0(

∏

α<µ(Mα ∪ Nα)/F ) so that (c, d0) is a (κ, θ0)-gap. A similar

construction will give a (κ, θ1)-gap (c, d1), so θ0 = θ1 by Proposition 34.13. Let d0
0 = t.

Then ∀γ < κ[scγ < s]. Suppose that ξ < θ0 and d0
ξ has been constructed so that ∀γ <

κ[scγ < d0
ξ].

(6) There is an x ∈ dmn(fe) such that π0(fe(x)) ≤ b0ξ+1 and x < d0
ξ .

In fact, take any η < κ. Then π0(fe(dη)) = a0
η ≤ b0ξ+1 and scη < d0

ξ . So (6) holds. Let

d0
ξ+1 = max{x ∈ dmn(fe) : π0(fe(x)) ≤ b0ξ+1 and x < d0

ξ}.

Note that scη < d0
ξ+1 for all η < κ.

Now suppose that ξ is limit and d0
η has been defined for every η < ξ so that scθ < d0

η

for all θ < κ and η < ξ. We claim that there is a x such that the following conditions hold:

(7) x ∈ dmn(fe).

(8) π0(fe(x)) ≤ b0ξ .

(9) scγ < x for all γ < κ.

(10) x < d0
η for all η < ξ.

Suppose there is no such x. Now we claim

(11) ∀η < ξ∃γ < θ0[b0γ < π0(fe(d
0
η))].

For, suppose that η < ξ. Then for any γ < κ, scγ < d0
η, and hence π0(fe(d

0
η)) >

π0(fe(dγ)) = a0
γ. Now since a0, b0 is a gap, it follows that there is a δ < θ0 such that

b0δ < π0(fe(d
0
η), as desired in (11).
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Now for each η < ξ let

g(η) = min{γ < θ0 : π0(fe(d
0
η)) > b0γ}.

We claim that rng(g) is cofinal in θ0 (contradicting θ0 regular). For, suppose that ξ < γ <
θ0. Let

y = max{u ∈ dmn(fe) : π0(fe(u)) ≤ b0γ}.
Clearly y satisfies (7) and (9). Now π0(fe(y)) ≤ b0γ < b0ξ, so (8) holds. Hence by assumption,

(10) does not hold. Hence there is an η < ξ such that d0
η ≤ y. Now π0(fe(d

0
η)) ≤

π0(fe(y)) ≤ b0γ . It follows that g(η) > γ, proving the claim.
So there is a x satisfying (7)–(10); we let d0

ξ be such a x.

This finishes the construction of d0. We claim that (u, d0) is a (κ, θ0)-gap. Suppose
that x fills the gap. Take any ξ < κ and η < θ0. Then

a0
ξ = π0(fe(dξ)) < π0(fe(x)) < π0(fe(d

0
η)) ≤ b0η.

Thus π0(fχ(x)) fills the gap (a0, b0), contradiction.
So (u, d0) is a (κ, θ0)-gap. Similarly we get a (k, θ1)-gap. By Proposition 34.13,

θ0 = θ1.

Corollary 34.17. If κ is a regular cardinal, κ < t(µ, F ), κ ≤ p(µ, F ), and there is an
L ∈ L(µ, F ) such that there is no (κ, θ)-gap in L, then (κ, θ) /∈ C(µ, F ).

Proof. Assume the hypothesis, but suppose that (κ, θ) ∈ C(µ, F ). Let (X,<) ∈
L(µ, F ) be such that it has a (κ, θ)-gap. By Theorem 34.15, there is a (κ, θ′)-gap in L for
some regular θ′. Thus (κ, θ), (κ, θ′) ∈ C(µ, F ), so by Theorem 34.16, θ = θ′. Hence L has
a (κ, θ)-gap, contradiction.

Theorem 34.18. Suppose that 〈(Xα,≤α) : α < µ〉 is a system of finite linear orders,
X =

∏

α<µXi/F , U is an infinite subset of X, Z is a family of internal subsets of X,
|U |, |Z| < t(µ, F ), p(µ, F ), and U ⊆ z for all z ∈ Z.

Then there is an internal Y such that U ⊆ Y ⊆ ⋂Z.

Proof. Let z ∈ κZ enumerate Z. For each α < κ let zα = [z′α]. For each α < µ let
Qα be the set of all functions f satisfying the following conditions:

(1) dmn(f) is an initial segment of Xα.

(2) rng(f) ⊆ P(Xα).

(3) ∀x, y ∈ Xα[x ≤ y ∈ dmn(f) → f(y) ⊆ f(x)].

Let Q =
∏

α<µ(Qα,⊆)/F . For α < µ let Gα = {(f, a, b) : f ∈ Qα, a ∈ dmn(f), b ∈ f(a)}.
Let H = {([f ], [a], [b]) : {α : (f, a, b) ∈ Gα} ∈ F}. For c ∈ Q let dmn(fc) = {a :
∃b[(c, a, b) ∈ H]} and for any a ∈ dmn(fc) let fc(a) = {b : (c, a, b) ∈ H}. Now we construct
q ∈ κ+1Q by recursion so that the following conditions hold for all α ≤ κ:

(4) dmn(fqα) has a maximal element dα.
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(5) dα is not near to 1.

(6) U ⊆ fqα(d) for all d ≤ dα.

(7) fqα(dα) ⊆ zα for α < κ.

(8) fqα(dα) is an internal subset of X .

(9) If β < α, then qβ ≤ qα. (Hence fqβ ⊆ fqα .)

Now z0 is an internal subset of X , so let 〈Bβ : β < µ〉 be such that ∀β < µ[Bβ ⊆ Xβ] and
z0 = {[x] : {β < µ : xβ ∈ Bβ} ∈ F}. Define q′0β = {(0, Bβ)} for all β < µ. Thus q′0β ∈ Qβ
for all β < µ. Let q0 = [〈q′0β : β < µ〉]. Then q0 ∈ Q. Now

fq0(0) = {b : (q0, 0, b) ∈ H} = {[b] : {β : (q′0β , 0, bβ) ∈ Gβ} ∈ F}
= {[b] : {β : bβ ∈ q′0β(0)} ∈ F} = {[b] : {β : bβ ∈ Bβ} ∈ F} = z0

Hence (4)–(9) hold for α = 0.
Now assume that qα has been defined satisfying (4)–(9). By (8) let 〈Cβ : β < m〉 be

such that ∀β < µ[Cβ ⊆ Xβ] and fqα(dα) = {[x] : {β < µ : xβ ∈ Cβ} ∈ F}. Let qα = [q′α]
and dα = [d′α]. For each β < µ let

q′α+1,β = q′αβ ∪ {(d′αβ + 1, z′α+1,β ∩ q′αβ(d′αβ))}.

Then q′α+1,β ∈ Qβ. Let qα+1 = [q′α+1]. Then fqα+1
= fqα ∪ {(dα + 1, zα+1 ∩ fqα(dα))}.

Then (4)–(7) and (9) clearly hold for α+1. For (8), we have fqα+1
(dα+1) = zα+1∩fqα(dα);

as an intersection of two internal sets, this is internal by Proposition 34.7.
Now suppose that α is a limit ordinal ≤ κ. Then 〈fqβ : β < α〉 is strictly increasing

by (9), and κ < t(µ, F ), so there is an r ∈ Q such that qβ ≤ r for all β < α. Now note
that if β < α and u ∈ U , then by (6), u ∈ fqβ(dβ) ⊆ fr(dβ). Now let u ∈ U . Say r = [r′]
and u = [u′]. Since u ∈ fr(d0), the set {β < µ : ∃x ∈ dmn(r′β)[u′β ∈ r′β(x)]} is nonempty
and is in F , and for a given β in this set there are only finitely many such x. (Since r′β
is finite.) Hence there is a maximum d ∈ dmn(fr) such that u ∈ fr(d); denote this d by
eu. Thus dβ < eu for all β < α. Now dmn(fr) ⊆ X . Since |U |, |α| < p(µ, F ), there is a dα
such that dβ ≤ dα ≤ eu for all β < α and u ∈ U . Let

q′αβ =

{
r′β ↾ d′αβ ∪ {(d′αβ, z

′
αβ ∩ r′β(d′αβ))} if α < κ,

r′β ↾ d′αβ ∪ {(d′αβ, r
′
β(d′αβ))} if α = κ

Then let qα = [q′α]. Then

fcα =

{
fr ∪ {(dα, zα ∩ r(dα))} if α < κ,
fr ∪ {(dα, r(dα))} if α = κ

Then (4)–(7) and (9) clearly hold. For (8), for each β < µ let

Bβ = {u ∈ Xβ : d′αβ ∈ dmn(q′αβ) and u ∈ q′αβ(d′αβ)}.
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Then

[x] ∈ fcα(dα) iff [x] ∈ r(dα)

iff (r, dα, [x]) ∈ H

iff {β < µ : (r′β, d
′
αβ, xβ) ∈ Gβ} ∈ F

iff [x] ∈ Bβ .

This finishes the construction. Clearly fqκ(dκ) is as desired.

Theorem 34.19. Suppose that 〈Xα : α < µ〉 is a system of finite linear orders. Let
X =

∏

α<µXα/F . Suppose that d ∈ κX is strictly decreasing, with κ < t(µ, F ), and let
D = rng(d). Suppose that G : D → X. Then there is an internal H : X → X such that
G ⊆ H.

Proof. Write dβ = [d′β] for all β < κ, and let G′ : D → ∏

α<µXα be such that
G(dβ) = [G′(dβ)] for all β < κ.

For each α < µ let Pα be the set of all functions f such that for some d ∈ Xα,
dmn(f) = {x ∈ Xα : d < x}, and rng(f) ⊆ Xα. Let Kα = {(f, x, y) : f ∈ Pα, x, y ∈
Xα, x ∈ dmn(f), f(x) = y}. We take the two-sorted structure Aα = (Xα,≤, Pα,⊆, Kα).
So Kα ⊆ Pα×Xα×Xα. Let X =

∏

α<µXα/F , P =
∏

α<µ Pα/F , and H = {([f ], [x], [y]) :

{α < µ : (fα, xα, yα) ∈ Kα} ∈ F}. B =
∏

α<µAα/F = (X,P,H). Then for any α < µ,

Aα |=∀f ∈ Pα[∀x, y, z ∈ Xα[(f, x, y) ∈ Kα ∧ (f, x, z) ∈ Kα → y = z]

∧ ∃!d ∈ Xα∀x ∈ Xα[∃y ∈ Xα[(f, x, y) ∈ Kα] ↔ d < x].

It follows by  Loś’s theorem that for every c ∈ P there exist d ∈ X and fc ∈ P such that fc
is a function with domain {x ∈ X : d < x} and range contained in X , with f[c′]([x

′]) = [y′]
iff {α < µ : c′α(x′α) = y′α} ∈ F .

We now define by recursion c ∈ κP so that the following conditions hold:

(1) dmn(fcβ) = {x ∈ X : dβ < x}.

(2) ∀γ < β[fcγ (dγ) = G(dγ).

(3) ∀γ < β[fcγ ⊆ fcβ ].

Now define c′0α(x) = x for all α < µ and x > d′0α, and c0 = [c′0]. To check (1), first
suppose that [x′] ∈ dmn(fc0). Let [y′] = fc0([x′]). Then {α < µ : c′0α(x′α) = y′α} ∈ F .
Thus {α < µ : d′0α < x′α} ∈ F , so [d′0] < [x′]. Conversely, suppose that [d′0] < [x′]. Then

M
def
= {α < µ : d′0α < x′α} ∈ F . Then c′α(x′α) = x′α. It follows that [x′] ∈ dmn(fc0). This

proves (1). (2) and (3) hold vacuously.
Suppose that cβ = [c′β] has been defined satisfying (1)–(3). For any α < µ and

d′β+1,α < x define

c′β+1,α(x) =

{
c′βα(x) if d′βα < x,
(G′(dβ))α if x ≤ d′βα.
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Let cβ+1 = [c′β+1]. To check (1), first suppose that [x′] ∈ dmn(fcβ+1
). Let [y′] = fcβ+1

([x′]).
Then {α < µ : c′β+1,α(x′α) = y′α} ∈ F . Then {α < µ : d′β+1,α < x′α} ∈ F , so dβ+1 < [x′].
Conversely, suppose that dβ+1 < [x′]. Then M = {α < µ : d′β+1,α < x′α} ∈ F . If α ∈ M ,
then d′β+1,α < x′α, and so x′α ∈ dmn(c′β+1,α). Say c′β+1,α(x′α) = y′α. Then fcβ+1

([x′] = [y′],
so [x′] ∈ dmn(fcβ+1

. Thus (1) holds for β + 1.
For (3), if γ < β, then fcγ ⊆ fcβ by the inductive hypothesis. So it suffices to show

that fcβ ⊆ fcβ+1
. If [x′] > dβ, then M

def
= {α < µ : x′α > d′βα} ∈ F , and for α ∈ M ,

c′β+1,α(x′α) = c′β(x′α), so fcβ ([x′]) = fcβ+1
([x′]. So (3) holds.

Now suppose that β is limit and cγ = [c′γ ] has been defined for all γ < β so that
(1)–(3) hold. Since κ < t(µ, F ), there is an r = [r′] ∈ P such that cγ < r for all γ < β.
Now for each α < µ let dmn(c′βα) = {x ∈ Xα : d′βα < x}. For any x ∈ Xα with d′βα < x
let

c′βα(x) =
{
r′α(x) if x ∈ dmn(r′α),
x otherwise.

To check (1), suppose that [x′] ∈ dmn(fcβ). Let [y′] = fcβ ([x′]). Then M
def
= {α < µ :

c′βα(x′α) = y′α} ∈ F . For α ∈M we have x′α ∈ dmn(c′βα), so d′β,α < x′α. Hence [d′β] < [x′].

Conversely, suppose that [d′β] < [x′]. Then M
def
= {α < µ : d′βα < x′α} ∈ F . For any

α ∈M we have x′α ∈ dmn(c′βα); say c′βα(x′α) = y′α. Then fcβ([x′]) = [y′]. This proves (1).
For (2), suppose that γ < β. Then fcγ (dγ) = G(dγ) by the inductive hypothesis, since

γ + 1 < β.

For (3), suppose that γ < β and [x′] > dγ . Then [x′] ∈ dmn(r), so M
def
= {α < µ :

x′α ∈ dmn(r′α)} ∈ F . Also, cγ+1 < r, so N = {α < µ : cγ+1,α(x′α) = r′α(x′α)} ∈ F . For any
α ∈M ∩N , c′βα(x′α) = r′α(x′α) = cγ+1,α(x′α). Hence cβ([x′]) = cγ+1([x′]) = cγ([x′]). So (3)
holds.

This completes the construction. Since κ < t(µ, F ), choose e = [e′] ∈ P such that
cβ < e for all β < κ. Now define for any x ∈∏α<µXα and α < µ

(H ′(x))α =

{

e′α(xα) if xα ∈ dmn(e′α),
xα otherwise.

Next define for any x ∈∏α<µXα, H([x]) = [H ′(x)]. This is well-defined. In fact, suppose

that x, y ∈ ∏α<µXα and [x] = [y]. Then M
def
= {α < µ : xα = yα} ∈ F . If α ∈M , clearly

(H ′(x))α = (H ′(y))α.
Now G ⊆ H. For, suppose that β < κ. Then H(dβ) = H([d′β]) = [H ′(d′β)]. Now

fcβ(dβ) = G(dβ), so M
def
= {α < µ : c′β(dβα) = (G′(dβ))α} ∈ F . For any α ∈M ,

(H ′(d′β))α = e′α(d′βα) = c′β(d′βα) = (G′(dβ))α).

Hence H(dβ) = G(dβ).
If remains only to show that H is internal. For each α < µ and x ∈ Xα let

fα(x) =
{
e′α(x) if x ∈ dmn(e′α),
x otherwise.
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Then for any x, y ∈∏α<µXα,

H([x]) = [y] iff [H ′(x)] = [y] iff {α < µ : (H ′(x))α = yα} ∈ F

iff {α < µ : fα(xα) = yα} ∈ F.

Theorem 34.20. Suppose that 〈Xα : α < µ〉 is a system of finite linear orders. Let
X =

∏

α<µXα/F . Suppose that d ∈ κX is strictly decreasing, with κ < t(µ, F ), and let

D = rng(d). Suppose that G : 2D → X. Then there is an internal H : 2X → X such that
G ⊆ H.

Proof. Write dβ = [d′β ] for all β < κ, and let G′ : D ×D → ∏

α<µXα be such that
G(dβ , dγ) = [G′(dβ , dγ)] for all β, γ < κ.

For each α < µ let Pα be the set of all functions f such that for some e ∈ Xα,
dmn(f) = {(x, y) ∈ Xα × Xα : x, y > e} and rng(f) ⊆ Xα. Let Kα = {(f, x, y, z) : f ∈
Pα, x, y, z ∈ Xα, f(x, y) = z}. We take the two-sorted structure Aα = (Xα,≤, Pα,⊆, Kα)
and let B =

∏

α<µAα/F . Write B = (X,P,H). Then for any α < µ,

Aα |=∀f ∈ Pα[∀x, y, z, w ∈ Xα[Kα(f, x, y, z) ∧Kα(f, x, y, w) → z = w]

∧ ∃!d ∈ Xα∀x, y ∈ Xα[∃z ∈ Xα[Kα(f, x, y, z)] ↔ d < x, y].

It follows by  Loś’s theorem that for every c ∈ P there exist d ∈ X and fc ∈ P such that
fc is a function with domain {(x, y) ∈ X ×X : d < x, y} and range contained in X , with
f[c′]([x

′], [y′]) = [z′] iff {α < µ : c′α(x′α, y
′
α) = z′α} ∈ F .

Now we define by recursion c ∈ κP so that the following conditions hold:

(1) dmn(fcβ) = {(x, y) ∈ P × P : dβ < x, y}.

(2) If γ, δ < β, then fcβ(dγ , dδ) = G(dγ , dδ).

(3) If γ < β, then cγ < cβ.

Let c′0α(x, y) = x for all x, y > d′0α and all α < µ; and let c0 = [c′0]. To check (1), first
suppose that ([x′], [y′]) ∈ dmn(fc0). Let [z′] = fc0([x′], [y′]). Then {α < µ : c′0α(x′α, y

′
α) =

z′α} ∈ F . Thus {α < µ : d′0α ≤ x′α, y
′
α} ∈ F , so [d′0] < [x′], [y′]. Conversely, suppose that

[d′0] < [x′], [y′]. Then M
def
= {α < µ : d′0α < x′α, y

′
α} ∈ F . Then c′0α(x′α, y

′
α) = x′α. It

follows that ([x′], [y′]) ∈ dmn(fc0) and fc0([x′], [y′]) = G(d0, d0). This proves (1). (2) and
(3) hold vacuously.

Now suppose that cβ has been defined. By Theorem 34.19 let gβ : X → X be internal
such that gβ(dη) = G(dβ , dη) for all η < κ, and let hβ : X → X be internal such that
hβ(x) = G(dη, dβ) for all η < κ. Then there is a system 〈g′β : β < µ〉 such that each
g′β : Xβ → Xβ and

∀x, y ∈
∏

α<µ

Xα[gβ([x]) = [y] iff {α < µ : g′β(xβ) = yβ} ∈ F ].
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Similarly, there is a system 〈h′β : β < µ〉 such that each h′β : Xβ → Xβ and

∀x, y ∈
∏

α<µ

Xα[hβ([x]) = [y] iff {α < µ : h′β(xβ) = yβ} ∈ F ].

Now we define, for x, y ∈∏α<µXα,

c′β+1,α(xα, yα) =







c′βα(xα, yα) if xα, yα > d′βα,
g′βα(y) if d′β+1,α < xα ≤ d′βα and yα > d′β+1,α,
h′βα(x) if xα > d′β+1,α and dβ+1,α < yα ≤ d′βα

Then let cβ+1 = [c′β+1]. To check (1), first suppose that ([x′], [y′]) ∈ dmn(fβ+1). Say
fβ+1([x′], [y′]) = [z′]. Then {α < µ : c′β+1,α(x′, y′) = z′} ∈ F . Hence {α < µ : d′β+1,α <

x′α, y
′
α} ∈ F . So dβ+1 < [x′], [y′]. Conversely, suppose that dβ+1 < [x′], [y′]. Then M

def
=

{α < µ : dβ+1,α < x′α, y
′
α} ∈ F . For α ∈ M there is a z′α such that c′β+1,α(x′α, y

′
α) = z′α.

Hence ([x′], [y′]) ∈ dmn(cβ+1). So (1) holds.
For (2), suppose that γ, δ < β + 1.

Case 1. γ, δ < β. Then dβ < dγ , dδ, so M
def
= {α < µ : d′βα < d′γα, d

′
δα} ∈ F . Now

fcβ(dγ , dδ) = G(dγ , dδ), so N
def
= {α < µ : c′βα(d′γα, d

′
δα) = (G′(dγ, dδ))α} ∈ F . For α ∈

M ∩ N we have c′β+1,α(d′γα, d
′
δα) = c′βα(d′γα, d

′
δα) = (G′(dγ , dδ))α. Hence fcβ+1

(dγ , dδ) =
G(dγ , dδ).

Case 2. γ = β, β > δ. Then

M
def
= {α < µ : c′β+1,α(d′βα, d

′
δα) = g′βα(d′δα) = (G(dβ, dδ))α} ∈ F.

Hence fcβ+1
(dβ , dδ) = G(dβ , dδ).

Case 3. γ ≤ β, β = δ. Then

M
def
= {α < µ : c′β+1,α(d′γα, d

′
βα) = h′γα(d′βα) = (G(dγ, dβ))α} ∈ F.

Hence fcβ+1
(dγ , dβ) = G(dγ , dβ).

Now for (3), suppose that γ < β + 1.
Case 1. γ < β. Then by the inductive hypothesis, cγ < cβ. Hence it suffices to show

(3) for γ = β.
Case 2. γ = β. Now for any α < µ, if x, y ∈ ∏

γ<µXγ and xα, yα > d′βα, then
c′β+1,α(xα, yα) = c′βα(xα, yα). Hence fcβ+1

)([x], [y]) = fcβ([x], [y]).
Now suppose that β is limit and cγ = [c′γ ] has been defined for all γ < β. Since

κ < t(µ, F ), there is an r = [r′] ∈ P such that cγ < r for all γ < β. Say r = [r′]. For
[x′], [y′] > dβ let

c′βα(x′α, y
′
α) =

{
r′(x′α, y

′
α) if (x′α, y

′
α) ∈ dmn(r′),

x′α otherwise.

For (1), first suppose that ([x′], [y′]) ∈ dmn(fcβ). Say fcβ([x′], [y′]) = [z′]. Then {α < µ :
c′βα(x′, y′) = z′} ∈ F . Hence {α < µ : d′βα < x′α, y

′
α} ∈ F . So dβ < [x′], [y′]. Conversely,
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suppose that dβ < [x′], [y′]. Then M
def
= {α < µ : dβα < x′α, y

′
α} ∈ F . For α ∈ M there is

a z′α such that c′βα(x′α, y
′
α) = z′α. Hence ([x′], [y′]) ∈ dmn(cβ). So (1) holds.

For (2), suppose that γ, δ < β. Choose ε with γ, δ < ε < β. Then

c′βα(d′γα, d
′
δα) = r′(d′γα, d

′
δα) = c′ε(d

′
γα, d

′
δα) = ((G(dγ , dδ))α.

Hence fcβ(dγ , dδ) = G(dγ , dδ).
For (3), if γ < β and x′α, y

′
α > d′γ then c′βα(x′α, y

′
α) = r′(x′α, y

′
α) = c′γα(x′α, y

′
α). So

fcα([x′], [y′]) = fcγ ([x′], [y′]).
This completes the construction. Since κ < t(µ, F ), choose e ∈ P such that cα < e

for all α < κ. Now define

H ′(x, y)β =
{
c′γβ(x, y) if dγβ ≤ x, y for some γ < κ,
x otherwise.

Clearly H = [H ′] is as desired.

Theorem 34.21. If κ is an infinite cardinal, then there is a function F : [κ+]2 → κ such
that for every cofinal A ⊆ κ+ we have |F [[A]2]| = κ.

