
2. Existence of exact upper bounds
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We introduce several notions leading up to an existence theorem for exact upper bounds:
projections, strongly increasing sequences, a partition property, and the bounding projec-
tion property.

We start with the important notion of projections. By a projection framework we
mean a triple (A, I, S) consisting of a nonempty set A, an ideal I on A, and a sequence
〈Sa : a ∈ A〉 of nonempty sets of ordinals. Suppose that we are given such a framework.
We define sup(S) in the natural way: it is a function with domain A, and (sup(S))(a) =
sup(Sa) for every a ∈ A. Thus sup(S) ∈ AOrd. Now suppose also that we have a function
f ∈ AOrd such that f <I sup(S). Then we define the projection of f onto

∏

a∈A Sa,
denoted by f+ = proj(f, S) by setting, for any a ∈ A,

f+(a) =

{

min(Sa\f(a)) if f(a) < sup (Sa),
f(a) otherwise.

Note that f ≤ f+. Actually f+ /∈
∏

a∈A Sa in general.

[This differs from Abraham, Magidor in some small details. We assume that each Sa

is nonempty, while they don’t. We define f+(a) = f(a) if f(a) ≥ sup(Sa), while they
define it to be 0 then.]

Proposition 2.1. Let a projection framework be given, with the notation above.

(i) If f ∈ AOrd and f <I sup(S), then there is a g ∈
∏

a∈A Sa such that f+ =I g,
f ≤I g, and if h ∈

∏

a∈A Sa and f ≤I h, then g ≤I h.

(ii) If f1, f2 ∈ AOrd, f1 <I sup(S), f2 <I sup(S), and f1 ≤ f2, then f+
1 ≤ f+

2 .

(iii) If f1, f2 ∈ AOrd, f1 <I sup(S), f2 <I sup(S), and f1 ≤I f2, then f+
1 ≤I f+

2 .

Proof. For (i), define

g(a) =

{

f+(a) if f(a) < sup(Sa),
min(Sa) otherwise.

Then {a ∈ A : f+(a) 6= g(a)} ⊆ {a ∈ A : f(a) ≥ sup(Sa)} ∈ I. So f+ =I g. Since f ≤ f+,
it follows that f ≤I g. Now suppose that h ∈

∏

a∈A Sa and f ≤I h. If f+(a) = g(a)
and f(a) ≤ h(a), then either f(a) < sup(Sa) and g(a) = f+(a) = min(Sa\f(a)) ≤ h(a),
or sup(Sa) ≤ f(a) and g(a) = min(Sa) ≤ f(a) ≤ h(a); in any case, g(a) ≤ h(a). Hence
g ≤I h. So (i) holds.

(ii) and (iii) are clear.

Another important notion in discussing exact upper bounds is as follows. Let I be an ideal
over A, L a set of ordinals, and f = 〈fξ : ξ ∈ L〉 a sequence of members of AOrd. Then
we say that f is strongly increasing under I iff there is a system 〈Zξ : ξ ∈ L〉 of members
of I such that

∀ξ, η ∈ L[ξ < η ⇒ ∀a ∈ A\(Zξ ∪ Zη)[fξ(a) < fη(a)]].
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Under the same assumptions we say that f is very strongly increasing under I iff there is
a system 〈Zξ : ξ ∈ L〉 of members of I such that

∀ξ, η ∈ L[ξ < η ⇒ ∀a ∈ A\Zη[fξ(a) < fη(a)].

Proposition 2.2. Under the above assumptions, f is very strongly increasing iff for
every ξ ∈ L we have

(∗) sup{fα + 1 : α ∈ L ∩ ξ} ≤I fξ.

Proof. ⇒: suppose that f is very strongly increasing, with sets Zξ as indicated. Let
ξ ∈ L. Suppose that a ∈ A\Zξ. Then for any α ∈ L ∩ ξ we have fα(a) < fξ(a), and so
sup{fα(a) + 1 : α ∈ L ∩ ξ} ≤ fξ(a); it follows that (∗) holds.

⇐: suppose that (∗) holds for each ξ ∈ L. For each ξ ∈ L let

Zξ = {a ∈ A : sup{fα(a) + 1 : α ∈ L ∩ ξ} > fξ(a)};

it follows that Zξ ∈ I. Now suppose that α ∈ L and α < ξ. Suppose that a ∈ A\Zξ. Then
fα(a) < fα(a) + 1 ≤ sup{fβ(a) + 1 : β ∈ L ∩ ξ} ≤ fξ(a), as desired.

Lemma 2.3. (The sandwich argument) Suppose that h = 〈hξ : ξ ∈ L〉 is strongly
increasing, L has no largest element, and ξ′ is the successor in L of ξ for every ξ ∈ L.
Also suppose that fξ ∈ AOrd is such that

hξ <I fξ ≤I hξ′ for every ξ ∈ L.

Then 〈fξ : ξ ∈ L〉 is also strongly increasing.

Proof. Let 〈Zξ : ξ ∈ L〉 testify that h is strongly increasing. For every ξ ∈ L let

Wξ = {a ∈ A : hξ(a) ≥ fξ(a) or fξ(a) > hξ′(a)}.

Thus by hypothesis we have Wξ ∈ I. Let Zξ = Wξ ∪ Zξ ∪ Zξ′ for every ξ ∈ L. Then if
ξ1 < ξ2, both in L, and if a ∈ A\(Zξ1 ∪ Zξ2), then

fξ1
(a) ≤ hξ′

1
(a) ≤ hξ2

(a) < fξ2
(a).

Proposition 2.4. Let I be a proper ideal over A, let λ > |A| be a regular cardinal,
and let f = 〈fξ : ξ < λ〉 be a <I increasing sequence of functions in AOrd.

Then f contains a strongly increasing subsequence of length λ iff f has an exact upper
bound h such that cf(h(a)) = λ for all a ∈ A.

