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Double orders

We introduce some terminology about orderings on a class P , some of it new.

• R is a relation on a class P iff R ⊆ P × P

• R is irreflexive iff there is no x such that (x, x) ∈ R.

• R is transitive iff for all x, y, z, if (x, y), (y, z) ∈ R then (x, z) ∈ R.

• R is a partial order iff it is irreflexive and transitive.

We usually use symbols < or ≺ or something like that for partial orders, and write x < y
rather than (x, y) ∈<.

• (P, R) is a partially ordered system iff R is a partial order on P .

Here it is possible that P and R are proper classes; then we cannot form the ordered
pair (P, R). So, more rigorously, “(P, R) is a partially ordered system” is just the obvious
formula with two free variables P, R, saying that R is a partial order on P .

Note that if (P, R) is a partially ordered system and P ⊆ B, then (B, R) is a partially
ordered system.

Frequently we simply say that P is a partially ordered class if the relation R is clear
from the context. Similarly for other notions introduced below.

• R is reflexive on a class P iff R ⊆ P × P and (x, x) ∈ R for all x ∈ P .

• R is antisymmetric iff for all x, y, if (x, y), (y, x) ∈ R then x = y.

• R is a quasi-order on a class P iff R is transitive and reflexive on P .

We do not assume antisymmetry here. We usually use symbols ≤ or � or something like
that for quasi-orders.

• (P, R) is a quasi-ordered system iff R is a quasiorder on P .

• (P, <,�) is a double ordered system iff (P, <) is a partially ordered system, (P,�) is a
quasi-ordered system, and the following conditions hold:

(1) If p < q or p = q, then p � q.

(2) If p < q � r or p � q < r, then p < r.

(3) For all p ∈ P there is a q ∈ P such that p < q.

To give our main examples of double orders, we need to recall the notions of ideals and
filters.

Ideals and filters

A filter on A is a collection F of subsets of A with the following properties:

1



(4) A ∈ F .
(5) If X ∈ F and X ⊆ Y ⊆ A, then Y ∈ F .
(6) If X, Y ∈ F then X ∩ Y ∈ F .

A filter F is proper iff F 6= P(A).
An ideal on A is a collection I of subsets of A such that the following conditions hold:

(7) ∅ ∈ I
(8) If X ⊆ Y ∈ I then X ∈ I.
(9) If X, Y ∈ I then X ∪ Y ∈ I.

An ideal I is proper iff I 6= P(A). A subset X of A is I-positive iff X /∈ I. Let I+ =
{X ⊆ A : X /∈ I}.

If F is a filter on A, let F id = {X ⊆ A : A\X ∈ F}. Then F id is an ideal on A. If I
is an ideal on A, let Ifi = {X ⊆ A : A\X ∈ I}. Then Ifi is a filter on A. If F is a filter on
A, then (F id)fi = F . If I is an ideal on A, then (Ifi)id = I.

Note that if F is a filter, then a set X ⊆ A is F id-positive iff A\X /∈ F , and (F id)+ =
{X ⊆ A : (A\X) /∈ F}.

An ultrafilter on A is a maximal proper filter on A.

Proposition 1.1. Let F be a proper filter on A. Then F is an ultrafilter on A iff for
every X ⊆ A, either X ∈ F or A\X ∈ F .

Proof. ⇒: Suppose that F is an ultrafilter on A, X ⊆ A, and X /∈ F . Then

G
def
= {Y ⊆ A : Z ∩ X ⊆ Y for some Z ∈ F} is clearly a filter on A containing F , and

G 6= F since X ∈ G\F . So G = P(A). Thus there is a Z ∈ F such that Z ∩ X ⊆ ∅, so
Z ⊆ A\X . It follows that A\X ∈ F .

⇐: clear.

If I is an ideal on A and X ⊆ A, then I + X is the smallest ideal containing I ∪ {X}.

Proposition 1.2. Suppose that I is an ideal on A and B, X ⊆ A. Then the following
conditions are equivalent:

(i) X ∈ I + B.
(ii) There is a Y ∈ I such that X ⊆ Y ∪ B.
(iii) X\B ∈ I.

Proof. Clearly (ii)⇒(i). The set

{Z ⊆ A : ∃Y ∈ I[Z ⊆ Y ∪ B]}

is clearly an ideal containing I ∪ {B}, so (i)⇒(ii). If Y is as in (ii), then X\B ⊆ Y , and
hence X\B ∈ I; so (ii)⇒(iii). If X\B ∈ I, then X ⊆ (X\B) ∪ B, so X satisfies the
condition of (ii). So (iii)⇒(ii).

If I an ideal on A and for X, Y ⊆ A we define X ⊆I Y iff X\Y ∈ I. For a filter F on A,
X ⊆F Y mean that (A\X) ∪ Y ∈ F . Also, X ⊂I Y means that X ⊆I Y while Y 6⊆I X .
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Ordinal-valued functions

Let A be any set. We will deal frequently with the class AOrd of all functions mapping a
set A into the class Ord of all ordinals. If A is nonempty, then AOrd is a proper class.

Suppose that F is a filter on a set A and R ⊆ Ord × Ord. Then for functions
f, g ∈ AOrd we define

f RF g iff {a ∈ A : f(a) Rg(a)} ∈ F.

The most important cases of this notion that we will deal with are f <F g, f ≤F g, and
and f =F g. Thus

f <F g iff {a ∈ A : f(a) < g(a)} ∈ F ;

f ≤F g iff {a ∈ A : f(a) ≤ g(a)} ∈ F ;

f =F g iff {a ∈ A : f(a) = g(a)} ∈ F.

Note that each of these is a proper class relation. If I is an ideal, then by RI , <I ,≤I , =I

we mean RF , <F ,≤F , =F with F = Ifi.

Proposition 1.3. If I is an ideal on A and f, g ∈ AOrd, then
(i) f <I g iff {a ∈ A : f(a) ≥ g(a)} ∈ I;
(ii) f ≤I g iff {a ∈ A : f(a) > g(a)} ∈ I.