Proof. For each α < κ+ let gα : α → κ be an injection. Define F ({α, β}) = gα(β)
where β < α. Suppose that A ⊆ κ+ is cofinal. Let 〈αξ : ξ < κ+〉 be the strictly increasing
enumeration of A. Then for any ξ < κ we have F ({αξ, ακ}) = gακ(αξ), and so

κ = |rng(gκ)| = |{F [{αξ, ακ}] : ξ < κ}| ≤ |F [[A]2]|

Lemma 34.22. Assume that 〈Xα : α < µ〉 is a system of nonempty sets. For each α < µ
let

Pα = {f : f is a function and ∃D ⊆ Xα[dmn(f) = 2D and rng(f) ⊆ Xα]}.
Let X =

∏

α<µXα, P =
∏

α<µ Pα, and

Rα = {(f,D, x, y, z) : f ∈ Pα, D ⊆ Xα, dmn(f) = 2D, x, y ∈ dmn(f), f(x, y) = z}.

We consider the three-sorted structure (Xα, Pα,P(Xα), Rα). For each [p] ∈ P let f[p] be
the function such that

dmn(f[p]) = {([x], [y]) ∈ X×X : {α < µ : ∃D ⊆ Xα∃z ∈ Xα[(pα, D, xα, yα, z) ∈ Rα]} ∈ F}

and

∀([x], [y]) ∈ dmn(f[p])∀[z] ∈ X [f[p]([x], [y]) = [z] iff {α < µ : pα(xα, yα) = zα} ∈ F.

Assume that ξ < κ, w ∈ X, and
(a) u ∈ ξX is strictly decreasing.
(b) H : 2ξ → {x ∈ X : x > w}.
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(c) p ∈ P is such that fp(uα, uβ) = H(α, β) for all α, β ∈ ξ such that (uα, uβ) ∈
dmn(fp).

Then there is a p ∈ P such that:
(d) ∀α, β ∈ ξ[(uα, uβ) ∈ dmn(fp) and fp(uα, uβ) = H(α, β)].
(e) fp(x, y) > w for all x, y such that (x, y) ∈ dmn(fp).
(f) If (x, y) ∈ dmn(fp) ∩ dmn(fp), then fp(x, y) = fp(x, y).

Proof. Define G : 2(rng(u)) → X by setting, for any ϕ, ψ < ξ, G(uϕ, uψ) = H(ϕ, ψ).
Then we apply Theorem 34.20 to get an internal ρ1 : 2X → X such that for all ϕ, ψ < ξ,
ρ1(uϕ, uψ) = G(uϕ, uψ) = H(ϕ, ψ). Now for any x, y ∈ X let

ρ2(x, y) =

{
fp(x, y) if (x, y) ∈ dmn(fρ),
ρ1(x, y) otherwise.

Note that ρ2 is internal. In fact, since ρ1 is internal there is a system 〈lα : α < µ〉 such
that ∀α < µ[lα : 2Xα → Xα] and for any [x], [y], [z] ∈ X ,

ρ1([x], [y]) = [z] iff {α < µ : lα(xα, yα) = zα} ∈ F.

Now for any α < µ and x, y ∈ Xα, with p = [p′] define

aα(x, y) =

{
p′α(x, y) if ∃d[(p′α, d, x, y, p

′
α(x.y)) ∈ Rα

lα(x, y) otherwise.

Then clearly for all [x], [y], [z] ∈ P ,]

ρ2([x], [y]) = [z] iff {α < µ : aα(xα, yα) = zζ} ∈ F.

This shows that ρ2 is internal.
For each β < ξ let Zβ = {x ∈ X : ρ2(x, uβ) > w}. Then Zβ is internal since ρ2 is

internal. In fact, say w = [w′]. For each α < µ let Bα =
⋃

t>w′
α
{x ∈ Xα : aα(x, u′βα) = t}.

Then by  Loś’s theorem,

[x] ∈
∏

α<µ

Bα/F iff A |= ∃t > w[ρ2([x], uβ) = t] iff [x] ∈ Zβ .

Now let U = {uβ : β < ξ}. Then U ⊆ Zβ for each β < ξ by (c) and the definition of ρ2.
Now by Theorem 34.18 there is an internal Y such that U ⊆ Y ⊆ ⋂β<ξ Zβ. Define

Y ∗ = Y \{y ∈ Y : ∃y′ ∈ Y [ρ2(y′, y) ≤ w]}.

Then Y ∗ is internal. In fact, since Y is internal, there is a system 〈Cα : α < µ〉 such
that each Cα ⊆ Xα and [x] ∈ Y iff {α < µ : xα ∈ Cα} ∈ F . For each α < µ let
Dα = {x ∈ Cα : ∀y, z ∈ Xα[aα(x, y) = z → z > w′

α}. Then for any [x] ∈ X ,

{α < µ : xα ∈ Dα} ∈ F iff A |= ∀y, z ∈ X [ρ2(x, y) = z → z > w] iff [x] ∈ Y ∗.
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(∗) U ⊆ Y ∗.

For, let β < ξ. Then uβ ∈ Y . Suppose that y′ ∈ Y . Then y′ ∈ Zβ , so ρ2(y′, uβ) > w. It
follows that uβ ∈ Y ∗. So (∗) holds.

Clearly ρ2(x, y) > w for all x, y ∈ Y ∗. Let p = ρ2 ↾ 2(Y ∗). Then p is internal, i.e.,
p ∈ P . For, if α < µ let dmn(a′) = 2Dα and a′(x, y) = a(x, y) for any x, y ∈ Dα. Then

{α < µ : a′(x′α, y
′
α) = z′α} = {α < µ : x′α ∈ Dα} ∩ {α < µ : y′α ∈ Dα}

∩ {α < µ : a(x′α, y
′
α) = z′α}

and so

{α < µ : a′(x′α, y
′
α) = z′α} ∈ F iff {α < µ : x′α ∈ Dα} ∈ F and {α < µ : y′α ∈ Dα} ∈ F

and {α < µ : a(x′α, y
′
α) = z′α} ∈ F

iff [x], [y] ∈ Y ∗ and ρ2([x], [y]) = [z]

iff p([x], [y]) = [z].

Clearly (d)–(f) hold.

Theorem 34.23. p(µ, F ) = t(µ, F ).

Proof. By Corollary 34.12 we have p(µ, F ) ≤ t(µ, F ), so we just need to show
that t(µ, F ) ≤ p(µ, F ). Let 〈Xα : α < µ〉 be a system of finite linear orders such that

X
def
=
∏

α<µXα/F has a (κ, θ)-gap with θ ≤ κ = p(µ, F ). If θ = κ, then t(µ, F ) = p(µ, F )
by Proposition 34.9. Now suppose that θ < κ = p(µ, F ) < t(µ, F ); we want to get a
contradiction. Let (x1, x0) be a (κ, θ)-gap in X . If x ∈ Xα let Xα ↾ x = {x′ ∈ Xα : x′ ≤ x}.
Define Pα = {f : f is a function and ∃D ⊆ Xα[dmn(f) = 2D] and rng(f) ⊆ Xα}. Set

Rα = {(f,D, x, y, z) : f ∈ Pα, D ⊆ Xα, dmn(f) = 2D, x, y ∈ dmn(f), f(x, y) = z}.

Let Qα be the set of all functions ψ such that

(1) dmn(ψ) = Xα ↾ x for some x ∈ Xα.

(2) rng(ψ) ⊆ Xα × Pα.

(3) ∀z ∈ dmn(ψ)∀(a, b) ∈ dmn(2nd(ψ(z))[2nd(ψ(z)))(a, b) ≥ 1st(ψ(z))].

(4) ∀z, z′[z ≤ z′ ∈ dmn(ψ) → 1st(ψ(z)) ≤ 1st(ψ(z′)).

∀z,z′, a, b[z ≤ z′ ∈ dmn(ψ) ∧ ∀w[z ≤ w ≤ z′ → (a, b) ∈ dmn(2nd(ψ(w)))] →(5)

∀w[z ≤ w ≤ z′ → (2nd(ψ(z)))(a, b) = (2nd(ψ(w)))(a, b) = (2nd(χ(z′)))(a, b)]].

(∗) Qα is a finite tree with a unique minimum element.

For, we can take the unique root to be ∅. Now suppose that χ, ϕ, ψ ∈ Qα and χ, ϕ ≤ ψ.
Say dmn(χ) = Xα ↾ x′, dmn(ϕ) = Xα ↾ x′′, and dmn(ψ) = Xα ↾ x. Then x′, x′′ ≤ x; say
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x′ ≤ x′′. For any y ≤ x′, χ(y) = ψ(y) and ϕ(y) = ψ(y); so χ(y) = ϕ(y). Thus χ ≤ ϕ. So
(∗) holds.

For each α < µ let

Tα = {(ψ, x, y, a, p, u, v, w) : ψ ∈ Qα, dmn(ψ) = Xα ↾ x,

y ∈ Xα, y ≤ x, ψ(y) = (a, p), (u, v) ∈ dmn(p), p(u, v) = w}.

We consider the 4-sorted structure (Xα, Pα,P(Pα), Qα, Rα, Tα). Thus

Rα ⊆ Pα × P(Xα) ×Xα ×Xα ×Xα,

Tα ⊆ Qα ×Xα ×Xα × Pα ×Xα ×Xα ×Xα.

Let P =
∏

α<µ Pα/F , V =
∏

α<µ P(Xα)/F , Q =
∏

α<µQα/F ,

R ={([f ], [D], [x], [y], [z]) : {α < µ : (fα, Dα, xα, yα, zα) ∈ Rα} ∈ F},
T ={([ψ], [x], [y], [a], [p], [u], [v], [w]) :

{α < µ : (ψα, xα, yα, aα, pα, uα.vα, wα) ∈ Tα} ∈ F},
A =(X,P, V,Q,R, T ).

Applying  Loś’s theorem to the structure A, looking in particular at P , we see that for each
p ∈ P there is a function fp whose domain is 2D for some D ⊆ X and whose range is a
subset of X . We denote D by Dp. Looking at T , we see that for each ψ ∈ Q there is a
function gψ with the following properties:

(6) dmn(gψ) = X ↾ x for some x ∈ X .

(7) rng(gψ) ⊆ X × P .

(8) ∀z ≤ x let gψ(z) = (y, p). Then ∀(a, b) ∈ dmn(fp)[fp(a, b) ≥ y].

(9) ∀z, z′ ∈ X [z ≤ z′ ∈ dmn(gψ) → 1st(gψ(z)) ≤ 1st(gψ(z′))].

(10) ∀z, z′, a, b ∈ X [∀w[z ≤ w ≤ z′ ∈ dmn(gψ) → (a, b) ∈ dmn(2nd(gψ(w)] → ∀w[z ≤ w ≤
z′ ∈ dmn(gψ) → f2nd(gψ(z))(a, b) = f2nd(gψ(w))(a, b) = f2nd(gψ(z′))(a, b)].

For any ψ ∈ Q let rψ be the maximum element of dmn(gψ). For any ψ ∈ Q and z ∈
dmn(gψ) let Dψ(z) = D2nd(gψ(z)). Let Dψ = Dψ(rψ). Further, let gψ(z) = (ψ1(z), ψ2(z))

and gψ(rψ) = (ψ1, ψ2).
By Theorem 34.21, let G0 : [θ+]2 → θ be such that for every cofinal A ⊆ θ+ we have

|G0[[A]2]| = θ. For α, β ∈ κ with α 6= β define

G({α, β}) =
{
G0({α, β}) if α, β < θ+,
0 otherwise.

Clearly

(11) If ψ, χ ∈ Q and ψ ≤ χ, then
(a) rψ ≤ rχ.
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(b) ∀z ∈ dmn(gψ)[ψ(z) = χ(z)].

Now we construct c ∈ κQ, y ∈ κX , and µ ∈ κκ by recursion so that the following conditions
hold for all β < κ:

(12) yβ is not near to 0.

(13) If γ < β, then cγ < cβ and yβ < yγ .

(14) ∀γ ≤ β[yγ ∈ Dcβ ].

(15) For all γ, δ ≤ β[fc2
β
(yγ , yδ) = x0

G(γ,δ)].

(16) ∀γ < β[µ(γ) < µ(β) and c1β = x1
µ(β) + 1.

(17) ∀z < rcβ [1st(gcβ(z)) ≤ 1st(gcβ(rcβ))].

Let y0 ∈ X be such that y0 is not near to 0, and let c0 = {(0, (x1
0 +1, {((y0, y0), x0

G(0,0))})}.

Clearly c0 ∈ Q and (12)–(17) hold.
Now suppose that cγ ∈ Q has been defined for all γ ≤ β satisfying (12)–(17). Let

yβ+1 = yβ−1. We apply Lemma 34.22 with ξ replaced by β+2, u replaced by 〈yγ : γ ≤ β+
1〉, H given by H(γ, δ) = x0

G(γ,δ) for all γ, δ ≤ β+1, w replaced by x1
β+1, with ρ replaced by

c2β . Note that if γ, δ ∈ β+ 2 and (yγ , yδ) ∈ dmn(fc2
β
), then fc2

β
(yγ, yδ) = x0

G(γ,δ) = H(γ, δ).

So Lemma 34.22 gives a function ρ satisfying

(18) ∀γ, δ ∈ β + 2[(yγ, yδ) ∈ dmn(fρ) and fρ(yγ , yδ) = H(γ, δ)].

(19) fρ(x, y) > x1
β+1 for all x, y such that (x, y) ∈ dmn(fρ).

(20) If (x, y) ∈ dmn(fρ) ∩ dmn(fc2
β
), then fρ(x, y) = fc2

β
(x, y).

Let ρ′ = ρ ↾ 2{w : yβ+1 ≤ w}, µ(β + 1) = µ(β) + 1 and cβ+1 = cβ ∪ {(rcβ + 1, (x1
µ(β+1) +

1, ρ′))}. Now we check (6)–(10) and (12)–(17) for β + 1. (6) and (7) are clear. For
(8), we have gcβ+1

(rcβ+1) = (x1
β+1 + 1, ρ′). If (a, b) ∈ dmn(fρ′), then yβ+1 ≤ a, b and

fρ′(a, b) = fρ(a, b) > x1
β+1 by (19); so (8) holds. If z ≤ rcβ , then by (17) and (16),

1st(gcβ+1
(z)) = 1st(gcβ(z)) ≤ 1st(gcβ(rcβ)) = c1β = x1

β + 1 < x1
β+1 + 1 = 1st(gcβ+1

(rβ+1).

This proves (9). For (10), suppose that z ≤ rcβ+1
, a, b ∈ X , and ∀w[z ≤ w ≤ rcβ+1

→
(a, b) ∈ dmn(2nd(gcβ+1

(w))]. Then ∀w[z ≤ w ≤ rcβ → (a, b) ∈ dmn(2nd(gcβ+1
(w)) =

dmn(2nd(gcβ(w))], and so (10) for β gives

∀w[z ≤ w ≤ rcβ → f2nd(gcβ (z))(a, b) = f2nd(gcβ (w))(a, b) = f2nd(gcβ (rcβ ))(a, b)]

and hence

(⋆) ∀w[z ≤ w ≤ rcβ → f2nd(gcβ+1
(z))(a, b) = f2nd(gcβ+1

(w))(a, b) = f2nd(gcβ+1
(rcβ+1

))(a, b)]

Now if z ≤ rcβ , then our assumption for proving (10) implies that

(a, b) ∈ dmn(2nd(gcβ+1
(rcβ)) ∩ dmn(2nd(gcβ+1

(rcβ+1
))],
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and hence by (20), f2nd(gcβ (rcβ ))(a, b) = f2nd(gcβ+1
(rcβ+1

))(a, b). Together with (⋆) this gives

(10) for β + 1.
(12) and (13) are clear. (14) follows from (18). For (15), suppose that γ, δ ≤ β + 1.

Then by (18), fc2
β+1

(yγ , yδ) = H(γ, δ) = x0
G(γ,δ). (16) is clear. (17) follows from (16) for β

and β + 1. Thus we have checked (6)–(10) and (12)–(17) for β + 1.

Now suppose that β is limit < κ. Then β < p(µ, F ), so there is an e ∈ Q such that
∀γ < β[cγ < e]. For each γ < β we have rcγ ∈ dmn(gcγ ) ∩ dmn(ge), and by (11)(b),
cγ(rcγ ) = e(rcγ ). Hence Dcγ = Dcγ (rcγ ) = De(rcγ ). By (14), yγ ∈ Dcγ = De(rcγ ). For
each γ < β let

dγ = max{z ∈ dmn(e) : yγ ∈ De(z)]}.

(21) ∀γ, δ < β[rcγ < dδ].

In fact, suppose that δ < β. Suppose that δ < ε < β. By (14), yδ ∈ Dcε . Thus
yδ ∈ Dcε(rcε) = De(rcε). Hence rcε ≤ dδ. This is true for all ε ∈ (δ, β). So (21) holds.

Now {rcγ : γ < β} has cofinality less than κ and also {dγ : γ < β} has coinitiality
less than κ. Hence the assumption that κ = p(µ, F ) gives an element rβ of X such that
∀γ < κ[rcγ < rβ < dγ ] Now let dmn(e′) = dmn(e) ∩ (X ↾ rβ); e′ = e ↾ dmn(e′).

Now since β < p(µ, F ), there is a yβ less than each yγ for γ < β, with yβ not near 0.
We apply Lemma 34.22 with ξ replaced by β + 1, u replaced by 〈yγ : γ ≤ β〉, H given by
H(γ, δ) = x0

G(γ,δ) for all γ, δ ≤ β, w replaced by x1
β, ρ replaced by 2nd(e(rβ)). Note that

by (15) ∀γ, δ < β[f2nd(e(rβ))(yγ , yδ) = x0
G(γ,δ)]. So we get p ∈ P such that

(22) ∀γ, δ ≤ β[(yγ , yδ) ∈ dmn(fp) and fp(yγ , yδ) = H(γ, δ)].

(23) fp(x, y) > x1
β for all x, y such that (x, y) ∈ dmn(fp).

(24) If (x, y) ∈ dmn(fp) ∩ dmn(f2nd(e(rβ))), then fp(x, y) = f2nd(e(rβ))(x, y).

Let ρ′ = p ↾ 2{s : rβ ≤ s}. Since β < κ and κ is regular, let µ(β) = sup{µ(γ) : γ < β}
Let cβ = e′ ∪ {(rβ, (x

1
µ(β) + 1, ρ′))}. Now we check (6)–(10) and (12)–(17). (6) and (7) are

clear. For (8), suppose that z ≤ rβ . If z ∈ dmn(c′) the conclusion is clear. Suppose that
z = rβ. Then gcβ(rβ) = (x1

β + 1, ρ′), and ∀(a, b) ∈ dmn(fρ′)[fρ′(a, b) ≥ x1
β + 1 by (23). So

(8) holds. (9) is clear. (10) follows from (24). Clearly (12) and (13) hold. (14) and (15)
follow from (22). (16) holds by definition. (17) is clear.

This finishes the construction of 〈cβ : β < κ〉.
Suppose that 〈cβ : β < κ〉 is bounded; say cβ < s for all β < κ. For each η < θ+ we

have by (14) yη ∈ Dcη = Dcη (rcη) = Ds(rsη), so we can let zη be the maximum element of

Hη
def
= {z ∈ dmn(gc) : ∀z′[rcη ≤ z′ ≤ z → yη ∈ Ds(z

′)]}.

(25) rcβ ≤ zη for all β < κ.

For, suppose that β < κ. Wlog η < β. Suppose that rcη ≤ z′ ≤ rcβ . By (14), yη ∈
Dcβ (z′) = Dc(z

′), so by the definition of Hη we have rcβ ≤ zη, and (25) holds.
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By (16) and (25), for each η < θ+, c1(zη) ≥ c1(rcβ) = c1β > x1
β for all β < κ. So

there is a K(η) < θ such that x0
K(η) < c1zη . Let A ∈ [θ+]θ

+

and γ ∈ θ be such that

∀η ∈ A[K(η) = γ]. Choose ζ, η ∈ A such that G(η, ζ) > γ. Let z∗ = min(zη, zζ). So
rcη , rcζ ≤ z∗ ≤ zη, zζ , so [yη, yζ} ⊆ Dc(z

∗). Hence with µ = max(η, ζ + 1),

(gc(z
∗))(yη, yζ) = (gc(dcµ))(yη, yζ) = c2µ(yη, yζ) = x0

G(η,ζ) < x0
γ ;

(gc(z
∗))(yη, yζ) ≥ c1(z∗) > x0

K(η) = x0
γ ,

contradiction.
Since 〈cβ : β < κ〉 is unbounded, it follows that t(µ, F ) ≤ κ < t(µ, F ), contradiction.

Theorem 34.24.

p = min{κ : ∃A ∈ κ([ω]ω)[∀ξ, η < κ∃ρ < κ[Aρ ⊆ Aξ ∩ Aη]

∧ ¬∃C ∈ [ω]ω∀ξ < κ[|C\Aξ| < ω]]}.

Proof. Clearly ≤ holds. Now suppose that A ⊆ [ω]ω, |A | = p, ∀F ∈ [A ]<ω[
⋂
F

is infinite], and there is no C ∈ [ω]ω such that C\A is finite for all A ∈ A . Let B =
{⋂F : F ∈ A <ω}, and let A ∈ pB be a bijection. Clearly A satisfies the conditions of the
theorem.

Theorem 34.25. Assume that p < t. Suppose that A ∈ p([ω]ω) is as in Theorem 34.24
with κ replaced by p. Then there exist an uncountable regular κ < p and a B ∈ κ([ω]ω)
such that:

(i) ∀ξ < p∀α < κ[Bα ∩ Aξ is infinite].
(ii) ∀α, β < κ[β ≤ α→ Bα\Bβ is finite].
(iii) ¬∃C ∈ [ω]ω[∀α < κ[|C\Bα| < ω] and ∀ξ < p[C ∩ Aξ is infinite]].

Proof. We define ζ and B′ ∈ ζ([ω]ω) by recursion so that

(1) ∀ξ < ζ∀α < p[B′
ξ ∩Aα is infinite].

B′
0 = ω. Obviously (1) holds. Now assume that B′

ξ has been defined so that (1) holds. Let
B′
ξ+1 = B′

ξ ∩Aξ. Thus B′
ξ+1 is infinite, by (1) for ξ. Suppose that η < p. By the condition

in Theorem 34.24 there is a ρ < p such that Aρ ⊆ Aξ∩Aη. By (1) for ξ, B′∩Aρ is infinite;
so B′ ∩ Aξ ∩ Aη is infinite. So (1) holds for ξ + 1. For ξ limit we consider two cases.

Case 1. There is an infinite C ⊆ ω such that ∀η < ξ[C\B′
η is finite] and ∀γ < p[C∩Aγ

is infinite]. Then we let B′
ξ be such a C. Clearly (1) holds for ξ.

Case 2. Otherwise let ζ = ξ and stop.

This finishes the construction. Clearly ζ is not a successor ordinal.

(2) ζ ≤ p.

In fact, suppose not. Then ∀η < p[B′
p\B′

η is finite]. Now for any ξ < p we have B′
ξ+1 ⊆ Aξ,

so B′
p\Aξ ⊆ B′

p\B′
ξ+1; so B′

p\Aξ is finite. This contradicts the hypothesis on A.
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(3) If ξ < η < ζ, then B′
η\B′

ξ is finite.

In fact, this is clear if η is limit, or if η = ξ + m for some m ∈ ω. So suppose that
η = ω · α + m with m ∈ ω\{0} and ξ < ω · α. Then B′

η\B′
ξ ⊆ B′

ω·α\B′
ξ, and the latter is

finite. So (3) holds.

(4) ζ < p.

For, suppose that ζ = p. Since p < t, there is a C ∈ [ω]ω such that ∀ξ < ζ[C ⊆∗ B′
ξ]. If

ξ < p, then C ⊆∗ B′
ξ+1 ⊆ Aξ. This contradicts Theorem 34.24. So (4) holds.

Let κ = cf(ζ).

(5) ω < κ.

For, assume that ω = κ. Let 〈ρi : i < ω〉 be strictly increasing with supremum ζ. For
each n ∈ ω let B̂n = (

⋂

i≤nB
′
ρi

)\n. Then ∀m,n ∈ ω[m ≤ n → B̂n ⊆ B̂m]. Clearly
⋂

n∈ω B̂n = ∅. For any n ∈ ω,

B′
ρn
△B̂n =



B′
ρn
\








⋂

i≤n
B′
ρi



 \n







 ∪












⋂

i≤n
B′
ρi



 \n



 \B′
ρn





=
⋃

i≤n
(B′

ρn
\B′

ρi
) ∪ (B′

ρn
∩ n)

and this last set is finite. Thus

(6) ∀n ∈ ω[B′
n△B̂n is finite].

