
3. The ideals J<λ
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Now we continue with our main topic, started at the end of section 1: properties of pcf.

Theorem 3.1. Suppose that A is a progressive set, and λ is a regular cardinal such
that sup(A) < λ. Suppose that I is a proper ideal over A containing all proper initial
segments of A and such that (

∏

A, <I) is λ-directed. Then there exist a set A′ of regular
cardinals and a proper ideal J over A′ such that the following conditions hold:

(i) A′ ⊆ [min(A), sup(A)) and A′ is cofinal in sup(A).
(ii) |A′| ≤ |A|.
(iii) J contains all bounded subsets of A′.
(iv) λ = tcf(

∏

A′, <J).

Proof. First we note:

(∗) A does not have a largest element.

For, suppose that a is the largest element of A. Note that then I = P(A\{a}). For each
ξ < a define fξ ∈

∏

A by setting

fξ(b) =

{

0 if b 6= a,
ξ if b = a.

Since a < λ, choose g ∈
∏

A such that fξ <I g for all ξ ∈ a. Thus {b ∈ A : fξ(b) ≥ g(b)} ∈
I, so fξ(a) < g(a) for all ξ < a. This is clearly impossible. So (∗) holds.

Now by 2.13 there is a <I -increasing sequence f = 〈fξ : ξ < λ〉 in
∏

A which satisfies
(∗)κ for every κ ∈ A. Hence by 2.9 and 2.10, f has an exact upper bound h ∈ AOrd such
that

(1) {a ∈ A : h(a) is non-limit or cf(h(a)) < κ} ∈ I

for every κ ∈ A. Now the identity function k on A is clearly an upper bound for f , so
h ≤I k; and by (1), {a ∈ A : h(a) is non-limit or cf(h(a)) < min(A)} ∈ I. Hence by
changing h on a set in the ideal we may assume that

(2) min(A) ≤ cf(h(a)) ≤ a for all a ∈ A.

Now f shows that (
∏

h, <I) has true cofinality λ. Let A′ = {cf(h(a)) : a ∈ A}. By 1.26–
1.28, there is a proper ideal J on A′ such that (

∏

A′, <J) has true cofinality λ; namely,

X ∈ J iff X ⊆ A′ and h−1[cf−1[X ]] ∈ I.

Clearly (ii) and (iv) hold. By (2) we have A′ ⊆ [min(A), sup(A)). Now to show that
A′ is cofinal in sup(A), suppose that κ ∈ A; we find µ ∈ A′ such that κ ≤ µ. In fact,
{a ∈ A : cf(h(a)) < κ} ∈ I by (1). Let X = {b ∈ A′ : b < κ}. Then

h−1[cf−1[X ]] = {a ∈ A : cf(h(a)) < κ} ∈ I,
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and so X ∈ J . Taking any µ ∈ A′\X we get κ ≤ µ. Thus (i) holds. Finally, for (iii),

suppose that µ ∈ A′; we want to show that Y
def
= {b ∈ A′ : b < µ} ∈ J . By (i), choose

κ ∈ A such that µ ≤ κ. Then Y ⊆ {b ∈ A′ : b < κ}, and by the argument just given, the
latter set is in J . So (iii) holds.

Corollary 3.2. Suppose that A is progressive, is an interval of regular cardinals,
and λ is a regular cardinal > sup(A). Assume that I is a proper ideal over A such that
(
∏

A, <I) is λ-directed. Then λ ∈ pcf(A).

Proof. We may assume that I contains all proper initial segments of A. For, suppose
that this is not true, and let a be the smallest element of A such that A∩ a /∈ I. We claim
that A∩ a is infinite. For, suppose that it is finite, and let b be its greatest member. Thus
A ∩ b ∈ I and A ∩ a = (A ∩ b) ∪ {b}, so {b} /∈ I. For each ξ < b define fξ ∈

∏

A by

fξ(c) =

{

0 if c 6= b,
ξ if c = b.

Now b < sup(A) < λ, so by λ-directedness choose g ∈
∏

A such that fξ <I g for all ξ < b.
Thus {c ∈ A : fξ(c) ≥ g(c)} ∈ I, so ξ = fξ(b) < g(b) for all ξ < b, contradiction. Thus
A∩ a is infinite. Clearly then the hypotheses of the corollary hold for A ∩ a in place of A.
So, we may make the indicated assumption about I.

The desired conclusion now follows by 3.1.

The ideal J<λ

Let A be a set of regular cardinals. We define

J<λ[A] = {X ⊆ A : pcf(X) ⊆ λ}.

In words, X ∈ J<λ[A] iff X is a subset of A such that for any ultrafilter D over A, if
X ∈ D, then cf(

∏

A, <D) < λ. Thus X “forces” the cofinalities of ultraproducts to be
below λ.

Clearly J<λ[A] is an ideal of A. If λ < min(A), then J<λ[A] = {0} by 1.30(vii). If
λ < µ, then J<λ[A] ⊆ J<µ[A]. If λ /∈ pcf(A), then J<λ[A] = J<λ+ [A]. If λ is greater
than each member of pcf(A), then J<λ[A is the improper ideal P(A). If λ ∈ pcf(A), then
A /∈ J<λ[A].

If A is clear from the context, we simply write J<λ.

Lemma 3.3. If A is an infinite set of regular cardinals and B is a finite subset of A,
then for any cardinal λ we have

J<λ[A] = J<λ[A\B] + (B ∩ λ).

Proof. Let X ∈ J<λ[A]. Thus pcf(X) ⊆ λ. By 1.30(vi) we have pcf(X) =
pcf(X\B) ∪ (X ∩ B), so X\B ∈ J<λ[A\B] and X ∩ B ⊆ B ∩ λ, and it follows that
X ∈ J<λ[A\B] + (B ∩ λ).
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Now suppose that X ∈ J<λ[A\B] + (B ∩ λ). Then there is a Y ∈ J<λ[A\B] such
that X ⊆ Y ∪ (B ∩ λ). Hence by 1.30(vi) again, pcf(X) ⊆ pcf(Y ) ∪ (B ∩ λ) ⊆ λ, so
X ∈ J<λ[A].

