
4. The main pcf theorems

The sets HΨ

We will shortly give several proofs involving the important general idea of making elemen-
tary chains inside the sets HΨ. Recall that HΨ, for an infinite cardinal Ψ, is the collection
of all sets hereditarily of size less than Ψ, i.e., with transitive closure of size less than Ψ.
We consider HΨ as a structure with ∈ together with a well-ordering <∗ of it, possibly with
other relations or functions, and consider elementary substructures of such structures.

Recall that A is an elementary substructure of B iff A is a subset of B, and for
every formula ϕ(x0, . . . , xm−1) and all a0, . . . , am−1 ∈ A, A |= ϕ(a0, . . . , am−1) iff B |=
ϕ(a0, . . . , am−1).

The basic downward Löwenheim-Skolem theorem will be used a lot. This theorem
depends on the following lemma.

Lemma 4.1. (Tarski) Suppose that A and B are first-order structures in the same
language, with A a substructure of B. Then the following conditions are equivalent:

(i) A is an elementary substructure of B.
(ii) For every formula of the form ∃yϕ(x0, . . . , xm−1, y) and all a0, . . . , am−1 ∈ A, if

B |= ∃yϕ(a0, . . . , am−1, y) then there is a b ∈ A such that B |= ϕ(a0, . . . , am−1, b).

Proof. (i)⇒(ii): Assume (i) and the hypotheses of (ii). Then by (i) we see that
A |= ∃yϕ(a0, . . . , am−1, y), so we can choose b ∈ A such that A |= ϕ(a0, . . . , am−1, b).
Hence B |= ϕ(a0, . . . , am−1, b), as desired.

(ii)⇒(i): Assume (ii). We show that for any formula ϕ(x0, . . . , xm−1) and any elements
a0, . . . , am−1 ∈ A, A |= ϕ(a0, . . . , am−1) iff B |= ϕ(a0, . . . , am−1), by induction on ϕ. It
is true for ϕ atomic by our assumption that A is a substructure of B. The induction
steps involving ¬ and ∨ are clear. Now suppose that A |= ∃yϕ(a0, . . . , am−1, y), with
a0, . . . , am−1 ∈ A. Choose b ∈ A such that A |= ϕ(a0, . . . , am−1, b). By the inductive
assumption, B |= ϕ(a0, . . . , am−1, b). Hence B |= ∃yϕ(a0, . . . , am−1, y), as desired.

Conversely, suppose that B |= ∃yϕ(a0, . . . , am−1, y). By (ii), choose b ∈ A such that
B |= ϕ(a0, . . . , am−1, b). By the inductive assumption, A |= ϕ(a0, . . . , am−1, b). Hence
A |= ∃yϕ(a0, . . . , am−1, y), as desired.

Theorem 4.2. Suppose that A is an L-structure, X is a subset of A, κ is an infinite
cardinal, and κ is ≥ both |X | and the number of formulas of L , while κ ≤ |A|. Then A
has an elementary substructure B such that X ⊆ B and |B| = κ.

Proof. Let a well-order ≺ of A be given. We define 〈Cn : n ∈ ω〉 by recursion. Let C0

be a subset of A of size κ with X ⊆ C0. Now suppose that Cn has been defined. Let Mn

be the collection of all pairs of the form (∃yϕ(x0, . . . , xm−1, y), a) such that a is a sequence
of elements of Cn of length m. For each such pair we define f(∃yϕ(x0, . . . , xm−1, y), a) to
be the ≺-least element b of A such that A |= ϕ(a0, . . . , am−1, b), if there is such an element,
and otherwise let it be the least element of Cn. Then we define

Cn+1 = Cn ∪ {f(∃yϕ(x0, . . . , xm−1, y), a) : (∃yϕ(x0, . . . , xm−1, y), a) ∈ Mn}.

Finally, let B =
⋃

n∈ω Cn.

46



By induction it is clear that |Cn| = κ for all n ∈ ω, and so also |B| = κ.
Now to show that B is an elementary substructure of A we apply Lemma 4.1. To

show that B is a substructure of A, let F be a fundamental operation of A, say of arity n,
and suppose that a ∈ nB. Choose m so that a ∈ nCm. Then

FA(a) = f(∃y[F(x0, . . . , xn) = y], a) ∈ Cm+1 ⊆ B,

as desired.
Now suppose that we are given a formula of the form ∃yϕ(x0, . . . , xm−1, y) and el-

ements a0, . . . , am−1 of B, and A |= ∃yϕ(a0, . . . , am−1, y). Clearly there is an n ∈ ω
such that a0, . . . , am−1 ∈ Cn. Then (∃yϕ(x0, . . . , xm−1, y), a) ∈ Mn, and the element

b
def
= f(∃yϕ(x0, . . . , xm−1, y), a) is in Cn+1 ⊆ B and is such that A |= ϕ(a0, . . . , am−1, b).

This is as desired in Lemma 4.1.

Given an elementary substructure A of a set HΨ, we will frequently use an argument of
the following kind. A set theoretic formula holds in the real world, and involves only sets
in A. By absoluteness, it holds in HΨ, and hence it holds in A. Thus we can transfer a
statement to A even though A may not be transitive; and the procedure can be reversed.

This kind of argument depends on properties of transitive closures. For any set A,
define a sequence 〈BAn : n ∈ ω〉 as follows: BA0 = A, and BA,n+1 =

⋃

BAn. Then we
define tr cl(A) =

⋃

n∈ω BAn, the transitive closure of A. Thus tr cl(A) is a transitive set
which contains A and is included in any transitive set whtih contains A. We summarize
some properties of transitive closures:

Lemma 4.3. (i) If X ⊆ A, then tr cl(X) ⊆ tr cl(A).
(ii) tr cl(P(A)) = P(A) ∪ tr cl(A).
(iii) If tr cl(A) is infinite, then |tr cl(P(A))| ≤ 2|tr cl(A)|.
(iv) tr cl(A ∪ B) = tr cl(A) ∪ tr cl(B).
(v) tr cl(A×B) = (A×B)∪{{a} : a ∈ A}∪{{a, b} : a ∈ A, b ∈ B}∪tr cl(A)∪tr cl(B).
(vi) If tr cl(A) or tr cl(B) is infinite, then |tr cl(A × B)| ≤ max(tr cl(A), tr cl(B).
(vii) tr cl(AB) ⊆ (AB) ∪ tr cl(A × B).
(viii) If tr cl(A) or tr cl(B) is infinite, then |tr cl(AB)| ≤ 2max(|tr cl(A)|,|tr cl(A)|).
(ix) If tr cl(A) is infinite, then |tr cl(

∏

A)| ≤ 2|tr cl(A)|.

(x) If tr cl(A) or tr cl(B) is infinite, then |tr cl(A(
∏

B))| ≤ 22max(|tr cl(A)|,|tr cl(B)|)

.
(xi) If A is a set of infinite cardinals, then tr cl(A) =

⋃

A.
(xii) If A is an infinite set of regular cardinals, then |tr cl(pcf(A))| ≤ 2|tr cl(A)|.

Proof. (i)–(viii) are clear. For (ix), note that
∏

A ⊆ A
⋃

A, so (ix) follows from
(viii). For (x),

∣

∣

∣
tr cl

(

A
(

∏

B
))
∣

∣

∣
≤ 2max(|tr cl(A),|tr cl(

∏

B)) by (viii)

≤ 2max(|tr cl(A),2|tr cl(B))

≤ 22max(|tr cl(A)|,|tr cl(B)|)

.

(xi) is clear.
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Finally, for (xii), by (xi) it suffices to show that
⋃

pcf(A) ≤ 2tr cl(A). So, let α ∈
⋃

pcf(A). Choose λ ∈ pcf(A) such that α < λ. Now there is a one-one function mapping
λ into

∏

A/F for some ultrafilter F on A; hence λ ≤ |
∏

A|. So, using (ix),

α < λ ≤
∣

∣

∣

∏

A
∣

∣

∣
≤
∣

∣

∣
tr cl

(

∏

A
)
∣

∣

∣
≤ 2tr cl(A).

We also need the fact that some rather complicated formulas and functions are absolute
for sets HΨ. Note that HΨ is transitive. Many of the indicated formulas are not absolute
for HΨ in general, but only under the assumptions given that Ψ is much larger than the
sets in question.

Lemma 4.4. Suppose that Ψ is an uncountable regular cardinal. Then the following
formulas (as detailed in the proof) are absolute for HΨ.

(i) B = P(A).
(ii) “D is an ultrafilter on A”.
(iii) κ is a cardinal.
(iv) κ is a regular cardinal.
(v) “κ and λ are cardinals, and λ = κ+”.
(vi) κ = |A|.
(vii) B =

∏

A.
(viii) A = BC.
(ix) “A is infinite”, if Ψ is uncountable.
(x) “A is an infinite set of regular cardinals and D is an ultrafilter on A and λ is a

regular cardinal and f ∈ λ
∏

A and f is strictly increasing and cofinal modulo D”, provided
that 2|tr cl(A)| < Ψ.

(xi) “A is an infinite set of regular cardinals, and B = pcf(A)”, if 2|tr cl(A)| < Ψ.
(xii) “A is an infinite set of regular cardinals and f = 〈J<λ[A] : λ ∈ pcf(A)〉”, provided

that 2|tr cl(A)| < Ψ.
(xiii) “A is an infinite set of regular cardinals and B = 〈Bλ : λ ∈ pcf(A)〉 and

∀λ ∈ pcf(A)(Bλ is a λ-generator)”, if 22|tr cl(A)|

< Ψ.