From (1) and (6) it follows that ∀n ∈ ω∀ξ < p[B̂n ∩ Aξ is infinite]. Now for each ξ < p

define fξ ∈ ωω by setting fξ(n) = min(B̂n ∩ Aξ). Now p < t ≤ b, so there is an f ∈ ωω

such that ∀ξ < p[fξ ≤∗ f ]. Let C =
⋃

n∈ω((f(n) + 1) ∩ B̂n).

(7) ∀ξ < p[C ∩Aξ is infinite].

In fact, let ξ < p. Choose m ∈ ω so that ∀n ≥ m[fξ(n) ≤ f(n)]. Then for all n ≥ m,

min(B̂n ∩Aξ) = fξ(n) ≤ f(n) and so min(B̂n ∩Aξ) ∈ C. Since min(B̂n ∩Aξ) > geqn, this
proves (7).

Now for all n ∈ ω, C\B̂n ⊆ f(n) + 1, so C ∩ B̂n is finite. Hence also C ∩B′
n is finite,

by (6). But this means that B′
ζ is defined, contradiction.

So (5) holds, and the theorem is proved.

Theorem 34.26. Suppose that ζ < t is an ordinal, A ∈ ζ([ω]ω), B ∈ ω([ω]ω), and:
(i) Bn\Bm is finite if m < n.
(ii) ∀ξ < ζ∀n ∈ ω[Aξ ∩Bn is infinite].
(iii) ∀ξ, η < ζ[η ≤ ξ → ∃n ∈ ω[Bn ∩ (Aξ\Aη) is finite]].

Then there is a C ∈ [ω]ω such that ∀ξ < ζ∀n ∈ ω[C\Aξ and C\Bn are finite].

Proof. For each n ∈ ω let B′
n = (

⋂

m≤nBm)\n. Then clearly
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(1) B′
n ⊆ B′

m if m < n.

(2) ∀ξ < ζ∀n ∈ ω[Aξ ∩B′
n is infinite].

We prove (2) for fixed ξ < ζ by induction on n. It is clear for n = 0. Assuming it for n,

Aξ ∩B′
n+1 = Aξ ∩








⋂

m≤n+1

Bm



 \(n+ 1)





=



Aξ ∩








⋂

m≤n
Bm



 \n







 ∪ (Aξ ∩ (Bn+1\(n+ 1))),

and the latter is infinite by the inductive hypothesis.

(3) ∀ξ, η < ζ[η ≤ ξ → ∃n ∈ ω[B′
n ∩ (Aξ\Aη) is finite]].

This is clear.
For all ξ < ζ let fξ ∈ ωω be strictly increasing such that ∀n ∈ ω[fξ(n) ∈ B′

n∩Aξ]. Since
ζ < t ≤ b, there is an f ∈ ωω such that fξ <

∗ f for all ξ < ζ. Define B∗ =
⋃

n∈ω(B′
n∩f(n)).

(4) ∀ξ < ζ[Aξ ∩B∗ is infinite].

In fact, let ξ < ζ. Choose N so that ∀n ≥ N [fξ(n) < f(n)]. Then for any n ≥ N we have
fξ(n) ∈ Aξ ∩ f(n). So (4) holds.

(5) ∀ξ, η < ζ[η ≤ ξ → B∗ ∩ (Aξ\Aη) is finite].

In fact, for any n ∈ ω we have B∗\B′
n ⊆ ⋃i<n(B′

i∩f(i)), so B∗\B′
n is finite. Now suppose

that ξ, η < ζ and η ≤ ξ. By (3), choose n ∈ ω such that B′
n ∩ (Aξ\Aη) is finite. Then, in

P(ω)/fin we have [B∗] ≤ [B′
n] ≤ [ω\(Aξ\Aη)], and (5) follows.

Now by (5), 〈B∗ ∩ Aξ : ξ < ζ〉 is decreasing mod finite. Since ζ < t, choose C ∈ [ω]ω

such that [C] ≤ [B∗ ∩ Aξ] for all ξ < ζ. Thus ∀ξ < ζ[C\Aξ is finite]. Also, for any n ∈ ω,
B∗\B′

n is finite. (See above, after (5).) Now B∗\Bn ⊆ B∗\B′
n, so B∗\Bn is finite. Now

C\Bn ⊆ (C\B∗) ∪ (B∗\Bn), so C\Bn is finite.

If σ and τ are finite subsets of ω, we write σ ⊳ τ if σ is a proper initial segment of τ . Now
we define:

Σ = {S ∈ [[ω]<ω\{∅}]ω : ∀σ, τ ∈ S[σ 6= τ → min(σ) 6= min(τ)]}
S ≺Σ S′ iff S, S′ ∈ Σ and ∃F ∈ [S′]<ω∀τ ∈ S′\F∃σ ∈ S[σ ⊳ τ ].

Note that the σ ∈ S asserted to exist here is unique, since σ ⊳ τ implies that the first
element of σ is the same as the first element of τ , and distinct members of S have different
first members.

Proposition 34.27. If S ∈ Σ and m ∈ ω, then {σ ∈ S : min(σ) < m} and {σ ∈ S :
max(σ) < m} are finite.
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Proof. For, obviously {σ ∈ S : min(σ) < m} is finite. Since {σ ∈ S : max(σ) < m} ⊆
{σ ∈ S : min(σ) < m}, also {σ ∈ S : max(σ) < m} is finite.

Proposition 34.28. ∀S, S′ ∈ Σ[S ≺Σ S′ iff ∃n ∈ ω∀τ ∈ S′[min(τ) > n→ ∃σ ∈ S[σ ⊳ τ ]].

Proof. ⇒: Assume that S ≺Σ S′, and choose F ∈ [S′]<ω correspondingly. Let n be
greater than each minσ) for σ ∈ F . Suppose that τ ∈ S′ and min(τ) > n. Then τ /∈ F , so
∃σ ∈ S[σ ⊳ τ ].

⇐: Assume the indicated condition, and choose n correspondingly. Let F = {σ ∈
S′ : min(σ) ≤ n}. So F is a finite subset of S′. If τ ∈ S′\F , then min(σ) > n, and hence
∃σ ∈ S[σ ⊳ τ ].

Theorem 34.29. ≺Σ is transitive.

Proof. Suppose that S ≺ S′ ≺ S′′. Choose n0, n1 such that

∀τ ∈ S′[min(τ) > n0 → ∃σ ∈ S[σ ⊳ τ ]];

∀ν ∈ S′′[min(ν) > n1 → ∃τ ∈ S′[τ ⊳ ν]].

Let
m = max{n1, sup{max(τ) : τ ∈ S′, min(τ) ≤ n0}.

Now suppose that ν ∈ S′′ and min(ν) > m. Since min(ν) > n1, it follows that there is a
τ ∈ S′ such that τ ⊳ ν. If min(τ) ≤ n0, then min(ν) > m ≥ max(τ), contradiction. So
min(τ) > n0 and so there is a σ ∈ S such that σ ⊳ τ , hence σ ⊳ ν.

Theorem 34.30. Suppose that ζ < t is an ordinal, S ∈ ζΣ, and ∀η, ξ < ζ[η < ξ → Sη ≺
Sξ]. Then there is a T ∈ Σ such that Sξ ≺ T for all ξ < ζ.

Proof. For each n ∈ ω let Bn = {σ ∈ [ω]<ω\{∅} : min(σ) ≥ n}. For each ξ < ζ let

Aξ = {τ ∈ [ω]<ω\{∅} : ∃σ ∈ Sξ[σ ⊳ τ ]}

Suppose that η < ξ < ζ. Since Sη ≺ Sξ, choose n0 so that ∀τ ∈ Sξ[min(τ) ≥ n0 → ∃σ ∈
Sη[σ ⊳ τ ]]. Thus Sξ ∩Bn0

⊆ Aη. Choose n such that max(σ) < n whenever σ ∈ Sξ\Bn0
.

(1) Aξ ∩Bn ⊆ Aη.

In fact, suppose that τ ∈ Aξ ∩Bn. So min(τ) ≥ n. Choose σ ∈ Sξ such that σ ⊳ τ . Then
min(σ) ≥ n, so by the choice of n, σ ∈ Bn0

. So min(σ) ≥ n0. Hence σ ∈ Sξ ∩ Bn0
⊆ Aη,

so there is a ρ ∈ Sη such that ρ ⊳ σ. Thus ρ ⊳ τ . This shows that τ ∈ Aη, proving (1).
Now obviously each Aξ is infinite, so also Aξ ∩ Bn is infinite. Clearly Bm ⊆ Bn if

n < m. Let f : ω → [ω]<ω be a bijection, A′
ξ = {m ∈ ω : f(m) ∈ Aξ} for all ξ < ζ, and

B′
n = {m ∈ ω : f(m) ∈ Bn}. Then the hypotheses of Theorem 34.26 hold for A′

ξ and B′
n.

So let C ∈ ([ω]<ω)ω be such that ∀ξ < ζ∀n ∈ ω[C\Bn and C\Aξ are finite].
Now suppose that ξ < ζ; we show that Sξ ≺ C. Choose n ∈ ω such that ∀σ ∈

C[min(σ) ≥ n → σ ∈ Aξ]. Now take any τ ∈ C such that min(τ) ≥ n. Then τ ∈ Aξ, so
there is a σ ∈ Sξ such that σ ⊳ τ .
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Theorem 34.31. Suppose that p < t, A ∈ p([ω]ω) as in Theorem 34.24, and κ and
B ∈ κ([ω]ω) as in Theorem 34.25. Then there is a function S with domain p+1 such that:

(i) ∀ξ ≤ p[Sξ ∈ Σ].
(ii) ∀ξ < p∀α < κ[Sξ\[Bα]<ω is finite].
(iii) ∀η, ξ ≤ p[η < ξ → Sη ≺ Sξ].
(iv) ∀ξ < p∀σ ∈ Sξ+1[max(σ) ∈ Aξ].

Proof. We define Sξ for ξ ≤ p by recursion.
ξ = 0: Since κ < p < t and ∀α, β < κ[α < β → Bβ\Bα is finite], there is an infinite

C ⊆ ω such that C\Bα is finite for all α < κ. Let S0 = {{n} : n ∈ C}. Clearly (i)
holds for ξ = 0. Suppose that α < κ. Then C\Bα is finite, so there is an N such that
∀n ≥ N [n ∈ C → n ∈ Bα]. Hence ∀x ∈ S0\{{n} : n < N}[x ∈ [Bα]<ω]. So S0\[Bα]<ω is
finite. So (ii) holds. (iii) and (iv) hold vacuously for ξ = 0.

ξ to ξ + 1: If α < β < κ then Bβ ∩ Aξ\(Bα ∩ Aξ) is finite; and by (i) of Theorem
34.25, Bα ∩Aξ is infinite for all α < κ. Hence since κ < p < t, there is an infinite C ⊆ Aξ
such that C\Bα is finite for all α < κ. For each σ ∈ Sξ there is a σ′ ∈ [ω]<ω\{∅} such
that σ ⊳ σ′ ⊆ σ ∪ C; namely one can take any n ∈ C with n > σ (possible since σ is finite
and C is infinite), and let σ′ = σ ∪ {n}. Let Sξ+1 = {σ′ : σ ∈ Sξ}. Then (i) is clear for
ξ + 1. Concerning (ii), suppose that α < κ. Choose N so that ∀n ≥ N [n ∈ C → n ∈ Bα],
and choose M so that ∀σ ∈ Sξ[min(σ) ≥ M → σ ∈ [Bα]<ω]. Suppose that τ ∈ Sξ+1 and
min(τ) ≥ M,N . Say τ = σ′ with σ ∈ Sξ. Since min(σ) ≥ M it follows that σ ∈ [Bα]<ω.
Now σ′\σ ⊆ C and min(σ′\σ) ≥ N , so σ′\σ ⊆ Bα. Hence τ ∈ [Bα]<ω. This proves (ii).
Clearly Sξ ≺ Sξ+1. Finally, (iv) holds since for σ ∈ Sξ+1 we have max(σ) ∈ C ⊆ Aξ.

ξ limit, ξ < p: Let ζ max(ξ, κ) and

I = {I ∈ [[ω]<ω\{∅}]<ω : ∀σ, τ ∈ I[σ 6= τ → min(σ) 6= min(τ)]};

P = I × [ζ]<ω;

(I, J) ≤ (I ′, J ′) iff (I, J), (I ′, J ′) ∈ P, I ⊆ I ′, J ⊆ J ′, and ∀σ ∈ I ′\I :

(1) ∀η ∈ J ∩ ξ∃τ ∈ Sη[τ ⊳ σ];

(2) ∀α ∈ J ∩ κ[σ ⊆ Bα].

Clearly ≤ is reflexive on P. Suppose that (I, J) ≤ (I ′, J ′) ≤ (I ′′, J ′′) and σ ∈ I ′′\I.
Case 1. σ /∈ I ′. Then (1) and (2) hold for J ′, hence also for J .
Case 2. σ ∈ I ′. Clearly (1) and (2) hold for J .

It follows that ≤ is transitive. Clearly ≤ is antisymmetric. So ≤ is a partial order on P.
Also, P is σ-centered upwards. For, P =

⋃

I0∈I{(I, J) ∈ P : I = I0}, and for any I0 ∈ I

the set {(I, J) ∈ P : I = I0} is centered: if (I0, J0), . . . , (I0, Jm) ∈ P, then for each k ≤ m,
(I0, Jk) ≤ (I0, J0 ∪ . . . ∪ Jm).

(3) ∀η < ζ[Q′
η

def
= {(I, J) ∈ P : η ∈ J} is cofinal in P].

For, given η < ζ and (I, J) ∈ P we have (I, J) ≤ (I, J ∪ {η}).

(4) ∀k ∈ ω[Qk
def
= {(I, J) ∈ P : ∃σ ∈ I[σ 6⊆ k]} is cofinal in P].

To prove (4), let k ∈ ω and (I, J) ∈ P. By (3) we may assume that 0 ∈ J . Let η∗ =
max(J ∩ ξ) and B∗ =

⋂

α∈J∩κBα.
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(5)
⋃
Sη∗\B∗ is finite.

For, let α be the maximum element of J ∩ κ. Then by Theorem 34.25(ii), Bα\B∗ is finite.
Choose m ∈ ω such that ∀p ≥ m[p ∈ Bα → p ∈ B∗]. Also by (ii), there is an n ∈ ω such
that ∀σ ∈ Sη∗ [max(σ) ≥ n→ σ ∈ [Bα]<ω]. Take any p ≥ m,n and suppose that l ∈ ⋃Sη∗
with l ≥ p. Say l ∈ σ ∈ Sη∗ . Then max(σ) ≥ l ≥ p ≥ n, so σ ∈ [Bα]<ω. Hence l ∈ Bα and
l ≥ m, so l ∈ B∗. This proves (5).

By (5) there is a k′ ≥ k such that
⋃
Sη∗\B∗ ⊆ k′.

(6) ∃σ ∈ Sη∗ [k′ ≤ min(σ) and ∀η ∈ J ∩ η∗∃τ ∈ Sη[τ ⊳ σ]].

In fact, Sη ≺ Sη∗ for all η ∈ J ∩ η∗, so for every η ∈ J ∩ η∗ there is an sη ∈ ω such that
∀τ ∈ Sη∗ [min(τ) ≥ sη → ∃σ ∈ Sη[σ ⊳ τ ]]. Let t = max{sη : η ∈ J ∩ η∗}. Let σ ∈ Sη∗ be
such that min(σ) ≥ k′, t. Suppose that η ∈ J ∩ η∗. Then there is a τ ∈ Sη such that τ ⊳ σ.
So (6) holds.

Take σ as in (6). Since σ ∈ Sη∗ and k′ ≤ min(σ), it follows that σ ⊆ B∗. Since B∗ is
infinite, choose m ∈ B∗ such that m > max(σ). Let σ′ = σ ∪ {m}. Now m > max(σ) ≥
min(σ) ≥ k′ ≥ k, so (I, J) ≤ (I ∪ {σ′}, J) ∈ Qk. This proves (4).

The following two statements are clear:

(7) If η < ξ, (I, J) ∈ Q′
η, and (I, J) ≤ (I ′, J ′), then (I ′, J ′) ∈ Q′

η.

(8) If k ∈ ω, (I, J) ∈ Qk, and (I, J) ≤ (I ′, J ′), then (I ′, J ′) ∈ Qk.

Now we apply mσ = p to get R ⊆ P such that R is upwards directed and R intersects every
Q′
η, η < ζ and every Qk, k ∈ ω. Let T =

⋃{I : (I, J) ∈ R}.

(9) T is infinite.

For, suppose that σi ∈ T for each i < m. Say σi ∈ Ii with (Ii, Ji) ∈ R, for each i < m. Let
k be larger than each member of

⋃

i<m σi, and choose (I ′, J ′) ∈ R ∩ Qk. Choose τ ∈ I ′

such that τ 6⊆ k. Then τ 6= σi for all i < m. So (9) holds.

(10) ∀η < ξ[Sη ≺ T ].

For, suppose that η < ξ. Choose (I, J) ∈ R ∩Q′
η. Thus η ∈ J . Let k ∈ ω be greater than

max(σ) for all σ ∈ I. Suppose that τ ∈ T and min(τ) ≥ k. Then τ /∈ I. Say τ ∈ I ′ with
(I ′, J ′) ∈ R. Choose (I ′′, J ′′) ∈ R such that (I, J), (I ′, J ′) ≤ (I ′′, J ′′). Then τ ∈ I ′′ since
I ′ ⊆ I ′′. Since (I, J) ≤ (I ′′, J ′′) it follows that there is a σ ∈ Sη such that σ ⊳ τ . This
proves (10).

(11) ∀α < κ[T\[Bα]<ω is finite].

For, let α < κ. Choose (I, J) ∈ R ∩ Q′
α. Let k be greater than max(σ) for all σ ∈ I.

Suppose that σ ∈ T and min(σ) ≥ k. Say σ ∈ I ′ with (I ′, J ′) ∈ R. So σ /∈ I. Choose
(I ′′, J ′′) ∈ R such that (I, J), (I ′, J ′) ≤ (I ′′, J ′′). Hence α ∈ J ′′. It follows that σ ⊆ Bα,
i.e., σ ∈ [Bα]<ω. So (11) holds.

Let Sξ = T . Clearly (i)–(iii) hold. (iv) holds vacuously.
ξ = p. Since p < t, we can apply Theorem 34.30 to get Sp such that Sξ ≺ Sp for all

ξ < p. This completes the construction.
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A strict partial order is a pair (P,<) such that < is irreflexive and transitive. Generalizing
the notion for linear orderings, for infinite regular cardinals κ, λ, and a strict partial order
(X,<), a (κ, λ)-gap in (X,<) is a pair (a, b) with a ∈ κX and b ∈ λX such that:

(1) ∀α, β < κ∀γ, δ < λ[α < β and γ < δ imply that aα < αβ < bδ < bγ ].

(2) There is no x ∈ X such that ∀α < κ∀β < λ[aα < x < bβ ].

A gap (a, b) ∈ (κX) × (λX) is linear provided the following conditions hold:

∀x ∈ X [∀ξ < κ[aξ < x] → ∃η < λ[bη < x]];

∀x ∈ X [∀ξ < λ[x < bξ] → ∃η < κ[x < aη]].

The gap is then called a linear (κ, λ)-gap.
Note that P(ω)/fin under < is a strict partial order. So is ωω under the relation <∗,

where f <∗ g iff ∃k∀n ≥ k[f(n) ≤ g(n)] and {n : f(n) < g(n)} is infinite.

Theorem 34.32. If p < t, then there is a regular uncountable κ < p such that there is a
linear (p, κ)-gap in (P(ω)/fin, <) and also one in (ωω,<∗).

Proof. Let A ∈ p([ω]ω) be as in Theorem 34.24, κ and B ∈ κ([ω]ω) as in Theorem
34.25, S ∈ p+1Σ as in Theorem 34.31. Recall that p is regular and uncountable. Let
A′ = {min(σ) : σ ∈ Sp}, and for each n ∈ A′ let σn ∈ Sp be such that n = min(σn).
Clearly A′ is infinite. For any α < κ and n ∈ A′ let

fα(n) =

{
min(σn\Bα) if σn\Bα 6= ∅,
1 + max(σn) otherwise.

For each ξ < p and each n ∈ A′ let

gξ(n) =

{
max(σ) such that σ ∈ Sξ+1 and σ ⊳ σn} if there is such a σ
1 + max(σn) otherwise.

If α < κ and n ∈ A′, then (σn\Bα) ∩ fα(n) = ∅, so

(1) For all α < κ and n ∈ A′ we have σn ∩ fα(n) ⊆ Bα.

(2) ∀ξ < p∃k ∈ ω∀n ∈ A′\k[gξ(n) ∈ Aξ].

In fact, Sξ+1 ≺ Sp by Theorem 34.31(iii). Hence there is a k ∈ ω such that for all τ ∈ Sp, if
min(τ) ≥ k then ∃µ ∈ Sξ+1[µ⊳τ ]. Suppose that n ≥ k and n ∈ A′. Then min(σn) = n ≥ k,
so there is a τ ∈ Sξ+1 such that τ ⊳ σn. Hence the first clause in the definition of gξ(n)
applies, and we then get gξ(n) ∈ Aξ by Theorem 34.31(iv).

(3) ∀n ∈ A′[n ≤ gξ(n)].

In fact, let n ∈ A′. If the first clause in the definition of gξ(n) holds, then n = min(σn) ≤
max(σ) = gξ(n), where σ ⊳ σn as in the definition. If the second clause holds, then
n = min(σn) ≤ 1 + max(σn) = gξ(n). This proves (3).
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(4) If α ≤ β < κ, then there is an n0 ∈ ω such that ∀n ∈ A′\n0[σn ∩ (Bβ\Bα) = ∅].

For, assume that α ≤ β < κ. Then Bβ\Bα is finite by Theorem 34.25(ii). Let n0 >
(Bβ\Bα). Suppose that n ∈ A′\n0. Then min(σn) = n ≥ n0, so σn ∩ (Bβ\Bα) = ∅.

(5) If α ≤ β < κ, and with n0 as in (4), we have ∀n ∈ A′\n0[fβ(n) ≤ fα(n)].

In fact, by (4) we have σn\Bα ⊆ σn\Bβ.
Case 1. σn\Bα 6= ∅. Then fβ(n) ≤ fα(n) by definition.
Case 2. σn\Bα = ∅ 6= σn\Bβ. Then fβ(n) = min(σn\Bβ) ≤ 1 + max(σn) = fα(n).
Case 3. σn\Bβ = ∅. Clearly fβ(n) = fα(n).

So (5) holds.

(6) ∀α < κ∃β ∈ (α, κ)[{n ∈ A′ : fβ(n) ≥ fα(n)} is finite].

Suppose not; so there is an α < κ such that for all β ∈ (α, κ)[{n ∈ A′ : fβ(n) ≥ fα(n)} is
infinite]. For each β < κ let Cβ = {n ∈ A′ : fβ(n) ≥ fα(n)}.

(7) ∀β < κ[Cβ is infinite].

For, suppose that β < κ and Cβ is finite. Then by definition, β ≤ α. Choose m ∈ ω such
that ∀n ≥ m[n ∈ A′ → fβ(n) < fα(n)]. This contradicts (5).

(8) ∀β, γ < κ[β < γ → Cγ ⊆∗ Cβ ].

In fact, suppose that β < γ < κ. By (5) choose k ∈ ω so that ∀n ∈ A′\k[fγ(n) ≤ fβ(n)].
Hence if n ≥ k and n ∈ Cγ then fα(n) ≤ fγ(n) ≤ fβ(n). So (8) holds.

Since κ < t (applied to A′ rather than ω), let D ∈ [A′]ω be such that ∀β ∈ κ[D ⊆∗ Cβ ].
In particular, D ⊆∗ C0, so D\C0 is finite. Now let

E =
⋃

n∈D
(σn ∩ [n, fα(n))).

(9) ∀β < p∃k ∈ ω∀n ∈ A′\k∃τn ∈ Sβ [τn ⊳ σn and τn ⊆ Bα]].

In fact, let β < p. Since Sβ ≺ Sp by Theorem 34.31(iii), by Proposition 34.28 choose k ∈ ω
such that ∀n ∈ A′[k < n → ∃τ ∈ Sβ [τ ≺ σn]]. Also, by Theorem 34.31(ii) choose l ∈ ω
so that ∀τ ∈ Sβ [l < min(τ) → τ ⊆ Bα]. Then ∀n > k, l[n ∈ A′ → ∃τn ∈ Sβ [τn ⊳ σn and
τn ⊆ Bα]].