Proof. ⇒: Let 〈η(ξ) : ξ < λ〉 be a strictly increasing sequence of ordinals less than
λ, thus with supremum λ since λ is regular, and assume that 〈fη(ξ) : ξ < λ〉 is strongly
increasing. Hence for each ξ < λ let Zξ ∈ I be chosen correspondingly. We define for each
a ∈ A

h(a) = sup
a/∈Zξ

fη(ξ)(a)
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for each ξ < λ. To see that h is an exact upper bound for f , we are going to apply 1.19.
If fη(ξ)(a) > h(a), then a ∈ Zξ ∈ I. Hence fη(ξ) ≤I h for each ξ < λ. Then for any
ξ < λ we have fξ ≤I fη(ξ) ≤I h, so h bounds every fξ. Now suppose that d <I h. Let
M = {a ∈ A : d(a) ≥ h(a)}; so M ∈ I. For each a ∈ A\M we have d(a) < h(a), and so
there is a ξa < λ such that d(a) < fη(ξa)(a) and a /∈ Zξa

. Since |A| < λ and λ is regular,

the ordinal ρ
def
= supa∈A\M ξa is less than λ. We claim that d <I fη(ρ) (as desired). In fact,

suppose that a ∈ A\(M ∪Zρ). Then a ∈ A\(Zξa
∪Zρ), and so d(a) < fη(ξa)(a) ≤ fη(ρ)(a).

Thus d <I fη(ρ).
It remains to show that cf(h(a)) = λ for all a ∈ A. Actually this does not hold in

general for h as we have defined it. So we define a new h′ in terms of h. First we need:

(1) There is a W ∈ I such that cf(h(a)) = λ for all a ∈ A\W .

In fact, let
W = {a ∈ A : ∃ξa < λ∀ξ′ ∈ [ξa, λ)[a ∈ Zξ′ ]}.

Since |A| < λ, the ordinal ρ
def
= supa∈W ξa is less than λ. Clearly W ⊆ Zρ, so W ∈ I.

For a ∈ A\W we have ∀ξ < λ∃ξ′ ∈ [ξ, λ)[a /∈ Zξ′ ]. This gives an increasing sequence
〈σν : ν < λ〉 of ordinals less than λ such that a /∈ Zσν

for all ν < λ. By the strong
increasing property it follows that fη(σ0)(a) < fη(σ1)(a) < · · ·. Now |{fη(ξ) : a /∈ Zξ}| ≤ λ,
so cf(h(a)) ≤ λ. Hence h(a) has cofinality λ. This proves (1).

Now we take W as in (1). Since I is a proper ideal, choose a0 ∈ A\W , and define

h′(a) =

{

h(a) if a ∈ A\W ,
h(a0) if a ∈ W .

Then h =I h′, and it follows that h′ satisfies the properties needed.
⇐: Assume that f has an exact upper bound h such that cf(h(a)) = λ for all a ∈ A.

Now we define by recursion two sequences 〈gξ : ξ < λ〉 and 〈η(ξ) : ξ < λ〉. Suppose defined
for all ν < ξ, in such a way that gν < h and η(ν) < λ for each ν < ξ. Then by the
cofinality assumption, supν<ξ gν < h. Hence by the exact upper bound condition, there is
a ρ(ξ) < λ such that supν<ξ gν <I fρ(ξ). We may assume that also supν<ξ η(ν) < ρ(ξ).
Let

W = {a ∈ A : (sup
ν<ξ

gν)(a) ≥ fρ(ξ)(a)};

V = {a ∈ A : fρ(ξ)(a) ≥ h(a)}.

Now we define gξ:

gξ(a) =

{

fρ(ξ)(a) if a ∈ A\(W ∪ V ),
(supν<ξ gν)(a) + 1 if a ∈ W ∪ V .

Clearly then we have gν < gξ for all ν < ξ. Now choose η(ξ) < λ and greater than ρ(ξ)
and each η(ν) for ν < ξ. This finishes the construction. Clearly gξ =I fρ(ξ) <I fη(ξ) <I

fρ(ξ+1) ≤I gξ+1 for all ξ < λ. Hence by Lemma 2.3 we get that 〈fη(ξ) : ξ < λ〉 is strongly
increasing.
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Now we define a partition property. Suppose that I is an ideal over a set A, λ is an
uncountable regular cardinal > |A|, f = 〈fξ : ξ < λ〉 is a <I -increasing sequence of
members of AOrd, and κ is a regular cardinal such that |A| < κ ≤ λ. The following
property of these things is denoted by (∗)κ:

(∗)κ

For all unbounded X ⊆ λ there is an X0 ⊆ X of order type κ

such that 〈fξ : ξ ∈ X0〉 is strongly increasing.

Proposition 2.5. Assume the above notation, with κ < λ. Then (∗)κ holds iff the
set

{δ < λ : cf(δ) = κ and 〈fξ : ξ ∈ X0〉 is strongly increasing for some unbounded X0 ⊆ δ}

is stationary in λ.

Proof. Let S be the indicated set of ordinals δ.
⇒: Assume (∗)κ and suppose that C ⊆ λ is a club. Choose C0 ⊆ C of order type κ

such that 〈fξ : ξ ∈ C0〉 is strongly increasing. Let δ = sup(C0). Clearly δ ∈ C ∩ S.
⇐: Assume that S is stationary in λ, and suppose that X ⊆ λ is unbounded. Define

C = {α ∈ λ : α is a limit ordinal and X ∩ α is unbounded in α}.

We check that C is club in λ. For closure, suppose that α < λ is a limit ordinal and C ∩α
is unbounded in α; we want to show that α ∈ C. So, we need to show that X ∩ α is
unbounded in α. To this end, take any β < α; we want to find γ ∈ X ∩α such that β < γ.
Since C ∩ α is unbounded in α, choose δ ∈ C ∩ α such that β < δ. By the definition of C
we have that X ∩ δ is unbounded in δ. So we can choose γ ∈ X ∩ δ such that β < γ. Since
γ < δ < α, γ is as desired. So, indeed, C is closed.