Proof. Absoluteness follows by easy arguments upon producing suitable formulas, as
follows.

(i): Suppose that A, B ∈ HΨ. We may take the formula B = P(A) to be

∀x ∈ B[∀y ∈ x(y ∈ A)] ∧ ∀x[∀y ∈ x(y ∈ A) → x ∈ B].

The first part is obviously absolute for HΨ. If the second part holds in V it clearly holds in
HΨ. Now suppose that the second part holds in HΨ. Suppose that x ⊆ A. Hence x ∈ HΨ

and it follows that x ∈ B.
(ii): Assume that A, D ∈ HΨ. We can take the statement “D is an ultrafilter on A”

to be the following statement:

∀X ∈ D(X ⊆ A) ∧ A ∈ D ∧ ∀X, Y ∈ D(X ∩ Y ∈ D) ∧ ∅ /∈ D

∧ ∀Y ∀X ∈ D[X ⊆ Y ∧ Y ⊆ A → Y ∈ D] ∧ ∀Y [Y ⊆ A → Y ∈ D ∨ (A\Y ) ∈ D].
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Again this is absolute because Y ⊆ A implies that Y ∈ HΨ.
(iii): Suppose that κ ∈ HΨ. Then

κ is a cardinal iff κ is an ordinal and ∀f [f is a function and

dmn(f) = κ and rng(f) ∈ κ → f is not one-to-one].

Note here that if f is a function with dmn(f) = κ and rng(f) ⊆ κ, then f ⊆ κ × κ, and
hence f ∈ HΨ.

(iv): Assume that κ ∈ HΨ. Then

κ is a regular cardinal iff κ is a cardinal, 1 < κ, and ∀f [f is a function

and dmn(f) ∈ κ and rng(f) ⊆ κ and

∀α, β ∈ dmn(f)(α < β → f(α) < f(β))

→ ∃γ < κ∀α ∈ dmn(f)(f(α) ∈ γ)].

(v): Assume that κ, λ ∈ HΨ. Then (κ and λ are cardinals and λ = κ+) iff

κ is a cardinal and λ is a cardinal and κ < λ

and ∀α < λ[κ < α → ∃f [f is a function and dmn(f) = κ

and rng(f) = α and f is one-one and rng(f) = α]].

(vi): Suppose that κ, A ∈ HΨ. Then

κ = |A| iff κ is a cardinal and ∃f [f is a function

and dmn(f) = κ and rng(f) = A and f is one-to-one]

(vii): Assume that A, B ∈ HΨ. Then

B =
∏

A iff ∀f ∈ B[f is a function and dmn(f) = A and

∀x ∈ A[f(x) ∈ x]] and ∀f [f is a function and

dmn(f) = A and ∀x ∈ A[f(x) ∈ x] → f ∈ B].

Note that if f is a function with domain A and f(x) ∈ x for all x ∈ A, then f ⊆ A×
⋃

A,
and hence f ∈ HΨ.

(viii): Suppose that A, B, C ∈ HΨ. Then

A = BC iff ∀f ∈ A[f is a function and dmn(f) = B

and rng(f) ⊆ C] and ∀f [f is a function

and dmn(f) = B and rng(f) ⊆ C → f ∈ A].

(ix): “A is infinite” iff ∃f(f is a one-one function, dmn(f) = ω, and rng(f) ⊆ A).
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(x): Suppose that A, D, λ, f ∈ HΨ, and 2|tr cl(A)|) < Ψ. Then
∏

A ∈ HΨ by Lemma
4.3(ix). Now

A is an infinite set of regular cardinals and D is an ultrafilter on A

and λ is a regular cardinal and f ∈ λ
∏

A and f is strictly

increasing and cofinal modulo D

iff

A is infinite and ∀x ∈ A[x is a regular cardinal] and D is an ultrafilter on A and

λ is a regular cardinal and ∃B

[

B =
∏

A and f is a function

and dmn(f) = λ and rng(f) ⊆ B and

∀ξ, η < λ∀X ⊆ A[∀a ∈ A[a ∈ X ⇔ fξ(a) < fη(a)] → X ∈ D]

and ∀g ∈ B∃ξ < λ∀X ⊆ A[∀a ∈ A[a ∈ X ⇔ g(a) < fξ(a)] → X ∈ D]

]

.

(xi): Assume that 2|tr cl(A)|) < Ψ, and A, B ∈ HΨ. Let ϕ(A, D, λ, f) be the statement
of (xi). Note:

(1) If ϕ(A, D, λ, f), then D, λ, f ∈ HΨ, and max(λ, |tr cl(A)|) ≤ 2|tr cl(A)|.

In fact, D ⊆ P(A), so tr cl(D) ⊆ tr cl(P(A)) = P(A) ∪ tr cl(A), and so |tr cl(D)| < Ψ by
Lemma 4.3(iii); so D ∈ HΨ. Now f is a one-one function from λ into

∏

A, so λ ≤ |
∏

A| <
Ψ, and hence λ ∈ HΨ and max(λ, |tr cl(A)|) ≤ 2|tr cl(A)|. Finally, f ⊆ λ×

∏

A, so it follows
that f ∈ HΨ.

Thus (1) holds. Hence the following equivalence shows the absoluteness of the state-
ment in (xi):

A is an infinite set of regular cardinals and B = pcf(A)

iff

A is infinite, and ∀µ ∈ A(µ is a regular cardinal) ∧ ∀λ ∈ B∃D∃fϕ(A, D, λ, f)

∧ ∀D∀λ∀f [ϕ(A, D, λ, f) → λ ∈ B].

(xii): Assume that 2|tr cl(A)|) < Ψ. By Lemma 4.3(xii) we have pcf(A) ∈ HΨ. Hence

A is an infinite set of regular cardinals ∧ f = 〈J<λ[A] : λ ∈ pcf(A)〉

iff
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A is infinite and ∀κ ∈ A(κ is a regular cardinal and

f is a function and ∃B[B = pcf(A) ∧ B = dmn(f)]

∀λ ∈ dmn(f)∀X ⊆ A[A ∈ f(λ) iff ∃C[C = pcf(X) ∧ C ⊆ λ]]

(xiii): Assume that 22|tr cl(A)|

< Ψ, and A, B ∈ HΨ. Note as above that pcf(A) ∈
HΨ. Note that for any cardinal λ we have J<λ[A] ⊆ P(A) and, with f as in (xi),
f ⊆ pcf(A) × P(P(A)); so f ∈ HΨ. Let ϕ(f, A) be the formula of (xii). Thus

A is a set of regular cardinals and B = 〈Bλ : λ ∈ pcf(A)〉

and ∀λ ∈ pcf(A)(Bλ is a λ-generator)

iff

B is a function and ∃C[C = pcf(A) ∧ C = dmn(B)] ∧ ∃f [ϕ(f, A)∧

∀λ ∈ dmn(B)∀µ ∈ dmn(B)[λ is a cardinal and µ is a cardinal and

µ = λ+ → Bλ ∈ f(µ) ∧ ∀X ⊆ A[X ∈ f(µ) iff X\Bλ ∈ f(λ)]]]

Now we turn to the consideration of elementary substructures of HΨ. The following lemma
gives basic facts used below.

Lemma 4.5. Suppose that Ψ is an uncountable cardinal, and N is an elementary
substructure of HΨ (under ∈ and a well-order of HΨ).

(i) For every ordinal α, α ∈ N iff α + 1 ∈ N .
(ii) ω ⊆ N .
(iii) If a ∈ N , then {a} ∈ N .
(iv) If a, b ∈ N , then {a, b}, (a, b) ∈ N .
(v) If A, B ∈ N , then A × B ∈ N .
(vi) If A ∈ N then

⋃

A ∈ N .
(vii) If f ∈ N is a function, then dmn(f), rng(f) ∈ N .
(viii) If f ∈ N is a function and a ∈ N ∩ dmn(f), then f(a) ∈ N .
(ix) If X, Y ∈ N , X ⊆ N , and |Y | ≤ |X |, then Y ⊆ N .
(x) If X ∈ N and X 6= ∅, then X ∩ N 6= ∅.
(xi) P(A) ∈ N if A ∈ N and 2|tr cl(A)| < Ψ.
(xii) If ρ is an infinite ordinal, |ρ|+ < Ψ, and ρ ∈ N , then |ρ| ∈ N and |ρ|+ ∈ N .
(xiii) If A ∈ N , then

∏

A ∈ N if 2|tr cl(A)| < Ψ.
(xiv) If A ∈ N , A is a set of regular cardinals, and A ⊆ HΨ, then pcf(A) ∈ N if

2|tr cl(A)| < Ψ.
(xv) If A ∈ N , A is a set of regular cardinals, then 〈J<λ[A] : λ ∈ pcf(A)〉 ∈ N if

22|tr cl(A)|

< Ψ.
(xvi) If A ∈ N and A is a set of regular cardinals, then there is a function 〈Bλ : λ ∈

pcf(A)〉 ∈ N , where for each λ ∈ pcf(A), the set Bλ is a λ-generator, if 22|tr cl(A)|

< Ψ.
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Proof. (i): Let α be an ordinal, and suppose that α ∈ N . Then α ∈ HΨ, and hence
α ∪ {α} ∈ HΨ. By absoluteness, HΨ |= ∃x(x = α ∪ {α}), so N |= ∃x(x = α ∪ {α}).
Choose b ∈ N such that N |= b = α ∪ {α}. Then HΨ |= b = α ∪ {α}, so by absoluteness,
b = α ∪ {α}. This proves that α ∪ {α} ∈ N .