Theorem 3.4. Assume that A is progressive. Then for every cardinal λ, the partial
order (

∏

A, <J<λ[A]) is λ-directed.

Proof. We may assume that there are infinitely many members of A less than λ. For,
suppose not. Let F ⊆

∏

A with |F | < λ. We define g ∈
∏

A by setting, for any a ∈ A,

g(a) =
{

sup{f(a) : f ∈ F} if |F | < a,
0 otherwise.

We claim that f ≤ g mod J<λ[A] for all f ∈ F . For, if f(a) > g(a), then λ > |F | ≥ a; thus
{a : f(a) > g(a)} ⊆ λ ∩ A. Now pcf(λ ∩ A) = λ ∩ A ⊆ λ, so {a : f(a) > g(a)} ∈ J<λ[A].

So, we make the indicated assumption. It follows that X
def
= {|A|+, |A|++, |A|+++} ∈

J<λ[A]. Note that
∏

A/J<λ
∼=
∏

(A\X)/(J<λ[A] ∩ P(A\X)). Now

Y ∈ J<λ[A] ∩ P(A\X) iff pcf(Y ) ⊆ λ and Y ⊆ A\X

iff Y ∈ J<λ[A\X ].

Hence we may assume that |A|+3 < min(A).
Now we prove by induction on the cardinal λ0 that if λ0 < λ and F = {fi : i < λ0} ⊆

∏

A is a family of functions of size λ0, then F has an upper bound in (
∏

A, <J<λ
). So,

we assume that this is true for all cardinals less than λ0. If λ0 < min(A), then sup(F ) is
as desired. So, assume that min(A) ≤ λ0.

First suppose that λ0 is singular. Let 〈αi : i < cf(λ0)〉 be increasing and cofinal in λ0,
each αi a cardinal. By the inductive hypothesis, let gi be a bound for {fξ : ξ < αi} for
each i < cf(λ0), and then let h be a bound for {gi : i < cf(λ0)}. Clearly h is a bound for
F .

So assume that λ0 is regular. We are now going to define a <J<λ
-increasing sequence

〈f ′
ξ : ξ < λ0〉 which satisfies (∗)κ, with κ = |A|+, and such that fi ≤ f ′

i for all i < λ0. To

do this choose for every δ ∈ Sλ
κ++ a club Eδ ⊆ δ of order type κ++. Now for such a δ we

define
f ′

δ = sup({f ′
j : j ∈ Eδ} ∪ {fδ}).

For ordinals δ < λ0 of cofinality 6= κ++ we apply the inductive hypothesis to get f ′
δ such

that f ′
ξ <J<λ

f ′
δ for every ξ < δ and also fδ <J<λ

f ′
δ.

This finishes the construction. By 2.12, (∗)|A|+ holds for f , and hence by 2.10, f has

an exact upper bound g ∈ AOrd with respect to <J<λ
. The identity function on A is an

upper bound for f , so we may assume that g(a) ≤ a for all a ∈ A. Now we shall prove

that B
def
= {a ∈ A : g(a) = a} ∈ J<λ[A], so a further modification of g yields the desired

upper bound for f .
To get a contradiction, suppose that B /∈ J<λ[A]. Hence pcf(B) 6⊆ λ, and so there is

an ultrafilter D over A such that B ∈ D and cf(
∏

A/D) ≥ λ. Clearly D ∩ J<λ[A] = ∅, as
otherwise cf(

∏

A/D) < λ. Now f has length λ0 < λ, and so it is bounded in
∏

A/D; say
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that fi <D h ∈
∏

A for all i < λ0. Thus h(a) < a = g(a) for all a ∈ B. Now we define
h′ ∈

∏

A by

h′(a) =
{

h(a) if a ∈ B,
0 otherwise.

Then h′ <J<λ
g, since

{a ∈ A : h′(a) ≥ g(a)} = {a ∈ A : g(a) = 0} ⊆ {a ∈ A : f0(a) ≥ g(a)} ∈ J<λ.

Hence by the exactness of g it follows that h′ <J<λ
fi for some i < λ0. But B ∈ D and

hence h =D h′. So h <D fi, contradiction.

Corollary 3.5. Suppose that A is progressive, D is an ultrafilter over A, and λ is a
cardinal. Then:

(i) cf(
∏

A/D) < λ iff J<λ[A] ∩ D 6= ∅.
(ii) cf(

∏

A/D) = λ iff J<λ+ ∩ D 6= ∅ = J<λ ∩ D.
(iii) λ+ is the first cardinal µ such that J<µ ∩ D 6= ∅.

Proof. (i): ⇒: Assuming that J<λ[A] ∩ D = ∅, the fact from 3.2 that <J<λ
is

λ-directed implies that also
∏

A/D is λ-directed, and hence cf(
∏

A/D) ≥ λ.
⇐: Assume that J<λ[A] ∩ D 6= ∅. Choose X ∈ J<λ ∩ D. Then by definition,

pcf(A) ⊆ λ, and hence cf(
∏

A/D) < λ.
(ii): Immediate from (i).
(iii): Immediate from (ii).

The following theorem is very important for what follows.

Theorem 3.6. If A is progressive, then |pcf(A)| ≤ 2|A|.

Proof. By 3.5, for each λ ∈ pcf(A) we can select an element f(λ) ∈ J<λ+\J<λ.
Clearly f is a one-one function from pcf(A) into P(A).

Notation. We write J≤λ in place of J<λ+ .

The following theorem is also very important in what follows.

Theorem 3.7. If A is progressive, then pcf(A) has a largest element.