Note that if F = {A} (or I = {∅}), then f ≤F g or f ≤I g means that f(i)Rg(i) for all
i ∈ A. Then we drop the subscript F or I . In particular,

f < g iff ∀i ∈ A[f(i) < g(i)];

f ≤ g iff ∀i ∈ A[f(i) ≤ g(i)].

Also note that f =F g really means f = g for F = {A}.
The following trivial proposition is nevertheless important in what follows.

Proposition 1.4. Let F be a proper filter on A. Then
(i) (AOrd, <F ,≤F ) is a double order.
(ii) <F is irreflexive and transitive.
(iii) ≤F is reflexive on AOrd, and it is transitive.
(iv) f ≤F g <F h implies that f <F h.
(v) f <F g ≤F h implies that f <F h.
(vi) f <F g or f =F g implies f ≤F g.
(vii) If f =F g, then f ≤F g.
(viii) If f ≤F g ≤F f , then f =F g.
(ix) If f =F g, then the following conditions hold:

(a) f <F h iff g <F h,
(b) f ≤F h iff g ≤F h,
(c) h <F f iff h <F g, and
(d) h ≤F f iff h ≤F g.
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Some care must be taken in working with these notions. The following examples illustrate
this.

(10) An example with f ≤F g but neither f <F g nor f =F g nor f = g: Let A = ω,
F = {A}, and define f, g ∈ ωω by setting f(n) = n for all n and

g(n) =
{

n if n is even,
n + 1 if n is odd.

(11) An example where f =F g but neither f <F g nor f = g: Let A = ω and let F consist
of all subsets of ω that contain all even natural numbers. Define f and g by

f(n) =

{

n if n is even,
1 if n is odd;

g(n) =
{

n if n is even,
0 if n is odd.

If f, g ∈ AOrd and R ⊆ Ord × Ord, we let R(f, g) = {a ∈ A : (f(a), g(a)) ∈ R. Thus
< (f, g) = {a ∈ A : f(a) < g(a)}.

Restricted ordinal-valued functions

Let Limord be the class of all limit ordinals.

Proposition 1.5. Suppose that P ∈ ALimord and F is a filter on A. Then

(

∏

a∈A

Pa, <F ,≤F

)

is a double order.

Here there is a slight abuse of notation, since by <F and ≤F we mean the restrictions of
the class notion defined above to the set

∏

a∈A Pa.

These double orders
(
∏

a∈A Pa, <F ,≤F

)

, consisting of restricted ordinal-valued func-
tions, are one of the main topics of these notes.

Proposition 1.6. If F is a proper filter on A, g, h ∈ AOrd, h(a) > 0 for all a ∈ A,
and g <F h, then there is a k ∈

∏

a∈A h(a) such that g =F k.

Proof. For any a ∈ A let

k(a) =
{

g(a) if g(a) < h(a),
0 otherwise.

Thus k ∈
∏

a∈A h(a). Moreover,

{a ∈ A : g(a) = k(a) ⊇ {a ∈ A : g(a) < h(a)} ∈ F,

so g =F k.
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Reduced products

Let 〈(Pa, <a,�a) : a ∈ A〉 be a system of double ordered systems, and let F be a filter on
A. Clearly =F (restricted to

∏

a∈A Pa) is an equivalence relation on
∏

a∈A Pa. We let [f ]F ,
or simply [f ], denote the equivalence class of f , and we let

∏

a∈A Pa/F be the collection
of all equivalence classes. Furthermore, we define

[f ] < [g] iff ∃f ′ ∈ [f ]∃g′ ∈ [g][{a ∈ A : f ′(a) <a g′(a)} ∈ F ];

[f ] � [g] iff ∃f ′ ∈ [f ]∃g′ ∈ [g][{a ∈ A : f ′(a) �a g′(a)} ∈ F ].

The triple (
∏

a∈A Pa, <,�) is called a reduced product of 〈Pa : a ∈ A〉; if F is an ultrafilter,
it is called an ultraproduct of 〈Pa : a ∈ A〉.

Proposition 1.7. Suppose that 〈Pa : a ∈ A〉 is a system of double orders, F is a
filter on A, and f, g ∈

∏

a∈A Pa. Then

(i) [f ] < [g] iff {a ∈ A : f(a) <a g(a)} ∈ F ;

(ii) [f ] � [g] iff {a ∈ A : f(a) �a g(a)} ∈ F.

Proof. We only prove (i), as the proof of (ii) is similar. ⇐ is obvious. Now suppose
that [f ] < [g]. Then there exist f ′ ∈ [f ] and g′ ∈ [g] such that {a ∈ A : f ′(a) <a g′(a)} ∈ F .
Thus {a ∈ A : f ′(a) = f(a)} ∈ F and {a ∈ A : g′(a) = g(a)} ∈ F . Note that

{a ∈ A : f ′(a) <a g′(a)} ∩ {a ∈ A : f ′(a) = f(a)}

∩ {a ∈ A : g′(a) = g(a)} ⊆ {a ∈ A : f(a) <a g(a)}.

It follows that {a ∈ A : f(a) <a g(a)} ∈ F .

Proposition 1.8. Suppose that 〈Pa : a ∈ A〉 is a system of double orders and F is a
proper filter on A. Then (

∏

a∈A Pa/F, <,�) is a double order.

Proof. The proof is routine. We show that < is irreflexive as an illustration. For any
f ∈

∏

a∈A Pa we have {a ∈ A : f(a) < f(a)} = ∅ /∈ F , and so [f ] 6< [f ].

More on double orders

• (P, <,�) is a simple double ordered system iff (P, <,≤) is a double ordered system and
for all a, b ∈ P , a ≤ b iff (a < b or a = b).

Simple double orders are essentially given by their partial orders, or by their quasi-
orders.