The method used in proving (i) can be used in the other parts; so it suffices in most
other cases just to indicate a formula which can be used.

(ii): An easy induction, using the formulas ∃x∀y ∈ x(y 6= y) and ∃x[a ⊆ x ∧ a ∈
x ∧ ∀y ∈ x[y ∈ a ∨ y = a]].

(iii): Use the formula ∃x[∀y ∈ x(y = a) ∧ a ∈ x].
(iv): Similar to (iii).
(v): Use the formula

∃C[∀a ∈ A∀b ∈ B[(a, b) ∈ C] ∧ ∀x ∈ C∃a ∈ A∃b ∈ B[x = (a, b)]].

(vi): Use the formula ∃B[∀x ∈ A[x ⊆ B] ∧ ∀y ∈ B∃x ∈ A(y ∈ x)].
(vii): Use the formula ∃A[∀x∀y[(x, y) ∈ f → x ∈ A] ∧ ∀x ∈ A∃y[(x, y) ∈ f ]]. Note

that this formula is absolute for HΨ for example (x, y) ∈ f ∈ HΨ implies that x, y ∈ HΨ.
(viii): Use the formula ∃x[(a, x) ∈ f ].
(ix): Let f be a function mapping X onto Y (assuming, as we may, that Y 6= ∅).

Then f ∈ HΨ, so by the above method, we get another function g ∈ N which maps X
onto Y . Now (viii) gives the conclusion of (ix).

(x): Use the formula ∃x ∈ X [x = x].
(xi): P(A) ∈ HΨ by Lemma 4.3(iii). Hence we can use the formula

∃B[∀x ∈ B(x ⊆ A) ∧ ∀x[x ⊆ A → x ∈ B]].

(xii): Assume that ρ is an infinite ordinal and ρ ∈ N . Then

HΨ |= ∃α ≤ ρ[(∃f : ρ → α, a bijection) ∧ ∀β ≤ ρ[(∃g : ρ → β, a bijection) → α ≤ β]].

Hence by the standard argument, there are α, f ∈ N such that

HΨ |= f : ρ → α is a bijection ∧ ∀β ≤ ρ[(∃g : ρ → β, a bijection) → α ≤ β].

Clearly then α = |ρ|.
For |ρ|+, use the formula

∃β∃Γ

[

∀γ ∈ Γ∃f [f is a bijection from ρ onto γ]

∧ ∀γ∀f [f is a bijection from ρ onto γ → γ ∈ Γ]

∧ β =
⋃

Γ

]

.

(xiii): Note that
∏

A ∈ HΨ by Lemma 4.3(ix). Then use the formula

∃B

[

∀f ∈ B(f is a function ∧ dmn(f) = A ∧ ∀a ∈ A(f(a) ∈ a))

∧ ∀f [f is a function ∧ dmn(f) = A ∧ ∀a ∈ A(f(a) ∈ a) → f ∈ B]

]

.

52



(xiv): pcf(A) ∈ HΨ by Lemma 4.3(xi), so by Lemma 4.4(xi) we can use the formula
∃B[B = pcf(A)].

(xv): We have pcf(A) ∈ HΨ, and hence easily 〈J<λ[A] : λ ∈ pcf(A)〉 ∈ HΨ. Hence by
Lemma 4.4(xii) we can use the formula ∃f [f = 〈J<λ[A] : λ ∈ pcf(A)〉].

(xvi): By Lemma 4.3(iii),(xi) and Lemma 4.4(xiii) we can use the formula

∃B[B : pcf(A) → P(A) ∧ ∀λ ∈ pcf(A)[Bλ is a λ generator for A]].

Definition. Let κ be a regular cardinal. An elementary substructure N of HΨ is κ-
presentable iff there is an increasing and continuous chain 〈Nα : α < κ〉 of elementary
substructures of HΨ such that:

(1) |N | = κ and κ + 1 ⊆ N .

(2) N =
⋃

α<κ Nα.

(3) For every α < κ, the function 〈Nβ : β ≤ α〉 is a member of Nα+1.

It is obvious how to construct a κ-presentable substructure of HΨ.

Lemma 4.6. If N is a κ-presentable substructure of HΨ, with notation as above, and
if α < κ, then:

(i) α + 1 ∈ Nα+1;
(ii) α + ω ⊆ Nα+1;
(iii) Nα ∈ Nα+1.

Proof. Since 〈Nβ : β ≤ α〉 ∈ Nα+1, (i) follows from Lemma 4.5 (vii). Hence
α + 1 ⊆ Nα+1 by induction, and (ii) follows by Lemma 4.5(i). (iii) holds by Lemma
4.5(viii).

For any set M , we let M be the set of all ordinals α such that α ∈ M or M∩α is unbounded
in α.

Lemma 4.7. If N is a κ-presentable substructure of HΨ, with notation as above, then
(i) If α < κ, then Nα ⊆ N .
(ii) If κ < α ∈ N\N , then α is a limit ordinal and cf(α) = κ, and in fact there is a

closed unbounded subset E of α such that E ⊆ N and E has order type κ.

Proof. First we consider (i). Suppose that γ ∈ Nα. We may assume that γ /∈ Nα.
Case 1. γ = sup(Nα ∩ Ord). Then

HΨ |= ∃γ′[∀δ(δ ∈ Nα → δ ≤ γ′) ∧ ∀ε[∀δ(δ ∈ Nα → δ ≤ ε) → γ′ ≤ ε]];

in fact, our given γ is the unique γ′ for which this holds. Hence this statement holds in
N , as desired.

Case 2. ∃θ ∈ Nα(γ < θ). We may assume that θ is minimum with this property. Now
for any β ∈ Nα we can let ρ(β) be the supremum of all ordinals in Nα which are less than
β. So ρ(θ) = γ. By absoluteness we get

HΨ |=∀β ∈ Nα∃ρ[∀ε ∈ Nα(ε < β → ε < ρ)

∧ ∀χ[∀ε ∈ Nα(ε < β → ε < χ) → ρ ≤ χ]];
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Hence N models this formula too; applying it to θ in place of β, we get ρ ∈ N such that

N |=∀ε ∈ Nα(ε < θ → ε < ρ)

∧ ∀χ[∀ε ∈ Nα(ε < θ → ε < χ) → ρ ≤ χ].

Thus γ = ρ ∈ N , as desired. This proves (i).
For (ii), suppose that κ < α ∈ N\N . Let E = {sup(α ∩ Nξ) : ξ < κ}. Note that if

ξ < κ, then by (i), sup(α∩Nξ) ∈ N . So E ⊆ N . It is clearly closed in α. It is unbounded,
since for any β ∈ α∩N there is a ξ < κ such that β ∈ Nξ, and so β ≤ sup(α∩Nξ) ∈ N .

For any set N we define the characteristic function of N ; it is defined for each regular
cardinal µ as follows:

ChN (µ) = sup(N ∩ µ).

Proposition 4.8. Let κ be a regular cardinal, let N be a κ-presentable substructure
of HΨ, and let µ be a regular cardinal.

(i) If µ ≤ κ, then ChN (µ) = µ ∈ N .
(ii) If κ < µ, then ChN (µ) /∈ N , ChN (µ) < µ, and ChN (µ) has cofinality κ.
(iii) For every α ∈ N ∩ µ we have α ≤ ChN (µ).

Proof. (i): True since κ + 1 ⊆ N .
(ii): Since |N | = κ < µ and µ is regular, we must have ChN (µ) /∈ N and ChN (µ) < µ.

Then ChN (µ) has cofinality κ by Lemma 4.7.
(iii): clear.

Theorem 4.9. Suppose that M and N are elementary substructures of HΨ and κ < µ
are cardinals, with µ < Ψ.

(i) If M ∩κ ⊆ N ∩κ and sup(M ∩ν+) = sup(M ∩N ∩ν+) for every successor cardinal
ν+ ≤ µ such that ν+ ∈ M , then M ∩ µ ⊆ N ∩ µ.

(ii) If M and N are both κ-presentable and if sup(M ∩ ν+) = sup(N ∩ ν+) for every
successor cardinal ν+ ≤ µ such that ν+ ∈ M , then M ∩ µ = N ∩ µ.

Proof. (i): Assume the hypothesis. We prove by induction on cardinals δ in the
interval [κ, µ] that M ∩ δ ⊆ N ∩ δ. This is given for δ = κ. If, inductively, δ is a limit
cardinal, then the desired conclusion is clear. So assume now that δ is a cardinal, κ ≤ δ < µ,
and M ∩ δ ⊆ N ∩ δ. If δ+ /∈ M , then by Lemma 4.5(xii), [δ, δ+] ∩ M = ∅, so the desired
conclusion is immediate from the inductive hypothesis. So, assume that δ+ ∈ M . Then the
hypothesis of (i) implies that there are ordinals in [δ, δ+] which are in M ∩N , and hence by
Lemma 4.5(xii) again, δ+ ∈ N . Now to show that M∩[δ, δ+] ⊆ N∩[δ, δ+], take any ordinal
γ ∈ M ∩ [δ, δ+]. We may assume that γ < δ+. Since sup(M ∩ δ+) = sup(M ∩ N ∩ δ+) by
assumption, we can choose β ∈ M ∩ N ∩ δ+ such that γ < β. Let f be the <∗-smallest
bijection from β to δ. So f ∈ M ∩ N . Since γ ∈ M , we also have f(γ) ∈ M by Lemma
4.5(viii). Now f(γ) < δ, so by the inductive assumption that M ∩ δ ⊆ N ∩ δ, we have
f(γ) ∈ N . Since f ∈ N , so is f−1, and f−1(f(γ)) = γ ∈ N , as desired. This finishes the
proof of (i).

