2. Existence of exact upper bounds
Last Change: Sept 4, 2009

We introduce several notions leading up to an existence theorem for exact upper bounds:
projections, strongly increasing sequences, a partition property, and the bounding projec-
tion property.

We start with the important notion of projections. By a projection framework we
mean a triple (A, I, S) consisting of a nonempty set A, an ideal I on A, and a sequence
(Sa : a € A) of nonempty sets of ordinals. Suppose that we are given such a framework.
We define sup(S) in the natural way: it is a function with domain A, and (sup(S))(a) =
sup(S,) for every a € A. Thus sup(S) € #Ord. Now suppose also that we have a function
f € A0rd such that f <; sup(S). Then we define the projection of f onto [], .4 Sa,

a€EA
denoted by f* = proj(f,S) by setting, for any a € A,

[ min(S,\f(a)) if f(a) <sup(S.),
J*(a) = {f(a) otherwise. g

Note that f < f*. Actually f+ ¢ [[,c4 Sa in general.

[This differs from Abraham, Magidor in some small details. We assume that each S,
is nonempty, while they don’t. We define f*(a) = f(a) if f(a) > sup(S,), while they
define it to be 0 then.]

Proposition 2.1. Let a projection framework be given, with the notation above.

(i) If f € A0rd and f <; sup(S), then there is a g € [] S, such that fT =1 g,
f<rg,andifhe HaeASa and f <y h, then g <y h.

(i) If f1, f2 € A0rd, f1 <;sup(9), fo <7 sup(S), and f1 < fo, then fi7 < f5.

(iii) If f1, fo € A0rd, fi <7 sup(S), fo <rsup(S), and f1 <1 fa, then fi" <1 f3".

Proof. For (i), define

acEA

g(a) = { ft(a 3;@) if f(a) < sup(Sa),

min( otherwise.

Then {a € A: fT(a) #g(a)} C{a€ A: f(a

) > sup(Sq)} € 1. So f* =y g. Since f < fT,
it follows that f <; g. Now suppose that h €

@) an

(a)

ucaSa and f <; b It f*(a) = g(a)
%E; f*(a) = min(Sa\f(a)) < h(a),

in any case, g(a) < h(a). Hence

and f(a) < h(a), then either f(a) < sup(S,

or sup(S,) < f(a) and g(a) = min(S,) <
g <71 h. So (i) holds.

(ii) and (iii) are clear. ]

nd
<

Another important notion in discussing exact upper bounds is as follows. Let I be an ideal
over A, L a set of ordinals, and f = (f¢ : £ € L) a sequence of members of A0rd. Then
we say that f is strongly increasing under I iff there is a system (Z¢ : £ € L) of members
of I such that

VE,n € LIE <n = Va € A\(Z U Zy)[fe(a) < fy(a)]].
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Under the same assumptions we say that f is very strongly increasing under I iff there is
a system (Zg : £ € L) of members of I such that

VE,m € LI§E <n=VYae A\Z,[fe(a) < fy(a)l].

Proposition 2.2. Under the above assumptions, [ is very strongly increasing iff for
every £ € L we have

() sup{fa+1:a e LN&} <s fe.

Proof. =: suppose that f is very strongly increasing, with sets Z¢ as indicated. Let
¢ € L. Suppose that a € A\Z¢. Then for any o € L NE we have fo(a) < fe(a), and so
sup{fa(a) +1:a € LNE} < fe(a); it follows that () holds.

<: suppose that (x) holds for each £ € L. For each £ € L let

Ze ={a€ A:sup{fa(a) +1:a€ LNE} > fe(a)};
it follows that Z; € I. Now suppose that o € L and o < . Suppose that a € A\Z¢. Then

fala) < fa(a) +1 <sup{fg(a)+1:8€ LN&} < fe(a), as desired. d

Lemma 2.3. (The sandwich argument) Suppose that h = (he : §& € L) is strongly
increasing, L has no largest element, and &' is the successor in L of & for every & € L.
Also suppose that fe € A0rd is such that

he <1 fe <1 he for every & € L.

Then (fe : € € L) is also strongly increasing.
Proof. Let (Z¢ : { € L) testify that h is strongly increasing. For every & € L let

We = {a € A:he(a) > fe(a) or fe(a) > he (a)}.

Thus by hypothesis we have W¢ € I. Let Z¢ = We U Ze U Zgr for every £ € L. Then if
£ < &, both in L, and if a € A\(Z% U Z%2), then

f§1 (CL) < hfi (a) < hﬁz (a) < ffz (a) O

Proposition 2.4. Let I be a proper ideal over A, let X\ > |A| be a regular cardinal,
and let f = (fe : & < A) be a <1 increasing sequence of functions in A0rd.

Then f contains a strongly increasing subsequence of length A iff f has an exact upper
bound h such that cf(h(a)) = X for all a € A.