Proof. Let

I =
⋃

λ∈pcf(A)

J<λ[A].

Now clearly each ideal J<λ is proper (since for example {λ} /∈ J<λ), so I is also proper.
Extend the dual of I to an ultrafilter D, and let µ = cf(

∏

A/D). Then for each λ ∈ pcf(A)
we have J<λ ∩ D = ∅ since I ∩ D = ∅, and by 3.5 this means that µ ≥ λ.

Corollary 3.8. Suppose that A is progressive. If λ is a limit cardinal, then

J<λ[A] =
⋃

θ<λ

J<θ[A].
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Proof. The inclusion ⊇ is clear. Now suppose that X ∈ J<λ[A]. Thus pcf(X) ⊆ λ.
Let µ be the largest element of pcf(X). Then µ ∈ λ, and pcf(X) ⊆ µ+, so X ∈ J<µ+ , and
the latter is a subset of the right side.

Theorem 3.9. If A is a progressive interval of regular cardinals, then pcf(A) is an
interval of regular cardinals.

Proof. By Proposition 3.2, the cardinal µ = sup(A) is either a successor cardinal
which is a member of A, or is singular. Let λ0 = max(pcf(A)). Thus we want to show
that every regular cardinal λ in (µ, λ0) is in pcf(A). By 3.2, the partial order (

∏

A, <J<λ
)

is λ-directed. Hence λ ∈ pcf(A) by 3.4.

Definition. If κ is a cardinal ≤ |A|, then we define

pcfκ(A) =
⋃

{pcf(X) : X ⊆ A and |X | = κ}.

Theorem 3.10. If A is a progressive interval of regular cardinals and κ ≤ |A|, then
pcfκ(A) is an interval of regular cardinals.

Proof. Let λ0 = sup(pcfκ(A)), and suppose that λ is a regular cardinal such that
sup A < λ < λ0. Again, 3.2 implies that we just need to show that λ ∈ pcfκ(A). Now
there is an X ⊆ A with |X | = κ such that sup(X) < λ ≤ max(pcf(X)). Hence J<λ[X ] is
a proper ideal, so by 3.2 and 3.4 we get λ ∈ pcf(X).

Theorem 3.11. Suppose that A is progressive, B ⊆ pcf(A), and B is progressive.
Then pcf(B) ⊆ pcf(A).

Proof. Suppose that µ ∈ pcf(B), and let E be an ultrafilter on B such that µ =
cf(
∏

B/E). For every b ∈ B fix an ultrafilter Db on A such that b = cf(
∏

A/Db). Define
F by

X ∈ F iff X ⊆ A and {b ∈ B : X ∈ Db} ∈ E.

It is straightforward to check that F is an ultrafilter on A. The rest of the proof consists
in showing that µ = cf(

∏

A/F ).
Now by 1.29 we have

µ = cf

(

∏

b∈B

(

∏

A/Db

)

/E

)

.

Hence it remains to show that this iterated ultraproduct is isomorphic to the simple ul-
traproduct

∏

A/F . To do this, we consider the Cartesian product B × A and define

H ∈ P iff H ⊆ B × A and {b ∈ B : {a ∈ A : (b, a) ∈ H} ∈ Db} ∈ E.

Again it is straightforward to check that P is an ultrafilter over B ×A. Let r(b, a) = a for
any (b, a) ∈ B × A. Then

(∗)
∏

(b,a)∈B×A

a/P ∼=
∏

b∈B

(

∏

A/Db

)

/E.
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To prove (∗), for any f ∈
∏

〈b,a〉∈B×A a we define f ′ ∈
∏

b∈B(
∏

A/Db) by setting

f ′(b) = 〈f(b, a) : a ∈ A〉/Db.

Then for any f, g ∈
∏

〈b,a〉∈B×A a we have

f =P g iff {〈b, a〉 : f(b, a) = g(b, a)} ∈ P

iff {b : {a : f(b, a) = g(b, a)} ∈ Db} ∈ E

iff {b : f ′(b) = g′(b)} ∈ E

iff f ′ =E g′.

Hence we can define k(f/P ) = f ′/E, and we get a one-one function. To show that it is
a surjection, suppose that h ∈

∏

b∈B(
∏

A/Db). For each b ∈ B write h(b) = h′
b/Db with

h′
b ∈

∏

A. Then define f(b, a) = h′
b(a). Then

f ′(b) = 〈f(b, a) : a ∈ A〉/Db = 〈h′
b(a) : a ∈ A〉/Db = h′

b/Db = h(b),

as desired. Finally, k preserves order, since

f/P < g/P iff {(b, a) : f(b, a) < g(b, a)} ∈ P

iff {b : {a : f(b, a) < g(b, a)} ∈ Db} ∈ E

iff {b : f ′(b) < g′(b)} ∈ E

iff k(f/P ) < k(g/P ).

So (∗) holds.
Now we apply 1.28, with r, B × A, A, P in place of c, A, B, F respectively. Then F is

the Rudin-Keisler projection on A, since for any X ⊆ A,

X ∈ F iff {b ∈ B : X ∈ Db} ∈ E

iff {b ∈ B : {a ∈ A : r(b, a) ∈ X} ∈ Db} ∈ E

iff {b ∈ B : {a ∈ A : (b, a) ∈ r−1[X ]} ∈ Db} ∈ E

iff r−1[X ] ∈ P.