(ii): Assume the hypothesis. Now we want to check the hypothesis of (i). By the
definition of κ-presentable we have κ = M ∩ κ = N ∩ κ. Now suppose that ν is a cardinal
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and ν+ ≤ µ with ν+ ∈ M . We may assume that κ < ν+. Let γ = ChM (ν+); this is the
same as ChN (ν+) by the hypothesis of (ii). By Lemma 4.8 we have γ /∈ M ∪ N ; hence by
Lemma 4.7 there are clubs P, Q in γ such that P ⊆ M and Q ⊆ N . Moreover, cf(γ) = κ,
so that M ∩N is also club in γ. Hence sup(M ∩ ν+) = sup(M ∩ ν+) = sup(M ∩N ∩ ν+).
This verifies the hypothesis of (i) for the pair M, N and also for the pair N, M . So our
conclusion follows.

Minimally obedient sequences

Suppose that A is progressive, λ ∈ pcf(A), and B is a λ-generator for A. A sequence
〈fξ : ξ < λ〉 of members of

∏

A is called persistently cofinal for λ, B provided that 〈(fξ ↾

B) : ξ < λ〉 is persistently cofinal in (
∏

B, <J<λ[B]). Recall that this means that for all
h ∈

∏

B there is a ξ0 < λ such that for all ξ, if ξ0 ≤ ξ < λ, then h <J<λ[B] (fξ ↾ B).

Lemma 4.10. Suppose that A is progressive, λ ∈ pcf(A), and B and C are λ-
generators for A. A sequence 〈fξ : ξ < λ〉 of members of

∏

A is persistently cofinal for
λ, B iff it is persistently cofinal for λ, C.

Proof. Suppose that 〈fξ : ξ < λ〉 is persistently cofinal for λ, B, and suppose that
h ∈

∏

C. Let k ∈
∏

B be any function such that h ↾ (B ∩ C) = k ↾ (B ∩ C). Choose
ξ0 < λ such that for all ξ ∈ [ξ0, λ) we have k <J<λ[B] (fξ ↾ B). Then for any ξ ∈ [ξ0, λ) we
have

{a ∈ C : h(a) ≥ fξ(a)} = {a ∈ B ∩ C : h(a) ≥ fξ(a)} ∪ {a ∈ C\B : h(a) ≥ fξ(a)}

⊆ {a ∈ B : k(a) ≥ fξ(a)} ∪ (C\B);

Now (C\B) ∈ J<λ[A] by Lemma 3.17(xi), so h <J<λ[C] (fξ ↾ C). By symmetry the lemma
follows.

Because of this lemma we say that f is persistently cofinal for a λ ∈ pcf(A) iff it is
persistently cofinal for λ, B for some λ-generator B.

Lemma 4.11. Suppose that A is progressive, λ ∈ pcf(A), and A ∈ N , where N is a
κ-presentable elementary substructure of HΨ, with |A| < κ < min(A) and 2|tr cl(A)| < Ψ.
Suppose that f = 〈fξ : ξ < λ〉 is a sequence of functions in

∏

A.
Then for every ξ < λ there is an α < κ such that for any a ∈ A,

fξ(a) < ChN (a) iff fξ(a) < ChNα
(a).

Proof.
ChN (a) = sup(N ∩ a)

=
⋃

(N ∩ a)

=
⋃

(

a ∩
⋃

α<κ

Nα

)

=
⋃

α<κ

⋃

(Nα ∩ a)

=
⋃

α<κ

ChNα
(a).

55



Hence for every a ∈ A for which fξ(a) < ChN (a), there is an αa < κ such that fξ(a) <
ChNαa

(a). Hence the existence of α as indicated follows.

Lemma 4.12. Suppose that A is progressive, κ is regular, λ ∈ pcf(A), and A, λ ∈ N ,
where N is a κ-presentable elementary substructure of HΨ, with |A| < κ < min(A) and
Ψ is big. Suppose that f = 〈fξ : ξ < λ〉 ∈ N is a sequence of functions in

∏

A which is
persistently cofinal in λ. Then for every ξ ≥ ChN (λ) the set

{a ∈ A : ChN (a) ≤ fξ(a)}

is a λ-generator for A.

Proof. Assume the hypothesis, including ξ ≥ ChN (λ). Let α be as in Lemma
4.11. We are going to apply Lemma 3.17(ix). Since A, f, λ ∈ N , we may assume that
A, f, λ ∈ N0, by renumbering the elementary chain if necessary. Now κ ⊆ N , and |A| < κ,
so we easily see that there is a bijection f ∈ N mapping an ordinal < κ onto A; hence
A ⊆ N by Lemma 4.5(viii), and so A ⊆ Nβ for some β < κ. We may assume that A ⊆ N0.
By Lemma 4.5(xvi),(viii), there is a λ-generator B which is in N0.

Now the sequence f is persistently cofinal in
∏

B/J<λ, and hence

HΨ |= ∀h ∈
∏

B∃η < λ∀ρ ≥ η[h ↾ B <J<λ
fρ ↾ B]; hence

N |= ∀h ∈
∏

B∃η < λ∀ρ ≥ η[h ↾ B <J<λ
fρ ↾ B];

Hence for every h ∈ N , if h ∈
∏

B then there is an η < λ with η ∈ N such that
N |= ∀ρ ≥ η[h ↾ B <J<λ

fϕ ↾ B]; going up, we see that really for every h ∈ N ∩
∏

A there
is an ηh ∈ N ∩ λ such that for all ρ with ρ ≥ ηh we have h ↾ B <J<λ

fρ ↾ B. Since ξ, as
given in the statement of the Lemma, is ≥ each member of N ∩ λ, hence ≥ ηh for each
h ∈ N ∩

∏

A, we see that

(1) h ↾ B <J<λ
fξ ↾ B for every h ∈ N ∩

∏

A.

Now we can apply (1) to h = ChNα
, since this function is clearly in N . So ChNα ↾

B <J<λ[B] fξ ↾ B. Hence by the choice of α (see Lemma 4.11)

(2) ChN ↾ B ≤J<λ[B] fξ ↾ B.

Note that (2) says that B\{a ∈ A : ChN (a) ≤ fξ(a)} ∈ J<λ[B].
Now λ /∈ pcf(A\B) by Lemma 3.17(ii), and hence J<λ[A\B] = J≤λ[A\B]. So by

Theorem 3.4 we see that
∏

(A\B)/J<λ[A\B] is λ+-directed, so 〈fη ↾ (A\B) : η < λ〉 has
an upper bound h ∈

∏

(A\B). We may assume that h ∈ N , by the usual argument. Hence

fξ ↾ (A\B) <J<λ[A\B] h < ChN ↾ (A\B);

hence {a ∈ A\B : ChN (a) ≤ fξ(a)} ∈ J<λ[A], and together with (2) and using Lemma
3.17(ix) this finishes the proof.
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Now suppose that A is progressive, δ is a limit ordinal, f = 〈fξ : ξ < δ〉 is a sequence of
members of

∏

A, |A|+ ≤ cf(δ) < min(A), and E is a club of δ of order type cf(δ). Then
we define

hE = sup{fξ : ξ ∈ E}.

We call hE the supremum along E of f . Thus hE ∈
∏

A, since cf(δ) < min(A). Note that
if E1 ⊆ E2 then hE1

≤ hE2
.

Lemma 4.14. Let A, δ, f be as above. Then there is a unique function g in
∏

A such
that the following two conditions hold.

(i) There is a club C of δ of order type cf(δ) such that g = hC .
(ii) If E is any club of δ of order type cf(δ), then g ≤ hE.

Proof. Clearly such a function g is unique if it exists.
Now suppose that there is no such function g. Then for every club C of δ of order

type cf(δ) there is a club D of order type cf(δ) such that hC 6≤ hD. Thus there is an
a ∈ A such that hC(a) > hD(a), i.e., sup{fξ(a) : ξ ∈ C} > sup{fξ(a) : ξ ∈ D, hence also
sup{fξ(a) : ξ ∈ C} > sup{fξ(a) : ξ ∈ C ∩ D. So hC 6≤ hC∩D. Hence there is a decreasing
sequence 〈Eα : α < |A|+〉 of clubs of δ such that for every α < |A|+ we have hEα

6≤ hEα+1
.

Now note that
|A|+ =

⋃

a∈A

{α < |A|+ : hEα
(a) > hEα+1

(a)}.

Hence there is an a ∈ A such that M
def
= {α < |A|+ : hEα

(a) > hEα+1
(a)} has size |A|+.

Now hEα
(a) ≥ hEβ

(a) whenever α < β < |A|+, so this gives an infinite decreasing sequence
of ordinals, contradiction.

The function g of this lemma is called the minimal club-obedient bound of f .

Corollary 4.15. Suppose that A is progressive, δ is a limit ordinal, f = 〈fξ : ξ < δ〉
is a sequence of members of

∏

A, |A|+ ≤ cf(δ) < min(A), J is an ideal on A, and f is
<J -increasing. Let g be the minimal club-obedient bound of f . Then g is a ≤J -bound for
f .

Now suppose that A is progressive, λ ∈ pcf(A), and κ is a regular cardinal such that
|A| < κ < min(A). We say that f = 〈fα : α < λ〉 is κ-minimally obedient for λ iff f is a
universal sequence for λ and for every δ < λ of cofinality κ, fδ is the minimal club-obedient
bound of f .