Proof. =: Let (n(&) : £ < A) be a strictly increasing sequence of ordinals less than
A, thus with supremum A since A is regular, and assume that (f, ) : £ < A) is strongly
increasing. Hence for each £ < A let Z¢ € I be chosen correspondingly. We define for each
ae A

h(a) = sup fy (a)
adZe
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for each & < A. To see that h is an exact upper bound for f, we are going to apply 1.19.
If fy¢(a) > h(a), then a € Z¢ € I. Hence f,) <; h for each { < A. Then for any
§ < A we have fe <1 fy¢) <1 h, so h bounds every f¢. Now suppose that d <; h. Let
M ={a€ A:d(a) > h(a)}; so M € I. For each a € A\M we have d(a) < h(a), and so
there is a &, < A such that d(a) < f,¢,)(a) and a & Z¢,. Since |A| < A and X is regular,

the ordinal p def SUDge 4\ p S 18 less than A. We claim that d <; f,(,) (as desired). In fact,
suppose that a € A\(M U Z,). Then a € A\(Z¢, UZ,), and so d(a) < fye.)(a) < foip(a).
Thus d <1 fﬁ(p)'

It remains to show that cf(h(a)) = A for all @ € A. Actually this does not hold in
general for h as we have defined it. So we define a new A’ in terms of h. First we need:

(1) There is a W € I such that cf(h(a)) = A for all a € A\W.

In fact, let
W={a€A:3 <AV €[, \)|a € Ze]}.

Since |A| < A, the ordinal p def SUPgew &a 1S less than A. Clearly W C Z,, so W € I.
For a € A\W we have V¢ < \3¢' € [¢,\)[a ¢ Zg]. This gives an increasing sequence
(o, : v < A) of ordinals less than A such that a ¢ Z, for all v < \. By the strong
increasing property it follows that f, »)(a) < fy)(a) < -+ Now [{fy) 1 a & Ze}| < A,
so cf(h(a)) < A. Hence h(a) has cofinality A. This proves (1).

Now we take W as in (1). Since I is a proper ideal, choose ag € A\W, and define

, [ha) ifae AW,
fi(a) = {h(ao) ifaeW.

Then h =; K/, and it follows that A’ satisfies the properties needed.

<: Assume that f has an exact upper bound h such that cf(h(a)) = X for all a € A.
Now we define by recursion two sequences (ge : £ < A) and (n(€) : £ < A\). Suppose defined
for all v < &, in such a way that g, < h and n(v) < X for each v < £. Then by the
cofinality assumption, sup, ¢ g, < h. Hence by the exact upper bound condition, there is
a p(§) < A such that sup, ¢ g, <r fy¢)- We may assume that also sup, . n(v) < p(§).

Let
W={acA: (ililggu)(a) > foe)(a)};
V={acA: fla)>h(a)}.

Now we define g¢:

fote (@) ifac AA(WUV),
ge(a) = {(S’ﬁ%u<§gy)(a)+1 ifae WUV.

Clearly then we have g, < g¢ for all v < £&. Now choose n(§) < X and greater than p(&)
and each n(v) for v < {. This finishes the construction. Clearly g¢ =1 foe) <1 fue) <1
Joe+1) <1 geqa for all £ < A. Hence by Lemma 2.3 we get that (f, ) : £ < A) is strongly
increasing. ]
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Now we define a partition property. Suppose that I is an ideal over a set A, A\ is an
uncountable regular cardinal > |A|, f = (fe : £ < A) is a <;-increasing sequence of
members of 4Ord, and & is a regular cardinal such that |A| < k < A The following
property of these things is denoted by (x):

For all unbounded X C X there is an Xy C X of order type &
such that (fe : & € Xo) is strongly increasing.

()
Proposition 2.5. Assume the above notation, with k < . Then (x), holds iff the
set

{6 <X:cf(d) =k and (fe : £ € Xo) is strongly increasing for some unbounded Xy C 6}

18 stationary in A.

Proof. Let S be the indicated set of ordinals 9.

=: Assume (x), and suppose that C' C X is a club. Choose Cy C C of order type k
such that (fe : & € Cp) is strongly increasing. Let § = sup(Cy). Clearly 6 € C' N S.

<: Assume that S is stationary in A\, and suppose that X C X is unbounded. Define

C ={a € X\ : ais a limit ordinal and X N « is unbounded in a}.

We check that C is club in . For closure, suppose that a < A is a limit ordinal and C' N«
is unbounded in «; we want to show that a € C. So, we need to show that X N« is
unbounded in «. To this end, take any # < «; we want to find v € X N« such that g < 7.
Since C'N « is unbounded in «, choose § € C'N « such that § < §. By the definition of C'
we have that X N ¢ is unbounded in §. So we can choose v € X N ¢ such that § < ~. Since
v < 6§ < a, 7 is as desired. So, indeed, C' is closed.