Thus by 1.28 we get an isomorphism h of
∏

A/F into
∏

(b,a)∈B×A a/P such that h(e/F ) =

〈e(r(b, a)) : (b, a) ∈ B × A〉/P for any e ∈
∏

A. By 1.16 it suffices now to show that the
range of h is cofinal in

∏

(b,a)∈B×A a/P . Let g ∈
∏

(b,a)∈B×A a. For every b ∈ B define

gb ∈
∏

A by gb(a) = g(b, a). Let λ = min(B). Since B is progressive, we have |B| < λ.
Hence by the λ-directness of

∏

A/J<λ[A] (3.4), there is a function k ∈
∏

A such that
gb <J<λ

k for each b ∈ B. Now λ ≤ b for all b ∈ B, so J<λ ∩ Db = ∅, and so gb <Db
k. It

follows that g/P <P h(k/D). In fact, let H = {(b, a) : g(b, a) < k(r(b, a))}. Then

{b ∈ B : {a ∈ A : (b, a) ∈ H} ∈ Db} = {b ∈ B : {a ∈ A : gb(a) < k(a)} ∈ Db} = B ∈ E,
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as desired.

Generators for J<λ

Let A be a set of regular cardinals, and λ a cardinal. A subset B ⊆ A is a λ-generator
over A iff J≤λ[A] = J<λ[A] + B. We omit the qualifier “over A” if A is understood from
the context.

Suppose that λ ∈ pcf(A). A universal sequence for λ is a sequence f = 〈fξ : ξ < λ〉
which is <J<λ[A]-increasing, and for every ultrafilter D over A such that cf(

∏

A/D) = λ,
the sequence f is cofinal in

∏

A/D.

Theorem 3.12. (Universal sequences) Suppose that A is progressive. Then every
λ ∈ pcf(A) has a universal sequence.

Proof. First,

(1) We may assume that |A|+ < min(A) < λ.

In fact, suppose that we have proved the theorem under the assumption (1), and now take
the general situation.

If λ = min(A), define fξ ∈
∏

A, for ξ < λ, by fξ(a) = ξ for all a ∈ A. So 〈fξ : ξ < λ〉
is obviously <J<λ[A]-increasing. It is also cofinal. For, note that {λ} ∈ D, as otherwise
cf(
∏

A/D) > λ by 1.30(vii). If g ∈
∏

A, then g(λ) < fg(λ)+1(λ), and hence [g] < [fg(λ)+1],
proving that 〈fξ : ξ < λ〉 is cofinal.

Now suppose that min(A) < λ. Let a0 = min A. Let A′ = A\{a0}. If D is an
ultrafilter such that λ = cf(

∏

A/D), then A′ ∈ D since a0 < λ, hence {a0} /∈ D. It follows
that λ ∈ pcf(A′). Clearly |A′|+ < minA′ ≤ λ. Hence by assumption we get a system
〈fξ : ξ < λ〉 of members of

∏

A′ which is increasing in <J<λ
such that for every ultrafilter

D over A′ such that λ = cf(
∏

A′/D), f is cofinal in
∏

A′/D. Extend each fξ to gξ ∈
∏

A
by setting gξ(a0) = 0. If ξ < η < λ, then

{a ∈ A : gξ(a) ≥ gη(a)} ⊆ {a ∈ A′ : fξ(a) ≥ fη(a)} ∪ {a0},

and {a0} ∈ J<λ since a0 < λ, so gξ <J<λ
gη. Now let D be an ultrafilter over A such that

λ = cf(
∏

A/D). As above, A′ ∈ D; let D′ = D ∩P(A′). Then λ = cf(
∏

A′/D′). To show
that g is cofinal in

∏

A/D, take any h ∈
∏

A. Choose ξ < λ such that (h ↾ A′)/D′ < fξ/D′.
Then

{a ∈ A : h(a) ≥ gξ(a)} ⊇ {a ∈ A′ : h(a) ≥ fξ(a)},

so h/D < gξ/D, as desired.
Thus we can make the assumption as in (1). Suppose that there is no universal

sequence for λ. Thus

(2) For every <J<λ
-increasing sequence f = 〈fξ : ξ < λ〉 there is an ultrafilter D over A

such that cf(
∏

A/D) = λ but f is bounded in
∏

A/D.

We are now going to construct a <J<λ
-increasing sequence fα = 〈fα

ξ : ξ < λ〉 for each

α < |A|+. We use the fact that
∏

A/J<λ is λ-directed (Theorem 3.4).
Using this directedness, we start with any <J<λ

-increasing sequence f0 = 〈f0
ξ : ξ < λ〉.
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For δ limit < |A|+ we define f δ
ξ by induction on ξ so that the following conditions

hold:

(3) f δ
i <J<λ

f δ
ξ for i < ξ,

(4) sup{fα
ξ : α < δ} ≤ f δ

ξ .

Suppose that f δ
i has been defined for all i < ξ. By λ-directedness, choose g such that

f δ
i <J<λ

g for all i < ξ. Now for any a ∈ A we have sup{fα
ξ (a) : α < δ} < a, since

δ < |A|+ < min A ≤ a. Hence we can define

f δ
ξ (a) = max{g(a), sup{fα

ξ (a) : α < δ}}.

Clearly the conditions (3), (4) hold.
Now suppose that fα has been defined and is <J<λ

-increasing; we define fα+1. By
(2), choose an ultrafilter Dα over A such that

(5) cf(
∏

A/Dα) = λ;

(6) The sequence fα is bounded in <Dα
.

By (6), choose fα+1
0 which bounds fα in <Dα

; in addition, fα+1
0 ≥ fα

0 . Let 〈hξ/Dα : ξ < λ〉
be strictly increasing and cofinal in

∏

A/Dα. Now we define fα+1
ξ by induction on ξ when

ξ > 0. First, by <J<λ
-directness, choose k such that fα+1

i <J<λ
k for all i < ξ. Then for

any a ∈ A let
fα+1

ξ (a) = max(k(a), hξ(a), fα
ξ (a)).

Then the following conditions hold:

(7) fα+1 is increasing and cofinal in
∏

A/Dα;

(8) fα+1
i ≥ fα

i for every i < λ.

This finishes the construction. Clearly we then have

(9) If i < λ and α1 < α2 < |A|+, then fα1

i ≤ fα2

i .

(10) fα is bounded in
∏

A/Dα by fα+1
0 .