A sequence f is minimally obedient for λ iff |A|+ < min(A) and f is minimally
obedient for every regular κ such that |A| < κ < min(A).

Lemma 4.16. Suppose that |A|+ < min(A) and λ ∈ pcf(A). Then there is a mini-
mally obedient sequence for λ.

Proof. By Theorem 4.16 let 〈f0
ξ : ξ < λ〉 be a universal sequence for λ. Now

by induction we define functions fξ for ξ < λ. Let f0 = f0
0 , and choose fξ+1 so that

max(fξ, f
0
ξ ) < fξ+1.

For limit δ < λ such that |A| < cf(δ) < min(A), let fδ be the minimally club-obedient
bound of 〈fξ : ξ < δ〉.
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For other limit δ < λ, use the λ-directedness (Theorem 9.8) to get fδ as a <J<λ
-bound

of 〈fξ : ξ < δ〉.
Thus we have assured the minimally obedient property, and it is clear that 〈fξ : ξ < λ〉

is universal.

Lemma 4.17. Suppose that A is progressive, and κ is a regular cardinal such that
|A| < κ < min(A). Also assume the following:

(i) λ ∈ pcf(A).
(ii) f = 〈fξ : ξ < λ〉 is a κ-minimally obedient sequence for λ.
(iii) N is a κ-presentable elementary substructure of HΨ, with Ψ large, such that

λ, f, A ∈ N .

Then the following conditions hold:
(iv) For every γ ∈ N ∩ λ\N we have:

(a) cf(γ) = κ.
(b) There is a club C of γ of order type κ such that fγ = sup{fξ : ξ ∈ C} and

C ⊆ N .
(c) fγ(a) ∈ N ∩ a for every a ∈ A.

(v) If γ = ChN (λ), then:
(a) γ ∈ N ∩ λ\N ; hence we let C be as in (iv)(b), with fγ = sup{fξ : ξ ∈ C}.
(b) fξ ∈ N for each ξ ∈ C.
(c) fγ ≤ (ChN ↾ A).

(vi) γ = ChN (λ) and C is as in (iv)(b), with fγ = sup{fξ : ξ ∈ C}, and B is a λ
generator, then for every h ∈ N ∩

∏

A there is a ξ ∈ C such that (h ↾ B) <J<λ
(fξ ↾ B).

Proof. Assume (i)–(iii). Note that A ⊆ N , by Lemma 4.5(ix), applied to κ, A in
place of X, Y .

For (iv), suppose also that γ ∈ N ∩λ\N . Then by Lemma 4.7 we have cf(γ) = κ, and
there is a club E in γ of order type κ such that E ⊆ N . By (ii), we have fγ = fC for some
club C of γ of order type κ. By the minimally obedient property we have fC = fC∩E , and
thus we may assume that C ⊆ E. For any ξ ∈ C and a ∈ A we have fξ(a) ∈ N by Lemma
4.5(viii). So (iv) holds.

For (v), suppose that γ = ChN (λ). Then γ ∈ N∩λ\N because |N | = κ < min(A) ≤ λ.
For each ξ ∈ C we have fξ ∈ N by Lemma 4.5(viii). For (c), if a ∈ A, then fγ(a) =
supξ∈C fξ(a) ≤ ChN (a), since fξ(a) ∈ N ∩ a for all ξ ∈ C.

Next, assume the hypotheses of (vi). By Lemma 4.11, f is persistently cofinal in λ,

so by Lemma 4.13, B′ def
= {a ∈ A : ChN (a) ≤ fγ(a)} is a λ-generator. By Lemma 4.23(v)

there is a ξ ∈ C such that h ↾ B′ <J<λ
fξ ↾ B′. Now B =J<λ[A] B′ by Lemma 4.23(xi), so

{a ∈ B : h(a) ≥ fξ(b)} ⊆ (B\B′) ∪ {a ∈ B′ : h(a) ≥ fξ(b)} ∈ J<λ[A].

We now define some abbreviations.

H1(A, κ, N, Ψ) abbreviates

A is a progressive set of regular cardinals, κ is a regular cardinal such that |A| < κ <
min(A), and N is a κ-presentable elementary substructure of HΨ, with Ψ big and A ∈ N .
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H2(A, κ, N, Ψ, λ, f, γ) abbreviates

H1(A, κ, N, Ψ), λ ∈ pcf(A), f = 〈fξ : ξ < λ〉 is a sequence of members of
∏

A, f ∈ N ,
and γ = ChN (λ).

H3(A, κ, N, Ψ, λ, f, γ) abbreviates

H2(A, κ, N, Ψ, λ, f, γ) and {a ∈ A : ChN (a) ≤ fγ(a)} is a λ-generator.

H4(A, κ, N, Ψ, λ, f, γ) abbreviates

H2(A, κ, N, Ψ, λ, f, γ) and the following hold:
(i) fγ ≤ (ChN ↾ A).
(ii) For every h ∈ N ∩

∏

A there is a d ∈ N ∩
∏

A such that for any λ-generator B,

(h ↾ B) <J<λ
(d ↾ B) and d ≤ fγ .

Thus H1(A, κ, N, Ψ) is part of the hypothesis of Lemma 4.17, and H2(A, κ, N, Ψ, λ, f, γ)
is a part of the hypotheses of Lemma 4.17(v).

Lemma 4.18. If H2(A, κ, N, Ψ, λ, f, γ) holds and f is persistently cofinal for λ, then
H3(A, κ, N, Ψ, λ, f, γ) holds.

Proof. This follows immediately from Lemma 4.13.

Lemma 4.19. If H2(A, κ, N, Ψ, λ, f, γ) holds and f is κ-minimally obedient for λ,
then both H3(A, κ, N, Ψ, λ, f, γ) and H4(A, κ, N, Ψ, λ, f, γ) hold.

Proof. Since f is κ-minimally obedient for λ, it is a universal sequence for λ, by
definition. Hence by Lemma 4.11 f is persistently cofinal for λ, and so property H3 follows
from Lemma 4.18.

For H4, note that λ, A ∈ N since f ∈ N , by Lemma 4.5(vii),(ix). Hence the hypotheses
of Lemma 4.17(v) hold. So (i) in H4 holds by Lemma 4.17(v)(c). For condition (ii), suppose
that h ∈ N ∩

∏

A. Take B and C as in Lemma 4.17(vi), and choose ξ ∈ C such that
h ↾ B <J<λ

fξ ↾ B. Let d = fξ. Clearly this proves condition (ii).

The following obvious extension of Lemma 4.19 will be useful below.

Lemma 4.20. Assume H1(A, κ, N, Ψ), and also assume that γ = ChN (λ) and

(i) f
def
= 〈fλ : λ ∈ pcf(A)〉 is a sequence of sequences 〈fλ

ξ : ξ < λ〉 each of which is
κ-minimally obedient for λ.

Then for each λ ∈ N ∩ pcf(A), H3(A, κ, N, Ψ, λ, fλ, γ) and H4(A, κ, N, Ψ, λ, fλ, γ) hold.

Lemma 4.21. Suppose that H3(A, κ, N, Ψ, λ, f, γ) and H4(A, κ, N, Ψ, λ, f, γ) hold.
Then

(i) {a ∈ A : ChN (a) = fγ(a)} is a λ-generator.
(ii) If λ = max(pcf(A)), then {a ∈ A : fγ(a) < ChN (a)} ∈ J<λ[A].
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Proof. By (i) of H4(A, κ, N, Ψ, λ, f, γ) we have fγ ≤ (ChN ↾ A), so (i) holds by
H3(A, κ, N, Ψ, λ, f, γ). (ii) follows from H3(A, κ, N, Ψ, λ, f, γ) and Lemma 4.23(xii).

Lemma 4.22. Assume that H3(A, κ, N, Ψ, λ, f, γ) and H4(A, κ, N, Ψ, λ, f, γ) hold.
Let

b = {a ∈ A : ChN (a) = fγ(a)}.

Then
(i) b is a λ-generator.
(ii) There is a set b′ ⊆ b such that:

(a) b′ ∈ N ;
(b) b\b′ ∈ J<λ[A];
(c) b′ is a λ-generator.

Proof. (i) holds by Lemma 4.21(i). For (ii), by Lemma 4.12 choose α < κ such that,
for every a ∈ A,

(1) fγ(a) < ChN (a) iff fγ(a) < ChNα
(a).

Now by (i) of H4(A, κ, N, Ψ, λ, f, γ) we have fγ ≤ (ChN ↾ A). Hence by (1) we see that
for every a ∈ A,

(2) a ∈ b iff ChNα
(a) ≤ fγ(a).

Now by (ii) of H4(A, κ, N, Ψ, λ, f, γ) applied to h = ChNα
↾ A, there is a d ∈ N ∩

∏

A
such that the following conditions hold:

(3) (ChNα
↾ b) <J<λ

(d ↾ b).

(4) d ≤ fγ .

Now we define

b′ = {a ∈ A : ChNα
(a) ≤ d(a)}.

Clearly b′ ∈ N . Also, by (3),

b\b′ = {a ∈ b : d(a) < ChNα
(a)} ∈ J<λ,

and so (ii)(b) holds. If a ∈ b′, then ChNα
(a) ≤ d(a) ≤ fγ(a) by (4), so a ∈ b by (2). Thus

b′ ⊆ b. Now (ii)(c) holds by Lemma 4.23(ix).