Proposition 1.9. Let (P, <) be a partially ordered system. Define a ≤ b iff (a < b or
a = b). Then (P, <,≤) is a simple double ordered system. Moreover, ≤ is antisymmetric.

Let (P,≤) be a quasi-ordered system for which ≤ is antisymmetric. Define a < b iff
(a ≤ b and a 6= b). Then (P, <,≤) is a simple double ordered system.

The processes described here are inverses of each other.
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Elements p, q of a partial order P are comparable iff p > q, q < p, or p = q. A linear order
is a partial order (P, <) in which any two elements are comparable. A linear double order
is a double order (P, <,�) in which (P, <) is a linear order.

Proposition 1.10. Every linear double order is simple.

Proof. Assume that p � q and p 6= q. If q < p, then p < p, contradiction. So p < q.
Conversely, p < q or p = q implies p ≤ q without even assuming that the double order

is linear.

Proposition 1.11. Suppose that 〈Pa : a ∈ A〉 is a system of linear double orders and
F is an ultrafilter on A. Then (

∏

a∈A Pa/F, <) is a linear double order.

Proof. For any f, g ∈
∏

a∈A Pa we have

A = {a ∈ A : f(a) < g(a)} ∪ {a ∈ A : f(a) = g(a)} ∪ {a ∈ A : g(a) < f(a)}.

Since A ∈ F , one of these three sets is also in F ; otherwise the empty set, which is the
intersection of their complements, would be in F . It follows that [f ] < [g], [f ] = [g], or
[g] < [f ].

Proposition 1.12. Suppose that 〈Pa : a ∈ A〉 is a system of double orders, F is a
proper filter on A, and B ∈ F . Then

(i) F ∩ P(B) is a proper filter on B
(ii) If F is an ultrafilter on A, then F ∩ P(B) is an ultrafilter on B.
(iii) (

∏

a∈A Pa/F, <,�) is isomorphic to (
∏

b∈B Pb/(F ∩ P(B)), <,�).

Proof. (i) and (ii) are straightfoward. For (iii), it is easy to see that there is a
function ϕ such that ϕ([f ]) = [f ↾ B] for all f ∈

∏

a∈A Pa, and this function is the desired
isomorphism.

• A subset X ⊆ P is cofinal iff ∀p ∈ P∃q ∈ X(p � q). This is equivalent to saying that X
is cofinal in P iff ∀p ∈ P∃q ∈ X(p < q).

• Since clearly P itself is cofinal in P , we can make the basic definition of the cofinality
cf(P ) of P :

cf(P ) = min{|X | : X is cofinal in P}.

Note that it is possible for cf(P ) to be singular, unlike the situation for cofinality of
ordinals, or linear orders. Here is an example with P of the main form we are considering:
restricted ordinal valued functions. Take P =

∏

i∈ω ℵi, A = ω, F = {ω}. Then cf(P, <F

,≤F ) = ℵω.

• A sequence 〈pξ : ξ < λ〉 of elements of P is <-increasing iff ∀ξ, η < λ(ξ < η → pξ < pη).
Similarly for �-increasing. These notions make sense even if P is a proper class.

• We say that P has true cofinality iff P has a linearly ordered subset which is cofinal.

Note that not every P has true cofinality, even among the double orderings (P, <F ,�F )
with P ⊆ AOrd and F a filter on A. For example, take P =

∏

i∈ω ℵi, A = ω, F = {ω}.
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Proposition 1.13. Suppose that 〈pα : α < λ〉 is strictly increasing in the sense of <,
is cofinal in P , and λ is regular. Then P has true cofinality, and its cofinality is λ.

Proof. Obviously P has true cofinality. If X is a subset of P of size less than λ, for
each q ∈ X choose αq < λ such that q < pαq

. Let β = supq∈X αq. Then β < λ since λ is
regular. For any q ∈ X we have q < pβ. This argument shows that cf(P ) = λ.

Proposition 1.14. Suppose that P has true cofinality. Then:
(i) cf(P ) is regular.
(ii) cf(P ) is the least size of a linearly ordered subset which is cofinal in (P ).
(iii) There is a <-increasing, cofinal sequence in P of length cf(P ).

Proof. Let X be a linearly ordered subset of P which is cofinal in P , and let {yα :
α < cf(P )} be a subset of P which is cofinal in P ; we do not assume that 〈yα : α < cf(P )〉
is <- or �-increasing.

(iii): We define a sequence 〈xα : α < cf(P )〉 by recursion. Let x0 be any element of
X . If xα has been defined, let xα+1 ∈ X be such that xα, yα < xα+1; it exists since X
is cofinal. Now suppose that α < cf(P ) is limit and xβ has been defined for all β < α.
Then {xβ : β < α} is not cofinal in P , so there is a z ∈ P such that z 6< xβ for all β < α.
Choose xα ∈ X so that z < xα. Since X is linearly ordered, we must then have xβ < xα

for all β < α. This finishes the construction. Since yα < xα+1 for all α < cf(P ), it follows
that {xα : ξ < cf(P )} is cofinal in P . So (iii) holds.

(i): Suppose that cf(P ) is singular, and let 〈βξ : ξ < cf(cf(P ))〉 be a strictly increasing
sequence cofinal in cf(P ). With 〈xα : α < cf(P )〉 as in (iii), it is then clear that {xβξ

:
ξ < cf(cf(P ))} is cofinal in P , contradiction (since cf(cf(P )) < cf(P ) because cf(P ) is
singular).

(ii): By (iii), there is a linearly ordered subset of P of size cf(P ) which is cofinal in
P ; by the definition of cofinality, there cannot be one of smaller size.

For P with true cofinality, the cardinal cf(P ) is called the true cofinality of P , and is
denoted by tcf(P ). We write

tcf(P ) = λ

to mean that P has true cofinality, and it is equal to λ.

• P is λ-directed iff for any subset Q of P such that |Q| < λ there is a p ∈ P such that
q < p for all q ∈ Q.