To show that C is unbounded in λ, take any β < λ; we want to find an α ∈ C such
that β < α. Since X is unbounded in λ, we can choose a sequence γ0 < γ1 < · · · of
elements of X with β < γ0. Now λ is uncountable and regular, so supn∈ω γn < λ, and it
is the member of C we need.

Now choose δ ∈ C∩S. This gives us an unbounded set X0 in δ such that 〈fξ : ξ ∈ X0〉
is strongly increasing. Now also X ∩ δ is unbounded, since δ ∈ C. Hence we can define by
induction two increasing sequences 〈η(ξ) : ξ < κ〉 and 〈ν(ξ) : ξ < κ〉 such that each η(ξ) is
in X0, each ν(ξ) is in X , and η(ξ) < ν(ξ) ≤ η(ξ + 1) for all ξ < κ. It follows by 2.3 that

X1
def
= {ν(ξ) : ξ < κ} is a subset of X as desired in (∗)κ.

Finally, we introduce the bounding projection property.
Suppose that f = 〈fξ : ξ < λ〉 is a <I -increasing sequence of functions in OrdA, with

λ a regular cardinal > |A|. Also suppose that κ is a regular cardinal and |A| < κ ≤ λ.
We say that f has the bounding projection property for κ iff whenever 〈S(a) : a ∈ A〉

is a system of nonempty sets of ordinals such that each |S(a)| < κ and for each ξ < λ we
have fξ <I sup(S), then for some ξ < λ, the function proj(fξ, 〈S(a) : a ∈ A〉) <I -bounds
f . (Note that (A, I, S) is a projection framework.)
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Lemma 2.6. Suppose that I is an ideal over A, λ > |A| is a regular cardinal, and
f = 〈fξ : ξ < λ〉 is a <I -increasing sequence satisfying (∗)κ for a regular cardinal κ such
that |A| < κ ≤ λ. Then f has the bounding projection property for κ.

Proof. Assume the hypothesis of the lemma and of the bounding projection property
for κ. For every ξ < λ let

f+
ξ = proj(fξ, S).

Suppose that the conclusion of the bounding projection property fails. Then for every
ξ < λ, the function f+

ξ is not a bound for f , and so there is a ξ′ < λ such that fξ′ 6≤I f+
ξ .

Since fξ ≤ f+
ξ , we must have ξ < ξ′. Clearly for any ξ′′ ≥ ξ′ we have fξ′′ 6≤I f+

ξ . Thus

for every ξ′′ ≥ ξ′ we have < (f+
ξ , fξ′′) /∈ I. Now we define a sequence 〈ξ(µ) : µ < λ〉 of

elements of λ by recursion. Let ξ(0) = 0. Suppose that ξ(µ) has been defined. Choose
ξ(µ + 1) > ξ(µ) so that < (f+

ξ(µ), fξ′′) /∈ I for every ξ′′ ≥ ξ(µ + 1). If ν is limit and ξ(µ)

has been defined for all µ < ν, let ξ(ν) = supµ<ν ξ(µ). Then let X be the range of this
sequence. Thus

if ξ, ξ′ ∈ X and ξ < ξ′, then < (f+
ξ , fξ′) /∈ I.

Since (∗)κ holds, there is a subset X0 ⊆ X of order type κ such that 〈fξ : ξ ∈ X0〉 is
strongly increasing. Let 〈Zξ : ξ ∈ X0〉 be as in the definition of strongly increasing.

For every ξ ∈ X0, let ξ′ be the successor of ξ in X0. Note that

< (f+
ξ , fξ′)\(Zξ ∪ Zξ′ ∪ {a ∈ A : fξ(a) ≥ sup(S(a))}) /∈ I,

and hence it is nonempty. So, choose

aξ ∈< (f+
ξ , fξ′)\(Zξ ∪ Zξ′ ∪ {a ∈ A : fξ(a) ≥ sup(S(a))}).

Note that this implies that f+
ξ (aξ) ∈ S(aξ). Since κ > |A|, we can find a single a ∈ A such

that a = aξ for all ξ in a subset X1 of X0 of size κ. Now for ξ1 < ξ2 with both in X1, we
have

f+
ξ1

(a) < fξ′

1
(a) ≤ fξ2

(a) ≤ f+
ξ2

(a).

[The first inequality is a consequence of a = aξ1
∈< (f+

ξ1
, fξ′

1
), the second follows from

ξ′1 ≤ ξ2 and the fact that

a = aξ1
= aξ2

∈ A\(Zξ′

1
∪ Zξ2

),

and the third is true by the definition of f+
ξ2

.]

Thus 〈f+
ξ (a) : ξ ∈ X1〉 is a strictly increasing sequence of members of S(a). This

contradicts our assumption that |S(a)| < κ.

Lemma 2.7. Suppose that I is a proper ideal over A, λ ≥ |A|+ is a regular cardinal,
and f = 〈fξ : ξ ∈ λ〉 is a <I -increasing sequence of functions in AOrd satisfying the
bounding projection property for |A|+. Suppose that h is a least upper bound for f . Then
h is an exact upper bound.
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Proof. Assume the hypotheses, and suppose that g <I h; we want to find ξ < λ such
that g <I fξ. By increasing h on a subset of A in the ideal, we may assume that g < h
everywhere. (See Proposition 1.24.) Define Sa = {g(a), h(a)} for every a ∈ A. By the

bounding projection property we get a ξ < λ such that f+
ξ

def
= proj(fξ, 〈Sa : a ∈ A〉) is an

upper bound for f . We shall prove that g <I fξ, as required.

Since h is a least upper bound, it follows that h ≤I f+
ξ . Thus M

def
= {a ∈ A :

h(a) > f+
ξ (a)} ∈ I. Also, the set N

def
= {a ∈ A : fξ(a) ≥ sup(Sa)} is in I. Suppose that

a ∈ A\(M ∪ N). Then g(a) < h(a) ≤ f+
ξ (a) = min(Sa\fξ(a)), and since g(a) ∈ Sa, this

implies that g(a) < fξ(a). So g <I fξ, as desired.