To show that C' is unbounded in A, take any § < \; we want to find an o € C' such
that 8 < «a. Since X is unbounded in A, we can choose a sequence 7y < 71 < --- of
elements of X with 3 < 9. Now A is uncountable and regular, so sup,,c, 7» < A, and it
is the member of C' we need.

Now choose 6 € C'NS. This gives us an unbounded set Xy in § such that (fe : £ € Xo)
is strongly increasing. Now also X N ¢ is unbounded, since § € C. Hence we can define by
induction two increasing sequences (n(€) : £ < k) and (v(§) : £ < k) such that each 7(&) is

in Xg, each (&) is in X, and n(§) < v(§) < n(§ + 1) for all £ < k. It follows by 2.3 that
def

X1 = {v(€) : £ < Kk} is a subset of X as desired in (x). O
Finally, we introduce the bounding projection property.

Suppose that f = (fe : £ < \) is a <;-increasing sequence of functions in Ord*, with
A a regular cardinal > |A|. Also suppose that & is a regular cardinal and |A| < kK < A.

We say that f has the bounding projection property for k iff whenever (S(a): a € A)
is a system of nonempty sets of ordinals such that each |S(a)| < k and for each £ < A we
have fe <7 sup(S), then for some £ < A, the function proj(fe, (S(a) : a € A)) <;-bounds
f. (Note that (A, I,S) is a projection framework.)
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Lemma 2.6. Suppose that I is an ideal over A, X > |A| is a regular cardinal, and
[ = (fe : £ <\) is a <;-increasing sequence satisfying (), for a regqular cardinal k such
that |A| < k < A. Then f has the bounding projection property for k.

Proof. Assume the hypothesis of the lemma and of the bounding projection property
for k. For every & < A let

fg_ = proj(f§7 S)
Suppose that the conclusion of the bounding projection property fails. Then for every
& < A, the function fgr is not a bound for f, and so there is a ' < X such that fe £ fgr.
Since fe < fgr, we must have { < &, Clearly for any " > &' we have fer €7 fgr. Thus

for every £” > & we have < (fgr,f,gu) ¢ I. Now we define a sequence (£(p) : pu < A) of
elements of A by recursion. Let £(0) = 0. Suppose that {(u) has been defined. Choose
E(p+1) > &(p) so that < (fg?u),f v) & I for every " > &(p+1). If v is limit and &(p)
has been defined for all p < v, let £(v) = SUp,, <, €(p). Then let X be the range of this

sequence. Thus
if £,¢' € X and £ < &', then < (f, fer) ¢ 1.

Since (*), holds, there is a subset Xy C X of order type x such that (fe : £ € Xj) is
strongly increasing. Let (Z¢ : £ € Xj) be as in the definition of strongly increasing.
For every & € X, let £ be the successor of £ in Xy. Note that

<(f¢ fe)\(Ze U Zo Ufa € A fe(a) > sup(S(a))}) & 1,

and hence it is nonempty. So, choose
ag €< (fgr, fe)\(Ze U Ze U{a € A fe(a) > sup(S(a))}).

Note that this implies that fgr(ag) € S(ag). Since k > |A|, we can find a single a € A such
that a = a¢ for all  in a subset X; of Xy of size k. Now for &; < & with both in X;, we
have

fé(a) < fer(a) < fe,(a) < fS(a).

The first inequality is a consequence of a = ag, €< (f:, fer), the second follows from
&1 e0 1€
&1 < & and the fact that

a=ag = ag, € A\(Zgi U Ze,),

and the third is true by the definition of fg: ]

Thus ( fgr (a) : £ € Xy) is a strictly increasing sequence of members of S(a). This
contradicts our assumption that |S(a)| < k. O

Lemma 2.7. Suppose that I is a proper ideal over A, X > |A|* is a regular cardinal,
and f = (fe : £ € A\) is a <;-increasing sequence of functions in AOrd satisfying the
bounding projection property for |A|T. Suppose that h is a least upper bound for f. Then
h is an exact upper bound.
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Proof. Assume the hypotheses, and suppose that g <; h; we want to find & < A such
that g <7 f¢. By increasing h on a subset of A in the ideal, we may assume that g < h
everywhere. (See Proposition 1.24.) Define S, = {g(a),h(a)} for every a € A. By the
bounding projection property we get a { < A such that f; def proj(fe, (Sq : a € A)) is an
upper bound for f. We shall prove that g <; f¢, as required.