Proposition 1.15. (Pouzet) Suppose that P is a double order. Then for any infinite
cardinal λ the following conditions are equivalent:

(i) tcf(P ) = λ
(ii) P has a cofinal subset of size λ, and P is λ-directed.

Proof. (i)⇒(ii) is clear, remembering that λ is regular. Now assume (ii), and let X
be a cofinal subset of P of size λ.

First we show that λ is regular. Suppose that it is singular. Write X =
⋃

α<cf(λ) Yα

with |Yα| < λ for each α < cf(λ). Let pα be an upper bound for Yα for each α < cf(λ),
and let q be an upper bound for {pα : α < cf(λ)}. Choose r such that q < r. Then choose
s ∈ X with r < s. Say s ∈ Yα. Then s < pα < q < r < s, contradiction.
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So, λ is regular. Let X = {rα : α < λ}. Now we define a sequence 〈pα : α < λ〉 by
recursion. Having defined pβ for all β < α, by (ii) let pα be such that pβ < pα for all
β < α, and rβ < pα for all β < α. Clearly this sequence shows that tcf(P ) = λ.

Proposition 1.16. If G is a cofinal subset of P , then cf(P ) = cf(G). Moreover,
tcf(P ) = tcf(G), in the sense that if one of them exists then so does the other, and they
are equal. (That is what we mean in the future too when we assert the equality of true
cofinalities.)

Proof. Let H be a cofinal subset of P of size cf(P ). For each p ∈ H choose qp ∈ G
such that p < qp. Then {qp : p ∈ H} is cofinal in G. In fact, if r ∈ G, choose p ∈ H such
that r < p. Then r < qp, as desired. This shows that cf(G) ≤ cf(P ).

Now suppose that K is a cofinal subset of G. Then it is also cofinal in P . For, if
p ∈ P choose q ∈ G such that p < q, and then choose r ∈ K such that q < r. So p < r, as
desired. This shows the other inequality.

For the true cofinality, we apply Proposition 1.15. So suppose that P has true cofinality
λ. By Proposition 1.15 and the first part of this proof, G has a cofinal subset of size λ,
since cofinality is the same as true cofinality when the latter exists. Now suppose that
X ⊆ G is of size < λ. Choose an upper bound p for it in P . Then choose q ∈ G such
that p < q. So q is an upper bound for X , as desired. Thus by Proposition 1.15 we have
tcf(G) = λ.

The other implication, that the existence of tcf(G) implies that of tcf(P ) and their
equality, is even easier, since a sequence cofinal in G is also cofinal in P .

• A sequence 〈pξ : ξ < λ〉 of elements of P is persistently cofinal iff

∀h ∈ P∃ξ0 < λ∀ξ(ξ0 ≤ ξ < λ ⇒ h < pξ).

Proposition 1.17. (i) If 〈pξ : ξ < λ〉 is <-increasing and cofinal in P , then it is
persistently cofinal.

(ii) If 〈pξ : ξ < λ〉 and 〈p′ξ : ξ < λ〉 are two sequences of members of P , 〈pξ : ξ < λ〉
is persistently cofinal in P , and pξ � p′ξ for all ξ < λ, then also 〈p′ξ : ξ < λ〉 is persistently
cofinal in P .

• An upper bound for P is an element p ∈ AOrd such that q � p for all q ∈ P .

• A least upper bound for P is an upper bound a for P such that a ≤P a′ for every upper
bound a′ for P . So if a and b are least upper bounds for P , then a ≤P b ≤P a, but it is
not necessarily true that a = b.

In the case of double orders obtained from ordinal-valued functions we have the following
equivalent definition of least upper bounds:

Proposition 1.18. Suppose that F is a proper filter on A, P ⊆ AOrd, and f ∈ AOrd.
Then the following conditions are equivalent.

(i) f is a least upper bound of P under <F .
(ii) f is an upper bound of P under <F , and for any f ′ ∈ AOrd, if f ′ is an upper

bound of P under <F and f ′ ≤F f , then f =F f ′.
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Proof. (i)⇒(ii): Assume (i) and the hypotheses of (ii). Hence f ≤F f ′, so f =F f ′

by Proposition 1.4(viii).
(ii)⇒(i): Assume (ii), and suppose that g ∈ AOrd is an upper bound for P . For each

a ∈ A let g′(a) = min(f(a), g(a)). Then {a ∈ A : g′(a) ≤ f(a)} = A ∈ F , so g′ ≤F f . If
h ∈ F , then

{a ∈ A : h(a) ≤ g′(a)} ⊇ {a ∈ A : h(a) ≤ f(a)} ∩ {a ∈ A : h(a) ≤ g(a)} ∈ F,

so h ≤F g′. Thus g′ is an upper bound for P . It now follows from (ii) that f =F g′.
Clearly g′ ≤F g, so f ≤F g by Proposition 1.4(ix).

Now we come to an ordering notion which is basic for pcf theory.

• An exact upper bound for P is a least upper bound a for P such that P is cofinal in
{p ∈ P : p < a}.

Note that under the hypothesis here, a /∈ P .
In general, there are sets which have least upper bounds but no exact upper bounds.

For example, define fiξ for each i ∈ ω and ξ ∈ ℵi by letting dmn(fiξ) = ω and for each
j ∈ ω let

fiξ(j) =

{

ξ if i = j,
0 if i 6= j.

Let P = {fiξ : i ∈ ω, ξ ∈ ℵi}. Let F = {ω}, and let g(i) = ℵi for all i ∈ ω. Then g is a
l.u.b. for P , but it is not an exact upper bound.

In the next proposition we see that in the definition of exact upper bound we can weaken
the least upper bound condition, under a mild restriction on the set in question.

Proposition 1.19. Suppose F is a filter on A, P is a nonempty set of functions in
AOrd, and ∀f ∈ P∃f ′ ∈ P [f <F f ′]. Suppose that h is an upper bound of P under <F ,
and for all g ∈ AOrd, if g <F h then there is an f ∈ P such that g <F f . Then h is an
exact upper bound for P .