Theorem 2.8. (Existence of exact upper bounds) Suppose that I is a proper ideal
over A, λ > |A|+ is a regular cardinal, and f = 〈fξ : ξ ∈ λ〉 is a <I -increasing sequence of
functions in AOrd that satisfies the bounding projection property for |A|+. Then f has an
exact upper bound.

Proof. Assume the hypotheses. By 2.7 it suffices to show that f has a least upper
bound, and to do this we will apply 1.18. Suppose that f does not have a least upper
bound. Since it obviously has an upper bound, this means, by 1.18:

(1) For every upper bound h ∈ AOrd for f there is another upper bound h′ for f such that
h′ ≤I h and {a ∈ A : h′(a) < h(a)} /∈ I.

In fact, 1.18 says that there is another upper bound h′ for f such that h′ ≤I h and it is
not true that h =I h′. Hence {a ∈ A : h(a) < h′(a)} ∈ I and {a ∈ A : h(a) 6= h′(a)} /∈ I.
So

{a ∈ A : h(a) 6= h′(a)}\{a ∈ A : h(a) < h′(a)} /∈ I and

{a ∈ A : h(a) 6= h′(a)}\{a ∈ A : h(a) < h′(a)} = {a ∈ A : h′(a) < h(a)},

so (1) follows.
Now we shall define by induction on α < |A|+ a sequence Sα = 〈Sα(a) : a ∈ A〉 of

sets of ordinals satisfying the following conditions:

(2) |Sα(a)| ≤ |A| for each a ∈ A;

(3) fξ(a) < sup Sα(a) for all ξ ∈ λ and a ∈ A;

(4) If α < β and a ∈ A, then Sα(a) ⊆ Sβ(a), and if δ is a limit ordinal, then Sδ(a) =
⋃

α<δ Sα(a).

We also define sequences 〈hα : α < |A|+〉 and 〈h′
α : α < |A|+〉 of functions and 〈ξ(α) : α <

|A|+〉 of ordinals. In fact, we will define hα, h′
α, and ξ(α) after defining Sα+1.

The definition of Sα for α limit is fixed by (4), and the conditions (2)–(4) continue to
hold. To define S0, pick any function k that bounds f (everywhere) and define S0(a) =
{k(a)} for all a ∈ A; so (2)–(4) hold.

Suppose that Sα = 〈Sα(a) : a ∈ A〉 has been defined, satisfying (2)–(4); we define
Sα+1. By the bounding projection property for |A|+, there is a ξ(α) < λ such that

hα
def
= proj(fξ(α), S

α) is an upper bound for f under <I . Then
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(5) if ξ(α) ≤ ξ′ < λ, then hα =I proj(fξ′ , Sα).

In fact, recall that hα(a) = min(Sα(a)\fξ(α)(a)) for every a ∈ A. Now suppose that
ξ(α) < ξ′ < λ. Let M = {a ∈ A : fξ(α)(a) ≥ fξ′(a)}. So M ∈ I. For any a ∈ A\M we
have fξ(α)(a) < fξ′(a), and hence

min(Sα(a)\fξ(α)(a)) ≤ min(Sα(a)\fξ′(a));

it follows that hα ≤I proj(fξ′ , Sα). For the other direction, recall that hα is an upper
bound for f under <I . So fξ′ ≤I hα. If a is any element of A such that fξ′(a) ≤ hα(a)
then, since hα(a) ∈ Sα(a), we get min(Sα(a)\fξ′(a)) ≤ hα(a). Thus proj(fξ′ , Sα) ≤I hα.

This checks (5).
Now we apply (1) to get an upper bound h′

α for f such that h′
α ≤I hα and < (h′

α, hα) /∈
I. We now define Sα+1(a) = Sα(a) ∪ {h′

α(a)} for any a ∈ A.

(6) If ξ(α) ≤ ξ < λ, then proj(fξ, S
α+1) =I h′

α.

For, we have fξ ≤I h′
α and, by (5), hα =I proj(fξ, S

α). If a ∈ A is such that fξ(a) ≤ h′
α(a),

h′
α(a) ≤ hα(a), and hα(a) = proj(fξ, S

α)(a), then min(Sα(a)\fξ(a)) = hα(a) ≥ h′
α(a) ≥

fξ(a), and hence

proj(fξ, S
α+1)(a) = min(Sα+1(a)\fξ(a)) = h′

α(a).

It follows that proj(fξ, S
α+1) =I h′

α, as desired in (6).
Now since |A|+ < λ, let ξ < λ be greater than each ξ(α) for α < |A|+. Define

Hα = proj(fξ, S
α) for each α < |A|+. Since ξ > ξ(α), we have Hα =I hα by (5). Note

that Hα+1 = proj(fξ, S
α+1) =I h′

α; so < (Hα+1, Hα) /∈ I. Now clearly by the construction
we have Sα1(a) ⊆ Sα2(a) for all a ∈ A when α1 < α2 < |A|+. Hence we get

(7) if α1 < α2 < |A|+, then Hα2
≤ Hα1

, and < (Hα2
, Hα1

) /∈ I.

Now for every α < |A|+ pick aα ∈ A such that Hα+1(aα) < Hα(aα). We have aα = aβ for
all α, β in some subset of |A|+ of size |A|+, and this gives an infinite decreasing sequence
of ordinals, contradiction.

Lemma 2.9. Suppose that I is a proper ideal over A, λ ≥ |A|+ is a regular cardinal,
f = 〈fξ : ξ < λ〉 is a <I -increasing sequence of functions in AOrd, |A|+ ≤ κ ≤ λ, f
satisfies the bounding projection property for κ, and g is an exact upper bound for f . Then

{a ∈ A : g(a) is non-limit, or cf(g(a)) < κ} ∈ I.