Since h is a least upper bound, it follows that h <; fgL. Thus M & {a € A:

h(a) > f;(a)} € I. Also, the set N o {a € A: fe(a) > sup(Sq)} is in I. Suppose that
a € A\(M UN). Then g(a) < h(a) < fgL(a) = min(S,\ fe(a)), and since g(a) € S,, this
implies that g(a) < fe(a). So g <r fe, as desired. O

Theorem 2.8. (Existence of exact upper bounds) Suppose that I is a proper ideal
over A, X > |A|T is a regular cardinal, and f = (fe : £ € N) is a <p-increasing sequence of
functions in 2 Ord that satisfies the bounding projection property for |A|T. Then f has an
exact upper bound.

Proof. Assume the hypotheses. By 2.7 it suffices to show that f has a least upper
bound, and to do this we will apply 1.18. Suppose that f does not have a least upper
bound. Since it obviously has an upper bound, this means, by 1.18:

(1) For every upper bound h € AOrd for f there is another upper bound &’ for f such that
h <;hand {a€ A:h'(a) <h(a)} ¢1.

In fact, 1.18 says that there is another upper bound A’ for f such that A’ <; h and it is
not true that h =y h’. Hence {a € A: h(a) < W (a)} € I and {a € A: h(a) # h'(a)} ¢ I.
So

{a€ A:h(a) #h (a)}\{a€ A:Nh(a) <h(a)} ¢ and

{a€ A:h(a) # M (a)}\{a€ A:h(a) <h'(a)} ={a€ A:h'(a) < h(a)},

so (1) follows.
Now we shall define by induction on a < |A|T a sequence S* = (S%(a) : a € A) of
sets of ordinals satisfying the following conditions:

(2) |S*(a)| < |A| for each a € A;
(3) fe(a) < supS*(a) for all £ € A and a € 4;

(4) If @ < B and a € A, then S*(a) C S?(a), and if § is a limit ordinal, then S%(a) =
Ua<s 9%(a)-

We also define sequences (h, : « < |A|1) and (h], : @ < |A|T) of functions and ({(«) : o <
|A|T) of ordinals. In fact, we will define h,, h.,, and £(a) after defining S**1.

The definition of S¢ for « limit is fixed by (4), and the conditions (2)—(4) continue to
hold. To define S°, pick any function k that bounds f (everywhere) and define S°(a) =
{k(a)} for all a € A; so (2)—(4) hold.

Suppose that S* = (S%(a) : a € A) has been defined, satisfying (2)—(4); we define
Sot1 By the bounding projection property for |A|", there is a &£(a) < X such that

— proj(fe(a), S*) is an upper bound for f under <;. Then
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(5) if £(ar) <& < A, then h =1 proj(fer, S¢).

In fact, recall that hq(a) = min(S¥(a)\fea)(a)) for every a € A. Now suppose that
fla) <& <A Let M ={a € A: fea)(a) > fe(a)}. So M € I. For any a € A\M we
have fe(q)(a) < fer(a), and hence

min(S(a)\ fe(a) (@) < min(S*(a)\ fer(a));

it follows that h, <; proj(fe,S®). For the other direction, recall that h, is an upper
bound for f under <;. So fer <; hqo. If a is any element of A such that fe (a) < ho(a)
then, since hy(a) € S*(a), we get min(S(a)\ fer(a)) < ho(a). Thus proj(fe, S%) <1 hq.
This checks (5).
Now we apply (1) to get an upper bound &/, for f such that hl, <; h, and < (h.,, ha) ¢
I. We now define S**1(a) = S%(a) U {h/,(a)} for any a € A.

(6) If () < &€ < A, then proj(fe, S*T) =, 1),

For, we have f¢ <; hl, and, by (5), ho =1 proj(fe, 5%). If a € A is such that fe(a

)
ho(a) < ha(a), and ho(a) = proj(fe, S)(a), then min(S*(a)\fe(a)) = hala) =
fe(a), and hence

< hy(a),
Rl (a) >

proj(fe, S°1)(a) = min($°+ (a)\ fe(a)) = R, (a).

It follows that proj(fe, S**1) =1 h.,, as desired in (6).

Now since |A|T < A, let £ < )\ be greater than each £(a) for a < |A|*. Define
H, = proj(fe, S) for each o < |A|*. Since & > {(«), we have H, = h, by (5). Note
that Ha+1 = proj(fe, S*T) =1 hl,; so < (Huo+1,Ha) ¢ I. Now clearly by the construction
we have S (a) C S*2(a) for all a € A when a3 < as < |A|". Hence we get

(7) if a1 < ag < |A|T, then H,, < Hy,, and < (H,,, Hy,) ¢ 1.

Now for every o < |A|" pick a, € A such that Hyy1(aq) < He(as). We have a, = ag for
all o, 8 in some subset of |A|" of size |A|*, and this gives an infinite decreasing sequence
of ordinals, contradiction. ]

Lemma 2.9. Suppose that I is a proper ideal over A, X > |A|* is a regqular cardinal,
f = {(fe: € <\ is a <;-increasing sequence of functions in A0rd, |A|* < k < A, f
satisfies the bounding projection property for k, and g is an exact upper bound for f. Then

{a € A: g(a) is non-limit, or cf(g(a)) < k} € I.