(11) fα+1 is cofinal in
∏

A/Dα.

Now let h = supα<|A|+ fα
0 . Then h ∈

∏

A, since |A|+ < min(A). By (11), for each

α < |A|+ choose iα < λ such that h <Dα
fα+1

iα
. Since λ > |A|+ is regular, we can choose

i < λ such that iα < i for all α < |A|+. Now define

Aα =≤ (h, fα
i ).

By (9) we have Aα ⊆ Aβ for α < β < |A|+. We are going to get a contradiction by showing
that Aα ⊂ Aα+1 for every α < |A|+.

In fact, this follows from the following two statements.

(12) Aα /∈ Dα.
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This holds because fα
i <Dα

fα+1
i ≤ h.

(13) Aα+1 ∈ Dα.

This holds because h <Dα
fα+1

i by the choice of i and (7).

Theorem 3.13. If A is progressive, then cf(
∏

A, <) = max(pcf(A)). In particular,
cf(
∏

A, <) is regular.

Proof. First we prove ≥. Let λ = max(pcf(A)), and let D be an ultrafilter on A such
that λ = cf(

∏

A/D). Now for any f, g ∈
∏

A, if f < g then f <D g. Hence any cofinal
set in (

∏

A, <) is also cofinal in (
∏

A, <D), and so λ = cf(
∏

A, <D) ≤ cf(
∏

A, <).
To prove ≤, we exhibit a cofinal subset of (

∏

A, <) of size λ. For every µ ∈ pcf(A)
fix a universal sequence fµ = 〈fµ

i : i < µ〉 for µ, by 3.12. Let F be the set of all functions
of the form

sup{fµ1

i1
, fµ2

i2
, . . . , fµn

in
},

where µ1, µ2, . . . , µn is a finite sequence of members of pcf(A), possibly with repetitions,
and ik < µk for each k = 1, . . . , n. We claim that F is cofinal in (

∏

A, <); this will
complete the proof.

To prove this claim, let g ∈
∏

A. Let

I = {>(f, g) : f ∈ F}.

(Recall that >(f, g) = {a ∈ A : f(a) > g(a)}.) Now I is closed under unions, since

>(f1, g)∪ >(f2, g) =>(sup(f1, f2), g).

If A ∈ I, then A = > (f, g) for some f ∈ F , as desired. So, suppose that A /∈ I. The
dual of I has fip since I is closed under unions, and hence that dual can be extended to
an ultrafilter D over A. Let µ = cf(

∏

A/D). Then fµ is cofinal in (
∏

A, <D) since it is
universal for µ. But fµ

i ≤I g for all i < µ, since fµ
i ∈ F and so > (fµ

i , g) ∈ I. This is a
contradiction.

Lemma 3.14. Suppose that A is progressive, λ ∈ pcf(A), and f ′ = 〈f ′
ξ : ξ < λ〉 is a

universal sequence for λ. Suppose that f = 〈fξ : ξ < λ〉 is <J<λ
-increasing, and for every

ξ′ < λ there is a ξ < λ such that f ′
ξ′ ≤J<λ

fξ. Then f is universal for λ.

Proof. This is clear, since for any ultrafilter D over A such that cf(
∏

A/D) = λ we
have D ∩ J<λ = ∅, and hence f ′

ξ′ ≤J<λ
fξ implies that f ′

ξ′ ≤D fξ.

Lemma 3.15. If A is progressive and λ ∈ pcf(A), then there is a universal sequence
for λ that satisfies (∗)|A|+.

If we assume in addition that every bounded subset of A is in J<λ, then there is a
universal sequence for λ that satisfies (∗)κ for every regular cardinal κ such that |A| < κ <
sup(A).

Proof. Since λ ∈ pcf(A), we have pcf(A) 6⊆ λ, and so A /∈ J<λ. Thus there is an
ordinal µ such that A ∩ µ /∈ J<λ, and we let µ be the least such.

Suppose first that A ∩ µ has a largest element ρ. Then
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(1) ρ = λ.

In fact, since A∩ µ /∈ J<λ, it follows that pcf(A∩ µ) 6⊆ λ, and hence there is an ultrafilter
D on A such that A∩µ ∈ D and cf(

∏

A/D) ≥ λ. Now A∩ρ ∈ J<λ by the minimality of µ,
so A∩ ρ /∈ D. Note that A∩µ = (A∩ ρ)∪{ρ}. It follows that {ρ} = (A∩µ)\(A∩ ρ) ∈ D,
and hence ρ = cf(

∏

A/D) ≥ λ. On the other hand, cf(
∏

A/E) = λ for some ultrafilter E.
Now A ∩ ρ ∈ J<λ by the minimality of µ, so pcf(A ∩ ρ) ⊆ λ, and hence A ∩ ρ /∈ E. Hence
A\ρ ∈ E. Now λ ∈ pcf(A\ρ), and hence by 1.30(vii) we get ρ ≤ λ. So (1) holds.

Now for each ξ < λ define for each a ∈ A,

fξ(a) =
{

ξ if λ ≤ a,
0 otherwise.

Then for ξ < η < λ we have

{a : fξ(a) ≥ fη(a)} ⊆ A ∩ ρ ∈ J<λ,

so 〈fξ : ξ < λ〉 is <J<λ
-increasing. If D is any ultrafilter on A such that cf(

∏

A/D) = λ,
then A ∩ λ /∈ D because A ∩ λ = A ∩ ρ ∈ J<λ, and so A\λ ∈ D If {λ} /∈ D, then λ =
cf(
∏

A/D) ∈ pcf(A\(λ ∪ {λ})), hence λ ≥ min pcf(A\(λ ∪ {λ}) = min(A\(λ ∪ {λ})) > λ,
contradiction. So {λ} ∈ D and so clearly 〈fξ : ξ < λ〉 is cofinal in (

∏

A, <D). So it is
universal. Since the sequence is strictly increasing outside the member A ∩ λ of J<λ, all
the assertions about (∗)κ hold.