Lemma 4.23. Assume H1(A, κ, N, Ψ) and A ∈ N . Suppose that 〈fλ : λ ∈ pcf(A)〉 ∈
N is an array of sequences 〈fλ

ξ : ξ < λ〉 with each fλ
ξ ∈

∏

A. Also assume that for every

λ ∈ N ∩ pcf(A), both H3(A, κ, N, Ψ, λ, fλ, γ(λ)) and H4(A, κ, N, Ψ, λ, fλ, γ(λ)) hold.
Then there exist cardinals λ0 > λ1 > · · · > λn in pcf(A) ∩ N such that

(ChN ↾ A) = sup{fλ0

γ(λ0)
, . . . , fλn

γ(λn)}.
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Proof. We will define by induction a descending sequence of cardinals λi ∈ pcf(A)∩N
and sets Ai ∈ P(A)∩N (strictly decreasing under inclusion as i grows) such that if Ai 6= ∅
then λi = max(pcf(Ai)) and

(1) (ChN ↾ (A\Ai+1)) = sup{(fλ0

γ(λ0)
↾ (A\Ai+1)), . . . , (f

λi

γ(λi)
↾ (A\Ai+1))}.

Since the cardinals are decreasing, there is a first i such that Ai+1 = ∅, and then the lemma
is proved. To start, A0 = A and λ0 = max(pcf(A)). Clearly λ0 ∈ N . Now suppose that
λi and Ai are defined, with Ai 6= 0. By Lemma 4.22(i) and Lemma 4.23(x), the set

{a ∈ A ∩ (λi + 1) : ChN (a) = fλi

γ(λi)
(a)}

is a λi-generator. Hence by Lemma 4.22(ii) we get another λi-generator b′λi
such that

(2) b′λi
∈ N .

(3) b′λi
⊆ {a ∈ A ∩ (λi + 1) : ChN (a) = fλi

γ(λi)
(a)}.

Note that b′λi
6= ∅. Let Ai+1 = Ai\b

′
λi

. Thus Ai+1 ∈ N . Furthermore,

(4) A\Ai+1 = (A\Ai) ∪ b′λ1
.

Now by Lemma 4.23(ii) and λi = max(pcf(Ai)) we have λi /∈ pcf(Ai+1). If Ai+1 6= ∅, we
let λi+1 = max(pcf(Ai+1)). Now by (i) of H4(A, κ, N, Ψ, λ, fλj , γ(λj)) we have

(5) f
λj

γ(λj)
≤ (ChN ↾ A) for all j ≤ i.

Now suppose that a ∈ A\Ai+1. If a ∈ Ai, then by (4), a ∈ b′λ1
, and so by (3), ChN (a) =

fλi

γ(λ1)
(a), and (1) holds for a. If a /∈ Ai, then A 6= Ai, so i 6= 0. Hence by the inductive

hypothesis for (1),

ChN (a) = sup{fλ0

γ(λ0)
(a), . . . , f

λi−1

γ(λi−1)
(a)},

and (1) for a follows by (5).

Theorem 4.24. Suppose that µ is singular and κ < µ is an uncountable regular

cardinal such that A
def
= (κ, µ)reg has size ≤ κ. Then

cf([µ]κ,⊆) = max(pcf(A)).

Proof. Note by the progressiveness of A that every limit cardinal in the interval (κ, µ)
is singular, and hence every member of A is a successor cardinal.

First we prove ≥. Suppose to the contrary that cf([µ]κ,⊆) < max(pcf(A)). For
brevity write max(pcf(A)) = λ. let {Xi : i ∈ I} ⊆ [µ]κ be cofinal and of cardinality less
than λ. Pick a universal sequence 〈fξ : ξ < λ〉 for λ by Theorem 4.16. For every ξ < λ,
rng(fξ) is a subset of µ of size ≤ |A| ≤ κ, and hence rng(fξ) is covered by some Xi. Thus
λ =

⋃

i∈I{ξ < λ : rng(fξ) ⊆ Xi}, so by |I| < λ and the regularity of λ we get an i ∈ I such
that |{ξ < λ : rng(fξ) ⊆ Xi}| = λ. Now define for any a ∈ A,

h(a) = sup(a ∩ Xi).
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Since κ < a for each a ∈ A, we have h ∈
∏

A. Now the sequence 〈fξ : ξ < λ〉 is cofinal in
∏

A under <J<λ
by Lemma 4.17. So there is a ξ < λ such that h <J<λ

fξ. Thus there is
an a ∈ A such that h(a) < fξ(a) ∈ Xi, contradicting the definition of h.

Second we prove ≤, by exhibiting a cofinal subset of [µ]κ of size at most max(pcf(A)).
Take N and Ψ so that H1(A, κ, N, Ψ). Let M be the set of all κ-presented elementary
substructures M of HΨ such that A ⊆ M , and let

F = {M ∩ µ : M ∈ M }\[µ]<κ.

Since |M | = κ, we have |M ∩ µ| ≤ κ, and so ∀M ∈ F (|M ∩ µ| = κ).

(1) F is cofinal in [µ]κ.

In fact, for any X ∈ [µ]κ we can find M ∈ M such that X ⊆ M , and (1) follows.
By (1) it suffices to prove that |F | ≤ max(pcf(A)).

Claim. If M, N ∈ M are such that ChM ↾ A = ChN ↾ A, then M ∩ µ = N ∩ µ.

For, if ν+ is a successor cardinal ≤ µ, then sup(M ∩ ν+) = ChM (ν+) = ChN (ν+) =
sup(N ∩ ν+). So the claim holds by Theorem 4.9.

Now for each M ∈ M , let g(M) be the sequence 〈(λ0, γ0), . . . , (λn, γn)〉 given by
Lemma 4.23. Clearly the range of g has size ≤ max(pcf(A)). Now for each X ∈ F ,
choose MX ∈ M such that X = MX ∩ µ. Then for X, Y ∈ F and X 6= Y we have
MX ∩µ 6= MY ∩µ, hence by the claim ChMX

↾ A 6= ChMY
↾ A, and hence by Lemma 4.23,

g(MX) 6= g(MY ). This proves that |F | ≤ max(pcf(A)).

Corollary 4.25. Let A = {ℵm : 1 < m < ω}. Then for any m ∈ ω we have
cf([ℵω]ℵm) = max(pcf(A)).

Proof. Immediate from Lemma 2.27(vi) and Theorem 4.24.

Elevations and transitive generators

We start with some simple general notions about cardinals. If B is a set of cardinals, then
a walk in B is a sequence λ0 > λ1 > · · · > λn of members of B. Such a walk is necessarily
finite. Given cardinals λ0 > λ in B, a walk from λ0 to λ is a walk as above with λn = λ.
We denote by Fλ0,λ(B) the set of all walks from λ0 to λ.

Now suppose that A is progressive and λ0 ∈ pcf(A). A special walk from λ0 to λn in
pcf(A) is a walk λ0 > · · · > λn in pcf(A) such that λi ∈ A for all i > 0. We denote by
F ′

λ0,λ(A) the collection of all special walks from λ0 to λ in pcf(A).

Next, suppose in addition that f
def
= 〈fλ : λ ∈ pcf(A)〉 is a sequence of sequences,

where each fλ is a sequence 〈fλ
ξ : ξ < λ〉 of members of

∏

A. If λ0 > · · · > λn is a special
walk in pcf(A), and γ0 ∈ λ0, then we define an associated sequence of ordinals by setting

γi+1 = fλi
γi

(λi+1)

for all i < n. Note that γi < λi for all i = 0, . . . , n. Then we define

Elλ0,...,λn
(γ0) = γn.
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Now we define the elevation of the sequence f , denoted by fe def
= 〈fλ,e : λ ∈ pcf(A)〉, by

setting, for any λ0 ∈ pcf(A), any γ0 ∈ λ0, and any λ ∈ A,

fλ0,e
γ0

(λ) =































fλ0
γ0

(λ) if λ0 ≤ λ,

max({Elλ0,...,λn
(γ0) : (λ0, . . . , λn) ∈ F ′

λ0,λ}) if λ < λ0,
and this maximum exists,

fλ0
γ0

(λ) if λ < λ0, otherwise.

Note here that the superscript e is only notational, standing for “elevated”.

Lemma 4.26. Assume the above notation. Then fλ0
γ0

≤ fλ0,e
γ0

for all λ0 ∈ pcf(A) and
all γ0 ∈ λ0.

Proof. Take any γ0 ∈ λ0 and any λ ∈ A. If λ0 ≤ λ, then fλ0,e
γ0

(λ) = fλ0
γ0

(λ). Suppose

that λ < λ0. If the above maximum does not exist, then again fλ0,e
γ0

(λ) = fλ0
γ0

(λ). Suppose
the maximum exists. Now (λ0, λ) ∈ F ′

λ0,λ(A), so

fλ0
γ0

(λ) = Elλ0,λ(γ0) ≤ max({Elλ0,...,λn
(γ0) : (λ0, . . . , λn) ∈ F ′

λ0,λ}) = fλ0,e
γ0

(λ).

Lemma 4.27. Suppose that A is progressive, κ is a regular cardinal such that |A| <

κ < min(A), and f
def
= 〈fλ : λ ∈ pcf(A)〉 is a sequence of sequences fλ such that fλ is

κ-minimally obedient for λ. Assume also H1(A, κ, N, Ψ) and f ∈ N .
Then also fe ∈ N .

Proof. The proof is a more complicated instance of our standard procedure for going
from V to HΨ to N and then back. We sketch the details.