Proof. Let P = {a € A : g(a) is non-limit, or cf(g(a)) < k}. If a € P and g(a) is
a limit ordinal, choose S(a) C g(a) cofinal in g(a) and of order type < k. If g(a) = 0 let
S(a) = {0}, and if g(a) = f+ 1 for some [ let S(a) = {B}. Finally, if g(a) is limit but is
not in P, let S(a) = {g(a)}.

Now for any & < A let

—{GGA'fs() fera1(a)} and
={a€A: feri(a) = g(a)}.
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Then clearly
(%) If a € A\(N¢ U Q¢), then fe(a) < sup(S(a)).
It follows that {a € A : fe(a) > sup(S)(a)} € Ne U Q¢ € I. Hence the hypothesis of

the bounding projection property holds. Applying it, we get & < X such that fgr def
proj(fe, (S(a) : a € A)) <;-bounds f. Since g is a least upper bound for f, we get

g <1 fgL, and hence M & {a€ A: fgr(a) < g(a)} € I. By (%), for any a € P\(Ng U Q)

we have fg(a) = min(S(a)\fe(a)) < g(a). This shows that P\(Ne U Q¢) C M, hence
PC N:UQeUM € 1I,s0 P €I, as desired. O

Theorem 2.10. Suppose that I is a proper ideal over A, X > |A|" is a regular
cardinal, f = (fe : € < \) is a <j-increasing sequence of functions in 4 Ord, and |A|t <
k < X, with k regular. Then the following are equivalent:

(i) (%), holds for f.

(ii) f satisfies the bounding projection property for k.

(iii) f has an exact upper bound g such that

{a € A: g(a) is non-limit, or cf(g(a)) < K} € I.

Proof. (i)=(ii): Lemma 2.6.

(ii)=-(iii): Since (x), clearly implies (*)|4|+, this implication is true by Theorem 2.8
and Lemma 2.9.

(iii)=-(i): Assume (iii). By modifying g on a set in the ideal we may assume that g(a)
is a limit ordinal and cf(g(a)) > & for all a € A. For each a € A choose a club S(a) C g(a)
of order type cf(g(a)). Thus the order type of S(a) is > k. We prove that (x), holds. So,
assume that X C X is unbounded; we want to find Xy C X of order type k over which f

is strongly increasing. To do this, we intend to define by induction on a < k a function
ho € ]S and an index &(a)) € X such that

(1) ha <1 fe(a) <1 hat1-

(2) The sequence (h, : a < k) is <-increasing (increasing everywhere; and hence it certainly
is strongly increasing).

After we have done this, the sandwich argument (Lemma 2.3) shows that (fe(a) : @ < k)
is strongly increasing and of order type k, giving the desired result.
The functions h,, are defined as follows.

3) ho € [[ S is arbitrary.

(3)
(4) For a limit ordinal 6 < &k let hs = sup, s ha-

(5) Having defined h,, we define h,11 as follows. Since g is an exact upper bound and
ha < g, choose () such that hy, <1 fe(a). Also, since f¢ <7 g for all £ < A, the projections
fgL = proj(f,S) are defined. We define

_ fmax(la(a). £p(@) + 1 firay(a) < g(a),
hat(a) = {ha(a) +1 if fe(a)(a) > g(a).
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Thus we have
ha <1 fea) <1 hat1, for every a. (1.6)

So conditions (1) and (2) hold. ]
To proceed further we need the following club guessing theorem.

Theorem 2.11. (Club guessing) Suppose that k is a reqular cardinal, X is a cardinal
such that cf(\) > k+, and S = {6 € X : cf(6) = k}. Then there is a sequence (Cs : § €
S2) such that:

(i) For every § € S the set Cs C 6 is club, of order type k.

(ii) For every club D C \ there is a 6 € DN S} such that Cs C D.

The sequence (Cs : § € S2) is called a club guessing sequence for S?.

Proof. First we take the case of uncountable k. Fix a sequence C' = (C§ : § € S)})
such that C% C 4 is club in § of order type &, for every § € S2. For any club E of A, let

C'|E=(C}nE:5cS)nE",

where E' = {§ € E: ENJ is unbounded in ¢}. Clearly E’ is also club in A. Also note that
Ci N E is club in § for each § € S} N E’. We claim:

(1) There is a club E of A such that for every club D of \ there is a § € DN E'N S such
that C3NE C D.

Note that if we prove (1), then the theorem follows by defining C5 = C5 N E for all
§ € E'NS), and Cs = Cf for § € SK\E'.