Second, suppose that A∩µ does not have a largest element. We are going to apply 2.13
to A and J<λ. Clearly |A| < λ. By 3.4,

∏

A/J<λ is λ-directed. By 3.12, let 〈f ′
ξ : ξ < λ〉 be

a universal sequence for λ. So by 2.13 we get a <J<λ
-increasing sequence f = 〈fξ : ξ < λ〉

in
∏

A/J<λ such that f ′
ξ < fξ+1 for every ξ < λ and (∗)κ holds for every regular cardinal

κ such that κ++ < λ and {a ∈ A : a ≤ κ++} ∈ J<λ. Now we claim

(1) µ ≤ λ + 1.

For, suppose that λ + 1 < µ. Write λ = cf(
∏

A/D) for some ultrafilter D over A. Clearly
A ∩ (λ + 1) ∈ D, so we have λ ∈ pcf(A ∩ (λ + 1)). But by the choice of µ we have
A ∩ (λ + 1) ∈ J<λ, contradiction.

By (1) we have |A|+++ < λ and {a ∈ A : a ≤ |A|+++} ∈ J<λ, so (∗)|A|+ holds, as
desired.

Now assume additionally that every bounded subset of A is in J<λ, still under the
assumption that A is unbounded in µ. Then µ = sup A, and the additional conclusion is
true.

Theorem 3.16. If A is progressive, then every member of pcf(A) has a generator.

Proof. First suppose that we have shown the theorem if |A|+ < min(A). We show
how it follows when |A|+ = min(A). The least member of pcf(A) is |A|+ by 1.30(vii). We
have J<|A|+ = {∅} and J≤|A|+ = {∅, {|A|+}} = J<|A|+ + {|A|+}, so |A|+ has a generator,
namely {|A|+}. Now suppose that λ ∈ pcf(A) with λ > |A|+. Let A′ = A\{|A|+}. By
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1.30(vi) we also have λ ∈ pcf(A′). By the supposed result there is a b ⊆ A′ such that
J≤λ[A′] = J<λ[A′] + b. Using 3.3,

J≤λ[A] = J≤λ[A′] + {|A|+}

= J<λ[A′] + b + {|A|+}

= J<λ[A] + b,

as desired.
Thus we assume henceforth that |A|+ < min(A). Suppose that λ ∈ pcf(A). First we

take the case λ = |A|++. Hence by 1.30(vii) we have λ ∈ A. Clearly

J≤λ[A] = {∅, {λ}} = {∅} + {λ} = J<λ[A] + {λ},

so λ has a generator in this case. So henceforth we assume that |A|++ < λ.
By 3.15, there is a universal sequence f = 〈fξ : ξ < λ〉 such that (∗)|A|+ holds. Hence

by 2.10, f has an exact upper bound h with respect to <J<λ
. Since h is a least upper

bound for f and the identity function on A is an upper bound for f , we may assume that
h(a) ≤ a for all a ∈ A. We now define

B = {a ∈ A : h(a) = a}.

Thus we can finish the proof by showing that

(⋆) J≤λ[A] = J<λ[A] + B

First we show that B ∈ J≤λ[A], i.e., that pcf(B) ⊆ λ+. Let D be any ultrafilter over A
having B as an element; we want to show that cf(

∏

A/D) ≤ λ. If D ∩ J<λ 6= ∅, then
cf(
∏

A/D) < λ by the definition of J<λ. Suppose that D ∩ J<λ = ∅. Now since f is
<J<λ

-increasing and D ∩ J<λ = ∅, the sequence f is also <D-increasing. It is also cofinal;
for let g ∈

∏

A. Define

g′(a) =
{

g(a) if a ∈ B,
0 otherwise.

Then {a ∈ A : g′(a) ≥ h(a)} ⊆ {a ∈ A : h(a) = 0} ⊆ {a ∈ A : f0(a) ≥ h(a)} ∈ J<λ.
So g′ <J<λ

h. Since h is an exact upper bound for f , there is hence a ξ < λ such
that g′ <J<λ

fξ. Hence g′ <D fξ, and clearly g =D g′, so g <D fξ. This proves that
cf(
∏

A/D) = λ. So we have proved ⊇ in (⋆).
For ⊆, we argue by contradiction and suppose that there is an X ∈ J≤λ such that

X /∈ J<λ[A] + B. Hence (by 1.2), X\B /∈ J<λ. Hence Jfi
<λ ∪ {X\B} has fip, so we extend

it to an ultrafilter D. Since D ∩ J<λ = ∅, we have cf(
∏

A/D) ≥ λ. But also X ∈ D since
X\B ∈ D, and X ∈ J≤λ, so cf(

∏

A/D) = λ. By the universality of f it follows that f
is cofinal in cf(

∏

A/D). But A\B ∈ D, so {a ∈ A : h(a) < a} ∈ D, and so there is a
ξ < λ such that h <D fξ. This contradicts the fact that h is an upper bound of f under
<J<λ

.

Now we state some important properties of generators.
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Lemma 3.17. Suppose that A is progressive, λ ∈ pcf(A), and B ⊆ A.
(i) If B is a λ-generator, D is an ultrafilter on A, and cf(

∏

A/D) = λ, then B ∈ D.
(ii) If B is a λ-generator, then λ /∈ pcf(A\B).
(iii) If B ∈ J≤λ and λ /∈ pcf(A\B), then B is a λ-generator.
(iv) If λ = max(pcf(A)), then A is a λ-generator on A.
(v) If B is a λ-generator, then the restrictions to B of any universal sequence for λ

are cofinal in (
∏

B, <J<λ[B]).
(vi) If B is a λ-generator, then tcf(

∏

B, <J<λ[B]) = λ.
(vii) If B is a λ-generator on A, then λ = max(pcf(B)).
(viii) If B is a λ-generator on A and D is an ultrafilter on A, then cf(

∏

A/D) = λ
iff B ∈ D and D ∩ J<λ = ∅.