(10) E is infinite.

For, take any β < p and let k be as in (9). Take any n ∈ D\k. Now if σn\Bα 6= ∅, then
max(τn) < min(σn\Bα), hence τn ⊆ fα(n). If σn\Bα = ∅, then clearly τn ⊆ fα(n). Hence
σn ∩ [n, fα(n)) 6= ∅. Thus (10) holds.

(11) ∀β ∈ (α, κ)[D ⊆∗ {n ∈ A′ : fβ(n) = fα(n)}].

In fact, suppose that α < β < κ. By the choice of D we have D ⊆∗ Cβ , and by (5)
∀n ≥ n0[fβ(n) ≤ fα(n)]. Hence (11) holds.

(12) ∀β ∈ κ[E ⊆∗ Bβ].
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For, suppose that β ∈ κ. Now by (1), ∀n ∈ A′[σn ∩ fα(n) ⊆ Bα]. Thus E ⊆ Bα. If β ≤ α,
then by Theorem 34.25(ii), Bα ⊆∗ Bβ; hence E ⊆∗ Bβ. So we may assume that α < β. By
(11) choose k ∈ ω such that ∀n ≥ k[n ∈ D → fβ(n) = fα(n)]. Suppose that m is greater
than max(σp) for all p < k, and m ∈ E. Say p ∈ D and m ∈ σp ∩ [p, fα(p)). Then p ≥ k
and so fα(p) = fβ(p). Now σp ∩ [p, fα(p)) = σp ∩ [p, fβ(p)) ⊆ Bβ by (1). So m ∈ Bβ. This
proves (12).

(13) ∀ξ < p[E ∩Aξ is infinite].

For, suppose that ξ < p. By (9) choose k ∈ ω such that ∀n ∈ A′\k∃τn ∈ Sξ+1[τn ⊳
σn and τn ⊆ Bα]. Take any n ∈ D\k. Then τn ∈ Sξ+1, so max(τn) ∈ Aξ by Theorem
34.31(iv). Also max(τn) ∈ σn. Since τn ⊆ fα(n), because τn ⊆ Bα, we have max(τn) ∈ E.
So (13) holds.

Now (10), (12), (13) contradict Theorem 34.25(iii). Hence (6) holds.

(14) If ξ < η < p, then ∃k ∈ ω∀n ∈ A′\k[gξ(n) < gη(n)].

For, assume that ξ < η < p. Then Sξ+1 ≺ Sη+1 ≺ Sp, so by Proposition 34.28,

∃k ∈ ω∀σ[min(σ) ≥ k → ∃τ ∈ Sη+1[τ ⊳ σ]];

∃l ∈ ω∀τ [min(τ) ≥ l → ∃ρ ∈ Sξ+1[ρ ⊳ τ ]].

Let s = max(k, l). Suppose that n ≥ s and n ∈ A′. Then min(σn) = n ≥ k, so there is a
τ ∈ Sη+1 such that τ ⊳ σn. Also, min(τ) = min(σn) = n ≥ l, so there is a ρ ∈ Sξ+1 such
that ρ ⊳ τ . Now gξ(n) = max(ρ) < max(τ) = gη(n). This proves (14).

(15) ∀ξ < p∀α < κ[gξ ≤∗ fα].

For, suppose that ξ < p and α < κ. By (9), ∃N∀n ∈ A′\N∃τ ∈ Sξ+1[τ ⊳ σn and τ ⊆ Bα].
Thus for any n ∈ A′\N ,

gξ(n) = max(τ) ≤ min(σn\Bα) = fα(n) if σn\Bα 6= ∅
or gξ(n) = max(τ) ≤ 1 + max(σn) = fα(n) if σn\Bα = ∅,

proving (15).

(16) Suppose that f ∈ A′

ω and ∀α < κ[f ≤∗ fα]. Then ∃ξ < p[f ≤∗ gξ].

For, suppose that f ∈ A′

ω and ∀α < κ[f ≤∗ fα]. For any n ∈ A′ let

f ′(n) =

{
f(n) if f(n) ≤ 1 + max(σn),
1 + max(σn) otherwise.

(17) ∀α < κ[f ′ ≤∗ fα].

For, choose k ∈ ω such that ∀n ∈ A′\k[f(n) ≤ fα(n)]. Take any n ∈ A′\k.
Case 1. f(n) ≤ 1 + max(σn). Then f ′(n) = f(n) ≤ fα(n).
Case 2. f(n) > 1 + max(σn). Then f ′(n) = 1 + max(σn) < f(n) ≤ fα(n).

So (17) holds.
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(18) If ξ < p and f ′ ≤∗ gξ, then f ≤∗ gξ.

In fact, suppose that ξ < p and f ′ ≤∗ gξ. Choose k so that ∀n ∈ A′\k[f ′(n) ≤ gξ(n)].
Since always gξ(n) ≤ 1 + max(σn), it follows that ∀n ∈ A′\k[f(n) ≤ gξ(n)]. Thus f ≤∗ gξ.

By (17) and (18) we may assume that f(n) ≤ 1 + max(σn) for all n ∈ A′. Now let
D′ =

⋃

n∈A′(σn ∩ f(n)).

(19) ∀α < κ[D′\Bα is finite].

In fact, fix α < κ. Then D′\Bα =
⋃

n∈A′((σn ∩ f(n))\Bα). Choose k so that ∀n ∈
A′\k[f(n) ≤ fα(n)]. Then if n ∈ A′\k and σn\Bα 6= ∅, then f(n) ≤ min(σn\Bα), and so
(σn\Bα) ∩ f(n) = ∅. It follows that

D′\Bα =
⋃

{σn ∩ f(n) : n ∈ A′ and n < k},

and so D′\Bα is finite.
It now follows by Theorem 34.25(iii) that there is a ξ < p such that D′∩Aξ is finite. By

(2) let k be such that ∀n ∈ A′\k[gξ(n) ∈ Aξ]. Let l ∈ ω be such that ∀n ∈ A′\l∃τ ∈ Sξ+1[τ ⊳
σn]]. Hence if n ∈ A′, n ≥ k, l, and gξ(n) < f(n), then gξ(n) = max(τ) ∈ σn ∩ f(n) ∩ Aξ,
i.e., gξ(n) ∈ D′ ∩Aξ. Since D′ ∩Aξ is finite and gξ(n) ≥ n for all n by (3), it follows that
f ≤∗ gξ, proving (16).

(20) Suppose that f ∈ A′

ω and ∀ξ < p[gξ ≤∗ f ]. Then ∃α < κ[fα ≤∗ f ].

In fact, suppose that f ∈ A′

ω and ∀ξ < p[gξ ≤∗ f ], but ∀α < κ[fα 6≤∗ f ].

(21) There is an infinite C ⊆ A′ such that ∀α < κ[C\{n ∈ A′ : fα(n) > f(n)} is finite].

For, let aα = {n ∈ A′ : fα(n) > f(n)} for each α < κ. Suppose that F is a finite nonempty
subset of κ, and let β be the largest member of F . By (5), {n ∈ A′ : fβ(n) > fα(n)} is
finite for all α ∈ F , hence also

⋃

α∈F {n ∈ A′ : fβ(n) > fα(n)} is finite. Hence the first set
in the following sequence is infinite:

{n ∈ A′ : fβ(n) > f(n)} ∩
⋂

α∈F
{n ∈ A′ : fβ(n) ≤ fα(n)}

⊆ {n ∈ A′ : ∀α ∈ F [fα(n) > f(n)]}
=
⋂

α∈F
aα.

Now since κ < p, the existence of C as in (21) follows.
Let D =

⋃

n∈C(σn ∩ f(n)).

(22) ∀α < κ[D\Bα is finite].

In fact, fix α < κ. Then D\Bα =
⋃

n∈C((σn ∩ f(n))\Bα). By the definition of C, choose
k so that ∀n ≥ k[n ∈ C → f(n) < fα(n)]. Then if n ≥ k, n ∈ C, and σn\Bα 6= ∅, then
f(n) ≤ min(σn\Bα), and so (σn\Bα) ∩ f(n) = ∅. It follows that

D\Bα =
⋃

{σn ∩ f(n) : n ∈ C and n < k},
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and so D\Bα is finite.
Now by Theorem 34.25(iii) there is a ξ < p such that D∩Aξ is finite. By (2), let k ∈ ω

be such that ∀n ∈ A′\k[gξ(n) ∈ Aξ]. Let l ∈ ω be such that ∀n ∈ A′\l∃τ ∈ Sξ+1[τ ⊳ σn].
Since gξ <

∗ gξ+1 ≤∗ f , choose s so that ∀n ≥ s[gξ(n) < f(n)]. Hence if n ∈ C, n ≥ s, k, l,
gξ(n) = max(τ) ∈ σn ∩ f(n) ∩ Aξ, i.e., gξ(n) ∈ D ∩ Aξ. Since C is infinite and gξ(n) ≥ n
for all n ∈ C, this contradicts D ∩ Aξ being finite. So (20) holds.

Now by (6) and using p < t, there is a strictly increasing α ∈ pp such that ∀γ, δ < p[γ <
δ → fαδ <

∗ fαγ ]. Let k be the strictly increasing enumeration of A′; thus k is a bijection
from ω onto A′. Now by (14), (15), (16), and (20), (〈gξ ◦ k : ξ < p〉, 〈fαγ ◦ k : γ < κ〉) is a
linear (p, κ)-gap in (ωω,<∗).

Now let M = A′ × ω and define

Uξ = {(n, i) : n ∈ A′, i ≤ gξ(n)} for all ξ < p

Vγ = {(n, i) : n ∈ A′, i ≤ fαγ (n)} for all γ < κ.

(23) (〈[Uξ] : ξ < p〉, 〈[Vγ] : γ < κ〉 is a linear (p, κ)-gap in (P(M)/fin, <).

To prove (23), first note:

(24) ∀β, γ < κ[β < γ → [Vγ ] < [Vβ]].

In fact, suppose that β < γ < κ. Then fαγ <
∗ fαβ . Hence there is a k ∈ ω such that

∀n ∈ A′\k[fαγ (n) ≤ fαβ(n)]. Hence Vγ\Vβ = {(n, i) : n ∈ A′ ∩ k, fαβ(n) < i ≤ fαγ (n)} is
finite. So [Vγ ] ≤ [Vβ ].

Now because fαγ <∗ fαβ , the set {n ∈ A′ : fαγ (n) < fαβ (n)} is infinite. Hence
Vβ\Vγ = {(n, i) : n ∈ A′ ∩ k, fαγ (n) < i ≤ fαβ (n)} is infinite. So [Vγ ] < [Vβ]. So (24)
holds.

(25) ∀ξ, η < p[ξ < η → [Uξ] < [Uη]].

For, assume ξ < η < p. By (14) ∃k ∈ ω∀n ∈ A′\k[gξ(n) < gη(n)]. Hence Uξ\Uη = {(n, i) :
n < k, gη(n) < i ≤ gξ(n)} is finite, so [Uξ] ≤ [Uη].

Now because gξ <
∗ gη, the set {n ∈ A′ : gξ(n) < gη(n)} is infinite. Hence Uη\Uξ =

{(n, i) : n ∈ A′ ∩ k, gξ(n) < i ≤ gη(n)} is infinite. So [Uξ] < [Uη]. This proves (25)

(26) ∀ξ < p∀γ < κ[[Uξ] ≤ [Vγ ]].

In fact, let ξ < p and γ < κ. By (15) choose k such that ∀n ∈ A′\k[gξ(n) ≤ fαγ (n)]. Hence
Uξ\Vγ = {(n, i) : n < k, fαγ (n) < i ≤ gξ(n)} is finite, and so [Uξ] ≤ [Vγ ]. So (26) holds.

Now suppose that W ⊆M and [W ] ≤ [Vγ ] for all γ < κ.

(27) For all n ∈ A′, the set {i : (n, i) ∈ W} is finite.

For, let F ∈ [M ]<ω be such that ∀(m, i) ∈ M [(m, i) /∈ F and (m, i) ∈ W → (m, i) ∈ V0].
Then

{i : (n, i) ∈W} ⊆ {i : ∃m[(m, i) ∈ F ]} ∪ {i : i ≤ fα0
(n)}.

So (27) holds.
Now for each n ∈ A′ let f(n) = sup{i : (n, i) ∈W}, with sup ∅ = 0.
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(28) f ≤∗ fαγ for all γ < κ.

In fact, with γ < κ let F ∈ [M ]<ω be such that ∀(n, i) ∈ M [(n, i) /∈ F and (n, i) ∈ W →
(n, i) ∈ Vγ ]. Let k be greater than all m such that (m, i) ∈ F for some i. Suppose that
n ∈ A′ and n ≥ k. If (n, i) ∈ W , then (n, i) /∈ F , hence (n, i) ∈ Vγ ; it follows that
i ≤ fαγ (n). Hence f(n) ≤ fαγ (n). This proves (28).

Now α is strictly increasing, so γ ≤ αγ for all γ < κ. Hence by (28) we have f ≤∗ fγ
for all γ < κ. Hence by (16) there is a ξ < p such that f ≤∗ gξ. Say k ∈ ω and
∀n ≥ k[f(n) ≤ gξ(n)]. Let F = {(m, i) : m < k and (m, i) ∈ W}. Suppose that
(n, i) ∈M\F and (n, i) ∈ W . Then n ≥ k, so f(n) ≤ gξ(n). Also i ≤ f(n), so (n, i) ∈ Uξ.
Thus we have shown:

(29) [W ] ≤ [Uξ].

Now suppose that X ⊆M and [Uξ] ≤ [X ] for all ξ < p. For each n ∈ ω let

f(n) =

{
min{i ∈ ω : (n, i) /∈ X} if this set is nonempty,
2 + max(σn) otherwise.

Suppose that ξ < p. Then Uξ\X is finite. So for F = Uξ\X we have ∀(n, i) ∈M\F [(n, i) ∈
Uξ → (n, i) ∈ X ]. Let k be greater than each n ∈ A′ such that (n, i) ∈ F for some i.
Suppose that n ≥ k. Then (n, i) ∈ Uξ\F for all i ≤ gξ(n), so (n, i) ∈ X for all i ≤ gξ(n).
Hence f(n) > gξ(n). Thus gξ ≤∗ f .

This is true for all ξ < p. By (20) there is a γ < κ such that fγ <
∗ f . Hence fαγ <

∗ f .
So there is a k ∈ ω such that ∀n ≥ k[fαγ (n) < f(n)]. Let F = {(m, i) : m < k, i ≤ fαγ (m)}.
Suppose that (n, i) ∈M\F and (m, i) ∈ Vγ . Then i ≤ fαγ (n). It follows that n ≥ k. Hence
fαγ (n) < f(n). Hence (n, i) ∈ X . Thus [Vγ] ≤ [X ].

This finishes the proof of (23).

Proposition 34.33. The forcing order ([ω]ω,≤∗, ω) is t-closed.

For brevity let P = ([ω]ω,≤∗, ω).

Proposition 34.34. Suppose that G is M -generic over P. Then G is an ultrafilter on ω.

Proof. By the definition of generic filter, G ⊆ [ω]ω. If A,B ∈ G then there is a
C ∈ G such that C ⊆ A,B; hence A ∩ B ∈ G. G is closed upwards since it is a filter
on P. Obviously ∅ /∈ G. Now suppose that A ⊆ ω in M [G]; we want to show that
A ∈ G or (ω\A) ∈ G. By Theorem 16.10 of setth or Theorem 29.9 of full, A ∈ M . Let
D = {a ∈ P : a ≤∗ A or a ≤∗ (ω\A)}. Then D is dense in P , since if B ∈ [ω]ω then B ∩A
or B\A is infinite. Take a ∈ G ∩D. Then A ∈ G or (ω\A) ∈ G.

Proposition 34.35. If A,B ∈ [ω]ω in M and G is M generic over P, then A ≤∗ B iff
M [G] |= Ǎ ≤∗ B̌.

Proof. We take A ≤∗ B to mean that there exist an m ∈ ω and a bijection f from
m onto A\B. If such f, g exist in M , then m, f ∈ M [G] and so A ≤∗ B in M [G]. If they
exist in M [G], then f, g ∈M by Theorem 16.10 of setth or Theorem 29.9 of full.
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Proposition 34.36. If A,B ∈ [ω]ω, and G is M generic over P, then A <∗ B in M iff
M [G] |= Ǎ <∗ B̌.

Proof. We take A <∗ B to mean that A ≤∗ B and there is an injection g from ω into
B\A. Hence the result follows by the above argument.

Proposition 34.37. If G is M generic over P, then M [G] |= t ≤ tM .

Proof. Suppose in M that 〈Aα : α < t〉 is strictly decreasing under ≤∗, each Aα ∈
[ω]ω, such that there is no B ∈ [ω]ω such that ∀α < t[B ≤∗ Aα]. Then in M [G] the
sequence 〈Aα : α < t〉 is strictly decreasing under ≤∗ by Proposition 34.36. Suppose in
M [G] that B ∈ [ω]ω such that ∀α < t[B ≤∗ Aα]. Then by Theorem 16.10 of setth or
Theorem 29.9 of full, B ∈M , contradiction.

Proposition 34.38. If G is M generic over P, then M [G] |= t = tM .

Proof. Suppose that κ < t and A ∈ κ([ω]ω) ∈ M [G] is strictly decreasing under ≤∗.
Let B : κ× ω → 2 be defined by

B(ξ, n) =

{
1 if n ∈ Aξ,
0 if n /∈ Aξ.

Then B ∈ M by Theorem 16.10. Hence A ∈ M . Let C ∈ [ω]ω be such that C ≤∗ Aξ
for all ξ < κ. Then this is true in M [G] also by Proposition 34.36. Since κ is arbitrary,
M [G] |= tM ≤ t. The other inequailty holds by Proposition 34.37.

Proposition 34.39. If G is M generic over P, then M [G] |= p = pM .

Proof. Let A be as in Theorem 34.24 (in M). Suppose that B ∈ [ω]ω in M [G] and
B ≤∗ Aξ for all ξ < p. Then B ∈ M by Theorem 16.10 of setth or Theorem 29.9 of full,
contradiction. Hence M [G] |= p ≤ pM .

Now suppose that A is as in Theorem 34.24 (in M [G]) for any κ < p. Then A ∈ M
by the argument in the proof of Proposition 34.37. Hence there is a C ∈ [ω]ω in M such
that ∀ξ < κ[C ≤∗ Aξ]. Since C ∈M [G], it follows that κ < p in the sense of M [G]. Since
κ is arbitrary, pM ≤ p.

Theorem 34.40. M [G] |= t ≤ t(ω,G).

Proof. Working in M [G], suppose that κ < t, 〈Pn : n ∈ ω〉 is a sequence of finite
trees each with a single root, and A ∈ κ(

∏

n∈ω Pn) is such that 〈[Aξ] : ξ < κ〉 is strictly
increasing and unbounded. Wlog ∀n ∈ ω[Pn ⊆ ω] and ∀m,n ∈ ω[m 6= n → Pn ∩ Pm = ∅].
Let B : κ × ω → ω be defined by B(ξ, n) = Aξ(n). Then B ∈ M by Theorem 16.10 of
setth or Theorem 29.9 of full. Hence A ∈M . This is a contradiction.

Theorem 34.41. Suppose that p < t and G is M -generic over P. Then M [G] |= p(ω,G) ≤
p.
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Proof. By Theorem 34.32 let κ be an uncountable regular cardinal less than p and
(f, g) be a linear (p, κ)-gap in (ωω,<∗), in M [G]. Note that fξ and gα are in M , by
Theorem 16.10. Let k ∈ ω be such that ∀n ≥ k[g1(n) < g0(n)]. Define

g′0(n) =

{
1 if n < k,
g0(n) if n ≥ k.

Thus ∀n ∈ ω[g′0(n) > 0]. Now for each α ∈ κ\{0} let lα ∈ ω be such that ∀n ≥ lα[gα(n) <
g0(n)]. Define

g′α(n) =
{
gα(n) if n ≥ lα,
0 otherwise.

Thus ∀α ∈ κ\{0}∀n ∈ ω[g′α(n) < g0(n)].
For each ξ < p let mξ ∈ ω be such that ∀n ≥ mξ[fξ(n) < g0(n)]. Define

f ′
ξ(n) =

{
fξ(n) if n ≥ mξ,
0 otherwise.

Thus ∀ξ < κ∀n ∈ ω[f ′
ξ(n) < g0(n)].

Thus we may assume that ∀n ∈ ω[g0(n) > 0], ∀α ∈ κ\{0}∀n ∈ ω[gα(n) < g0(n)], and
∀ξ < p∀n ∈ ω[fξ(n) < g0(n)].

Now for any n ∈ ω let Xn = (g0(n),≤) and X =
∏

n∈ωXn/G. Let hα(n) = g1+α(n)
for all α < κ. It suffices now to show that (〈[fξ] : ξ < p〉, 〈[hη] : η < κ〉) is a gap in X .

If ξ < η < p, then {n ∈ ω : fξ(n) ≥ fη(n)} is finite, and hence its complement is in G;
so [fξ] < [fη]. Similarly, α < β < κ implies that [hβ ] < [hα]. Also, by the same argument
[fξ] < [hα] for all ξ < p and α < κ.

Suppose that k ∈ ωω and ∀η < κ[[k] ≤ [hη]]. Thus ∀η < κ[{n ∈ ω : k(n) ≤ hη(n)} ∈
G]. Let p ∈ G such that

p  ∀η < κ[{n ∈ ω : ǩ(n) ≤ ȟη(n)} ∈ Γ].

For each η < κ let Aη = {n ∈ ω : k(n) ≤ hη(n)}.

(1) ∀η < κ[p ⊆∗ Aη].

For, fix η < κ and suppose that p 6⊆∗ Aη. Then p\Aη is infinite. Let H be M -generic over
P with p\Aη ∈ H. Now p ∈ H, so [k]H ≤ [hη]H . Also ω\Aη = {n ∈ ω : hη(n) < k(n)} and
(ω\Aη) ∈ H, so [hη]H < [k]H , contradiction. This proves (1).

Now for any n ∈ ω let

k̃(n) =
{
k(n) if n ∈ p,
0 otherwise.

(2) ∀η < κ[k̃ ≤∗ hη].

For, take any η < κ. By (1) let k ∈ ω be such that ∀n ≥ k[n ∈ p → n ∈ Aη]. Thus

∀n ≥ k[n ∈ p→ k(n) ≤ hη(n)]. So ∀n ≥ k[k̃(n) ≤ hη(n)]. So (2) holds.

It follows that there is a γ < p such that k̃ <∗ fγ . Since p ∈ G, we get [k] = [k̃] < [fγ ].
This proves that (〈[fξ] : ξ < p〉, 〈[hη] : η < κ〉) is a gap in X .

Theorem 34.42. p = t.

Proof. Suppose that p < t. Let G be M -generic over P. Then

M [G] |= p(ω,G) ≤ p < t ≤ t(ω,G) = p(ω,G),

contradiction.

559



35. Consistency results concerning P(ω)/fin

We give relative consistency theorems which show that consistently each of the functions
described in the diagram at the end of chapter 33 can be less than 2ω. For the first
consistency result, concerning a, we need to go into the theory of products of forcing
orders.

If P0 and P1 are forcing orders, their product is the cartesian product P0 × P1 with
the order relation

(p0, p1) ≤ (q0, q1) iff p0 ≤ q0 and p1 ≤ q1.

We define i0 : P0 → P0 × P1 and i0 : P0 → P0 × P1 by i0(p) = (p, 1) and i1(p) = (1, p).

Proposition 35.1. i0 and i1 are complete embeddings.

Proof. See the definition of complete embedding just before Proposition 26.2. Only
(4) needs thought. For i0, given (p0, p1) ∈ P0×P1 we take p0 to be the reduction. Suppose
that p′ ∈ P0 and p′ ≤ p0. Then i(p′) = (p′, 1) is compatible with (p0, p1); namely, (p′, p1)
is below both of them. Similarly for i1.

Proposition 35.2. Suppose that G is (P0×P1)-generic over M . Then i−1
0 [G] is P0-generic

over M , and G = (i−1
0 [G] × i−1

1 [G]).

Proof. The first assertion follows from Theorem 26.3. For the second assertion, ⊆ is
obvious. Now suppose that (p0, p1) ∈ (i−1

0 [G]× i−1
1 [G]). Then (p0, 1) ∈ G and (1, p1) ∈ G.

Choose (q0, q1) ∈ G below both of these. Then (q0, q1) ≤ (p0, p1), so (p0, p1) ∈ G.