Proof. First note that {a ∈ A : h(a) 6= 0} ∈ F . In fact, choose f ∈ P . Then f <F h,
and so {a ∈ A : h(a) 6= 0} ⊇ {a ∈ A : f(a) < h(a)} ∈ F , as desired.

Now we show that h is a least upper bound for F . Let k be any upper bound. Let

l(a) =
{

k(a) if k(a) < h(a),
0 otherwise.

Since {a ∈ A : l(a) < h(a)} ⊇ {a ∈ A : h(a) 6= 0}, it follows by the above that {a ∈ A :
l(a) < h(a)} ∈ F , and so l <F h. So by assumption, choose f ∈ P such that l <F f . Now
f ≤F k, so l <F k and hence

{a ∈ A : h(a) ≤ k(a)} ⊇ {a ∈ A : l(a) < k(a)} ∈ F,

so h ≤F k, as desired.
For the other property in the definition of exact upper bound, suppose that g <I h.

Then by assumption there is an f ∈ P such that g <I f , as desired.
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Corollary 1.20. If h ∈ AOrd takes only limit ordinal values and P ⊆
∏

a∈A h(a),
then h is an exact upper bound of P with respect to a filter F on A iff P is cofinal in
∏

a∈A h(a).

The next proposition shows that exact upper bounds restrict to certain subset of A.

Proposition 1.21. Suppose that P is a nonempty subset of AOrd, I is a proper ideal
on A, h is an exact upper bound for F with respect to I, and ∀f ∈ F∃f ′ ∈ F (f <I f ′).
Also, suppose that A0 /∈ I. Then:

(i) J
def
= I ∩ P(A0) is a proper ideal on A0.

(ii) For any f, f ′ ∈ AOrd, if f <I f ′ then f ↾ A0 <J f ′ ↾ A0.
(iii) h ↾ A0 is an exact upper bound for {f ↾ A0 : f ∈ F}.

Proof. Let F = Ifi.
(i) is clear. Note that Jfi = Ifi ∩ P(A0). Now assume the hypotheses of (ii). Then

{a ∈ A0 : f(a) < f ′(a)} = A0 ∩ {a ∈ A : f(a) < f ′(a)},

and so f ↾ A0 <J f ′ ↾ A0.
For (iii), by (ii) we see that h ↾ A0 is an upper bound for {f ↾ A0 : f ∈ P}. To see that

it is an exact upper bound, we will apply Proposition 1.19. So, suppose that k <J h ↾ A0.
Fix f ∈ P . Now define g ∈ AOrd by setting

g(a) =

{

f(a) if a ∈ A\A0,
k(a) if a ∈ A0.

Then

{a ∈ A : g(a) < h(a)} ⊇ {a ∈ A : f(a) < h(a)} ∩ {a ∈ A0 : k(a) < h(a) ∈ F,

so g <I h. Hence there is an l ∈ F such that g <I l. Hence

{a ∈ A0 : k(a) < l(a)} ⊇ A0 ∩ {a ∈ A : g(a) < l(a)},

and {a ∈ A : g(a) < l(a)} ∈ F , so k <J l, as desired.

Next, increasing the ideal maintains exact upper bounds:

Proposition 1.22. Suppose that P is a nonempty subset of AOrd, I is a proper ideal
on A, h is an exact upper bound for P with respect to I, and ∀f ∈ P∃f ′ ∈ P (f <I f ′).

Let J be a proper ideal on A such that I ⊆ J . Then h is an exact upper bound for P
with respect to J .

Proof. We will apply Proposition 1.19. Let F = Ifi and G = Jfi. So F ⊆ G. Note
that h is clearly an upper bound for F with respect to J . Now suppose that g <J h. Fix
f ∈ P . Define g′ by

g′(a) =

{

g(a) if g(a) < h(a),
f(a) otherwise.
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Then {a ∈ A : g′(a) < h(a)} ⊇ {a ∈ A : f(a) < h(a)} ∈ F , since f <I h. So g′ <I h.
Hence by the exactness of h there is a k ∈ F such that g′ <I k. So

{a : g(a) < k(a)} ⊇ {a ∈ A : g′(a) < k(a)} ∩ {a ∈ A : g(a) < h(a)},

and this intersection is in G since the first set is in F and the second one is in G. Hence
g <J k, as desired.

The next proposition indicates that if we take the case of P ⊆
∏

a∈A h(a) for some function
h, then definitions and theorems about (P, <F ) are equivalent to ones about the reduced
product

∏

a∈A h(a)/F .

Proposition 1.23. Suppose that h ∈ AOrd, and h takes only limit ordinal values.
Then

(i) If X ⊆
∏

a∈A h(a), then X is cofinal in (
∏

a∈A h(a), <I ,≤I) iff {[f ] : f ∈ X} is
cofinal in (

∏

a∈A h(a)/I, <I ,≤I).
(ii) cf(

∏

a∈A h(a), <I ,≤I) = cf(
∏

a∈A h(a)/I, <I ,≤I).
(iii) tcf(

∏

a∈A h(a), <I ,≤I) = tcf(
∏

a∈A h(a)/I, <I ,≤I).
(iv) If X ⊆

∏

a∈A h(a) and f ∈
∏

a∈A h(a), then f is an exact upper bound for X iff
[f ] is an exact upper bound for {[g] : g ∈ X}.

Proof. (i) is immediate from Proposition 1.7. For (ii), if X is cofinal in (
∏

a∈A h(a), <I

,≤I), then clearly {[f ] : f ∈ X} is cofinal in (
∏

a∈A h(a)/I, <I ,≤I), by Proposition 1.7
again; so ≥ holds. Now suppose that {[f ] : f ∈ Y } is cofinal in (

∏

a∈A h(a)/I, <I ,≤I).
Given g ∈

∏

a∈A h(a), choose f ∈ Y such that [g] <I [f ]. Then g <I f . So Y is cofinal in
(
∏

a∈A h(a), <I ,≤I), and ≤ holds.
(iii) and (iv) are proved similarly.