Assume the hypotheses. In particular, A ∈ N . Hence also pcf(A) ∈ N . Also, |A| < κ,
so A ⊆ N . Now clearly F ′ ∈ N . Also, El ∈ N . (Note that El depends upon A.) Then by
absoluteness,

HΨ |= ∃g g is a function, dmn(g) = pcf(A) ∧ ∀λ0 ∈ pcf(A)∀γ0 ∈ λ0∀λ ∈ A

g(λ) =































fλ0
γ0

(λ) if λ0 ≤ λ,

max({Elλ0,...,λn
(γ0) : (λ0, . . . , λn) ∈ F ′

λ0,λ}) if λ < λ0,
and this maximum exists,

fλ0
γ0

(λ) if λ < λ0, otherwise.

Now the usual procedure can be applied.

Lemma 4.28. Suppose that A is progressive, κ is a regular cardinal such that |A| <

κ < min(A), and f
def
= 〈fλ : λ ∈ pcf(A)〉 is a sequence of sequences fλ such that fλ is

κ-minimally obedient for λ. Assume H1(A, κ, N, Ψ) and f ∈ N .
Suppose that λ0 ∈ pcf(A) ∩ N , and let γ0 = ChN (λ0).
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(i) If λ0 > · · · > λn is a special walk in pcf(A), and γ1, . . . , γn are formed as above,
then γi ∈ N for all i = 0, . . . , n.

(ii) For every λ ∈ A ∩ λ0 we have fλ0,e
γ0

(λ) ∈ N .

Proof. (i): By induction, using Lemma 4.17(iv)(c).
(ii): immediate from (i).

Lemma 4.29. Assume the hypotheses of Lemma 4.28. Then
(i) For any special walk λ0 > · · · > λn = λ in F ′

λ0,λ, we have

Elλ0,...,λn
(γ0) ≤ ChN (λ).

(ii) fλ0,e
γ0

≤ ChN ↾ A for every γ0 < λ0.
(iii) If there is a special walk λ0 > · · · > λn = λ in F ′

λ0,λ such that

Elλ0,...,λn
(γ0) = ChN (λ),

then
ChN (λ) = fλ0,e

γ0
(λ).

(iv) Suppose that ChN (λ) = fλ0,e
γ0

(λ) = γ. If there is an a ∈ A∩λ such that fλ,e
γ (a) =

ChN (a), then also fλ0,e
γ0

(a) = ChN (a).

Proof. (i) is immediate from Lemma 4.28(i) and Lemma 4.8(iii). (ii) and (iii) follow
from (i). For (iv), by Lemma 4.28(i) and (i) there are special walks λ0 > · · · > λn = λ and
λ = λ′

0 > · · · > λ′
m = a such that

fλ0,e
γ0

(λ) = ChN (λ) = Elλ0,...,λn
(γ0) and

fλ,e
γ (a) = ChN (a) = Elλ′

0,...,λ′
m

(a).

It follows that
Elλ0,...,λn,λ′

1,...,a(γ0) = ChN (a),

and (iii) then gives fλ0,e
γ0

(a) = ChN (a).

Definition. Suppose that A is progressive and A ⊆ P ⊆ pcf(A). A system 〈bλ : λ ∈ P 〉
of subsets of A is transitive iff for all λ ∈ P and all µ ∈ bλ we have bµ ⊆ bλ.

Theorem 4.30. Suppose that H1(A, κ, N, Ψ), f = 〈fλ : λ ∈ pcf(A)〉 is a system of
functions, and each fλ is κ-minimally obedient for λ. Let fe be the derived elevated array.
For every λ0 ∈ pcf(A) ∩ N put γ0 = ChN (λ0) and define

bλ0
= {a ∈ A : ChN (a) = fλ0,e

γ0
(a)}.

Then the following hold for each λ0 ∈ pcf(A) ∩ N :
(i) bλ0

is a λ0-generator.
(ii) There is a b′λ0

⊆ bλ0
such that

(a) bλ0
\b′λ0

∈ J<λ0
[A].

64



(b) b′λ0
∈ N (each one individually, not the sequence).

(c) b′λ0
is a λ0-generator.

(iii) The system 〈bλ : λ ∈ pcf(A) ∩ N〉 is transitive.

Proof. Note that H2(A, κ, N, Ψ, λ0, f
λ0,e, γ0) holds by Lemma 4.27. By definition,

minimally obedient implies universal, so fλ0 is persistently cofinal by Lemma 4.11. Hence
by Lemma 4.26, fλ0,e is persistently cofinal, and so H3(A, κ, N, Ψ, λ0, f

λ0,e, γ0) holds by
Lemma 4.18. Also, by Lemma 4.19 H4(A, κ, N, Ψ, λ0, f

λ0 , γ0) holds, so the condition
H4(A, κ, N, Ψ, λ0, f

λ0,e, γ0) holds by Lemmas 4.26 and 4.29(ii). Now (i) and (ii) hold by
Lemma 4.22.

Now suppose that λ0 ∈ pcf(A) ∩ N and λ ∈ bλ0
. Thus

ChN (λ) = fλ0,e
γ0

(λ),

where γ0 = ChN (λ0). Write γ = ChN (λ). We want to show that bλ ⊆ bλ0
. Take any

a ∈ bλ. So ChN (a) = fλ,e
γ (a). By Lemma 4.29(iv) we get fλ0,e

γ0
(a) = ChN (a), so a ∈ bλ0

,
as desired.

Localization

Theorem 4.31. Suppose that A is a progressive set. Then there is no subset B ⊆
pcf(A) such that |B| = |A|+ and, for every b ∈ B, b > max(pcf(B ∩ b)).

Proof. Assume the contrary. We may assume that |A|+ < min(A). In fact, if we
know the result under this assumption, and now |A|+ = min(A), suppose that B ⊆ pcf(A)
with |B| = |A|+ and ∀b ∈ B[b > max(pcf(B ∩ b))]. Let A′ = A\{|A|+}. Then let
B′ = B\{|A|+}. So by Proposition 9.1(vi) we have B′ ⊆ pcf(A′). Clearly |B′| = |A′|+

and ∀b ∈ B′[b > max(pcf(B′ ∩ b))], contradiction.
Also, clearly we may assume that B has order type |A|+.
Let E = A ∪ B. Then |E| < min(E). Let κ = |E|. By Lemma 4.16, we get an

array 〈fλ : λ ∈ pcf(E)〉, with each fλ κ-minimally obedient for λ. Choose N and Ψ
so that H1(A, κ, N, Ψ), with N containing A, B, E, 〈fλ : λ ∈ pcf(E)〉. Now let 〈bλ : λ ∈
pcf(E)∩N〉 be the set of transitive generators as guaranteed by Theorem 4.30. Let b′λ ∈ N
be such that b′λ ⊆ bλ and bλ\b

′
λ ∈ J<λ.

Now let F be the function with domain {a ∈ A : ∃β ∈ B(a ∈ bβ)} such that for each
such a, F (a) is the least β ∈ B such that a ∈ bβ . Define B0 = {γ ∈ B : ∃a ∈ dmn(F )(γ ≤
F (a)}. Thus B0 is an initial segment of B of size at most |A|. Clearly B0 ∈ N . We let
β0 = min(B\B0); so B0 = B ∩ β0.

Now we claim

(1) There exists a finite descending sequence λ0 > · · · > λn of cardinals in N ∩ pcf(B0)
such that B0 ⊆ bλ0

∪ . . . ∪ bλn
.

We prove more: we find a finite descending sequence λ0 > · · · > λn of cardinals in
N ∩ pcf(B0) such that B0 ⊆ b′λ0

∪ . . . ∪ b′λn
. Let λ0 = max(pcf(B0)). Since B0 ∈ N ,

we clearly have λ0 ∈ N and hence b′λ0
∈ N . So B1

def
= B0\b

′
λ0

∈ N . Now suppose that
Bk ⊆ B0 has been defined so that Bk ∈ N . If Bk = ∅, the construction stops. Suppose that
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Bk 6= ∅. Let λk = max(pcf(Bk)). Clearly λk ∈ N , so b′λk
∈ N and Bκ+1

def
= Bk\b

′
λk

∈ N .
Since Bκ+1 = Bk\b

′
λk

and b′λk
is a λk-generator, from Lemma 4.23(xii) it follows that

λ0 > λ1 > · · ·. So the construction eventually stops; say that Bn+1 = ∅. So Bn ⊆ b′λn
. So

B0 ⊆ b′λ0
∪ (B0\b

′
λ0

)

= b′λ0
∪ B1

⊆ b′λ0
∪ b′λ1

∪ B2

. . . . . . . . .

⊆ b′λ0
∪ b′λ1

∪ . . . ∪ Bn

⊆ b′λ0
∪ b′λ1

∪ . . . ∪ b′λn
.

This proves (1).
Note that β0 > max(pcf(B ∩ β0) = max(pcf(B0)) = λ0 by the initial assumption of

the proof. Next, we claim

(2) bβ0
∩ A ⊆ bλ0

∪ . . . ∪ bλn
.

Consider any cardinal a ∈ bβ0
∩A. Since β0 ∈ B, we have a ∈ dmn(F ), and since β0 /∈ B0

we have F (a) < β0. Let β = F (a). So a ∈ bβ, and β < β0, so by the minimality of β0,
β ∈ B0. Since B0 ⊆ bλ0

∪ . . . ∪ bλn
, it follows that β ∈ bλi

for some i = 0, . . . , n. But
transitivity implies that bβ ⊆ bλi

, and hence a ∈ bλi
, as desired. So (2) holds.

Using Lemma 2.27(ii),(iii), by (2) we have

(3) pcf(bβ0
) ⊆ pcf(bλ0

) ∪ . . . ∪ pcf(bλn
).