(ix) If B is a λ-generator on A and B =J<λ
C, then C is a λ-generator on A. [Here

X =I Y means that the symmetric difference of X and Y is in I, for any ideal I.]
(x) If B is a λ-generator, then so is B ∩ (λ + 1).
(xi) If λ = max(pcf(A)) and B is a λ-generator, then A\B ∈ J<λ.

Proof. (i): By 3.5(ii), choose C ∈ J≤λ ∩ D. Hence by 1.2, C ⊆ X ∪ B for some
X ∈ J<λ. By 3.5(ii) again, J<λ ∩ D = ∅, so X /∈ D. Thus C\X ⊆ B and C\X ∈ D, so
B ∈ D.

(ii): Clear by (i).
(iii): Assume the hypothesis. We need to show that every member C of J≤λ is a

member of J<λ + B. Now pcf(C) ⊆ λ+. Hence pcf(C\B) ⊆ λ, so C\B ∈ J<λ, and the
desired conclusion follows from 1.2.

(iv): By (iii).
(v): Suppose not. Let f = 〈fξ : ξ < λ〉 be a universal sequence for λ such that there

is an h ∈
∏

B such that h is not bounded by any fξ ↾ B. Thus ≤ (fξ ↾ B, h) /∈ J<λ[B] for
all ξ < λ. Now suppose that ξ < η < λ. Then

≤ (fη ↾ B, h)\(≤ (fξ ↾ B, h)) = {a ∈ B : fη(a) ≤ h(a) < fξ(a)}

⊆ {a ∈ A : fη(a) < fξ(a)} ∈ J<λ.

It follows that
(≤ (fη ↾ B, h))/J<λ[B] ≤ (≤ (fξ ↾ B, h)/J<λ[B].

hence if N is a finite subset of λ with largest element η we get

(∗) (≤ (fη ↾ B, h)) =J<λ[B]

⋂

ξ∈N

(≤ (fξ ↾ B, h)).

We claim now that
M

def
= {≤ (fξ ↾ B, h) : ξ < λ} ∪ (J<λ[B])fi

has fip. Otherwise, there is a finite subset N of λ and a set C ∈ J<λ[B] such that





⋂

ξ∈N

≤ (fξ ↾ B, h)



 ∩ (B\C) = ∅;
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hence if ξ is the largest member of N we get ≤ (fξ ↾ B, h) ∈ J<λ[B] by (∗), contradiction.
So we extend the set M to an ultrafilter D on B, then to an ultrafilter on A. Note that
B ∈ D and D ∩ J<λ = ∅. So cf(

∏

A/D) = λ, and h bounds all fξ in this ultraproduct,
contradicting the universality of f .

(vi): By (v).
(vii): By (i) we have λ ∈ pcf(B). Now B ∈ J≤λ[A], so pcf(B) ⊆ λ+. The desired

conclusion follows.
(viii): For ⇒, suppose that cf(

∏

A/D) = λ. Then B ∈ D by (i), and obviously
D ∩ J<λ = ∅. For ⇐, assume that B ∈ D and D ∩ J<λ = ∅. Now B ∈ J≤λ, so
cf(
∏

A/D) = λ by 3.5(ii).
(ix): We have B ∈ J≤λ and C = (C\B) ∪ (C ∩ B), so C ∈ J≤λ. Suppose that

λ ∈ pcf(A\C). Let D be an ultrafilter on A such that cf(
∏

A/D) = λ and A\C ∈ D. Now
B ∈ D by (i), so B\C ∈ D. This contradicts B\C ∈ J<λ. So λ /∈ pcf(A\C). Hence C is a
λ-generator, by (iii).

(x): Let B′ = B ∩ (λ + 1). Clearly B′ ∈ J≤λ. Suppose that λ ∈ pcf(A\B′). Say
λ = cf(

∏

A/D) with A\B′ ∈ D. Also A ∩ (λ + 1) ∈ D. Since clearly

(A\B′) ∩ (A ∩ (λ + 1)) ⊆ A\B,

this yields A\B ∈ D, contradicting (ii). Therefore, λ /∈ pcf(A\B′). So B′ is a λ-generator,
by (iii).

(xi): A ∈ J≤λ, so this follows from 3.1.

Lemma 3.18. Suppose that A is a progressive set, F is a proper filter over A, and λ
is a cardinal. Then the following are equivalent.

(i) tcf(
∏

A/F ) = λ.

(ii) λ ∈ pcf(A), F has a λ-generator on A as an element, and Jfi
<λ ⊆ F .

(iii) cf(
∏

A/D) = λ for every ultrafilter D extending F .

Proof. (i)⇒(iii): obvious.
(iii)⇒(ii): Obviously λ ∈ pcf(A). Let B be a λ-generator on A. Suppose that

B /∈ F . Then there is an ultrafilter D on A such that A\B ∈ D and D extends F . Then
cf(
∏

A/D) = λ by (iii), and this contradicts 3.17(ii).
(ii)⇒(i): Let B ∈ F be a λ-generator. By 3.17(vi) we have tcf(

∏

B/J<λ) = λ, and

hence tcf(
∏

A/F ) = λ since B ∈ F and Jfi
<λ ⊆ F .

Lemma 3.19. Suppose that A is progressive, A0 ⊆ A, and λ ∈ pcf(A0). Suppose that
B is a λ-generator on A. Then B ∩ A0 is a λ-generator on A0.

Proof. Since B ∈ J≤λ[A], we have pcf(B) ⊆ λ+ and hence pcf(B ∩ A0) ⊆ λ+ and
so B ∩ A0 ∈ J≤λ[A0]. If λ ∈ pcf(A0\B), then also λ ∈ pcf(A\B), and this contradicts
3.17(ii). Hence λ /∈ pcf(A0\B), and hence B∩A0 is a λ-generator for A0 by 3.17(iii).