The following obvious proposition will be useful.

Proposition 1.24. Suppose that F ∪ {f, g} ⊆ AOrd, I is an ideal on A, and f =I g.
Suppose that f is an upper bound, least upper bound, minimal upper bound, or exact upper
bound for F under ≤I . Then also g is an upper bound, least upper bound, minimal upper
bound, or exact upper bound for F under ≤I , respectively.

Here is our simplest existence theorem for exact upper bounds.

• If X is a collection of members of AOrd, then sup X ∈ AOrd is defined by

(sup X)(a) = sup{f(a) : f ∈ X}.

Proposition 1.25. Suppose that λ > |A| is a regular cardinal, and f = 〈fξ : ξ < λ〉
is an increasing sequence of members of AOrd in the partial ordering < of everywhere
dominance. (That is, f < g iff f(a) < g(a) for all a ∈ A.) Then sup(rng(f)) is an exact
upper bound for f , and cf((sup(rng(f)))(a)) = λ for every a ∈ A.

Proof. Again we apply Proposition 1.19. For brevity let h = sup(rng(f)). Then
clearly h is an upper bound for f . Now suppose that k ∈ AOrd and k < h. Then for
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every a ∈ A we have k(a) < h(a), and hence there is a ξa < λ such that k(a) < fξa
(a).

Let η = supa∈A ξa. So η < λ since λ is regular and greater than |A|. Clearly k < fη, as
desired.

We now prove some results which show that under a weak hypothesis we can restrict
attention to

∏

A for A a nonempty set of infinite regular cardinals instead of
∏

a∈A h(a),
as far as cofinality notions are concerned. Here

∏

A consists of all choice functions f with
domain A; f(a) ∈ a for all a ∈ A.

Proposition 1.26. Suppose that h ∈ AOrd and h(a) is a limit ordinal for every
a ∈ A. For each a ∈ A, let S(a) ⊆ h(a) be cofinal in h(a) with order type cf(h(a)).
Suppose that I is a proper ideal on A. Then

(i) cf(
∏

a∈A h(a), <I ,≤I) = cf(
∏

a∈A S(a), <I ,≤I) and
(ii) tcf(

∏

a∈A h(a), <I ,≤I) = tcf(
∏

a∈A S(a), <I ,≤I).

Proof. For each f ∈
∏

h define gf ∈
∏

a∈A S(a) by setting

gf (a) = least α ∈ S(a) such that f(a) ≤ α.

We prove (i): suppose that X ⊆
∏

a∈A h(a) and X is cofinal in (
∏

a∈A h(a), <I ,≤I); we
show that {gf : f ∈ X} is cofinal in cf(

∏

a∈A S(a), <I ,≤I), and this will prove ≥. So, let
k ∈

∏

a∈A S(a). Thus k ∈
∏

a∈A h(a), so there is an f ∈ X such that k <I f . Since f ≤ gf

(everywhere), it follows that k <I gf , as desired. Conversely, suppose that Y ⊆
∏

a∈A S(a)
and Y is cofinal in (

∏

a∈A S(a), <I); we show that also Y is cofinal in
∏

a∈A h(a), and this
will prove ≤ of the claim. Let f ∈

∏

a∈A h(a). Then f ≤ gf (everywhere), and there is a
k ∈ Y such that gf <I k; so f <I k, as desired.

This finishes the proof of (i).
For (ii), first suppose that tcf(

∏

a∈A h(a), <I ,≤I) exists; call it λ. Thus λ is an
infinite regular cardinal. Let 〈fi : i < λ〉 be a <I -increasing cofinal sequence in

∏

h.
We claim that gfi

≤I gfj
if i < j < λ. In fact, if a ∈ A and fi(a) < fj(a), then

fi(a) < fj(a) ≤ gfj
(a) ∈ S(a), and so by the definition of gfi

we get gfi
(a) ≤ gfj

(a). This
implies that gfi

≤I gfj
. Now cf(

∏

a∈A h(a), <I ,≤I) = λ, so for any B ∈ [λ]<λ there is
a j < λ such that ∀i ∈ B[gfi

<I fj ≤ gfj
]. It follows that we can take a subsequence

of 〈gfi
: i < λ〉 which is strictly increasing modulo I; it is also clearly cofinal, and hence

λ = tcf(
∏

a∈A S(a), <I ,≤I) by Proposition 2.16.
Conversely, suppose that tcf(

∏

a∈A S(a), <I ,≤I) exists; call it λ. Let 〈fi : i < λ〉 be
a <I -increasing cofinal sequence in

∏

a∈A S(a). Then it is also a sequence showing that
tcf(
∏

a∈A h(a), <I) exists and equals tcf(
∏

a∈A S(a), <I ,≤I).

Proposition 1.27. Suppose that 〈La : a ∈ A〉 and 〈Ma : a ∈ A〉 are systems of double
ordered sets such that each La and Ma has no last element under <. Suppose that La is
isomorphic to Ma for all a ∈ A. Let I be any ideal on A. Then

(

∏

a∈A

La, <I ,≤I

)

∼=

(

∏

a∈A

Ma, <I ,≤I

)

.

Putting the last two propositions together, we see that to determine cofinality and true
cofinality of (

∏

h, <I ,≤I), where h ∈ AOrd and h(a) is a limit ordinal for all a ∈ A, it
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suffices to take the case in which each h(a) is an infinite regular cardinal. (One passes
from h(a) to S(a) and then to cf(h(a)).)

We can still make a further reduction, given in the following useful lemma.

Lemma 1.28. (Rudin-Keisler) Suppose that c maps the set A into the class of regular
cardinals, and B = {c(a) : a ∈ A} is its range. For any filter F over A, define its Rudin-
Keisler projection G on B by

X ∈ G iff X ⊆ B and c−1[X ] ∈ F.