Proof. Let P = {a ∈ A : g(a) is non-limit, or cf(g(a)) < κ}. If a ∈ P and g(a) is
a limit ordinal, choose S(a) ⊆ g(a) cofinal in g(a) and of order type < κ. If g(a) = 0 let
S(a) = {0}, and if g(a) = β + 1 for some β let S(a) = {β}. Finally, if g(a) is limit but is
not in P , let S(a) = {g(a)}.

Now for any ξ < λ let

Nξ = {a ∈ A : fξ(a) ≥ fξ+1(a)} and

Qξ = {a ∈ A : fξ+1(a) ≥ g(a)}.
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Then clearly

(∗) If a ∈ A\(Nξ ∪ Qξ), then fξ(a) < sup(S(a)).

It follows that {a ∈ A : fξ(a) ≥ sup(S)(a)} ⊆ Nξ ∪ Qξ ∈ I. Hence the hypothesis of

the bounding projection property holds. Applying it, we get ξ < λ such that f+
ξ

def
=

proj(fξ, 〈S(a) : a ∈ A〉) <I -bounds f . Since g is a least upper bound for f , we get

g ≤I f+
ξ , and hence M

def
= {a ∈ A : f+

ξ (a) < g(a)} ∈ I. By (∗), for any a ∈ P\(Nξ ∪ Qξ)

we have f+
ξ (a) = min(S(a)\fξ(a)) < g(a). This shows that P\(Nξ ∪ Qξ) ⊆ M , hence

P ⊆ Nξ ∪ Qξ ∪ M ∈ I, so P ∈ I, as desired.

Theorem 2.10. Suppose that I is a proper ideal over A, λ > |A|+ is a regular
cardinal, f = 〈fξ : ξ < λ〉 is a <I -increasing sequence of functions in AOrd, and |A|+ ≤
κ ≤ λ, with κ regular. Then the following are equivalent:

(i) (∗)κ holds for f .
(ii) f satisfies the bounding projection property for κ.
(iii) f has an exact upper bound g such that

{a ∈ A : g(a) is non-limit, or cf(g(a)) < κ} ∈ I.

Proof. (i)⇒(ii): Lemma 2.6.
(ii)⇒(iii): Since (∗)κ clearly implies (∗)|A|+, this implication is true by Theorem 2.8

and Lemma 2.9.
(iii)⇒(i): Assume (iii). By modifying g on a set in the ideal we may assume that g(a)

is a limit ordinal and cf(g(a)) ≥ κ for all a ∈ A. For each a ∈ A choose a club S(a) ⊆ g(a)
of order type cf(g(a)). Thus the order type of S(a) is ≥ κ. We prove that (∗)κ holds. So,
assume that X ⊆ λ is unbounded; we want to find X0 ⊆ X of order type κ over which f
is strongly increasing. To do this, we intend to define by induction on α < κ a function
hα ∈

∏

S and an index ξ(α) ∈ X such that

(1) hα <I fξ(α) ≤I hα+1.

(2) The sequence 〈hα : α < κ〉 is <-increasing (increasing everywhere; and hence it certainly
is strongly increasing).

After we have done this, the sandwich argument (Lemma 2.3) shows that 〈fξ(α) : α < κ〉
is strongly increasing and of order type κ, giving the desired result.

The functions hα are defined as follows.

(3) h0 ∈
∏

S is arbitrary.

(4) For a limit ordinal δ < κ let hδ = supα<δ hα.

(5) Having defined hα, we define hα+1 as follows. Since g is an exact upper bound and
hα < g, choose ξ(α) such that hα <I fξ(α). Also, since fξ <I g for all ξ < λ, the projections

f+
ξ = proj(f, S) are defined. We define

hα+1(a) =

{

max(hα(a), f+
ξ(α)(a)) + 1 if fξ(α)(a) < g(a),

hα(a) + 1 if fξ(α)(a) ≥ g(a).
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Thus we have
hα <I fξ(α) ≤I hα+1, for every α. (I.6)

So conditions (1) and (2) hold.

To proceed further we need the following club guessing theorem.

Theorem 2.11. (Club guessing) Suppose that κ is a regular cardinal, λ is a cardinal
such that cf(λ) ≥ κ++, and Sλ

κ = {δ ∈ λ : cf(δ) = κ}. Then there is a sequence 〈Cδ : δ ∈
Sλ

κ〉 such that:
(i) For every δ ∈ Sλ

κ the set Cδ ⊆ δ is club, of order type κ.
(ii) For every club D ⊆ λ there is a δ ∈ D ∩ Sλ

κ such that Cδ ⊆ D.

The sequence 〈Cδ : δ ∈ Sλ
κ〉 is called a club guessing sequence for Sλ

κ .

Proof. First we take the case of uncountable κ. Fix a sequence C′ = 〈C′
δ : δ ∈ Sλ

κ〉
such that C′

δ ⊆ δ is club in δ of order type κ, for every δ ∈ Sλ
κ . For any club E of λ, let

C′ ↾ E = 〈C′
δ ∩ E : δ ∈ Sλ

κ ∩ E′〉,

where E′ = {δ ∈ E : E ∩ δ is unbounded in δ}. Clearly E′ is also club in λ. Also note that
C′

δ ∩ E is club in δ for each δ ∈ Sλ
κ ∩ E′. We claim:

(1) There is a club E of λ such that for every club D of λ there is a δ ∈ D ∩E′ ∩ Sλ
κ such

that C′
δ ∩ E ⊆ D.

Note that if we prove (1), then the theorem follows by defining Cδ = C′
δ ∩ E for all

δ ∈ E′ ∩ Sλ
κ , and Cδ = C′

δ for δ ∈ Sκ
λ\E

′.
Assume that (1) is false. Hence for every club E ⊆ λ there is a club DE ⊆ λ such

that for every δ ∈ DE ∩ E′ ∩ Sλ
κ we have

C′
δ ∩ E 6⊆ DE .