Definition. If A is progressive, a generating sequence for A is a sequence 〈Bλ : λ ∈ pcf(A)〉
such that Bλ is a λ-generator on A for each λ ∈ pcf(A).

Theorem 3.20. Suppose that A is progressive, 〈Bλ : λ ∈ pcf(A)〉 is a generating
sequence for A, and X ⊆ A. Then there is a finite subset N of pcf(X) such that X ⊆
⋃

µ∈N Bµ.
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Proof. We show that for all X ⊆ A, if λ = max(pcf(X)), then there is a finite subset
N as indicated, using induction on λ. So, suppose that this is true for every cardinal µ < λ,
and now suppose that X ⊆ A and max(pcf(X)) = λ. Then λ /∈ pcf(X\Bλ) by 3.17(ii),
and so pcf(X\Bλ) ⊆ λ. Hence max(pcf(X\Bλ)) < λ. Hence by the inductive hypothesis
there is a finite subset N of pcf(X\Bλ) such that X\Bλ ⊆

⋃

µ∈N Bµ. Hence

X ⊆ Bλ ∪
⋃

µ∈N

Bµ,

and {λ} ∪ N ⊆ pcf(X).

Lemma 3.21. Suppose that A is progressive and 〈Bλ : λ ∈ pcf(A)〉 is a generating
sequence for A. Suppose that D is an ultrafilter on A. Then there is a λ ∈ pcf(A) such
that Bλ ∈ D, and if λ is minimum with this property, then λ = cf(

∏

A/D).

Proof. Let µ = cf(
∏

A/D). Then µ ∈ pcf(A) and Bµ ∈ D by 3.17(i). Suppose that
Bλ ∈ D with λ < µ. Now Bλ ∈ J≤λ ⊆ J<µ, contradicting 3.17(viii), applied to µ.

Lemma 3.22. If A is progressive and also pcf(A) is progressive, and if λ ∈ pcf(A)
and B is a λ-generator for A, then pcf(B) is a λ-generator for pcf(A).

Proof. Note by 3.11 that pcf(pcf(B)) = pcf(B) and pcf(pcf(A\B)) = pcf(A\B).
Since B ∈ J≤λ[A], we have pcf(B) ⊆ λ+, and hence pcf(pcf(B)) ⊆ λ+ and so pcf(B) ∈
J≤λ[pcf(A)]. Now suppose that λ ∈ pcf(pcf(A)\pcf(B)). Then by 1.30(iv) we have
λ ∈ pcf(pcf(A\B)) = pcf(A\B), contradicting 3.17(ii). So λ /∈ pcf(pcf(A)\pcf(B)). It
now follows by 3.17(iii) that pcf(B) is a λ-generator for pcf(A).

The following result is relevant to 2.14. By that result we have J<µ[C(+)] = J≤µ[C(+)] ⊆
Jbd. In fact, suppose that B ∈ J<µ[C(+)]\Jbd. Then (Jbd)fi ∪ {B} has fip, and so is
contained in an ultrafilter D on C(+). By 2.14 this yields a strictly increasing cofinal
sequence in

∏

C(+)/D of order type µ+, contradicting B ∈ J<µ[C(+)] ∩ D. Hence the
following is apparently a generalization of 2.14.

Lemma 3.23. If µ is a singular cardinal of uncountable cofinality, then there is a
club C ⊆ µ such that tcf(

∏

C(+)/J<µ[C(+)]) = µ+.

Proof. Let C0 be a club in µ such that such that µ+ = tcf(
∏

C
(+)
0 /Jbd), by 2.14.

Thus µ+ ∈ pcf(C
(+)
0 ). Let B be a µ+-generator for C

(+)
0 . Define C = {δ ∈ C0 : δ+ ∈ B}.

Now C0\C is bounded. Otherwise, let X = C
(+)
0 \B = (C0\C)(+). So X is unbounded,

and hence µ+ = tcf(
∏

X/Jbd) by 1.16. Hence µ+ ∈ pcf(X). This contradicts 3.17(ii).
So, choose ε < µ such that C0\C ⊆ ε. Hence C0\ε ⊆ C\ε ⊆ C0\ε, so C0\ε = C\ε.

It follows that µ+ = tcf(
∏

(C0\ε)
(+)/Jbd) by 3.3, so µ+ ∈ pcf((C0\ε)

(+)). We claim
that tcf(

∏

(C0\ε)
(+)/J<µ[(C0\ε)

(+)]) = µ+ (as desired). To show this, we apply 3.18(iii).
Suppose that D is any ultrafilter on (C0\ε)

(+) such that J<µ[(C0\ε)
(+)] ∩D = ∅. Now by

3.19, B ∩ (C0\ε)
(+) is a µ+-generator for (C0\ε)

(+). But B ∩ (C0\ε)
(+) = B ∩ (C\ε)(+) =

(C\ε)(+). It follows by 3.7(viii) that cf(
∏

(C0\ε)
(+)/D) = µ+.

Lemma 3.24. Assume that µ is a singular cardinal, that C is a club in µ, and that
tcf(

∏

C(+)/J<µ[C(+)]) = µ+. Then max(pcf(C(+))) = µ+.
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Proof. Suppose that λ ∈ pcf(C(+)) and λ ≥ µ+. Say λ = cf(
∏

C(+)/D) with D an
ultrafilter on C(+). By 3.5(i) we have J<λ ∩ D = ∅ so, since µ+ ≤ λ, also J<µ ∩ D = ∅.
Hence by 3.18, λ = µ+.

Corollary 3.25. If µ is a singular cardinal of uncountable cofinality, then there is a
club C ⊆ µ such that max(pcf(

∏

C(+))) = µ+.
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