Theorem 35.3. Suppose that G0 ⊆ P0 ∈ M and G1 ⊆ P1 ∈ M . Then the following
conditions are equivalent:

(i) G0 ×G1 is (P0 × P1)-generic over M .
(ii) G0 is P0-generic over M and G1 is P1-generic over M [G0].
(iii) G1 is P1-generic over M and G0 is P0-generic over M [G1].

Proof. By symmetry it suffices to show that (i) and (ii) are equivalent. First suppose
that G0 ×G1 is (P0 × P1)-generic over M . Clearly i−1

0 [G0 ×G1] = G0, so G0 is P0-generic
over M by Proposition 35.2. To show that G1 is P1-generic over M [G0], take any dense
D ⊆ P1, in M [G0]. Let τ be a P0-name such that D = τG0

. Choose p0 ∈ G0 such that

p0  (τ is dense in P1).

Let

D′ = {(q0, q1) ∈ (P0 × P1) : q0 ≤ p0 and q0  (q̌1 ∈ τ)}.

(1) D′ is dense below (p0, 1).

For, suppose that (r0, r1) ≤ (p0, 1). Since r0 ≤ p0 we have

r0  ∃x ∈ P̌1[x ∈ τ and x ≤ ř1].
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Hence by Proposition 16.16 there exist q0 ≤ r0 and q1 ∈ P1 such that

q0  (q̌1 ∈ τ and q̌1 ≤ ř1).

By Theorem 16.14 we then get q1 ∈ r1. Hence (q0, q1) ≤ (r0, r1) and (q0, q1) ∈ D′. So (1)
holds.

By (1), choose (q0, q1) ∈ (G0 × G1) ∩ D′. Then q0  q̌1 ∈ τ , and q0 ∈ G0, so
q1 ∈ τG0

= D. Also q1 ∈ G1. This proves (ii).
Conversely, assume (ii).

(2) G0 ×G1 is a filter on P0 × P1.

For, clearly G0 × G1 is closed upwards. Now suppose that (p0, p1), (q0, q1) ∈ (G0 × G1).
Choose s0 ∈ G0 with s0 ≤ p0, q0, and choose s1 ∈ G1 so that s1 ≤ p1, q1. Then (s0, s1) ∈
(G0 ×G1) and (s0, s1) ≤ (p0, p1), (q0, q1). so (2) holds.

To show that G0 ×G1 is generic, suppose that D ∈M , D ⊆ (P0 × P1), D dense. Let

D∗ = {p1 ∈ P1 : ∃p0 ∈ G0[(p0, p1) ∈ D]}.

(3) D∗ is dense in P1.

For, take r1 ∈ P1. Let

D0 = {p0 ∈ P0 : ∃p1 ≤ r1[(p0, p1) ∈ D]}.

Then D0 is dense in P0, for if s ∈ P0 then there is a (p0, p1) ∈ D with (p0, p1) ≤ (s, r1),
and then p0 ≤ s and p0 ∈ D0. It follows that there is a p0 ∈ D0 ∩ G0. Take p1 ≤ r1 such
that (p0, p1) ∈ D. Then p1 ∈ D∗ and p1 ≤ r1. This proves (3).

Choose r1 ∈ D∗ ∩ G1; then take p0 ∈ G0 such that (p0, p1) ∈ D. So (p0, p1) ∈
D ∩ (G0 ×G1).

Theorem 35.4. Suppose that G0 ⊆ P0 ∈M and G1 ⊆ P1 ∈M . Also suppose that G0×G1

is (P0 × P1)-generic over M . (See Theorem 35.3.)
Then M [G0 ×G1] = M [G0][G1] = M [G1][G0].

Proof. We have M ⊆M [G0][G1] and (G0 ×G1) ∈M [G0][G1]. Hence M [G0 ×G1] ⊆
M [G0][G1] by Lemma 15.8. Also, M ⊆ M [G0 × G1] and G0 ∈ M [G0 × G1], so M [G0] ⊆
M [G0 ×G1]. Next, G1 ∈M [G0 ×G1], so by Lemma 15.8, M [G0][G1] ⊆M [G0 ×G1]. This
proves that M [G0][G1] = M [G0 ×G1]. Similarly, M [G1][G0] = M [G0 ×G1].

Theorem 35.5. Suppose that I = I0 ∪ I1 with I0, I1 ∈ M . Let G be Fn(I, 2, ω)-generic
over M . Let G0 = G ∩ Fn(I0, 2, ω) and G1 = G ∩ Fn(I1, 2, ω). Then:

(i) G0 is Fn(I0, 2, ω)-generic over M .
(ii) G1 is Fn(I1, 2, ω)-generic over M [G0].
(iii) M [G] = M [G0][G1].

Proof. Define f : Fn(I0, 2, ω) × Fn(I1, 2, ω) by setting f(p, q) = p ∪ q for any p ∈
Fn(I0, 2, ω) and q ∈ Fn(I1, 2, ω). Clearly f is an isomorphism. Note that f−1(r) =
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(r∩Fn(I0, 2, ω), r∩Fn(I1, 2, ω)). By Lemma 25.9, M [G] = M [f−1[G]] = M [Fn(I0, 2, ω)×
Fn(I1, 2, ω)]. Now (i) and (ii) hold by Theorem 35.3(ii). (iii) holds by Theorem 35.4.

Lemma 35.6. Let M be a c.t.m. and let I, S ∈M . Let G be Fn(I, 2, ω)-generic over M .
Suppose that X ∈M [G] and X ⊆ S. Then X ∈M [G ∩ Fn(I0, 2, ω)] for some I0 ⊆ I such
that I0 ∈M and |I0| ≤ |S|)M .

Proof. If S is finite, then X ∈ M ; so assume that S is infinite. By Proposition 24.2
let τ be a nice name for a subset of Š such that X = τG. Say τ =

⋃

s∈S(š × As), where
each As is an antichain in Fn(I, 2, ω). Let

I0 =
⋃

{dmn(p) : ∃s ∈ S[p ∈ As]}.

Let G0 = G ∩ Fn(I0, 2, ω). Thus X ∈ M [G ∩ Fn(I0, 2, ω)]. Now by ccc in M (see Lemma
16.7), each As is countable. Hence |I0| ≤ |S|)M .

Theorem 35.7. Suppose that M satisfies CH. and I ∈ M . Let G be Fn(I, 2, ω)-generic
over M . Then in M [G] there is a mad family of size ω1.

Proof. For a while we work with P
def
= Fn(ω, 2, ω). Note that if A is an antichain in

P then |A| ≤ |P| = ω. Hence there are at most ω1 pairs (p, τ) such that p ∈ P and τ is a
nice name for a subset of ω̌. Let 〈(pξ, τξ) : ξ < ω1〉 list all such pairs.

Now we define A ∈ ω1([ω]ω) by recursion. Let 〈An : n ∈ ω〉 be a system of infinite
pairwise disjoint subsets of ω. Now suppose that ξ ∈ [ω, ω1) and Aη has been defined for
all η < ξ. Then:

(1) There is a B ∈ [ω]ω such that the following conditions hold:
(i) ∀η < ξ[|Aη ∩B| < ω].
(ii) If

(I) pξ  (|τξ| = ω) and ∀η < ξ[pξ  |τξ ∩ Ǎη| < ω], then
(II) ∀n ∈ ω∀q ≤ pξ∃r ≤ q∃m ≥ n[m ∈ B and r  m̌ ∈ τξ].

To prove (1), first note that if (1)(ii)(I) fails to hold, then we can use the proof described
after Proposition 33.20 to construct B satisfying (i). So we may assume that (1)(ii)(I)
holds. Now let 〈Ci : i ∈ ω〉 enumerate {Aη : η < ξ} without repetitions, and let 〈(ni, qi) :
i ∈ ω〉 enumerate ω×{q : q ≤ pξ}. Clearly for all i ∈ ω we have pξ  (|τξ\(Č0∪ . . .∪ Či)| =
ω̌); hence each qi also forces this. So

qi  ∃m ≥ ňi[m ∈ τξ and m /∈ (Č0 ∪ . . . ∪ Či)].

By Theorems 16.14 and 16.15 there exist ri ≤ qi and mi ≥ ni such that mi /∈ (C0∪ . . .∪Ci)
and ri  (m̌i ∈ τξ). Let B = {mi : i ∈ ω}. Clearly (i) and (ii)(II) hold. Let Aξ = B. This
finishes the construction.

Let A = {Aξ : ξ < ω1}.

(2) If G is P-generic over M , then A is mad in M [G].
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In fact, otherwise there is a ξ < ω1 such that pξ  |τξ| = ω and pξ  ∀X ∈ A [|τξ∩X | < ω].
So (1)(i)(I) holds, and also pξ  |τξ ∩ Ǎξ| < ω. So there exist a q ≤ p and an n ∈ ω such
that q  [τξ ∩ Aξ ⊆ ň]. This contradicts (1)(ii)(II). Thus (2) holds.

Now suppose that G os Fn(I, 2, ω)-generic over M , X ∈ M [G], |X | = ω, and ∀Y ∈
A [|X ∩ Y | < ω]. By Lemma 35.6, X ∈ M [G ∩ Fn(I0, 2, ω)]for some I0 ⊆ I with |I0| = ω.
Now Fn(I0, 2, ω) ∼= Fn(ω, 2, ω), so by Lemma 25.9 M [G ∩ Fn(I0, 2, ω)] = M [H] for some
H which is P-generic over M . This contradicts (2).

Corollary 35.8. It is relatively consistent that a < 2ω.

Theorem 35.9. It is relatively consistent that u < 2ω.

Proof. Let M be a c.t.m. such that 2ω > ω1 in M . Let U a nonprincipal ultrafilter
on ω in M . Define

P = {(F,H) : F ∈ [U ]<ω, H ∈ [ω]<ω};

(F,H) ≤ (F ′, H ′) iff F ⊇ F ′, H ⊇ H ′, ∀x ∈ F∀m ∈ H\H ′[m ∈ x].

Clearly P is ccc, by considering second coordinates.
For each x ∈ U let

Dx = {(F,H) : x ∈ F}.
Clearly Dx is dense. For each m ∈ ω let

Em = {(F,H) : ∃n ≥ m[n ∈ H]}.

This is dense too: given (F,H) ∈ P, choose n ∈ ⋂F\m; then (F,H ∪ {m}) ≤ (F,H).
Now let G be generic over M for P. Define

a =
⋃

(F,H)∈G
H.

By the density of the Em’s, a is infinite. Now suppose that x ∈ U . Choose (F,H) ∈ G
such that x ∈ F . We claim that a\x ⊆ H. For, suppose that m ∈ a\H. Say m ∈ H ′

with (F ′, H ′) ∈ G. Choose (F ′′, H ′′) ∈ G such that (F ′′, H ′′) ≤ (F,H), (F ′, H ′). Then
m ∈ H ′ ⊆ H ′′, m /∈ H, and x ∈ F , so m ∈ x, as desired.

Now we do an iterated forcing, using the above construction at successor steps, ob-
taining:

(1) an increasing sequence 〈Mα : α ≤ ω1〉 of c.t.m., with M0 = M ;

(2) a sequence 〈aα : α < ω1〉 with each aα an infinite subset of ω in Mα;

(3) an increasing sequence 〈Uα : α < ω1〉 of ultrafilters on ω, each Uα ∈Mα;

(4) for each α < ω1 we have ∀x ∈ Uα[aα ≤ x];

(5) {aβ : β < α} ⊆ Uα for all α < ω1.
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Then we let Uω1
be the filter generated by {aα : α < ω1} in Mω1

. It is an ultrafilter, since
each subset of ω in Mω1

is in some Mα with α < ω1, by Lemma 26.14.

Lemma 35.10. Let M be a c.t.m. of ZFC, and suppose that I is an ideal in P(ω)M

containing all singletons. Define

P = {(b, y) : b ∈ I, y ∈ [ω]<ω};

(b, y) ≤ (b′, y′) iff b ⊇ b′, y ⊇ y′, y ∩ b′ ⊆ y′.

Then P is ccc. Let G be P -generic over M , and define d =
⋃

(b,y)∈G y. Then the following
conditions hold:

(i) If c ⊆ ω and c /∈ I, then c ∩ d is infinite.
(ii) If c ⊆ ω and c /∈ I then c\d is infinite.
(iii) If b ∈ I, then b ∩ d is finite.

Proof. Assume the hypotheses. Clearly P is ccc. For (i) and (ii), suppose that c ⊆ ω
and c /∈ I. For each n ∈ ω let

En = {(b, y) : ∃m > n[m ∈ c ∩ y}.

To show that En is dense, let (b, y) ∈ P . Then c\b is infinite, as otherwise c ⊆ b∪(c\b) ∈ I.
Choose m > n with m ∈ c\b. Then (b, y ∪ {m}) ∈ En and (b, y ∪ {m}) ≤ (b, y), showing
that En is dense.

The denseness of each set En clearly implies (i).
Next, define for any n ∈ ω

Hn = {(b, y) ∈ P : ∃m > n[m ∈ b ∩ c\y]}.

To show that Hn is dense, let (b, y) ∈ P be given. Since every finite subset of ω is in
I, the set c is infinite. Choose m ∈ c\y with m > n. Then (b ∪ {m}, y) ∈ Hn and
(b ∪ {m}, y) ≤ (b, y). This shows that Hn is dense.

Now given n ∈ ω, choose (b, y) ∈ Hn∩G, and then choose m > n such that m ∈ b∩c\y.
We claim that m /∈ d. For, suppose that m ∈ d; say m ∈ y′ with (b′, y′) ∈ G. Choose
(b′′, y′′) ∈ G such that (b′′, y′′) ≤ (b, y), (b′, y′). Thus y′′ ∩ b ⊆ y and y′′ ∩ b′ ⊆ y′. Now
m ∈ y′, so m ∈ y′′; also m ∈ b, so m ∈ y, contradiction. This finishes the proof of (ii).

For (iii), suppose that b ∈ I. Now the set {(c, y) ∈ P : b ⊆ c} is clearly dense, so
choose (c, y) ∈ G such that b ⊆ c. We claim that b∩d ⊆ y. In fact, suppose that m ∈ b∩d.
Say (e, z) ∈ G with m ∈ z. Choose (u, v) ∈ G such that (u, v) ≤ (c, y), (e, z). So v ∩ c ⊆ y
and v ∩ e ⊆ z. Now m ∈ z ⊆ v, and m ∈ b ⊆ c, so m ∈ v ∩ c ⊆ y, as desired; (iii)
holds.

Lemma 35.11. We work within a c.t.m. M . Suppose that κ is an infinite cardinal, and
〈aξ : ξ < κ〉 is a system of infinite subsets of ω which is an independent system. Let
A = {aξ : ξ < κ}. Thus 〈[aξ] : ξ < κ〉 is a system of independent elements of P(ω)/fin.
Let A be the completion of Fr(κ), and let 〈xξ : ξ < κ〉 be the free generators of Fr(κ).
Then by Sikorski’s extension theorem, there is a homomorphism f from P(ω)/fin into
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A such that f([aξ]) = xξ for every ξ < κ. Let h(b) = f([b]) for any b ⊆ ω. So h is a
homomorphism from P(ω) into A such that h(aξ) = xξ for every ξ < κ. Also, h(M) = 0
for every finite M ⊆ ω.

Apply Lemma 35.10 to the ideal ker(h), obtaining P,G, d as indicated there. Then:

(i) If R is a finite subset of κ and ε ∈ R2, then
⋂

α∈R a
ε(α)
α ∩ d is infinite.

(ii) If R is a finite subset of κ and ε ∈ R2, then
⋂

α∈R a
ε(α)
α \d is infinite.

(iii) If b ∈ ker(h), then b ∩ d is finite.
(iv) If x ∈ P(ω) ∩M\A , then A ∪ {x, d} is not independent.

Proof.

(i) Let R and ε be as in (i). Then
⋂

α∈R a
ε(α)
α /∈ I by assumption, so the desired conclusion

follows from (i) of Lemma 35.10.
(ii) is proved similarly, and (iii) follows from (iii) of Lemma 35.10.
Finally, for (iv), we show that if x ∈ P(ω) ∩ M\A , then A ∪ {x, d} is not an

independent family.
Case 1. h(x) = 0. Then x ∩ d is finite by (iii).
Case 2. h(x) 6= 0. Then there is a finite subset R of κ and a ε ∈ R2 such that

⋂

α∈R x
ε(α)
α ≤ h(x). It follows that

⋂

α∈R a
ε(α)
α \x is in the kernel of h, and so

⋂

α∈R a
ε(α)
α \x∩

d is finite.

Theorem 35.12. It is relatively consistent to have i < 2ω.

Proof. We start with a c.t.m. M such that 2ω > ω1 in M and with an independent
family 〈an : n ∈ ω〉 in P(ω) in M . Then we do an iteration of length ω1, applying Lemma
35.11 at successor steps, building an independent sequence 〈aα : α < ω1〉. The final model
is as desired, using Lemma 26.14.

Lemma 35.13. Let M be a c.t.m. of ZFC. Suppose that κ is an infinite cardinal and
〈ai : i < κ〉 is a system of infinite subsets of ω such that 〈[ai] : i < κ〉 is ideal independent,
where [x] denotes the equivalence class of x modulo the ideal fin of P(ω). Then there is a
generic extension M [G] of M using a ccc partial order such that in M [G] there is a d ⊆ ω
with the following two properties:

(i) 〈[ai] : i < κ〉⌢〈[ω\d]〉 is ideal independent.
(ii) If x ∈ (P(ω) ∩M)\({ai : i < κ} ∪ {ω\d}), then 〈[ai] : i < κ〉⌢〈[ω\d], [x]〉 is not

ideal independent.

Proof. Let I be the ideal on P(ω) generated by

{{m} : m ∈ ω} ∪ {ai ∩ aj : i, j < κ, i 6= j},

and let f be the natural homomorphism from P(ω) onto P(ω)/I. Note that f(ai) 6= 0
for all i < κ, by ideal independence. Let B be the subalgebra of P(ω)/I generated by
{f(ai) : i < κ}. Thus B is an atomic BA, with {f(ai) : i < κ} its set of atoms. Thus f is
a homomorphism from P(ω) onto B.

Now we apply Lemma 35.10 to the ideal ker(f), obtaining P , G, d as indicated there.
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(1) If R is a finite subset of κ and i ∈ κ\R, then ai ∩
⋂

j∈R(ω\aj) ∩ d is infinite.

In fact, ai ∩
⋂

j∈R(ω\aj) is clearly not in the kernel of f , so (1) follows from (i) of Lemma
35.10.

(2) If R is a finite subset of κ, then ω\
(
d ∪⋃i∈R ai

)
is infinite.

In fact, ω\⋃i∈R ai is clearly not in the kernel of f , so (2) follows from (ii) of Lemma 35.10.
Now we can show that 〈[ai] : i < κ〉⌢〈[ω\d]〉 is ideal independent. Suppose not. Then

there are two possibilities.
Case 1. There exist a finite R ⊆ κ and an i ∈ κ\R such that [ai] ≤ [ω\d] +

∑

j∈R[aj ].
This contradicts (1).

Case 2. There is a finite R ⊆ κ such that [ω\d] ≤∑i∈R[ai]. This contradicts (2).
This proves ideal independence.
It remains only to prove (ii). So, assume that x ∈ (P(ω)∩M)\({ai : i < κ}∪{ω\d}).
Case 1. x ∈ ker(f). Then [x] ≤ [ω\d] by (iii) of Lemma 1, as desired.
Case 2. x /∈ ker(f). Choose i < κ such that f(ai) ≤ f(x). Thus ai\x ∈ ker(f), Hence

by (iii) of Lemma 1, (ai\x) ∩ d is finite. So [ai] ≤ [x] + [ω\d], as desired.

Theorem 35.14. It is relatively consistent that smm < 2ω.

Lemma 35.15. Let M be a c.t.m. of ZFC. Suppose that α is an infinite ordinal, and
〈aξ : ξ < α〉 is a system of infinite subsets of ω such that 〈[aξ] : ξ < α〉 is a free sequence
in P(ω)/fin, where [aξ] denotes the equivalence class of aξ modulo the ideal fin.

Then there is a generic extension M [G] of M using a ccc partial order such that in
M [G] there exist infinite d, e ⊆ ω with the following properties:

(i) 〈[aξ] : ξ < α〉⌢〈[ω\d], [e]〉 is a free sequence.
(ii) If x ∈ (P(ω) ∩M)\({aξ : ξ < α} ∪ {ω\d, e}), then 〈[aξ] : ξ < α〉⌢〈[ω\d], [e], [x]〉

is not a free sequence.

Proof. For each ξ ≤ α, the set {[aη] : η < ξ}∪{−[aη] : ξ ≤ η < α} has the fip, by the
free sequence property, and we let Fξ be an ultrafilter on P(ω)/fin containing this set.
Let I = {x : −[x] ∈ Fξ for all ξ ≤ α}. Clearly I is an ideal on P(ω) and {m} ∈ I for all
m ∈ ω.

(1) If ξ < η < α, then [aη]I < [aξ]I .

In fact, suppose that ξ < η < α. If ν ≤ α and [aη]·−[aξ] ∈ Fν , then η < ν, hence ξ < ν and
so [aξ] ∈ Fν , contradiction. Hence −([aη] · −[aξ]) ∈ Fν for all ν ≤ α, and so [aη]I ≤ [aξ]I .
Now suppose that [aη]I = [aξ]. Then aξ · −aη ∈ I, so in particular −[aξ] + [aη] ∈ Fξ+1.
Since also [aξ] ∈ Fξ+1, it follows that [aη] ∈ Fξ+1. But ξ < η, contradiction. So (1) holds.

(2) [a0]I 6= 1.

This holds since −[a0] ∈ F0, and hence (ω\a0) /∈ I.

(3) If α = β + 1, then [aβ]I 6= 0.

This is true since [aβ] ∈ Fα, and hence [aβ] /∈ I.
Now let J be an ideal in P(ω) which is maximal subject to the following conditions:
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(4) I ⊆ J .

(5) If ξ < η < α, then aξ\aη /∈ J .

(6) ω\a0 /∈ J .

(7) If α = β + 1, then aβ /∈ J .

Clearly then we have:

(8) For any x ⊆ ω one of the following conditions holds.
(a) x ∈ J .
(b) There exist ξ < η < α such that aξ · −aη · −x ∈ J .
(c) −a0 · −x ∈ J .
(d) α = β + 1 and aβ · −x ∈ J .

Also we have

(9) If F,K ∈ [α]<ω and F < K, then
⋂

ξ∈F aξ ∩
⋂

η∈K −aη /∈ J .

Now we apply Lemma 1 to the ideal J to obtain a generic extension M [G] such that, with
d =

⋃

(b,y)∈G y, the following conditions hold:

(10) If c ⊆ ω and c /∈ J , then c ∩ d is infinite.

(11) If c ⊆ ω and c /∈ J then c\d is infinite.

(12) If b ∈ J , then b ∩ d is finite.

Hence by (9) we get

(13) If F,K ∈ [α]<ω and F < K, then
⋂

ξ∈F aξ ∩
⋂

η∈K −aη ∩ d is infinite.

(14) If F,K ∈ [α]<ω and F < K, then
⋂

ξ∈F aξ ∩
⋂

η∈K −aη\d is infinite.

Now let K be the ideal in P(ω)M [G] generated by J .

(15) If F is a finite subset of α, then
⋂

ξ∈F aξ ∩ (ω\d) /∈ K.

In fact, otherwise we get a c ∈ J such that
⋂

ξ∈F aξ ∩ (ω\d) ⊆ c, and so
(
⋂

ξ∈F aξ\c
)

∩
(ω\d) = ∅. But clearly

(
⋂

ξ∈F Aξ\c
)

/∈ J , so this contradicts (11). Similarly,

(16) If F, L ∈ [α]<ω and F < L, then
⋂

ξ∈F aξ ∩
⋂

η∈L−aη ∩ d /∈ K.

Now we apply Lemma 1 with I replaced by K to obtain a generic extension M [G][H] and
an infinite subset e of ω such that 〈[aξ : ξ < α〉⌢〈[ω\d], [e]〉 is a free sequence and the
following condition holds:

(16) If b ∈ K, then b ∩ e is finite.

(17) If x ∈ (P(ω)∩M)\({aξ : ξ < α} ∪ {ω\d, e}, then 〈[aξ] : ξ < α〉⌢〈[ω\d], [e], [x]〉 is not
a free sequence.