We now define a sequence 〈Eα : α < κ+〉 of clubs of λ decreasing under inclusion, by
induction on α:

(2) E0 = λ.

(3) If γ < κ+ is a limit ordinal and Eα has been defined for all α < γ, we set Eγ =
⋂

α<γ Eα.

Since γ < κ+ < cf(λ), Eγ is club in λ.

(4) If Eα has been defined, let Eα+1 be the set of all limit points of Eα ∩ DEα , i.e., the
set of all ε < λ such that Eα ∩ DEα ∩ ε is unbounded in ε.

This defines the sequence. Let E =
⋂

α<κ+ Eα. Then E is club in λ. Take any δ ∈ Sλ
κ ∩E.

Since |C′
δ| = κ and the sequence 〈Eα : α < κ+〉 is decreasing, there is an α < κ+ such that

C′
δ ∩ E = Cδ ∩ Eα. So C′

δ ∩ Eα = C′
δ ∩ Eα+1. Hence C′

δ ∩ Eα ⊆ DEα
, contradiction.

Thus the case κ uncountable has been finished.
Now we take the case κ = ω. For S = Sλ

ℵ0
fix C = 〈Cδ : δ ∈ S〉 so that Cδ is club in δ

with order type ω. We denote the n-th element of Cδ by Cδ(n). For any club E ⊆ λ and
any δ ∈ S ∩ E′ we define

CE
δ = {max(E ∩ (Cδ(n) + 1)) : n ∈ ω}.
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This set is cofinal in δ. In fact, given α < δ, there is a β ∈ E ∩ δ such that α < β since
δ ∈ E′, and there is an n ∈ ω such that β < Cδ(n). Then α < max(E ∩ (Cδ(n) + 1)), as
desired. There may be repetitions in the description of CE

δ , but max(E ∩ (Cδ(n) + 1)) ≤
max(E ∩ (Cδ(m) + 1)) if n < m, so CE

δ has order type ω. We claim

(5) There is a closed unbounded E ⊆ λ such that for every club D ⊆ λ there is a δ ∈
D ∩ S ∩ E′ such that CE

δ ⊆ D. [This proves the club guessing property.]

Suppose that (5) fails. Thus for every closed unbounded E ⊆ λ there exist a club DE ⊆ λ
such that for every δ ∈ DE ∩ S ∩ E′ we have CE

δ 6⊆ D. Then we construct a descending
sequence Eα of clubs in λ as in the case κ > ω, for α < ω1. Thus for each α < ω1 and
each δ ∈ DEα ∩ S ∩ (Eα)′ we have CEα

δ 6⊆ DEα . Let E =
⋂

α<ω1
Eα. Take any δ ∈ S ∩E.

For n ∈ ω and α < β we have

Eα ∩ (Cδ(n) + 1) ⊇ Eβ ∩ (Cδ(n) + 1),

and so max(Eα∩(Cδ(n)+1)) ≥ max(Eβ ∩(Cδ(n)+1)); it follows that there is an αn < ω1

such that max(Eβ ∩ (Cδ(n) + 1)) = max(Eαn ∩ (Cδ(n) + 1)) for all β > αn. Choose γ
greater than all αn. Thus

(6) For all ε > γ and all n ∈ ω we have max(Eε ∩ (Cδ(n) + 1)) = max(Eγ ∩ (Cδ(n) + 1)).

But there is a ρ ∈ CEγ

δ \DEγ ; say that ρ = max(Eγ ∩ (Cδ(n) + 1)). Then ρ = max(Eγ+1 ∩
(Cδ(n) + 1)) ∈ Eγ+1 = (Eγ ∩ DEγ )′ ∈ DEγ , contradiction.

Lemma 2.12. Suppose that:
(i) I is an ideal over A.
(ii) κ and λ are regular cardinals such that |A| < κ and κ++ < λ.
(iii) f = 〈fξ : ξ < λ〉 is a sequence of length λ of functions in AOrd that is <I -

increasing and satisfies the following condition:
For every δ < λ with cf(δ) = κ++ there is a club Eδ ⊆ δ such that for some
δ′ ≥ δ with δ′ < λ,

(⋆) sup{fα : α ∈ Eδ} ≤I fδ′ .

Under these assumptions, (∗)κ holds for f .

Proof. Assume the hypotheses. Let S = Sκ++

κ ; so S is stationary in κ++. By 2.11,
let 〈Cδ : δ ∈ S〉 be a club guessing sequence for S; thus

(1) For every δ ∈ S, the set Cδ ⊆ δ is a club of order type κ.

(2) For every club D ⊆ κ++ there is a δ ∈ D ∩ S such that Cδ ⊆ D.

Now let U ⊆ λ be unbounded; we want to find X0 ⊆ U of order type κ such that
〈fξ : ξ ∈ X0〉 is strongly increasing. To do this we first define an increasing continuous

sequence 〈ξ(i) : i < κ++〉 ∈ κ++

λ recursively.
Let ξ(0) = 0. For i limit, let ξ(i) = supk<i ξ(k).
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Now suppose for some i < κ++ that ξ(k) has been defined for every k ≤ i; we define
ξ(i + 1). For each α ∈ S we define

hα = sup{fη : η ∈ ξ[Cα ∩ (i + 1)]} and

σα =

{

least σ ∈ (ξ(i), λ) such that hα ≤I fσ if there is such a σ,
ξ(i) + 1 otherwise.

Now we let ξ(i + 1) be the least member of U which is greater than sup{σα : α ∈ S}. It
follows that

(3) If α ∈ S and the first case in the definition of σα holds, then hα <I fξ(i+1).

Now the set F
def
= {ξ(k) : k ∈ κ++} is closed, and has order type κ++. Let δ = sup(F ).

Then F is a club of δ, and cf(δ) = κ++. Hence by the hypothesis (iii) of the lemma, there
is a club Eδ ⊆ δ and a δ′ ∈ [δ, λ) such that (⋆) in the lemma holds. Note that F ∩ Eδ is
club in δ.