Assume that (1) is false. Hence for every club £ C A there is a club Dg C X such
that for every § € Dg N E'N S} we have

Cs5NEZ Dg.

«

We now define a sequence (E% : a < k™) of clubs of A decreasing under inclusion, by

induction on a:

(2) E° =\

(3) If v < ™ isalimit ordinal and E has been defined for all a < v, we set E¥ =1, E“.
Since v < k1 < cf (), E7 is club in \.

(4) If E* has been defined, let E*T! be the set of all limit points of E* N Dga, i.e., the
set of all € < A such that £E“ N Dge N e is unbounded in €.

This defines the sequence. Let £ = (1, _,.+ E¢. Then E is club in A. Take any ¢ € S,i‘ NE.
Since |C§| = k and the sequence (E® : @ < k™) is decreasing, there is an o < K such that
CiNE=CsNE* So C;NE*=C;NE*! Hence C; N E* C Dg,_, contradiction.
Thus the case k uncountable has been finished.
Now we take the case k = w. For § = 53 fix C' = (Cs: 6 € S) so that Cs is club in 6
with order type w. We denote the n-th element of Cs by Cs(n). For any club £ C A and
any 6 € SN E’ we define

CEF = {max(E N (Cs(n)+ 1)) :n € w}.
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This set is cofinal in §. In fact, given @ < §, there is a § € E N such that a < (3 since
d € E’, and there is an n € w such that 8 < Cs(n). Then a < max(E N (Cs(n) + 1)), as
desired. There may be repetitions in the description of CF, but max(E N (Cs(n) + 1)) <
max(E N (Cs(m) + 1)) if n < m, so CF has order type w. We claim

(5) There is a closed unbounded E C A such that for every club D C ) there is a § €
DN SNE such that CF C D. [This proves the club guessing property.]

Suppose that (5) fails. Thus for every closed unbounded E C X there exist a club Dy C A
such that for every § € Dp N SN E’ we have CF ¢ D. Then we construct a descending
sequence E“ of clubs in A as in the case K > w, for & < w;. Thus for each a < w; and
each § € Dpe NS N (E%)" we have CF" ¢ Dpa. Let E =) E*. Take any 6 € SN E.
For n € w and a < 8 we have

a<wi

E*N(Cs(n) +1) 2 E° N (Cs(n) + 1),

and so max(E*N(Cs(n)+1)) > max(E® N (Cs(n)+1)); it follows that there is an a,, < w;
such that max(E” N (Cs(n) + 1)) = max(E* N (Cs(n) + 1)) for all 3 > a,. Choose v
greater than all a,,. Thus

(6) For all € >« and all n € w we have max(E¢ N (Cs(n) + 1)) = max(EY N (Cs(n) + 1)).

But there is a p € CF"\Dg~; say that p = max(EY N (Cs(n) +1)). Then p = max(E7+1 N
(Cs(n) +1)) € B = (EYN Dg~)' € Dp~, contradiction. O

Lemma 2.12. Suppose that:
(i) I is an ideal over A.
(ii) k and X\ are regular cardinals such that |A] < k and kT < A.
(iii) f = (fe : € < A) is a sequence of length A of functions in “4Ord that is <p-
increasing and satisfies the following condition:
For every § < X with ¢f(0) = kT there is a club Es C § such that for some
& > 8§ with &' < A,

(%) sup{fa : v € E5} <1 f5.

Under these assumptions, (x), holds for f.

Proof. Assume the hypotheses. Let S = S§++; so S is stationary in k™. By 2.11,
let (Cs: 6 € S) be a club guessing sequence for S; thus

(1) For every § € S, the set C5 C § is a club of order type x.
(2) For every club D C % there is a § € D NS such that Cs C D.

Now let U C A be unbounded; we want to find X¢o C U of order type x such that
(fe - € € Xo) is strongly increasing. To do this we first define an increasing continuous

sequence (€(i) 1 i < kTT) € " X recursively.
Let £(0) = 0. For 4 limit, let £(i) = sup,,; (k).
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Now suppose for some i < k11 that £(k) has been defined for every k < i; we define
€(i+1). For each a € S we define

ho =sup{f, :ne€{[Can(i+1)]} and
| least o € (£(4), A) such that hy <; f, if there is such a o,

eV +1 otherwise.
Now we let (i + 1) be the least member of U which is greater than sup{o, : o € S}. It
follows that
(3) If @ € S and the first case in the definition of o, holds, then hy <1 fe(it1)-
Now the set F < {¢(k) : k € s*+} is closed, and has order type x++. Let § = sup(F).
Then F is a club of §, and cf(d) = x*F. Hence by the hypothesis (iii) of the lemma, there
is a club E5 C 6 and a §' € [4,\) such that (x) in the lemma holds. Note that F' N Es is
club in 6.