To prove this, we consider cases.
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Case 1. x ∈ K. Then x ∩ e is finite by (16), as desired.
Case 2. x /∈ K. Then x /∈ J , and so by (8) we have three subcases.

Subcase 2.1. There exist ξ < η < α such that aξ · −aη · −x ∈ J . Then by (12),
aξ · −aη · −x · d is finite, as desired.

Subcase 2.2. −a0 · −x ∈ J . Then by (12), −a0 · −x · d is finite, as desired.
Subcase 2.3. α = β + 1 and aβ · −x ∈ J . Then by (12), aβ · −x · d is finite, as

desired.

Theorem 35.16. It is relatively consistent that f < 2ω.
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The integers

In this appendix we define and develop the main properties of the integers. The develop-
ment is based upon Chapter 6, in which properties of natural numbers were given. At the
end of that chapter a sketch of the construction of integers was given, and we now give full
details.

Let A = ω × ω. We define a relation ∼ on A by setting, for any m,n, p, q ∈ ω,

(m,n) ∼ (p, q) iff m+ q = n+ p.

This definition is motivated by thinking of (m,n) as representing, in some sense, m− n.

Lemma 36.1. ∼ is an equivalence relation on A.

Proof. For reflexivity, given m,n ∈ ω we want to show that (m,n) ∼ (m,n). By
definition, this means that we want to show that m+n = n+m. This is given by 6.14(iv).

For symmetry, assume that (m,n) ∼ (p, q); we want to show that (p, q) ∼ (m,n). The
assumption means, by definition, that m + q = n + p. Hence p + n = q + m by 6.14(iv)
again. Hence (p, q) ∼ (m,n). [In the definition, replace m,n, p, q by p, q,m, n respectively.]

For transitivity, assume that (m,n) ∼ (p, q) ∼ (r, s). Thus m + q = n + p and
p + s = q + r. Hence m + q + s = n + p + s = n + q + r, so using 6.15(iii) we get
m+ s = n+ r, so that (m,n) ∼ (r, s).

We now let Z′ be the collection of all equivalence classes under ∼. Elements of Z′ are
denoted by [(m,n)] with m,n ∈ ω.

For the purposes of this appendix, we treat binary operations on Z′ as functions
mapping Z′ × Z′ into Z′.

Proposition 36.2. There is a binary operation + on Z′ such that for any m,n, p, q ∈ ω,
[(m,n)] + [(p, q)] = [(m+ p, n+ q)].

Proof. Let

R = {(x, y) : there exist m,n, p, q ∈ ω such that

x = ([(m,n)], [(p, q)]) and y = [(m+ p, n+ q)]}.

We claim that R is a function. For, assume that (x, y), (x, z) ∈ R. Then we can choose
m,n, p, q,m′, n′, p′, q′ ∈ ω such that the following conditions hold:

x = ([(m,n)], [(p, q)]);(1)

y = [(m+ p, n+ q)];(2)

x = ([(m′, n′)], [(p′, q′)]);(3)

z = [(m′ + p′, n′ + q′)].(4)

From (1) and (3) we get [(m,n)] = [(m′, n′)] and [(p, q)] = [(p′, q′)], hence (m,n) ∼ (m′, n′)
and (p, q) ∼ (p′, q′), hence m+ n′ = n+m′ and p+ q′ = q + p′. Hence

m+ p+ n′ + q′ = m+ n′ + p+ q′ = n+m′ + q + p′ = n+ q +m′ + p′,
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from which it follows that (m + p, n + q) ∼ (m′ + p′, n′ + q′), hence [(m + p, n + q)] =
[(m′ + p′, n′ + q′)], hence y = z by (2) and (4). This shows that R is a function.

Knowing that R is a function, the definition of R then says that for any m,n, p, q ∈ ω,
([(m,n)], [(p, q)]) is in the domain of R, and R(([(m,n)], [(p, q)])) = [(m+ p, n+ q)]. This
is as desired in the proposition.

Proposition 36.3. The operation + on Z′ is associative and commutative. That is, if
x, y, z ∈ Z′, then x+ (y + z) = (x+ y) + z and x+ y = y + x.

Proof. For any a, b, c, d, e, f ∈ ω we have

[(a, b)] + ([(c, d)] + [(e, f)]) = [(a, b)] + [(c+ e, d+ f)]

= [(a+ c+ e, b+ d+ f)]

= [(a+ c, b+ d)] + [(e, f)]

= ([(a, b)] + [(c, d)]) + [(e, f)];

[(a, b)] + [(c, d)] = [(a+ c, b+ d)]

= [(c+ a, d+ b)]

= [(c, d)] + [(a, b)].

Now we define 0′ = [(0, 0)].

Proposition 36.4. For any a, b ∈ ω, [(a, b)] + 0′ = [(a, b)].

Proposition 36.5. For any x ∈ Z′ there is a y ∈ Z′ such that x+ y = 0′.

Proof. Let x ∈ Z′; hence there are a, b ∈ ω such that x = [(a, b)]. Let y = [(b, a)].
Then x+ y = [(a, b)] + [(b, a)] = [(a+ b, b+ a)] = [(0, 0)] = 0′.

There are little group-theoretic facts that say that 0′ and y above are unique:

Proposition 36.6. If z is an element of Z′ such that x+z = x for all x ∈ Z′, then z = 0′.

Proof. z = 0′ + z (by 36.4) = 0′ (by assumption).

Proposition 36.7. If x, y, z ∈ Z′ and x+ y = 0′ = x+ z, then y = z.

Proof. y = 0′ + y = x+ z + y = z + x+ y = z + 0′ = z.

These are all of the properties of + that we need.

Proposition 36.8. There is a binary operation · on Z′ such that for all m,n, p, q ∈ ω,
[(m,n)] · [(p, q)] = [(m · p+ n · q,m · q + n · p)].

Proof. Let

R = {(x, y) : there exist m,n, p, q ∈ ω such that

x = ([(m,n)], [(p, q)]) and y = [(m · p+ n · q,m · q + n · p)]}.

570



We claim that R is a function. For, assume that (x, y), (x, z) ∈ R. Then we can choose
m,n, p, q,m′, n′, p′, q′ ∈ ω such that the following conditions hold:

x = ([(m,n)], [(p, q)]);(1)

y = [(m · p+ n · q,m · q + n · p)];(2)

x = ([(m′, n′)], [(p′, q′)]);(3)

z = [(m′ · p′ + n′ · q′, m′ · q′ + n′ · p′)].(4)

From (1) and (3) we get [(m,n)] = [(m′, n′)] and [(p, q)] = [(p′, q′)], hence (m,n) ∼ (m′, n′)
and (p, q) ∼ (p′, q′), hence m+ n′ = n+m′ and p+ q′ = q + p′. Hence

(1) m · p+m · q′ + n · q + n · p′ = m · q +m · p′ + n · p+ n · q′.

Also,

(2) m · p′ + n′ · p′ + n · q′ +m′ · q′ = n · p′ +m′ · p′ +m · q′ + n′ · q′.

Hence

m · p+ n · q +m′ · q′ + n′ · p′ +m · p′ + n · q′
= m · p+ n · q +m · p′ + n′ · p′ + n · q′ +m′ · q′
= m · p+ n · q + n · p′ +m′ · p′ +m · q′ + n′ · q′ by (2)

= m · p+m · q′ + n · q + n · p′ +m′ · p′ + n′ · q′
= m · q +m · p′ + n · p+ n · q′ +m′ · p′ + n′ · q′ by (1)

Considering the first side of the top equation and the last part, we can cancel m · p′ and
n · q′ by 6.15(iii), and we get

m · p+ n · q +m′ · q′ + n′ · p′ = m · q + n · p+m′ · p′ + n′ · q′,

which easily yields y = z.
Thus R is a function, and this clearly proves the proposition.

Proposition 36.9. Let x, y, z ∈ Z′. Then
(i) x · y = y · x.
(ii) x · (y · z) = (x · y) · z.
(iii) x · (y + z) = x · y + x · z.
Proof. Write x = [(m,n)], y = [(p, q), and z = [(r, s)]. Then

x · y = [(m,n)] · [(p, q)]

= [(m · p+ n · q,m · q + n · p)]
= [(p ·m+ q · n, p · n+ q ·m)]

= [(p, q)] · [(m,n)]
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= y · x;

x · (y · z) = [(m,n)] · ([(p, q)] · [(r, s)])

= [(m,n)] · [(p · r + q · s, p · s+ q · r)]
= [(m · p · r +m · q · s+ n · p · s+ n · q · r,
m · p · s+m · q · r + n · p · r + n · q · s)];

(x · y) · z = ([(m,n)] · [(p, q)]) · [(r, s)]

= [(m · p+ n · q,m · q + n · p)] · [(r, s)]

= [(m · p · r + n · q · r +m · q · s+ n · p · s,
m · p · s+ n · q · s+m · q · r + n · p · r)]

= x · (y · z) by the above;

x · (y + z) = [(m,n)] · ([(p, q)] + [(r, s)])

= [(m,n)] · [(p+ r, q + s)]

= [(m · p+m · r + n · q + n · s,m · q +m · s+ n · p+ n · r)];
x · y + x · z = [(m,n)] · [(p, q)] + [(m,n)] · [(r, s)]

= [(m · p+ n · q,m · q + n · p)] + [(m · r + n · s,m · s+ n · r)]
= [(m · p+ n · q +m · r + n · s,m · q + n · p+m · s+ n · r)]
= x · (y + z) by the above.

Now we define 1′ = [(1, 0)].

Proposition 36.10. 1′ · x = x and 0′ · x = 0′ for all x ∈ Z′.

Proof. Take any x ∈ Z; say that x = [(m,n)]. Then

1′ · x = [(1, 0)] · [(m,n)] = [(1 ·m+ 0 ·m, 1 · n+ 0 ·m)] = [(m,n)] = x,

as desired.
For the second statement, note that x · 0′ +x = x · 0′ +x · 1′ = x · (0′ + 1′) = x · 1′ = x,

so x · 0′ = 0′.

Proposition 36.11. If x, y ∈ Z′ and x · y = 0′, then x = 0′ or y = 0′.

Proof. Write x = [(m,n)] and y = [(p, q)]. Now x · y = [(m,n)] · [(p, q)] = [m · p+ n ·
q,m · q + n · p)] and also x · y = 0′ = [0, 0)], so (m · p+ n · q,m · q + n · p) ∼ (0, 0), so

(1) m · p+ n · q = m · q + n · p.
Suppose that x 6= 0′; we will show that y = 0′, which will prove the proposition. Thus
[(m,n)] = x 6= 0′ = [(0, 0)], so m 6= n. Hence m < n or n < m.

Case 1. m < n. Then there is a nonzero natural number s such that m + s = n.
Substituting this into (1) we get

m · p+ n · q = m · p+ (m+ s) · q
= m · p+m · q + s · q and

m · q + n · p = m · q + (m+ s) · p
= m · q +m · p+ s · p,
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and hence
m · p+m · q + s · q = m · q +m · p+ s · p.

Then by 6.15(iii) we get s · q = s · p, and 6.20(viii) yields q = p. Hence (p, q) ∼ (0, 0), so
y = [(p, q)] = [(0, 0)] = 0′.

Case 2. n < m. This is very similar to case 1. There is a nonzero natural number s
such that n+ s = m. Substituting this into (1) we get

m · p+ n · q = (n+ s) · p+ n · q
= n · p+ s · p+ n · q;

m · q + n · p = (n+ s) · q + n · p
= n · q + s · q + n · p,

and hence
n · p+ s · p+ n · q = n · q + s · q + n · p.

Then by 6.15(iii) we get s · p = s · q, and 6.20(viii) yields p = q. Hence (p, q) ∼ (0, 0), so
y = [(p, q)] = [(0, 0)] = 0′.

This is all of the arithmetic properties of Z′ that is needed. Now we introduce the order.
First we only define the collection of positive elements:

P = {[(m,n)] : m,n ∈ ω and m > n}.

Note that this really means

P = {x : there exist m,n ∈ ω such that x = [(m,n)] and m > n}.

Proposition 36.12. For any m,n ∈ ω, [(m,n)] ∈ P iff m > n.

Proof. ⇐: true by definition. ⇒: Suppose that [(m,n)] ∈ P . Choose p, q ∈ ω such
that p > q and [(m,n)] = [(p, q)]. Thus (m,n) ∼ (p, q), so m + q = n + p. If m ≤ n, then
by 6.17,

m+ q ≤ n+ q < n+ p = m+ q,

contradiction. Hence m < n.

Proposition 36.13. For any a, b ∈ Z′ we have:
(i) If a 6= 0′, then a ∈ P or −a ∈ P , but not both.
(ii) If a, b ∈ P , then a+ b ∈ P .
(iii) If a, b ∈ P , then a · b ∈ P .

Proof. Let a = [(m,n)] and b = [(p, q)]. For (i), since 0′ = [(0, 0)] we see that if
a 6= [(0, 0)] then (m,n) 6∼ (0, 0) and so m 6= n. If m < n, then −a = [(n,m)] ∈ P . If
m > n, then a ∈ P . If a,−a ∈ P , then by 36.12, m < n and n < m, contradiction.

(ii): Assume that a, b ∈ P . Then by 36.12, m > n and p > q. Clearly thenm+p > n+q
by 6.17, so a+ b = [(m+ p, n+ q)] ∈ P .
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(iii): Assume that a, b ∈ P . Then by 36.12, m > n and p > q. Write n + s = m and
q + t = p, with s, t 6= 0. Hence s · t 6= 0. Now

(∗) a · b = [(m,n)] · [(p, q)] = [(m · p+ n · q,m · q + n · p)].

Now

m · q + n · p+ s · t = m · q + n · (q + t) + s · t
= m · q + n · q + n · t+ s · t
= m · q + n · q + (n+ s) · t
= m · q + n · q +m · t
= m · (q + t) + n · q
= m · p+ n · q,

and so m · q + n · p < m · p+ n · q, so that a · b ∈ P by (∗) and 36.12.

Now we can define the order: a < b iff b − a ∈ P . The main properties of < are given in
the following proposition.

Proposition 36.14. Let x, y, z ∈ Z′. Then
(i) x 6< x.
(ii) If x < y < z, then x < z.
(iii) x < y, x = y, or y < x.
(iv) x < y iff x+ z < y + z.
(v) If 0′ < x and 0′ < y, then 0′ < x · y.
(vi) If 0′ < z, then x < y implies that x · z < y · z.
Proof. (i): x− x = 0′, so (i) follows from 36.13(i).
(ii): Assume that x < y < z. So y − x ∈ P and z − y ∈ P . Hence z − x =

(z − y) + y − x) ∈ P by 6.13(ii), so x < z.
(iii): We have x = y or x− y ∈ P or y − x ∈ P , so (iii) follows.
(iv): x < y iff y − x ∈ P iff (y + z) − (x+ z) ∈ P iff x+ z < y + z.
(v): This is immediate from 36.13(iii).
(vi): Assume that 0′ < z and x < y. So z, y − x ∈ P , so by 36.13(iii), y · z − x · z =

z · (y − x) ∈ P , and so x · z < y · z.
This finishes our treatment of Z′. Now we need to relate it to ω, and define our final
version Z of the integers.

For any m ∈ ω let f(m) = [(m, 0)].

Proposition 36.15. f is a one-one function mapping ω into Z. Moreover, for any
m,n ∈ ω we have

(i) f(m+ n) = f(m) + f(n).
(ii) f(m · n) = f(m) · f(n).
(iii) m < n iff f(m) < f(n).
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Proof. Suppose that f(m) = f(n). Thus [(m, 0)] = [(n, 0)], so (m, 0) ∼ (n, 0), hence
m+ 0 = 0 + n, hence m = n. So f is one-one. Next,

f(m+ n) = [(m+ n, 0)] = [(m, 0)] + [(n, 0)] = f(m) + f(n);

f(m · n) = [(m · n, 0)] = [(m · n+ 0 · 0, m · 0 + 0 · n)] = [(m, 0)] · [(n, 0)] = f(m) · f(n)

f(m) < f(n) iff [(m, 0)] < [(n, 0)]

iff m+ 0 < 0 + n

iff m < n.

We have now identified a part of Z′ which acts like the natural numbers. We now want to
apply the replacement process to officially define Z.

Proposition 36.16. ω ∩ Z′ = ∅.

Proof. Suppose that m ∈ ω∩Z′. Choose n, p ∈ ω such that m = [(n, p)]. But [(n, p)]
is an infinite set, since it contains all of the pairs (n, p), (n + 1, p + 1), (n + 2, p + 2), . . .,
contradiction.

Now we define Z = (Z′\rng(f)) ∪ ω. There is a one-one function g : Z → Z′, defined by
g([(m,n)]) = [(m,n)] if [(m,n)] ∈ Z′\rng(f), and g(m) = f(m) for m ∈ ω. Clearly g is a
bijection. Now the operations +′ and ·′ are defined on Z as follows. For any a, b ∈ Z,

a+′ b = g−1(g(a) + g(b));

a ·′ b = g−1(g(a) · g(b)).

moreover, we define a <′ b iff g(a) < g(b). With these definitions, g becomes an isomor-
phism of Z onto Z′. Namely, if a, b ∈ Z, then

g(a+′ b) = g(g−1(g(a) + g(b))) = g(a) + g(b);

g(a ·′ b) = g(g−1(g(a) · g(b))) = g(a) · g(b);

a <′ b iff g(a) < g(b).

Moreover, the operations +′ and ·′ on ω coincide with the ones defined in Chapter 6, since
if m,n ∈ ω, then

m+′ n = g−1(g(m) + g(n)) = g−1(f(m) + f(n)) = g−1(f(m+ n)) = m+ n;

m ·′ n = g−1(g(m) · g(n)) = g−1(f(m) · f(n)) = g−1(f(m · n)) = m · n;

m <′ n iff g(m) < g(n)

iff f(m) < f(n)

iff m < n.

All of the properties above, like the associative, commutative, and distributive laws, hold
for Z since g is an isomorphism. Of course we use +, ·, < now rather than +′, ·′, <′.
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The rationals

Here we define the rational numbers and give their fundamental properties. For brevity
we denote multiplication of integers by justaposition, as is usually done.

Let A = Z × (Z\{0}). We define a relation ∼ on A as follows:

(a, b) ∼ (c, d) iff ad = bc

This definition and succeeding ones are well-motivated if you think of (a, b) as being a
b

intuitively.

Lemma 37.1. ∼ is an equivalence relation on A.

Proof. Reflexivity: If (a, b) ∈ A, then ab = ba, so (a, b) ∼ (a, b).
Symmetry: Assume that (a, b) ∼ (c, d). Thus ad = bc, so cb = da, and hence (c, d) ∼

(a, b).
Transitivity: Assume that (a, b) ∼ (c, d) ∼ (e, f). Thus ad = bc and cf = de. Hence

adf = bcf = bde, so 0 = adf − bde = d(af − be). Since d 6= 0, it follows that af − be = 0,
and hence af = be. This shows that (a, b) = (e, f).

We let Q′ be the set of all equivalence classes under ∼.

Proposition 37.2. There is a binary operation + on Q′ such that for any (a, b), (c, d) ∈ A,
[(a, b)] + [(c, d)] = [(ad+ bc, bd)].

Proof. First note that if (a, b), (c, d) ∈ A, then bd 6= 0, so that at least the pair
(ad+ bc, bd) is in A. Now let

R = {(x, y) : there exist (a, b), (c, d) ∈ A such that

x = ([(a, b)], [(c, d)]) and y = [(ad+ bc, bd)]}.

We claim that R is a function. For, suppose that (x, y), (x, z) ∈ R. Then we can choose
(a, b), (c, d), (a′, b′), (c′, d′) ∈ A such that x = ([(a, b)], [(c, d)]), y = [(ad + bc, bd)], x =
([(a′, b′)], [(c′, d′)]), and y = [(a′d′ + b′c′, b′d′)]. so ([(a, b)], [(c, d)]) = ([(a′, b′)], [(c′, d′)]),
hence [(a, b)] = [(a′, b′)] and [(c, d)] = [(c′, d′)], hence (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′),
hence

ab′ = ba′(1)

cd′ = dc′(2)

Hence

(ad+ bc)b′d′ = adb′d′ + bcb′d′

= ab′dd′ + cd′bb′

= ba′dd′ + dc′bb′ by (1), (2)

= a′d′bd+ b′c′bd

= (a′d′ + b′c′)bd,
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and hence (ad+bc, bd) ∼ (a′d′+b′c′, b′d′). Thus y = [(ad+bc, bd)] = [(a′d′+b′c′, b′d′)] = y′.
This proves that R is a function. The proposition is now clear.

Proposition 37.3. If x, y, z ∈ Q′, then
(i) x+ (y + z) = (x+ y) + z.
(ii) x+ y = y + x.

Proof. Let x = [(a, b)], y = [(c, d)], and z = [(e, f)]. Then

x+ (y + z) = [(a, b)] + ([(c, d)] + [(e, f)])

= [(a, b)] + [(cf + de, df)]

= [(adf + b(cf + de), bdf)];

(x+ y) + z = ([(a, b)] + [(c, d)]) + [(e, f)]

= [(ad+ bc, bd)] + [(e, f)]

= [((ad+ bc)f + bde, bdf)]

= [(adf + bcf + bde, bdf)]

= x+ (y + z);

x+ y = [(a, b)] + [(c, d)]

= [(ad+ bc, bd)]

= [(cb+ da, db)]

= [(c, d)] + [(a, b)]

= y + x.

Now we define 0′ = [(0, 1)].

Proposition 37.4. x+ 0′ = x for any x ∈ Q. Moreover, for any x ∈ Q′ there is a y ∈ Q′

such that x+ y = 0′.

Proof. Let x = [(a, b)]. Then

x+ 0′ = [(a, b)] + [(0, 1)]

= [(a · 1 + b · 0, b · 1)]

= [(a, b)]

= x.

Next, let y = [(−a, b)]. Then

x+ y = [(a, b)] + [(−a, b)] = [(ab+ b(−a), bb)] = [(0, bb)] = [(0, 1)].

Here the last equality holds because 0 · 1 = 0 = bb · 0.

The following two facts are proved as in appendix B, proof of B6 and B7.

Proposition 37.5. If r is an element of Q′ such that x+r = x for all x ∈ Q′, then r = 0′.
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Proposition 37.6. If x, y, z ∈ Q′ and x+ y = 0′ = x+ z, then y = z.

These are all of the properties of + that we need.

Proposition 37.7. There is a binary operation · on Q′ such that for all (a, b), (c, d) ∈ A,
[(a, b)] · [(c, d)] = [(ac, bd)].

Proof. First note that if (a, b), (c, d) ∈ A, then bd 6= 0, so that (ac, bd) ∈ A. Now let

R = {(x, y) : there exist (a, b), (c, d) ∈ A such that

x = ([(a, b)], y = [(c, d)]), and z = [(ac, bd)]}.

We claim that R is a function. For, suppose that (x, y), (x, z) ∈ R. Then we can
choose (a, b), (c, d), (a′, b′), (c′, d′) ∈ A such that x = ([(a, b)], [(c, d)]), y = [(ac, bd)],
x = ([(a′, b′)], [(c′, d′)]), and z = [(a′c′, b′d′)]. So ([(a, b)], [(c, d)]) = ([(a′, b′)], [(c′, d′)]), and
hence [(a, b)] = [(a′, b′)] and [(c, d)] = [(c′, d′)], hence (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′),
hence ab′ = ba′ and cd′ = dc′. Hence

acb′d′ = ab′cd′ = ba′dc′ = bda′c′,

hence (ac, bd) ∼ (a′c′, b′d′),

hence y = [(ac, bd)] = [(a′c′, b′d′)] = z.

So R is a function, and the conclusion is clear.

Proposition 37.8. For any x, y, z ∈ Q′ we have
(i) x · (y · z) = (x · y) · z.
(ii) x · y = y · x.
(iii) x · (y + z) = x · y + x · z.
Proof. Write x = [(a, b)], y = [(c, d), and z = [(e, f)]. Then

x · (y · z) = [(a, b)] · ([(c, d)] · [(e, f)])

= [(a, b)] · [(ce, df)]

= [(ace, bdf)]

= [(ac, bd)] · [(e, f)]

= ([(a, b)] · [(c, d)]) · [(e, f)]

= (x · y) · z;
x · y = [(a, b)] · [(c, d)]

= [(ac, bd)]

= [(ca, db)]

= [(c, d)] · [(a, b)]

= y · x;

x · (y + z) = [(a, b)] · ([(c, d)] + [(e, f)])
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= [(a, b)] · [(cf + de, df)]

= [(a(cf + de), bdf)]

= [(acf + ade, bdf)];

x · y + x · z = [(a, b)] · [(c, d)] + [(a, b)] · [(e, f)]

= [(ac, bd)] + [(ae, bf)]

= [(acbf + bdae, bdbf)].