Let D = ξ−1[F ∩ Eδ]. Since ξ is strictly increasing and continuous, it follows that D
is club in κ++. Hence by (2) there is an α ∈ D ∩ S such that Cα ⊆ D. Hence

Cα
def
= ξ[Cα] ⊆ F ∩ Eδ

is club in ξ(α) of order type κ. Then by (⋆) we have

sup{fρ : ρ ∈ Cα} ≤I fδ′ .

Now

(5) For every ρ < ρ′ both in Cα, we have sup{fζ : ζ ∈ Cα ∩ (ρ + 1)} <I fρ′ .

To prove this, note that there is an i < κ++ such that ρ = ξ(i). Now follow the definition of
ξ(i+ 1). There Cα was considered (among all other closed unbounded sets in the guessing
sequence), and hα was formed at that stage. Now

hα = sup{fη : η ∈ ξ[Cα ∩ (i + 1)]} ≤ sup{fη : η ∈ ξ[Cα]} = sup{fη : η ∈ Cα} ≤I fδ′ ,

so the first case in the definition of σα holds. Thus by (3), hα <I fξ(i+1). Clearly
ξ(i + 1) ≤ ρ′, so (5) follows.

Now let 〈η(ν) : ν < κ〉 be the strictly increasing enumeration of Cα, and set

X0 = {η(ω · ρ + 2m) : ρ < κ, 0 < m ∈ ω}.

Suppose that ζ ∈ X0. Say ζ = η(ω · ρ + 2m) with ρ < κ and 0 < m ∈ ω. If σ ∈ X0 ∩ ζ,
then σ < η(ω · ρ + 2m − 1) < ζ, all in Cα, so

sup{fσ + 1 : σ ∈ X0 ∩ ζ} ≤I fη(ω·ρ+2m−1)

= sup{fσ : σ ∈ Cα ∩ (η(ω · ρ + 2m − 1) + 1)}

<I fζ by (5)
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Hence by 2.2, 〈fζ : ζ ∈ X〉 is strongly increasing.

Lemma 2.13. Suppose that I is a proper ideal over a set A of regular cardinals such
that |A| < min(A). Assume that λ > |A| is a regular cardinal such that (

∏

A, <I) is
λ-directed, and 〈gξ : ξ < λ〉 is a sequence of members of

∏

A.
Then there is a <I -increasing sequence f = 〈fξ : ξ < λ〉 of length λ in

∏

A such that:
(i) gξ < fξ+1 for every ξ < λ.
(ii) (∗)κ holds for f , for every regular cardinal κ such that κ++ < λ and {a ∈ A : a ≤

κ++} ∈ I.

Proof. Let f0 be any member of
∏

A. At successor stages, if fξ is defined, let fξ+1

be any function in
∏

A that <-extends fξ and gξ.
At limit stages δ, there are three cases. In the first case, cf(δ) ≤ |A|. Fix some Eδ ⊆ δ

club of order type cf(δ), and define

fδ = sup{fi : i ∈ Eδ}.

For any a ∈ A we have cf(δ) ≤ |A| < min(A) ≤ a, and so fδ(a) < a. Thus fδ ∈
∏

A.
In the second case, cf(δ) = κ++, where κ is regular, |A| < κ, and {a ∈ A : a ≤

κ++} ∈ I. Then we define f ′
δ as in the first case. Then for any a ∈ A with a > κ++ we

have f ′
δ(a) < a, and so {a ∈ A : a ≤ f ′

δ(a)} ∈ I, and we can modify f ′
δ on this set which is

in I to obtain our desired fδ.
In the third case, neither of the first two cases holds. Then we let fδ be any ≤I -upper

bound of {fξ : ξ < δ}; it exists by the λ-directedness assumption.
This completes the construction. Obviously (i) holds. For (ii), suppose that κ is a

regular cardinal such that κ++ < λ and {a ∈ A : a ≤ κ++} ∈ I. If |A| < κ, the desired
conclusion follows by 2.12. In case κ ≤ |A|, note that 〈fξ : ξ < κ〉 is <-increasing, and so
is certainly strongly increasing.

Notation. For any set X of cardinals, let

X(+) = {α+ : α ∈ X}.

Theorem 2.14. (Representation of µ+ as a true cofinality) Suppose that µ is a
singular cardinal with uncountable cofinality. Then there is a club C in µ such that

µ+ = tcf
(

∏

C(+), <Jbd

)

,

where Jbd is the ideal of all bounded subsets of C(+).

Proof. Let C0 be any closed unbounded set of limit cardinals less than µ such that
|C0| = cf(µ) and all cardinals in C0 are above cf(µ). Then

(1) all members of C0 which are limit points of C0 are singular.

In fact, suppose on the contrary that κ ∈ C0, κ is a limit point of C0, and κ is regular. Thus
C0 ∩ κ is unbounded in κ, so |C0 ∩ κ| = κ. But cf(µ) < κ and |C0| = cfµ, contradiction.
So (1) holds. Hence wlog every member of C0 is singular.
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Now we claim

(2) (
∏

C
(+)
0 , <Jbd) is µ-directed.

In fact, suppose that F ⊆
∏

C
(+)
0 and |F | < µ. For a ∈ C

(+)
0 with |F | < a let h(a) =

supf∈F f(a); so h(a) ∈ a. For a ∈ C
(+)
0 with a ≤ |F | let h(a) = 0. Clearly f ≤Jbd h for all

f ∈ F . So (2) holds.

(3) (
∏

C
(+)
0 , <Jbd) is µ+-directed.

In fact, by (2) it suffices to find a bound for a subset F of
∏

C
(+)
0 such that |F | = µ. Write

F =
⋃

α<cf(µ) Gα, with |Gα| < µ for each α < cf(µ). By (2), each Gα has an upper bound

kα under <Jbd . Then {kα : α < cf(µ)} has an upper bound h under <Jbd . Clearly h is an
upper bound for F .