Let D = ¢~ 1[F N Es|. Since ¢ is strictly increasing and continuous, it follows that D
is club in kT*. Hence by (2) there is an « € D N S such that C,, C D. Hence

604 déf g[ca] CFN E6

is club in () of order type . Then by (x) we have

sup{f, : p € Ca} <1 f5.

Now
(5) For every p < p’ both in C,, we have sup{fc: ( € Co N (p+ 1)} <s for-

To prove this, note that there is an ¢ < ™1 such that p = £(z). Now follow the definition of
£(i+1). There C, was considered (among all other closed unbounded sets in the guessing
sequence), and h, was formed at that stage. Now

ha = sup{fy : n € {[Ca N (i + 1)]} < sup{fy : 0 € {[Ca]} = sup{fy :n € Ca} <1 fs,
so the first case in the definition of o, holds. Thus by (3), ha <1 fe(iy1). Clearly

E(i+1) < p,s0 (5) follows. _
Now let (n(v) : v < k) be the strictly increasing enumeration of C, and set

Xo={nlw-p+2m):p<k,0<mew}.

Suppose that ( € Xj. Say(zn(w-p_—ka) with p<kand 0 <m ew. If 0 € Xy N,
then o < n(w-p+2m—1) <, allin C4, so

Sup{fc +1:0€ XO N C} <1 fn(w-p+2m—1)
=sup{f,:0€ConN(n(w -p+2m—1)+1)}
<1 fe by ()
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Hence by 2.2, (f¢ : ¢ € X) is strongly increasing. O

Lemma 2.13. Suppose that I is a proper ideal over a set A of reqular cardinals such
that |A] < min(A). Assume that X > |A| is a regular cardinal such that (][ A, <p) is
A-directed, and (ge : £ < \) is a sequence of members of [[ A.

Then there is a <r-increasing sequence f = (fe : £ < X) of length X in [[ A such that:

(1) ge < feqr1 for every & < A.

(i1) (%), holds for f, for every regular cardinal k such that k™" < X and {a € A:a <
KTt} el.

Proof. Let fy be any member of [ A. At successor stages, if f¢ is defined, let fey;
be any function in [] A that <-extends f¢ and ge.

At limit stages d, there are three cases. In the first case, cf(d) < |A|. Fix some E5 C §
club of order type cf(d), and define

fs =sup{f; :i € Es}.

For any a € A we have cf(d) < |A] < min(A4) < a, and so fs(a) < a. Thus f5 € [[ A.

In the second case, cf(§) = kTT, where k is regular, |A] < k, and {a € A : a <
kT*} € I. Then we define f} as in the first case. Then for any a € A with a > k*+ we
have f§(a) < a, and so {a € A:a < fj(a)} € I, and we can modify f§ on this set which is
in I to obtain our desired f;.

In the third case, neither of the first two cases holds. Then we let fs5 be any <;-upper
bound of {f¢ : { < d}; it exists by the A-directedness assumption.

This completes the construction. Obviously (i) holds. For (ii), suppose that x is a
regular cardinal such that k¥ < A and {a € A:a < kTT} € [. If |A| < K, the desired
conclusion follows by 2.12. In case x < |A|, note that (fe : £ < k) is <-increasing, and so
is certainly strongly increasing. ]

Notation. For any set X of cardinals, let

X ={aT:aecX}.

Theorem 2.14. (Representation of u™ as a true cofinality) Suppose that p is a
singular cardinal with uncountable cofinality. Then there is a club C in p such that

= et ([T, <)

where JPY is the ideal of all bounded subsets of CH).

Proof. Let Cy be any closed unbounded set of limit cardinals less than p such that
|Co| = cf(u) and all cardinals in Cy are above cf(u). Then

(1) all members of Cy which are limit points of C are singular.

In fact, suppose on the contrary that x € Cy, k is a limit point of C, and k is regular. Thus
Co N £ is unbounded in &, so |Cy N k| = k. But cf(u) < K and |Cy| = cfp, contradiction.
So (1) holds. Hence wlog every member of Cj is singular.
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Now we claim
(2) (IT C(()+), < gva) is p-directed.

In fact, suppose that F' C HC’SH and |F| < p. For a € C’éﬂ with |F| < a let h(a) =

sup e f(a); so h(a) € a. Fora € C’éﬂ with a < |F| let h(a) = 0. Clearly f <jva h for all
f € F. So (2) holds.

(3) (I1 C(()Jr), < va) is pT-directed.

In fact, by (2) it suffices to find a bound for a subset F of || C’é+) such that |F| = p. Write
F = Ua<cf(ﬂ) G, with |G| < p for each a < cf(p). By (2), each G, has an upper bound

ko under < jva. Then {k, : a < cf(p)} has an upper bound h under < jva. Clearly h is an
upper bound for F.