Now β0 /∈ pcf(A\bβ0
) by Lemma 4.23(ii), but β0 ∈ B ⊆ pcf(A), so β0 ∈ pcf(bβ0

∩A. Hence
β0 ∈ pcf(bλi

for some i ≤ n, so β0 ≤ λi by Lemma 4.23(vii). This contradicts what was
stated before (2) above.

Theorem 4.32. (Localization) Suppose that A is a progressive set of regular cardinals.
Suppose that B ⊆ pcf(A) is also progressive. Then for every λ ∈ pcf(B) there is a B0 ⊆ B
such that |B0| ≤ |A| and λ ∈ pcf(B0).

Proof. We prove by induction on λ that if A and B satisfy the hypotheses of the
theorem, then the conclusion holds. Let C be a λ-generator over B. Thus C ⊆ B and
λ = max(pcf(C)) by Lemma 4.23(vii). Now C ⊆ pcf(A) and C is progressive. It suffices
to find B0 ⊆ C with |B0| ≤ |A| and λ ∈ pcf(B0).

Let C0 = C and λ0 = λ. Suppose that C0 ⊇ · · · ⊇ Ci and λ0 > · · · > λi have
been constructed so that λ = max(pcf(Ci)) and Ci is a λ-generator over B. If there is
no maximal element of λ ∩ pcf(Ci) we stop the construction. Otherwise, let λi+1 be that
maximum element, let Di+1 be a λi+1-generator over B, and let Ci+1 = Ci\Di+1. Now
Di+1 ∈ J≤λi+1

[B] ⊆ J<λ[B], so Ci+1 is still a λ-generator of B by Lemma 4.23(ix), and
λ = max(pcf(Ci+1)) by Lemma 4.23(vii). Note that λi+1 /∈ pcf(Ci+1), by Lemma 4.23(ii).

This construction must eventually stop, when λ∩Ci does not have a maximal element;
we fix the index i.
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(1) There is an E ⊆ λ ∩ pcf(Ci) such that |E| ≤ |A| and λ ∈ pcf(E).

In fact, suppose that no such E exists. We now construct a strictly increasing sequence
〈γj : j < |A|+〉 of elements of λ ∩ pcf(Ci) such that γk > max(pcf({γj : j < k}〉 for all
k < |A|+. (This contradicts Theorem 4.31.) Suppose that {γj : j < k} = E has been
defined. Now λ /∈ pcf(E) by the supposition after (1), and λ < max(pcf(E)) is impossible
since pcf(E) ⊆ pcf(Ci) and λ = max(pcf(Ci)). So λ > max(pcf(E)). Hence, because λ∩Ci

does not have a maximal element, we can choose γk ∈ λ∩Ci such that γk > max(pcf(E)),
as desired. Hence (1) holds.

We take E as in (1). Apply the inductive hypothesis to each γ ∈ E and to A, E in place
of A, B; we get a set Gγ ⊆ E such that |Gγ | ≤ |A| and γ ∈ pcf(Gγ). Let H =

⋃

γ∈E Gγ .
Note that |H| ≤ |A|. Thus E ⊆ pcf(H). Since pcf(E) ⊆ pcf(H) by Theorem 4.13, we
have λ ∈ pcf(H), completing the inductive proof.

The size of pcf(A)

Theorem 4.33. If A is a progressive interval of regular cardinals, then |pcf(A)| <
|A|+4.

Proof. Assume that A is a progressive interval of regular cardinals but |pcf(A)| ≥
|A|+4. Let ρ = |A|. We will define a set B of size ρ+ consisting of cardinals in pcf(A) such
that each cardinal in B is greater than max(pcf(B ∩ b)). This will contradict Theorem
4.31.

Let S = Sρ+3

ρ+ ; so S is a stationary subset of ρ+3. By Theorem 1.3, let 〈Ck : k ∈ S〉
be a club guessing sequence. Thus

(1) Ck is a club in k of order type ρ+, for each k ∈ S.

(2) If D is a club in ρ+3, then there is a k ∈ D ∩ S such that Ck ⊆ D.

Let σ be the ordinal such that ℵσ = min(A), and let max(pcf(A)) = ℵγ . Choose δ such
that σ + δ = γ. So |A|+4 ≤ |pcf(A)| ≤ δ. Now pcf(A) is an interval of regular cardinals
by Theorem 4.12. So pcf(A) contains all regular cardinals in the set {ℵσ+α : α < ρ+4}.

Now we are going to define a strictly increasing continuous sequence 〈αi : i < ρ+3〉 of
ordinals less than ρ+4.

1. Let α0 = ρ+3.
2. For i limit let αi =

⋃

j<i αj .
3. Now suppose that αj has been defined for all j ≤ i; we define αi+1. For each k ∈ S

let ek = {ℵσ+αj+1 : j ∈ Ck ∩ (i + 1)}. Thus ek is a subset of pcf(A). If max(pcf(ek)) <
ℵσ+ρ+4 , let βk be an ordinal such that max(pcf(ek)) < ℵσ+βk

and βk < ρ+4; otherwise
let βk = 0. Let αi+1 be greater than αi and all βk for k ∈ S, with αi+1 < ρ+4. This is
possible because |S| = ρ+3. Thus

(3) For every k ∈ S, if max(pcf(ek)) < ℵσ+ρ+4 , then max(pcf(ek)) < ℵσ+αi+1
.

This finishes the definition of the sequence 〈αi : i < ρ+3〉. Let D = {αi : i < ρ+3}, and
let δ = sup(D). Then D is club in δ. Let µ = ℵσ+δ. Thus µ has cofinality ρ+3, and
it is singular since δ > α0 = ρ+3. Now we apply Corollary 4.32: there is a club C0 in

µ such that µ+ = max(pcf(C
(+)
0 )). We may assume that C0 ⊆ [ℵσ, µ). so we can write
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C0 = {ℵσ+i : i ∈ D0} for some club D0 in δ. Let D1 = D0 ∩ D. So D1 is a club of δ. Let
E = {i ∈ ρ+3 : αi ∈ D1}. It is clear that E is a club in ρ+3. So by (2) choose k ∈ E ∩ S
such that Ck ⊆ E. Let C′

k = {β ∈ Ck : there is a largest γ ∈ Ck such that γ < β}. Set
B = {ℵ+

σ+αi
: i ∈ C′

k}. We claim that B is as desired. Clearly |B| = ρ+.
Take any j ∈ C′

k. We want to show that

(∗) ℵ+
σ+αj

> max(pcf(B ∩ ℵ+
σ+αj

)).

Let i ∈ Ck be largest such that i < j. So i+1 ≤ j. We consider the definition given above
of αi+1. We defined ek = {ℵσ+αl+1 : l ∈ Ck ∩ (i + 1)}. Now

(4) B ∩ ℵ+
σ+αj

⊆ ek.

For, if b ∈ B ∩ ℵ+
σ+αj

, we can write b = ℵ+
σ+αl

with l ∈ C′
k and l < j. Hence l ≤ i and so

b = ℵ+
σ+αl

∈ ek. So (4) holds.
Now if l ∈ Ck ∩ (i + 1), then l ∈ E, and so αl ∈ D1 ⊆ D0. Hence ℵσ+αl

∈ C0. This
shows that ek ⊆ C0. So max(pcf(ek)) ≤ max(pcf(C0)) = µ+ < ℵσ+ρ+4 . Hence by (3) we
get max(pcf(ek)) < ℵσ+αi+1

. So

max(pcf(B ∩ ℵ+
σ+αj

)) ≤ max(pcf(ek)) by (4)

< ℵ+
σ+αi+1

≤ ℵ+
σ+αj

,

which proves (∗).

Theorem 4.34. If ℵδ is a singular cardinal such that δ < ℵδ, then

cf([ℵδ]
|δ|,⊆) < ℵ|δ|+4 .

Proof. Let κ = |δ|+ and A = (κ,ℵδ)reg. By Lemma 2.30(iii) and Lemma 4.24,

cf([ℵδ]
|δ|,⊆) ≤ max(|δ|+, cf([ℵδ]

|δ|+ ,⊆))

≤ max(|δ|+, max(pcf(A))).

Hence it suffices to show that max(pcf(A)) < ℵ|δ|+4 .
By Theorem 4.33, |pcf(A)| < |A|+4. Write max(pcf(A)) = ℵα and κ = ℵβ. We want

to show that α < |δ|+4. Now pcf(A) = (κ, max(pcf(A))]reg = (ℵβ,ℵα]reg. By Lemma 1.2,
|(β, α)| = |pcf(A)| < |A|+4 ≤ |δ|+4. Also, β ≤ ℵβ = κ = |δ|+ < |δ|+4. So |α| < |δ|+4, and
hence α < |δ|+4.

Theorem 4.35. If δ is a limit ordinal, then

ℵ
cf(δ)
δ < max

(

(

|δ|cf(δ)
)+

,ℵ|δ|+4

)

.

Proof. If δ = ℵδ, then |δ| = ℵδ and the conclusion is obvious. So assume that δ < ℵδ.
Now
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(1) ℵ
cf(δ)
δ ≤ |δ|cf(δ) · cf([ℵδ]

|δ|,⊆).

In fact, let B ⊆ [ℵδ]
|δ| be cofinal and of size cf([ℵδ]

|δ|,⊆). Now cf(δ) ≤ |δ|, so

[ℵδ]
cf(δ) =

⋃

Y ∈B

[Y ]cf(δ),

and (1) follows. Hence the theorem follows by Theorem 4.34.

Corollary 4.36. ℵℵ0
ω < max

(

(2ℵ0)+,ℵω4

)

.
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