Thus for the distributive law (iii) we just need to show that [(acf + ade, bdf)] = [(acbf +
bdae, bdbf)], or equivalently that (acf + ade, bdf) ∼ (acbf + bdae, bdbf), or equivalently
that (acf + ade)bdbf = bdf(acbf + bdae). This last statement is proved as follows:

(acf + ade)bdbf = abbcdff + abbddef and bdf(acbf + bdae) = abbcdff + abbddef.

Next, we define 1′ = [(1, 1)].

Proposition 37.9. Let x ∈ Q′.
(i) x · 1′ = x.
(ii) If x 6= 0′ then there is a unique y ∈ Q′ such that x · y = 1′.

Proof. Write x = [(a, b)]. Then x · 1′ = [(a, b)] · [(1, 1)] = [(a, b)] = x. For (ii), assume
that x 6= 0′. Thus [(a, b)] 6= [(0, 1)], so a · 1 6= b · 0, i.e., a 6= 0. Let y = [(b, a)]. Then
x ·y = [(a, b)] · [(b, a)] = [(ab, ba)], and this is equal to [(1, 1)] = 1′ since ab1 = ba1. Suppose
that also x · z = 1′. Write z = [(c, d)]. then [(1, 1)] = x · z = [(a, b)] · [(c, d)] = [ac, bd), and
so ac = bd, and hence y = [(b, a)] = [(c, d)] = z.

We turn to the order of the rationals. In general outline, we follow the procedure used for
the integers.

First we define the set P of positive rationals:

P = {[(a, b)] ∈ Q′ : ab > 0}.

As for the similar definition for integers, this definition says that if ab > 0 then [(a, b)] ∈ P ,
but does not say anything about the converse, so we prove this converse:

Proposition 37.10. [(a, b)] ∈ P iff ab > 0.

Proof. As mentioned, ⇐ holds by definition. Now assume that [(a, b)] ∈ P . This
means that there is a [(c, d)] ∈ Q′ such that [(a, b)] = [(c, d)] and cd > 0. So (a, b) ∼ (c, d),
and hence ad = bc. Hence adbd = bcbd. Now we need the following little general fact:

(1) If x ∈ Z and x 6= 0, then xx > 0.

In fact, we have x > 0 or −x > 0 by B13(i) and the definition of < for integers, so by
B14(v), xx > 0 or xx = (−x)(−x) > 0, as desired in (1).

Now by (1) and B14(v) we have abdd = bcbd > 0. In particular, ab 6= 0. If ab < 0,
then abdd < 0dd = 0, contradiction. So ab > 0.
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Proposition 37.11. Suppose that r, s ∈ Q′.
(i) If r 6= 0′, then r ∈ P or −r ∈ P , but not both.
(ii) If r, s ∈ P , then r + s ∈ P .
(iii) If r, s ∈ P , then r · s ∈ P .

Proof. Let r = [(a, b)] and s = [(c, d)].
(i): Assume that r 6= 0′. Then ab 6= 0, since ab = 0 would imply that a = 0 (since

b 6= 0), and so (a, b) = (0, b) ∼ (0, 0) and hence r = [(a, b)] = [(0, 0)] = 0′, contradiction. If
ab > 0, then r ∈ P , and if −(ab) > 0, then (−a)b > 0, so −r = [(−a, b)] ∈ P . Thus r ∈ P
or −r ∈ P . Suppose that r ∈ P and −r ∈ P . Thus ab > 0 and (−a)b > 0, contradiction.

(ii): Suppose that r, s ∈ P . Then ab > 0 and cd > 0. Now r + s = [(ad + bc, bd)],
and (ad+ bc)bd = abdd+ bbcd. By (1) in the proof of 37.10, dd > 0 and bb > 0. Hence by
properties of integers, abdd+ bbcd > 0.

(iii): Suppose that r, s ∈ P . Then ab > 0 and cd > 0. Now rs = [(ac, bd)] and
acbd = abcd > 0.

Now we can define the order: a < b iff b − a ∈ P . The main properties of < are given in
the following proposition.

Proposition 37.12. Let x, y, z ∈ Q′. Then
(i) x 6< x.
(ii) If x < y < z, then x < z.
(iii) x < y, x = y, or y < x.
(iv) x < y iff x+ z < y + z.
(v) If 0′ < x and 0′ < y, then 0′ < x · y.
(vi) If 0′ < z, then x < y implies that x · z < y · z.
Proof. (i): x− x = 0′, so (i) follows from 37.11(i).
(ii): Assume that x < y < z. So y − x ∈ P and z − y ∈ P . Hence z − x =

(z − y) + y − x) ∈ P by 37.11(ii), so x < z.
(iii): We have x = y or x− y ∈ P or y − x ∈ P , so (iii) follows.
(iv): x < y iff y − x ∈ P iff (y + z) − (x+ z) ∈ P iff x+ z < y + z.
(v): This is immediate from 37.11(iii).
(vi): Assume that 0′ < z and x < y. So z, y − x ∈ P , so by 37.11(iii), y · z − x · z =

z · (y − x) ∈ P , and so x · z < y · z.
This finishes the main construction of the rational numbers. There are still two things to
do, though: identify the integers among the rationals, and make a replacement so that the
integers are a subset of the rationals.

For every integer a we define f(a) = [(a, 1)].

Proposition 37.13. f is an isomorphism of Z into Q′. That is, f is an injection, and
for any a, b ∈ Z we have f(a+ b) = f(a) + f(b) and f(a · b) = f(a) · f(b).

Proof. Suppose that f(a) = f(b). Thus [(a, 1)] = [(b, 1)], hence (a, 1) ∼ (b, 1), hence
a = a1 = 1b = b. So f is an injection.
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Now suppose that a, b ∈ Z. Then

f(a) + f(b) = [(a, 1)] + [(b, 1)] = [(a1 + 1b, 1)] = [(a+ b, 1)] = f(a+ b);

f(a) · f(b) = [(a, 1)] · [(b, 1)] = [(ab, 1)] = f(ab).

Proposition 37.14. Z ∩ Q′ = ∅.
Proof. To show that ω∩Q′ = ∅ it suffices to show that each element of Q′ is infinite.

If [(a, b)] ∈ Q′, then (ca, cb) ∈ [(a, b)] for every c ∈ Z, and cb 6= db for c 6= d, and so
(ca, cb) 6= (da, db) for c 6= d; hence [(a, b)] is infinite.

Now suppose that x ∈ Z∩Q′ with x /∈ ω. Temporarily denote the equivalence relation
used to define Z′ by ≡. Then there exist m,n ∈ ω such that x = [(m,n)]≡, and there exists
(a, b) ∈ A such that x = [(a, b)]∼. Then (a, b) ∼ (2a, 2b), so also [(2a, 2b)]∼ = [(a, b)]∼ =
x = [(m,n)]≡. Hence (a, b), (2a, 2b) ∈ [(m,n)]≡, and it follows that (a, b) ≡ (2a, 2b). So
a+ 2b = b+ 2a, and hence a = b. Then (0, 0) ≡ (a, b), so (0, 0) ∈ [(a, b)]≡ = [(a, b)]∼, and
we infer that (0, 0) ∈ A, contradiction.

We can now proceed very much like for Z and Z′. We define Q = (Q′\rng(f)) ∪ Z. There
is a one-one function g : Q → Q′, defined by g([(a, b)]) = [(a, b)] if [(a, b)] ∈ Q′\rng(f), and
g(a) = f(a) for a ∈ Z. Clearly g is a bijection. Now the operations +′ and ·′ are defined
on Q as follows. For any a, b ∈ Q,

a+′ b = g−1(g(a) + g(b));

a ·′ b = g−1(g(a) · g(b)).

moreover, we define a <′ b iff g(a) < g(b). With these definitions, g becomes an isomor-
phism of Q onto Q′. Namely, if a, b ∈ Q, then

g(a+′ b) = g(g−1(g(a) + g(b))) = g(a) + g(b);

g(a ·′ b) = g(g−1(g(a) · g(b))) = g(a) · g(b);

a <′ b iff g(a) < g(b).

Moreover, the operations +′ and ·′ on Z coincide with the ones defined previously, since if
a, b ∈ Z, then

a+′ b = g−1(g(a) + g(b)) = g−1(f(a) + f(b)) = g−1(f(a+ b)) = a+ b;

a ·′ b = g−1(g(a) · g(b)) = g−1(f(a) · f(b)) = g−1(f(a · b)) = a · b;
a <′ b iff g(a) < g(b)

iff f(a) < f(b)

iff a < b.

All of the properties above, like the associative, commutative, and distributive laws, hold
for Z since g is an isomorphism. Of course we use +, ·, < now rather than +′, ·′, <′.
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The reals

A subset A of Q is a Dedekind cut provided the following conditions hold:

(1) Q 6= A 6= ∅;
(2) For all r, s ∈ Q, if r < s and s ∈ A, then r ∈ A.
(3) A has no largest element.

Let R′ be the set of all Dedekind cuts.
If A and B are Dedekind cuts, then we define

A+B = {x : there are a ∈ A and b ∈ B such that x = a+ b}.

Proposition 38.1. If A and B are Dedekind cuts, then so is A+B.

Proof. Since A and B are both nonempty, clearly A + B is nonempty. Now take
r ∈ Q\A and s ∈ Q\B. So t < r for all t ∈ A, and u < s for all u ∈ B. Then a+ b < r+ s
for all a ∈ A and b ∈ B, so that x < r+ s for all x ∈ A+B. In particular, r+ s /∈ A+B,
by the irreflexivity of <. So we have shown that (1) holds for A+B.

Now suppose that r < s ∈ A + B. Write s = a + b with a ∈ A and b ∈ B. Then
r < s = a+ b, so r−a < b, and hence r−a ∈ B by (2) for B. Hence r = a+ (r−a) shows
that r ∈ A+B. So (2) holds for A+B.

Suppose that x ∈ A + B. Write x = a + b with a ∈ A and b ∈ B. Since a is not the
greatest element of A, by (3) choose a′ ∈ A such that a < a′. Then x = a + b < a′ + b ∈
A+B, proving (3) for A+B.

Proposition 38.2. Let A,B,C be Dedekind cuts. Then
(i) A+B = B +A.
(ii) A+ (B + C) = (A+B) + C.

Proof. (i): obvious. (ii): Suppose that x ∈ A+ (B + C). Then there are a ∈ A and
y ∈ (B + C) such that x = a + y; and there are b ∈ B and c ∈ C such that y = b + c.
So x = a + b + c. Now a + b ∈ (A + B), so x ∈ ((A + B) + C). This shows that
A+ (B +C) ⊆ (A+B) +C. Since this is generally true for all Dedekind cuts A,B,C, we
also have (A+B) + C = C + (B +A) ⊆ (C +B) +A = A+ (B + C).

Now we define, following Chapter 6,

Z = {r ∈ Q : r < 0}.

Clearly Z is a Dedekind cut.

Proposition 38.3. A+ Z = A for every Dedekind cut A.

Proof. Let a ∈ A. Since A does not have a largest element, choose b ∈ A such that
a < b. Then a− b < 0, hence a− b ∈ Z, and so a = b+ (a− b) shows that a ∈ A+ Z.

Conversely, suppose that x ∈ A + Z. Then there exist a ∈ A and b ∈ Z such that
x = a+ b. Since b < 0, we have x < a, and so x ∈ A, as desired.
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It is easy to check that Z is the only element of R′ such that A+ Z = A for all A.
Next, for any Dedekind cut A we define

−A = {r ∈ Q : there is an s ∈ Q such that r < s and − s /∈ A}.

Proposition 38.4. A+ −A = Z for any Dedekind cut A.

Proof. First we show that −A is itself a Dedekind cut. Since A 6= Q, choose r ∈ Q\A.
Then also r+1 /∈ A. so −(r+1) < −r and −(−r) = r /∈ A. It follows that −(r+1) ∈ −A.
Hence −A 6= ∅. Next, choose r ∈ A. Then −r /∈ −A, as otherwise there is an s such
that −r < s and −s /∈ A; but −s < r, contradiction. So −A 6= Q. Finally, suppose that
r ∈ −A; we want to find a larger element in A. Choose s such that r < s and −s /∈ A.
Take t ∈ Q such that r < t < s; for example, take t = (r + s)/2. Clearly then t ∈ −A, as
desired. This checks that −A is a Dedekind cut.

Now suppose that x ∈ A+−A. Then there are a ∈ A and b ∈ −A such that x = a+b.
Choose c ∈ Q such that b < c and −c /∈ A. Suppose that 0 ≤ x. Then x = a + b < a + c,
and so −c < a+ −x ≤ a, and hence −c ∈ A, contradiction. Hence x < 0, so that x ∈ Z.

Second suppose that r ∈ Z. Fix b /∈ A.

(1) There is a positive integer p such that b+ pr
2 ∈ A.

In fact, to prove (1), also fix a ∈ A. Then a < b, as otherwise we would have b ∈ A. Hence
there are positive integers s, t such that b − a = s

t
. Since r

2 < 0, there are also positive
integers u, v such that r

2 = −u
v

. Then b − a = s
t
≤ s ≤ su = sv(− r

2 ). Hence b+ sv r2 ≤ a,
and so b+ sv r2 ∈ A, proving (1).

Let p be the smallest positive integer such that b+p r2 ∈ A. Recall that b /∈ A, so that
even if p = 1 we can assert that b+ (p− 1) r

2
/∈ A. Now

r = b+ pr + (−b+ (−p+ 1)
r

2
+
r

2
),

and (−b+ (−p+ 1) r
2

+ r
2
) < (−b+ (−p+ 1) r

2
, and −(−b+ (−p+ 1) r

2
) = b+ (p− 1) r

2
/∈ A.

This shows that r ∈ A+ −A.

The element −A is unique: if A+B = Z, then B = −A. In particular, −Z = Z.
Next, we call a Dedekind cut A positive iff if has at least one positive member.

Proposition 38.5. For any Dedekind cut A, exactly one of the following holds:
(i) A is positive;
(ii) A = Z;
(iii) −A is positive.

Proof. Suppose that A is not positive, and A 6= Z. Since A is not positive, all its
members are negative or zero; since it has no largest element, 0 /∈ A. Thus A ⊆ Z. Since
A 6= Z, we actually have A ⊂ Z. Choose r ∈ Z\A. Now r + r < 0 + r = r < 0, and so
r < r

2 < 0. Hence 0 < − r
2 < −r. So − r

2 ∈ −A, since −(−r) = r /∈ A. This shows that −A
is positive.

So we have shown that one of (i)–(iii) holds.
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Obviously (i) and (ii) do not simultaneously hold. Suppose that both A and −A are
positive. Hence there is a positive element r ∈ A, and a positive element s ∈ −A. By the
definition of −A, choose t such that s < t and −t /∈ A. Then −t < −s < 0 < r, so −t ∈ A,
contradiction. Thus (i) and (iii) do not simultaneously hold. Finally, suppose that −Z is
positive. Let r be a positive element of −Z. Then by definition there is an s such that
r < s and −s /∈ Z. So 0 ≤ −s < −r, contradicting r being positive.

On the basis of Proposition 38.5, the following definition makes sense. For any Dedekind
cut A,

|A| =

{
A if A = Z or A is positive,
−A if −A is positive.

Now we repeat the definition of product from Chapter 6. Let A and B be Dedekind cuts.

A ·B = {r ∈ Q : there are s ∈ A and t ∈ B such that 0 < s

and 0 < t and r < s · t} if A and B are positive,(a)

A ·B = Z if A = Z or B = Z,(b)

A ·B = −(|A| · |B|) if A 6= Z 6= B and exactly one of A,B is positive(c)

A ·B = (−A) · (−B) if −A and −B are both positive.(d)

Proposition 38.6. Let A,B,C be Dedekind cuts.
(i) A ·B = B ·A.
(ii) (−A) ·B = −(A ·B) = A · (−B).
(iii) A · (B · C) = (A ·B) · C.
(iv) A · (B + C) = A ·B +A · C.

Proof. (i): this is clear if both A and B are positive, or if one of them is Z. If both
are different from Z and exactly one of them is positive, then |A| and |B| are both positive,
and

A ·B = −(|A| · |B|) = −(|B| · |A|) = B ·A.

If −A and −B are both positive, then

A ·B = (−A) · (−B) = (−B) · (−A) = B ·A.

Thus (i) holds.
(ii): First we prove that (−A) ·B = −(A ·B). This is true by (b) if one of A,B is Z,

since −Z = Z. If A and B are positive, then

(−A) ·B = −(A ·B) by (c).
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If −A and B are positive, then

−(A ·B) = −(−((−A) ·B)) by (c)

= (−A) ·B.

If A and −B are positive, then

(−A) ·B = B · (−A) by (i)

= −(B ·A) by the previous case

= −(A ·B) by (i).

Finally, if −A and −B are positive, then

(−A) ·B = −((−A) · (−B)) by (c)

= −(A ·B) by (d).

Thus (−A) ·B = −(A ·B) in general. The other part of (ii) follows from (i).
(iii):

(1) If A,B,C are all positive, then A · (B ·C) ⊆ (A ·B) · C.

For, assume that A,B,C are all positive. Clearly then A ·B and B · C are positive. Now
let x ∈ A · (B · C). Then there exist s, t such that x < s · t, 0 < s ∈ A, and 0 < t ∈ B · C.
Since t ∈ B · C, there exist u, v such that t < u · v, 0 < u ∈ B, and 0 < v ∈ C. Choose
s′ ∈ A such that s < s′. Then s · u < s′ · u, 0 < s′ ∈ A, and 0 < u ∈ B, so s · u ∈ A · B.
Then x < s · u · v, 0 < s · u ∈ A ·B, and 0 < v ∈ C, so x ∈ (A ·B) ·C. This proves (1).

(2) If one of A,B,C is equal to Z, then A · (B ·C) = Z = (A ·B) · C.

This is clear.

(3) If A,B,C are all positive, then A · (B ·C) = (A ·B) · C.

In fact,

A · (B · C) ⊆ (A ·B) · C by (1)

= C · (B ·A) by (i)

⊆ (C ·B) ·A by (1)

= A · (B · C) by (i).

So (3) holds.

Now we can use (ii) to finish (iii):

A,B,−C positive: A · (B · C) = A · −(B · −C)

= −(A · (B · −C)

= −((A ·B) · −C)
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= (A ·B) · C;

A,−B,C positive: A · (B · C) = A · −(−B · C)

= −(A · (−B · C))

= −((A · −B) ·C)

= (A ·B) · C;

A,−B,−C positive: A · (B · C) = A · ((−B) · (−C))

= (A · −B) · −C
= (A ·B) · C;

C positive: (A ·B) · C = C · (B ·A)

= (C ·B) ·A
= A · (B · C);

−A,B,−C positive: A · (B · C) = A · −(B · −C)

= −((−A) · −(B · −C))

= (−A) · (B · −C)

= ((−A) ·B) · −C
= (A ·B) · C;

−A,−B,−C positive: A · (B · C) = A · ((−B) · (−C))

= −((−A) · ((−B) · (−C)))

= −(((−A) · (−B)) · −C)

= (A ·B) · C.

(iv): Clearly

(4) If one of A,B,C is Z, then A · (B + C) = A ·B +A · C.

(5) If A,B,C are positive, then A · (B + C) = A ·B + A ·C.

For, first suppose that x ∈ A · (B + C). Then we can choose s, t so that 0 < s ∈ A,
0 < t ∈ B + C, and x < s · t. Since t ∈ B + C, there are b ∈ B and c ∈ C such that
t = b + c. Now choose b′ ∈ B with b ≤ b′ and 0 < b′, and choose c′ ∈ C such that c ≤ c′

and 0 < c′. Now x = s · b′ + (x− s · b′), and clearly s · b′ ∈ A ·B, while

x− s · b′ < s · (b′ + c′) − s · b′ = s · c′,

and clearly s · c′ ∈ A ·C. This proves ⊆ in (5).

Now suppose that y ∈ A · B + A · C. Then we can write y = u + v with u ∈ A · B
and v ∈ A · C. Say u < s · t with 0 < s ∈ A and 0 < t ∈ B, and v < a · c with 0 < a ∈ A
and 0 < c ∈ C. Let s′ be the maximum of s and a. Then y < s′ · (t+ c), 0 < s′ ∈ A, and
t+ c ∈ B + C. So y ∈ A · (B + C). This proves ⊇ in (5).

(6) If A,B,−C are positive, and also B +C is positive, then A · (B +C) = A ·B +A ·C.
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For,

A ·B = A · (B + C + −C)

= A · (B + C) + A · (−C) by (5)

= A · (B + C) + −(A · C), by (ii)

and (6) follows.

(7) If A,B,−C are positive, and B + C is negative, then A · (B + C) = A ·B + A · C.

For,

−(A · (B + C)) = A · (−(B + C)) by (ii)

= A · (−B + −C)

= A · (−B) + A · (−C) by (6)

= −(A ·B) + −(A · C), by (ii)

and (7) follows.

(8) If A,B,−C are positive, and B + C = Z, then A · (B + C) = A ·B +A · C.

For, under these hypotheses, C = −B, and so

A · (B + C) = A · Z = Z = A ·B + −(A ·B) = A ·B + A · (−B) = A ·B + A · C.

(9) If A,−B,C are positive, then A · (B + C) = A ·B +A · C.

This follows from (6)–(8) since + is commutative.

(10) If A,−B,−C are positive, then A · (B + C) = A ·B + A · C.

For,

A · (B + C) = −(A · (−B + −C)) by (ii)

= −(A · (−B) +A · (−C)) by (5)

= −(−(A ·B) + −(A · C)) by (ii)

= A ·B + A · C.

(11) If A is positive, then A · (B + C) = A ·B + A · C.

This is true by (6)–(10).

(12) If −A is positive, then A · (B + C) = A ·B +A · C.

In fact, (−A) · (B + C) = (−A) ·B + (−A) · C by (11), and (12) follows, using (ii).

Now we define
I = {r ∈ Q : r < 1}.

Clearly I is a Dedekind cut.
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Proposition 38.7. A · I = A for any Dedekind cut A.

Proof. This is clear if A = Z. Now suppose that A is positive. Suppose that r ∈ A ·I.
Then there are s, t ∈ Q such that 0 < s ∈ A, 0 < t ∈ I, and r < s · t. Clearly then r < s,
so r ∈ A by the definition of Dedekind cut.

Conversely, suppose that r ∈ A. Choose r′, r′′ ∈ A such that r < r′ < r′′ and 0 < r′.
Let s = r′

r′′
. Then 0 < s < 1, so s ∈ I. Since r < r′ = r′′ · s, it follows that r ∈ A · I. Thus

we have shown that A · I = A for A positive.
If −A is positive, then A · I = −((−A) · I) = −(−A) = A, using D6(ii).

Proposition 38.8. If A is a Dedekind cut and A 6= Z, then there is a Dedekind cut B
such that A ·B = I.

Proof. First suppose that A is positive. Let

B = {r ∈ Q : r < 0, or 0 ≤ r and r · s < 1 for every s ∈ A for which 0 < s}.

Then B 6= ∅, since clearly 0 ∈ B. Clearly if r′ < r ∈ B, then also r′ ∈ B. If 0 < s ∈ A,
then 1

s
/∈ B. So B is a Dedekind cut.

We claim that A · B = I. Suppose that r ∈ A · B. Choose s, t so that 0 < s ∈ A,
0 < t ∈ B, and r < s · t. Then by the definition of B, s · t < 1, so r < 1. Hence r ∈ I.

Conversely, suppose that r ∈ I, so that r < 1. Choose r′, r′′, r′′′ so that 0, r < r′ <
r′′ < r′′′ < 1. Let C = {s ∈ Q : s < r′′′}. Clearly C is a Dedekind cut.

(1) (A · C) ⊂ A.

In fact, clearly (A · C) ⊆ A. Suppose that A · C = A. Now

A = A · I = (A · C) + (A · (I − C)) = A+ (A · (I − C)),

so A · (I − C) = Z. Choose s, t so that r′′′ < s < t < 1. Then −s < −r′′′ and r′′′ /∈ C,
so −s ∈ −C. Hence 0 < t− s ∈ (I − C). So I − C is positive. Since A is also positive, it
follows that A · (I − C) is positive, contradiction. Hence (1) holds.