Then G is a filter on B, and there is an isomorphism h of
∏

B/G into
∏

a∈A c(a)/F such
that for any e ∈

∏

B we have h(e/G) = 〈e(c(a)) : a ∈ A〉/F .
If |A| < min(B), then the range of h is cofinal in

∏

a∈A c(a)/F , and we have
(i) cf(

∏

B/G) = cf(
∏

a∈A c(a)/F and
(ii) tcf(

∏

B/G) = tcf(
∏

a∈A c(a)/F ).

Proof. Clearly G is a filter. Next, for any e ∈
∏

B let e = 〈e(c(a)) : a ∈ A〉. Then
for any e1, e2 ∈

∏

B we have

e1 =G e2 iff {b ∈ B : e1(b) = e2(b)} ∈ G

iff c−1[{b ∈ B : e1(b) = e2(b)}] ∈ F

iff {a ∈ A : e1(c(a)) = e2(c(a))} ∈ F

iff e1 =F e2.

This shows that h exists as indicated and is one-one. Similarly, h preserves <F and ≤F in
each direction. So the first part of the lemma holds.

Now suppose that |A| < min(B). Let H be the range of h. By Proposition 1.16, (i)
and (ii) follow from H being cofinal in

∏

a∈A c(a)/F . Let g ∈
∏

a∈A c(a). Define e ∈
∏

B
by setting, for any b ∈ B,

e(b) = sup{g(a) : a ∈ A and c(a) = b}.

The additional supposition implies that e ∈
∏

B. Now note that {a ∈ A : g(a) ≤
e(c(a))} = A ∈ F , so that g/F ≤ h(e/G), as desired.

According to these last propositions, the calculation of true cofinalities for double orders of
the form (

∏

a∈A h(a), <I ,≤I), with h ∈ AOrd and h(a) a limit ordinal for every a ∈ A, and
with |A| < min({cf(h(a) : a ∈ A), reduces to the calculation of true cofinalities of double
orders of the form (

∏

B, <J ,≤J) with B a set of regular cardinals with |B| < min(B).

Lemma 1.29. If (Pi, <i,≤i) is a double order with true cofinality λi for each i ∈ I
and D is an ultrafilter on I, then tcf(

∏

i∈I λi/D) = tcf(
∏

i∈I Pi/D).

Proof. Note that
∏

i∈I λi/D is a linear order, and so its true cofinality µ exists and
equals its cofinality. So the lemma is asserting that the ultraproduct

∏

i∈I Pi/D has µ as
true cofinality.
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Let 〈gξ : ξ < µ〉 be a sequence of members of
∏

i∈I λi such that 〈gξ/D : ξ < µ〉 is
strictly increasing and cofinal in

∏

i∈I λi/D. For each i ∈ I let 〈fξ,i : ξ < λi〉 be strictly
increasing and cofinal in (Pi, <i). For each ξ < µ define hξ ∈

∏

i∈I Pi by setting hξ(i) =
fgξ(i),i. We claim that 〈hξ/D : ξ < µ〉 is strictly increasing and cofinal in

∏

i∈I Pi/D (as
desired).

To prove this, first suppose that ξ < η < µ. Then

{i ∈ I : hξ(i) < hη(i)} = {i ∈ I : fgξ(i),i <i fgη(i),i} = {i ∈ I : gξ(i) < gη(i)} ∈ D;

so hξ/D < hη/D.
Now suppose that k ∈

∏

i∈I Pi; we want to find ξ < µ such that k/D < hξ/D.
Define l ∈

∏

i∈I λi by letting l(i) be the least ξ < µ such that k(i) < fξ,i. Choose ξ < µ
such that l/D < gξ/D. Now if l(i) < gξ(i), then k(i) < fl(i),i <i fgξ(i),i = hξ(i). So
k/D < hξ/D.

If A is a set of limit ordinals, we denote
∏

a∈A a by
∏

A.
Now suppose that A is a set of regular cardinals. We define

pcf(A) =
{

cf
(

∏

A/D
)

: D is an ultrafilter on A
}

.

By definition, pcf(∅) = ∅.
This is the main notion studied in these notes. We begin with a very easy proposition

as an introduction. It is basic for further results, which will come after some combinatorial
preliminaries.

Proposition 1.30. Let A and B be sets of regular cardinals.
(i) A ⊆ pcf(A).
(ii) If A ⊆ B, then pcf(A) ⊆ pcf(B).
(iii) pcf(A ∪ B) = pcf(A) ∪ pcf(B).
(iv) If B ⊆ A, then pcf(A)\pcf(B) ⊆ pcf(A\B).
(v) If A is finite, then pcf(A) = A.
(vi) If B ⊆ A, B is finite, and A is infinite, then pcf(A) = pcf(A\B) ∪ B.
(vii) min(A) = min(pcf(A)).
(viii) If A is infinite, then the first ω members of A are the same as the first ω members

of pcf(A).

Proof. (i): For each a ∈ A, the principal ultrafilter with {a} as a member shows that
a ∈ pcf(A).

(ii): Any ultrafilter F on A can be extended to an ultrafilter G on B. The mapping
[f ] 7→ [f ] is easily seen to be an isomorphism of

∏

A/F onto
∏

B/G. Note here that [f ]
is used in two senses, one for an element of

∏

A/F , where each member of [f ] is in
∏

A,
and the other for an element of

∏

B/G, with [f ] having members in the larger set
∏

B.
(iii): ⊇ holds by (ii). Now suppose that D is an ultrafilter on A ∪ B. Then A ∈ D or

B ∈ D, and this proves ⊆.
(iv): Suppose that B ⊆ A and λ ∈ pcf(A)\pcf(B). Let D be an ultrafilter on A

such that λ = cf(
∏

A/D). Then B /∈ D, as otherwise λ ∈ pcf(B). So A\B ∈ D, and so
λ ∈ pcf(A\B).
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(v): If A is finite, then every ultrafilter on A is principal.
(vi): We have

pcf(A) = pcf(A\B) ∪ pcf(B) by (iii)

= pcf(A\B) ∪ B by (v)

(vii): Let a = min(A). Thus a ∈ pcf(A) by (i). Suppose that λ ∈ pcf(A) with λ < a;
we want to get a contradiction. Say 〈[gξ] : ξ < λ〉 is strictly increasing and cofinal in
∏

A/D. Now define h ∈
∏

A as follows: for any b ∈ A, h(b) = sup{gξ(b) + 1 : ξ < λ}.
Thus [gξ] < [h] for all ξ < λ, contradiction.