Now we are going to apply 2.13 to JPd, C’é+), and p* in place of I, A, and \; and
with anything for g. Clearly the hypotheses hold, so we get a < wa-increasing sequence

f={fe:&<uT)in HC’SH such that (x), holds for f, for every regular cardinal k < p.
By 2.10 and 2.9, f has an exact upper bound h such that for every regular k < p,

(%) {a € CSH : h(a) is non-limit, or cf(h(a)) < K} € J"9.

Now the identity function k on C(()+) is obviously is an upper bound for f, so h <jua k. By
modifying h on a set in JP? we may assume that h(a) < a for all a € C(g+). Now we claim

(x%) The set C1 % {a € Cy : h(a™) = at} contains a club of p.
Assume otherwise. Then for every club K, K N (p\C7) # 0. This means that p\Cj is

stationary, and hence S o Co\C1 is stationary. For each a € S we have h(a™) < a't.
Hence cf(h(at)) < «a since « is singular. Hence by Fodor’s theorem cf(h(at)) is bounded
by some k < p on a stationary subset of S. This contradicts (x).

Thus (%*) holds, and so there is a club C C Cj such that h(a™) = o™ for all a € C.
Now (fe [ CH) 1 € < pt) is < jpa-increasing. We claim that it is cofinal in (] CF), < jua).
For, suppose that g € [[C™). Let ¢’ be the extension of g to [] C'(()+) such that ¢’(a) =0
for any a € Co\C. Then ¢’ <jva h, and so there is a & < ut such that ¢’ <ja fe. So
g <gva fe | O as desired. This shows that ut = tcf([TCH), < jva). d

Theorem 2.15. If u is a singular cardinal of countable cofinality, then there is an
unbounded set D C i of reqular cardinals such that

,u+ = tcf <H D, <de) .

Proof. Let Cy be a set of regular cardinals with supremum g, of order type w.
(1) T[] Co/JP? is p-directed.

For, let X C [[Cp with |X| < u. For each a € Cj such that | X| < a, let h(a) = sup{f(a):
f € X}, and extend h to all of Cy in any way. Clearly h € [[ Cp and it is an upper bound
in the < jva sense for X.
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From (1) it is clear that [[ Co/J"? is also p*-directed. By 2.13 we then get a < jva-
increasing sequence (fe : & < p') which satisfies (%), for every regular k < pu*. By
2.9 and 2.10, f has an exact upper bound h such that {a € Cy : h(a) is non-limit or
cf(h(a)) < k} € JPd for every regular k < ut. We may assume that h(a) < a for all
a € Cp, since the identity function is clearly an upper bound for f; and we may assume that
each h(a) is a limit ordinal of uncountable cofinality since {a € Cy : cf(h(a)) < w;} € JP4.

(2) tef ([Taeq, cf(a)), <gva) = pt.

To prove this, for each a € Cy let D, be club in h(a) of order type cf(h(a)), and let
(Nag + € < cf(h(a))) be the strictly increasing enumeration of D,. For each & < u™ we
define f{ € [[,c¢, cf(h(a)) as follows. Since f¢ <jva h, the set {a € Cy : fe(a) > h(a)} is
bounded, so choose ag € Cy such that for all b € Cy with ag < b we have f¢(b) < h(b). For
such a b we define f;(b) to be the least v such that fe(b) < mp,. Then we extend f/, in any
way to a member of [, cf(h(a))).

o

(3) € <o < p* implies that f{ <jwa f,.

This is clear by the definitions.

Now for each I € [[,c¢, cf(h(a))) define k; € [] Co by setting ki(a) = nqi(q) for all a.
So k; < h. Since h is an exact upper bound for f, choose £ < u™ such that k; <jva fe.
Choose a such that ki(b) < fe(b) for all b > a. Then for all b > a, ny ey < UYAOE and

hence I(b) < f{(b). This proves that [ < va f. This proves the following two statements.
(4) {f¢: € <pT}is cofinal in ([],eq, cf(R(a)), <jva).
(5) {f¢: & < p'}is pt-directed with respect to < jva.
These facts yield (2).
Now let B = {cf(h(a)) : a € Cp}. Define
X € Jiff X C B and h™'[cfH[X]] € JP9.

By 1.28 we get tcf([[ B/J) = pt. Tt suffices now to show that J is the ideal of bounded
subsets of B. Suppose that X € J, and choose a € Cy such that h='[cf ' [X]] C {b €
Co : b < a}. By the choice of h, X C {b € A : cf(h(b)) < a} € J"I, so X is bounded.
Conversely, if X is bounded, choose a € B such that X C{b€ B :b<a}. Now

Al ef X)) = {b € Cy: cf(h(b)) € X}
={be Cp:cf(h(b)) <a},

and this is bounded by the choice of h.
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