By (1), choose s ∈ A\(A · C). We may assume that 0 < s. Thus

(2) For all a, c, if 0 < a ∈ A and 0 < c ∈ C, then a · c ≤ s.

Now let v = r′

s
. Thus s · v = r′ > r. Hence we will get r ∈ A · B as soon as we show that

v ∈ B. Suppose that 0 < a ∈ A. Now 0 < r′′ ∈ C, so by (2) we have a · r′′ ≤ s. Hence

a · v = a · r
′

s
< a · r

′′

s
≤ 1,

so that a · v < 1, as desired.
Thus we have finished the proof in the case that A is positive. If −A is positive, then

choose B so that (−A) ·B = I. Then (A · (−B)) = (−A) ·B = I, using 38.7(ii).

This finishes the purely arithmetic part of the construction of the real numbers. Now we
discuss ordering. We define A < B iff B − A is positive. Elementary properties of < are
given in the following proposition.
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Proposition 38.9. Let A,B,C ∈ R′. Then
(i) A 6< A.
(ii) If A < B < C, then A < C.
(iii) A < B, A = B, or B < A.
(iv) A < B iff A+ C < B + C.
(v) Z < I.
(vi) If Z < A and Z < B, then Z < A ·B.
(vii) If Z < C, then A < B implies that A · C < B · C.
(viii) A < B iff A ⊂ B.

Proof. (i): A−A = Z, so A 6< A by 38.5.
(ii) Suppose that A < B < C. Thus B − A and C − B are positive. Hence clearly

also C − A = C −B +B −A is positive.
(iii): Given A,B, by 38.5 we have A−B positive, A−B = Z, or −(A−B) = B −A

is positive. By definition this gives A < B, A = B, or B < A.
(iv): First suppose that A < B. Thus B−A is positive. Since B+C−(A+C) = B−A,

it follows that A+ C < B + C.
Second, suppose that A+C < B +C. Thus B −A = B +C − (A+C) is positive, so

A < B.
(v): Obviously I is positive.
(vi): Assume that Z < A and Z < B. Thus A and B are positive. Clearly then A ·B

is positive. So Z < A ·B.
(vii): Assume that Z < C and A < B. Then C and B − A are positive, so also

C · (B −A) = C ·B − (A · C) is positive, and so A · C < B · C.
(viii): Suppose that A < B. Thus B−A is positive. Choose x so that 0 < x ∈ B−A.

Then we can write x = b + a with b ∈ B and a ∈ −A. By the definition of −A, choose
s ∈ Q so that a < s and −s /∈ A. Then −s < −a, so also −a /∈ A. Also b + a > 0, so
b > −a, and it follows that b /∈ A. Now if y ∈ A, then y < b, as otherwise b ≤ y would
imply that b ∈ A. But then y ∈ B. So A ⊆ B, and since b ∈ B\A, even A ⊂ B.

Conversely, suppose that A ⊂ B. Choose b ∈ B\A. Choose c, d such that b < c <
d ∈ B. Now −c < −b and b /∈ A, so −c ∈ −A. Thus d− c is a positive element of B − A,
hence B − A is positive and A < B.

The following theorem expresses the essential new property of the reals as opposed to the
rationals.

Theorem 38.10. Every nonempty subset of R′ which is bounded above has a least upper
bound. That is, if ∅ 6= X ⊆ R′, and there is a Dedekind cut D such that A ≤ D for all
A ∈ R′, then there is a Dedekind cut B such that the following two conditions hold:

(i) A ≤ B for every A ∈ X .
(ii) For any Dedekind cut C, if A ≤ C for every A ∈ X , then B ≤ C.

Proof. Let B =
⋃

A∈X
A. Since X is nonempty, and each Dedekind cut is nonempty,

it follows that B is nonempty. To show that B does not consist of all rationals, we use the
assumption that X has an upper bound. Let D be an upper bound for X . Thus A ≤ D
for all A ∈ X . By 38.9(viii), A ⊆ D for all A ∈ X , and hence B ⊆ D. Since D 6= Q, also
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B 6= Q. If x < y ∈ B, then y ∈ A for some A ∈ X , hence x ∈ A, hence x ∈ B. Thus B is
a Dedekind cut.

For any A ∈ X we have A ⊆ B, and hence A ≤ B by D9(viii).
Now suppose that A ⊆ C for all A ∈ X , where C is a Dedekind cut. Then B ⊆ C,

hence B ≤ C by 38.9(viii).

Next we want to embed the rationals into R′. For every rational r we define f(r) = {q ∈
Q : q < r}. Clearly f(r) is a Dedekind cut.

Proposition 38.11. (i) f is one-one.
(ii) f(r + s) = f(r) + f(s) for any r, s ∈ Q.
(iii) f(r · s) = f(r) · f(s) for any r, s ∈ Q.

Proof. (i): Suppose that r, s ∈ Q; say r < s. Then r ∈ f(s)\f(r), so f(r) 6= f(s).
(ii): First suppose that x ∈ f(r+s). Thus x < r+s, so x−s < r. Let r′ be a rational

number such that x−s < r′ < r. Then x = r′ +(x−r′), and x−r′ < s, so x ∈ f(r)+f(s).
Conversely, suppose that x ∈ f(r) + f(s). Choose a ∈ f(r) and b ∈ f(s) so that

x = a+ b. Then a < r and b < s, so x < r + s, and so x ∈ f(r + s).
(iii): Note that f(0) = Z; hence (iii) is clear if r = 0 or s = 0. Suppose that r, s > 0.

Suppose that x ∈ f(r · s). So x < r · s. Hence x
s
< r. Choose r′ ∈ Q such that x

s
< r′ < r

and 0 < r′. Hence x
r′
< s. Choose s′ ∈ Q such that x

r′
< s′ < s and 0 < s′. Then x < r′ ·s′,

0 < r′ ∈ f(r), and 0 < s′ ∈ f(s), so x ∈ f(r) · f(s).
Conversely, suppose that x ∈ f(r) · f(s). Then there are r′ ∈ f(r) and s′ ∈ f(s) such

that 0 < r′, 0 < s′, and x < r′ · s′. Hence x < r · s, so x ∈ f(r · s), as desired. This finishes
the case in which r, s > 0.

To continue we need the following little fact:

(1) −f(r) = {q ∈ Q : q < −r} for any rational number r.

In fact, suppose that q ∈ −f(r). Then there is a rational t such that q < t and −t /∈ f(r).
thus −t 6< r, so r ≤ −t. Hence t ≤ −r, so q < −r. Conversely, suppose that q < −r. Now
r /∈ f(r), so q ∈ −f(r). Thus (1) holds.

Now suppose that r < 0 < s. Then, using (1),

f(r) · f(s) = −((−f(r)) · f(s)) = −(f(−r) · f(s)) = −f((−r) · s) = f(r · s).

Similarly if s < 0 < r. If r, s < 0, then

(f(r) · f(s) = (−f(r)) · (−f(s)) = f(−r) · f(−s) = f((−r) · (−s)) = f(r · s).

Proposition 38.12. Q ∩ R′ = ∅.
Proof. First, ω ∩ R′ = ∅, since the members of ω are all finite, while the members of

R′ are all infinite.
Now suppose that a ∈ Z∩R′. Then a /∈ ω by the preceding paragraph, so a = [(m,n)]

for some m,n ∈ ω. But also a ∈ R′, so a is a set of rationals. In particular, (m,n) is a
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rational. Now (m,n) has either one or two elements; the only rationals with only one or
two elements are 1 and 2. Since ∅ ∈ 1 and ∅ ∈ 2, we get ∅ ∈ (m,n), contradiction.

A similar argument shows that a ∈ Q ∩ R′ leads to a contradiction.

We can now proceed very much like in previous appendices. We define R = (R′\rng(f))∪Q.
There is a one-one function g : R → R′, defined by g(A) = A if A ∈ R′\rng(f), and
g(A) = f(A) for A ∈ Q. Clearly g is a bijection. Now the operations +′ and ·′ are defined
on R as follows. For any a, b ∈ R,

a+′ b = g−1(g(a) + g(b));

a ·′ b = g−1(g(a) · g(b)).

moreover, we define a <′ b iff g(a) < g(b). With these definitions, g becomes an isomor-
phism of R onto R′. Namely, if a, b ∈ R, then

g(a+′ b) = g(g−1(g(a) + g(b))) = g(a) + g(b);

g(a ·′ b) = g(g−1(g(a) · g(b))) = g(a) · g(b);

a <′ b iff g(a) < g(b).

Moreover, the operations +′ and ·′ on Q coincide with the ones defined in appendix C,
since if a, b ∈ Q, then

a+′ b = g−1(g(a) + g(b)) = g−1(f(a) + f(b)) = g−1(f(a+ b)) = a+ b;

a ·′ b = g−1(g(a) · g(b)) = g−1(f(a) · f(b)) = g−1(f(a · b)) = a · b;
a <′ b iff g(a) < g(b)

iff f(a) < f(b)

iff a < b.

All of the properties above, like the associative, commutative, and distributive laws, hold
for R since g is an isomorphism. Of course we use +, ·, < now rather than +′, ·′, <′.
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Cantor-Schröder-Bernstein . . 141
cardinal addition . . . . . . . . . . . . . .125
cardinal exponentiation . . . . . . 133
cardinal multiplication . . . . . . . 128
cardinal number . . . . . . . . . . . . . . 121
cardinality . . . . . . . . . . . . . . . . . . . . .121
cardinal . . . . . . . . . . . . . . . . . . . . . . . .121
cartesian product . . . . . . . . . . . . . . 71
ccc . . . . . . . . . . . . . . . . . . . . . . . . .211,224
centered . . . . . . . . . . . . . . . . . . . . . . . 515
chain . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
κ-chain condition . . . . . . . . . . . . . 209
change of bound variables . . . . .35
characteristic function . . . . . . . .486
character . . . . . . . . . . . . . . . . . . . . . . 228
Choice-function principle . . . . 106
class functions . . . . . . . . . . . . . . . . . .80
class of all ordinals . . . . . . . . . . . . .80
class of all sets . . . . . . . . . . . . . . . . . 80
class relations . . . . . . . . . . . . . . . . . . 80
classes . . . . . . . . . . . . . . . . . . . . . . . . . . .80
closed . . . . . . . .109,149,253,255,262
closure point . . . . . . . . . . . . . . . . . . 394
Closure theorem. . . . . . . . . . . . . . 462
Club guessing . . . . . . . . . . . . . . . . . 445
clubs . . . . . . . . . . . . . . . . . . . . . . .253,262
cofinality . . . . . . . . . . . . . 136,228,425
cofinal . . . . . . . . . . . . . . . . . . . . . . . . . .425
Cohen forcing . . . . . . . . . . . . 212,369
Cohen real . . . . . . . . . . . . . . . . . . . . .369
Cohen . . . . . . . . . . . . . . . . 207,211,212
coinitiality . . . . . . . . . . . . . . . . . . . . .228
commutative ring . . . . . . . . . . . . . 109
compatible . . . . . . . . . . . . . . . . . . . . .148
κ-complete ultrafilter . . . . . . . . .304
complete character system . . .228
complete embedding . . . . . . . . . .353
completeness theorem 1 . . . . . . . 56
completeness theorem 2 . . . . . . . 56
completeness theorem 3 . . . . . . . 56
completeness theorem . . . . . . . . . . 8
complete . . . . . . . . . . . . . .148,221,146

596



completion . . . . . . . . . . . . . . . . . . . . 221
composition . . . . . . . . . . . . . . . . . . . . .72
comprehension axioms . . . . . . . 166
Comprehension . . . . . . . . . . . . . . . . .67
conjunction . . . . . . . . . . . . . . . . . . . . . 20
Consistency of no inaccessibles
177
consistent . . . . . . . . . . . . . . . . . . . . . . . 42
contained . . . . . . . . . . . . . . . . . . . . . . . 67
continuous. . . . . . . . . . . . . . . . . .90,109
continuum hypothesis . . . . . . . . 124
converse . . . . . . . . . . . . . . . . . . . . . . . . .72
countable chain condition211,224
countable transitive models of
ZFC . . . . . . . . . . . . . . . . . . . . . . . . . . . .184
deduction theorem . . . . . . . . . . . . . . 8
definable power set operation316
dense below p . . . . . . . . . . . . . . . . . 153
dense embedding . . . . . . . . . . . . . 366
densely ordered . . . . . . . . . . . . . . . 215
dense . . . . . . . . . . . . . . . . . . . . . . 148,506
diagonal intersection . . . . .255,263
Directed set theorem . . . . . . . . .457
directed . . . . . . . . . . . . . . . . . . . . . . . .426
disjoint . . . . . . . . . . . . . . . . . . . . . 71,147
disjunction . . . . . . . . . . . . . . . . . . . . . .20
distributive law . . . . . . . . . . . . . . . 148
division algorithm . . . . . . . . . . . . . .99
domain . . . . . . . . . . . . . . . . . . . . . . .72,80
dominating . . . . . . . . . . . . . . . . . . . . 136
double ordering . . . . . . . . . . . . . . . 425
duality principle . . . . . . . . . . . . . . 144
dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Dushnik-Miller . . . . . . . . . . . . . . . .271
Easton . . . . . . . . . . . . . . . . . . . . . . . . . 338
elementary substructure . . . . . 478
elevation . . . . . . . . . . . . . . . . . . . . . . .496
empty set . . . . . . . . . . . . . . . . . . . . . . . 67
equality . . . . . . . . . . . . . . . . . . . . . . . . . 12
equivalence class . . . . . . . . . . . . . . . 47
equivalence relation . . . . . . . . . . . .47
equivalence . . . . . . . . . . . . . . . . . . . . . 20
Erdös-Rado . . . . . . . . . . . . . . . . . . . .272
eventually branching . . . . . . . . . 245

exact upper bound . . . . . . . . . . . 428

Existence of exact upper bounds
442

existential quantifier . . . . . . . . . . . 20

expansion theorem . . . . . . . . . . . .101

expression . . . . . . . . . . . . . . . . . . . . . . . .1

Expr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

extended division algorithm . . .99

extendible . . . . . . . . . . . . . . . . . . . . . 307

extensional relation . . . . . . . . . . .180

extensionality axiom . . . . . . . . . .166

Extensionality . . . . . . . . . . . . . . . . . . 67

Fichtenholz, Kantorovitch, Haus-
dorff . . . . . . . . . . . . . . . . . . . . . . . . . . . .267

field of sets . . . . . . . . . . . . . . . . . . . . 144

filter generated by a set . . . . . .303

filter . . . . . . . . . . . . . .157,186,303,422

finitary partial operation . . . . .255

finite character . . . . . . . . . . . . . . . .110

finite intersection property . . 303

finite language . . . . . . . . . . . . . . . . . .50

finite sequence . . . . . . . . . . . . . . . . . . .1

finitely G-equidecomposable . 117

finite . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

first coordinate . . . . . . . . . . . . . . . . .70

first-order deduction theorem .42

first-order describable . . . . . . . . 301

first-order language . . . . . . . . . . . . 12

Fodor . . . . . . . . . . . . . . . . . . . . . . . . . . 256

forcing order . . . . . . . . . . . . . . . . . . 148

formula construction sequence16

formula . . . . . . . . . . . . . . . . . . . . . . . . . .16

∆0-formulas . . . . . . . . . . . . . . . . . . . 169

foundation axiom . . . . . . . . . . . . . 168

Foundation . . . . . . . . . . . . . . . . . . . . . 68

free sequence . . . . . . . . . . . . . . . . . .515

full character set . . . . . . . . . . . . . .228

full . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

function symbols . . . . . . . . . . . . . . . 12

function . . . . . . . . . . . . . . . . . . . . . . . . .72

gap-character set . . . . . . . . . . . . . 228

gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228

generalization . . . . . . . . . . . . . . . . . . 26

597



generalized continuum hypothe-
sis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
generating sequence . . . . . . . . . . 473
generator . . . . . . . . . . . . . . . . . . . . . . 465
P-generic over M . . . . . . . . . . . . . .186
glb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
greatest lower bounds . . . . . . . . 145
greatest lower bound . . . . . . . . . 221
Hausdorff . . . . . . . . . . . . . . . . . . . . . .140
Hechler MAD forcing . . . . . . . . 385
height . . . . . . . . . . . . . . . . . . . . . . . . . .241
Henkin’s proof . . . . . . . . . . . . . . . . 295
hierarchy of sets . . . . . . . . . . . . . . 161
holds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
homogeneous . . . . . . . . . . . . . 269,507
huge . . . . . . . . . . . . . . . . . . . . . . . . . . . .307
hyper-hyper-Mahlo . . . . . . . . . . . 289
hyper-Mahlo . . . . . . . . . . . . . . . . . . 289
ideal independent . . . . . . . . . . . . .513
ideal . . . . . . . . . . . . . . . . . . 358,378,422
idempotent . . . . . . . . . . . . . . . . . . . . 157
identity function . . . . . . . . . . . . . . . 74
image . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
implication symbol . . . . . . . . . . . . . . 1
implication . . . . . . . . . . . . . . . . . . . . . .12
important properties of genera-
tors. . . . . . . . . . . . . . . . . . . . . . . . . . . . .471
inaccessible . . . . . . . . . . . . . . . . . . . .137
included . . . . . . . . . . . . . . . . . . . . . . . . .67
indecomposable ordinal . . . . . . 407
independent . . . . . . . . . . . . . . 267,511
indescribable . . . . . . . . . . . . . . . . . . 306
indexed ∆-system . . . . . . . . 214,268
individual constants. . . . . . . . . . . .12
induction on formulas . . . . . . . . . 17
induction on sentential formulas1
induction on terms . . . . . . . . . . . . .12
infinite product . . . . . . . . . . . . . . . 229
infinite . . . . . . . . . . . . . . . . . . . . . . . . . 122
infinity axiom . . . . . . . . . . . . . . . . . . 77
Infinity . . . . . . . . . . . . . . . . . . . . . . . . . .68
inf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
injective . . . . . . . . . . . . . . . . . . . . . . . . .73
interior . . . . . . . . . . . . . . . . . . . . . . . . 149

internal . . . . . . . . . . . . . . . . . . . . . . . . 524
intersection . . . . . . . . . . . . . . . . . .68,71
interval partition . . . . . . . . . . . . . .504
interval theorem . . . . . . . . . . . . . . 462
intervals of regular cardinals .457
Intervals . . . . . . . . . . . . . . . . . . . . . . . 217
inverse . . . . . . . . . . . . . . . . . . . . . . . . . . 72
irreducible . . . . . . . . . . . . . . . . . . . . .228
irreflexive . . . . . . . . . . . . . . . . . . . .78,88
isomorphism . . . . . . . . . . . . . . . 88,340
iterated forcing construction
Jónsson cardinal . . . . . . . . . . . . . . 307
kernel . . . . . . . . . . . . . . . . . . . . . . . . . . 210
König . . . . . . . . . . . . . . . . . 133,138,241
large cardinals . . . . . . . . . . . . . . . . 137
least element . . . . . . . . . . . . . . . . . . . 88
least upper bound . . . 145,221,427
Lebesgue measure . . . . . . . . . . . . 281
left character . . . . . . . . . . . . . . . . . .228
lengths . . . . . . . . . . . . . . . . . . . . . . . . .241
level . . . . . . . . . . . . . . . . . . . . . . . . . . . .241
lexicographic order . . . . . . .217,239
limit cardinals . . . . . . . . . . . . . . . . .124
limit ordinal . . . . . . . . . . . . . . . . . . . . 77
linear order property . . . . . . . . .289
linear order . . . . . . . . . . . . . . . . . . . . .88
linear . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
linked . . . . . . . . . . . . . . . . . . . . . . . . . . 516
Localization . . . . . . . . . . . . . . . . . . . 500
logical axioms . . . . . . . . . . . . . . . . . . 24
logically weakly compact . . . . .294
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Schröder-Bernstein . . . . . . . . . . . 123
Scott’s trick . . . . . . . . . . . . . . . . . . . 163
second coordinate . . . . . . . . . . . . . .70
second-order logic . . . . . . . . . . . . 302
sentence . . . . . . . . . . . . . . . . . . . . . . . . .42
sentential assignment . . . . . . . . . . . 3
sentential axioms . . . . . . . . . . . . . . . . 6
sentential formula construction 1
sentential formula . . . . . . . . . . . . . . . 1
sentential variables . . . . . . . . . . . . . .1
separable . . . . . . . . . . . . . . . . . . . . . . 224
separative . . . . . . . . . . . . . . . . .154,206
set-like . . . . . . . . . . . . . . . . . . . . . . . . . . 81
simple definitional expansion . 57
singleton . . . . . . . . . . . . . . . . . . . . . . . . 68
singular . . . . . . . . . . . . . . . . . . . . . . . . 136
size . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
Solovay . . . . . . . . . . . . . . . . . . . . . . . . 333
special walk . . . . . . . . . . . . . . . . . . . 496
splits . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
splitting family . . . . . . . . . . . . . . . .505

standard formula . . . . . . . . . . . . . . .57
stationary . . . . . . . . . . . . . . . . .256,264
strategy . . . . . . . . . . . . . . . . . . . . . . . .405
strictly increasing . . . . . . . . . . . . . . 89
strong cardinal . . . . . . . . . . . . . . . .307
strong finite intersection prop-
erty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
strong limit cardinal . . . . . . . . . .288
strongly increasing under I . . 434
structure . . . . . . . . . . . . . . . . . . . . . . . .13
subformula . . . . . . . . . . . . . . . . . . . . . .29
subset . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
substitution of equals for equals
33
successor cardinals . . . . . . . . . . . .124
successor ordinal . . . . . . . . . . . . . . . 77
sum construction . . . . . . . . . . . . . 229
supercompact . . . . . . . . . . . . . . . . . 307
superstrong . . . . . . . . . . . . . . . . . . . .307
support . . . . . . . . . . . . . . . . . . . . . . . . 358
supremum along E . . . . . . . . . . . .489
sup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
surjective . . . . . . . . . . . . . . . . . . . . . . . 73
Suslin line . . . . . . . . . . . . . . . . . . . . . 224
Suslin trees . . . . . . . . . . . . . . . . . . . .281
κ-Suslin tree . . . . . . . . . . . . . . . . . . .242
Suslin tree . . . . . . . . . . . . . . . . 242,260
Suslin’s Hypothesis . . . . . . . . . . . 224
symbols . . . . . . . . . . . . . . . . . . . . . . . 1,12
symmetric difference . . . . . . 73,147
∆-system . . . . . . . . . . . . . . . . . . . . . . 210
Tarski . . . . . . . . . . . . . . . . . . . . . . . . . .478
tautology. . . . . . . . . . . . . . . . . . . . . .5,21
term construction sequence . . . 12
term . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
The Forcing Theorem . . . . . . . . 195
theory . . . . . . . . . . . . . . . . . . . . . . . . . . .57
topologically dense . . . . . . . . . . . 224
topology . . . . . . . . . . . . . . . . . . . . . . . 149
tower number . . . . . . . . . . . . . . . . . 506
tower . . . . . . . . . . . . . . . . . . . . . . . . . . .506
Transfinite induction . . . . . . . . . . .87
Transfinite recursion . . . . . . . . . . .88
transitive closure . . . . . . . . . . 81,163

600



transitive . . . . . . . . . . . . 75,78,88,498
tree property . . . . . . . . . . . . . . . . . .289
κ-tree . . . . . . . . . . . . . . . . . . . . . . . . . . 241
tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
true cofinality . . . . . . . . . . . . . . . . . 425
truth tables . . . . . . . . . . . . . . . . . . . . . . 4
Ulam matrix . . . . . . . . . . . . . . . . . . 258
ultrafilter . . . . . . . . . . . . .157,303,424
ultraproduct . . . . . . . . . . . . . .424,521
unbounded . . . . . . . . . . . 136,253,262
unfilled . . . . . . . . . . . . . . . . . . . . . . . . .407
union axioms . . . . . . . . . . . . . . . . . .166
Union . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
universal quantifier . . . . . . . . . . . . 12
universal sequence . . . . . . . . . . . . 465
universal specification . . . . . . . . . 36
universality . . . . . . . . . . . . . . . . . . . .220
universally valid . . . . . . . . . . . . . . . .21
universe . . . . . . . . . . . . . . . . . . . . 13,144
unordered pair . . . . . . . . . . . . . . . . . 68
unsplittable . . . . . . . . . . . . . . . . . . . .505
upper bound . . . . . . . . . 145,221,427
value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
variables . . . . . . . . . . . . . . . . . . . . . . . . 12
very strongly increasing under I
434
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