Now we are going to apply 2.13 to Jbd, C
(+)
0 , and µ+ in place of I, A, and λ; and

with anything for g. Clearly the hypotheses hold, so we get a <Jbd -increasing sequence

f = 〈fξ : ξ < µ+〉 in
∏

C
(+)
0 such that (∗)κ holds for f , for every regular cardinal κ < µ.

By 2.10 and 2.9, f has an exact upper bound h such that for every regular κ < µ,

(⋆) {a ∈ C
(+)
0 : h(a) is non-limit, or cf(h(a)) < κ} ∈ Jbd.

Now the identity function k on C
(+)
0 is obviously is an upper bound for f , so h ≤Jbd k. By

modifying h on a set in Jbd we may assume that h(a) ≤ a for all a ∈ C
(+)
0 . Now we claim

(⋆⋆) The set C1
def
= {α ∈ C0 : h(α+) = α+} contains a club of µ.

Assume otherwise. Then for every club K, K ∩ (µ\C1) 6= 0. This means that µ\C1 is

stationary, and hence S
def
= C0\C1 is stationary. For each α ∈ S we have h(α+) < α+.

Hence cf(h(α+)) < α since α is singular. Hence by Fodor’s theorem cf(h(α+)) is bounded
by some κ < µ on a stationary subset of S. This contradicts (⋆).

Thus (⋆⋆) holds, and so there is a club C ⊆ C0 such that h(α+) = α+ for all α ∈ C.
Now 〈fξ ↾ C(+) : ξ < µ+〉 is <Jbd-increasing. We claim that it is cofinal in (

∏

C(+), <Jbd).

For, suppose that g ∈
∏

C(+). Let g′ be the extension of g to
∏

C
(+)
0 such that g′(a) = 0

for any a ∈ C0\C. Then g′ <Jbd h, and so there is a ξ < µ+ such that g′ <Jbd fξ. So
g <Jbd fξ ↾ C(+), as desired. This shows that µ+ = tcf(

∏

C(+), <Jbd).

Theorem 2.15. If µ is a singular cardinal of countable cofinality, then there is an
unbounded set D ⊆ µ of regular cardinals such that

µ+ = tcf
(

∏

D, <Jbd

)

.

Proof. Let C0 be a set of regular cardinals with supremum µ, of order type ω.

(1)
∏

C0/Jbd is µ-directed.

For, let X ⊆
∏

C0 with |X | < µ. For each a ∈ C0 such that |X | < a, let h(a) = sup{f(a) :
f ∈ X}, and extend h to all of C0 in any way. Clearly h ∈

∏

C0 and it is an upper bound
in the <Jbd sense for X .
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From (1) it is clear that
∏

C0/Jbd is also µ+-directed. By 2.13 we then get a <Jbd -
increasing sequence 〈fξ : ξ < µ+〉 which satisfies (∗)κ for every regular κ < µ+. By
2.9 and 2.10, f has an exact upper bound h such that {a ∈ C0 : h(a) is non-limit or
cf(h(a)) < κ} ∈ Jbd for every regular κ < µ+. We may assume that h(a) ≤ a for all
a ∈ C0, since the identity function is clearly an upper bound for f ; and we may assume that
each h(a) is a limit ordinal of uncountable cofinality since {a ∈ C0 : cf(h(a)) < ω1} ∈ Jbd.

(2) tcf
(
∏

a∈C0
cf(h(a)), <Jbd

)

= µ+.

To prove this, for each a ∈ C0 let Da be club in h(a) of order type cf(h(a)), and let
〈ηaξ : ξ < cf(h(a))〉 be the strictly increasing enumeration of Da. For each ξ < µ+ we
define f ′

ξ ∈
∏

a∈C0
cf(h(a)) as follows. Since fξ <Jbd h, the set {a ∈ C0 : fξ(a) ≥ h(a)} is

bounded, so choose a0 ∈ C0 such that for all b ∈ C0 with a0 ≤ b we have fξ(b) < h(b). For
such a b we define f ′

ξ(b) to be the least ν such that fξ(b) < ηbν . Then we extend f ′
α in any

way to a member of
∏

a∈C0
cf(h(a))).

(3) ξ < σ < µ+ implies that f ′
ξ ≤Jbd f ′

σ.

This is clear by the definitions.
Now for each l ∈

∏

a∈C0
cf(h(a))) define kl ∈

∏

C0 by setting kl(a) = ηal(a) for all a.
So kl < h. Since h is an exact upper bound for f , choose ξ < µ+ such that kl <Jbd fξ.
Choose a such that kl(b) < fξ(b) for all b ≥ a. Then for all b ≥ a, ηbl(b) < ηbf ′

ξ
(b), and

hence l(b) < f ′
ξ(b). This proves that l <Jbd f ′

ξ. This proves the following two statements.

(4) {f ′
ξ : ξ < µ+} is cofinal in

(
∏

a∈C0
cf(h(a)), <Jbd

)

.

(5) {f ′
ξ : ξ < µ+} is µ+-directed with respect to <Jbd .

These facts yield (2).
Now let B = {cf(h(a)) : a ∈ C0}. Define

X ∈ J iff X ⊆ B and h−1[cf−1[X ]] ∈ Jbd.

By 1.28 we get tcf(
∏

B/J) = µ+. It suffices now to show that J is the ideal of bounded
subsets of B. Suppose that X ∈ J , and choose a ∈ C0 such that h−1[cf−1[X ]] ⊆ {b ∈
C0 : b < a}. By the choice of h, X ⊆ {b ∈ A : cf(h(b)) < a} ∈ Jbd, so X is bounded.
Conversely, if X is bounded, choose a ∈ B such that X ⊆ {b ∈ B : b ≤ a}. Now

h−1[cf−1[X ]] = {b ∈ C0 : cf(h(b)) ∈ X}

= {b ∈ C0 : cf(h(b)) ≤ a},

and this is bounded by the choice of h.
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