(viii): Let κ0 < κ1 < · · · be the first ω elements of A. Suppose that λ ∈ pcf(A)\A
and λ < κm for some m ∈ ω; we want to get a contradiction. By (vi) we have

pcf(A) = pcf(A\{κ0, . . . , κm}) ∪ {κ0, . . . , κm},

and it follows that λ ∈ pcf(A\{κ0, . . . , κm}). Hence κm+1 ≤ λ by (vii), contradiction.

A set A is progressive iff A is an infinite set of regular cardinals and |A| < min(A).
If α < β are ordinals, then (α, β)reg is the set of all regular cardinals κ such that

α < κ < β. Similarly for [α, β)reg, etc. All such sets are called intervals of regular
cardinals.

Proposition 1.31. Assume that A is a progressive set, then
(i) Every infinite subset of A is progressive.
(ii) If α is an ordinal and A ∩ α is unbounded in α, then α is a singular cardinal.
(iii) If A is an interval of regular cardinals, then A does not have any weak inaccessible

as a member, except possibly its first element.
(iv) If A is an infinite interval of regular cardinals, then there is a singular cardinal

λ such that A ∩ λ is unbounded in λ and A\λ is finite.

Proof. (i): Obvious.
(ii): Obviously α is a cardinal. Now A∩α is cofinal in α and |A∩α| ≤ |A| < min(A) <

α. Hence α is singular.
(iii): If κ ∈ A, then by (ii), A ∩ κ cannot be unbounded in κ; hence κ is a successor

cardinal, or is the first element of A.
(iv) Let sup(A) = ℵα+n with α a limit ordinal. Since A is an infinite interval of regular

cardinals, it follows that A ∩ ℵα is unbounded in ℵα, and hence by (ii), ℵα is singular.
Hence the desired conclusion follows.

The following results about cofinality will be useful close to the end of these notes.

Proposition 1.32. If κ ≤ µ are infinite cardinals, then

(∗) |[µ]κ| = cf([µ]κ,⊆) · 2κ.

Proof. Let λ = cf([µ]κ,⊆), and let 〈Yi : i < λ〉 be an enumeration of a cofinal subset
of cf([µ]κ,⊆). For each i < λ let fi be a bijection from Yi to κ. Now the inequality ≥ in (∗)
is clear. For the other direction, we define an injection g of [µ]κ into λ×P(κ), as follows.
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Given E ∈ [µ]κ, let i < λ be minimum such that E ⊆ Yi, and define g(E) = (i, fi[E]).
Clearly g is one-one.

Proposition 1.33. (i) If κ1 < κ2 ≤ µ, then

cf([µ]κ1,⊆) ≤ cf([µ]κ2 ,⊆) · cf([κ2]
κ1 ,⊆).

(ii) cf([κ+]κ,⊆) = κ+.

(iii) If κ+ ≤ µ, then cf([µ]κ,⊆) ≤ cf([µ]κ
+

,⊆) · κ+.
(iv) If κ ≤ µ1 < µ2, then cf([µ1]

κ,⊆) ≤ cf([µ2]
κ,⊆).

(v) If κ ≤ µ, then cf([µ+]κ,⊆) ≤ cf([µ]κ,⊆) · µ+.
(vi) cf([ℵ0]

ℵ0 ,⊆) = 1, while for m ∈ ω\1, cf([ℵm]ℵ0) = ℵm.
(vii) cf([µ]≤κ,⊆) = cf([µ]κ,⊆).

Proof. (i): Let M ⊆ [µ]κ2 be cofinal in ([µ]κ2 ,⊆) of size cf([µ]κ2 ,⊆), and let N ⊆
([κ2]

κ1 ,⊆) be cofinal in ([κ2]
κ1 ,⊆) of size cf([κ2]

κ1 ,⊆). For each X ∈ M let fX : κ2 → X
be a bijection. It suffices now to show that {fX [Y ] : X ∈ M, Y ∈ N} is cofinal in ([µ]κ1 ,⊆).
Suppose that W ∈ [µ]κ1 . Choose X ∈ M such that W ⊆ X . Then f−1

X [W ] ∈ [κ2]
κ1 , so

there is a Y ∈ N such that f−1
X [W ] ⊆ Y . Then W ⊆ fX [Y ], as desired.

(ii): The set {γ < κ+ : |γ\κ| = κ} is clearly cofinal in ([κ+]κ. If M is a nonempty
subset of [κ+]κ of size less than κ+, then |

⋃

M | = κ, and (
⋃

M) + 1 is a member of [κ+]κ

not covered by any member of M . So (ii) holds.
(iii): Immediate from (i) and (ii).
(iv): Let M ⊆ [µ2]

κ be cofinal of size cf([µ2]
κ,⊆). Let N = {X∩µ1 : X ∈ M}\[µ1]

<κ.
It suffices to show that N is cofinal in cf([µ1]

κ,⊆). Suppose that X ∈ [µ1]
κ. Then also

X ∈ [µ2]
κ, so we can choose Y ∈ M such that X ⊆ Y . Clearly X ⊆ Y ∩ µ1 ∈ N , as

desired.
(v): For each γ ∈ [µ, µ+) let fγ be a bijection from γ to µ. Let E ⊆ [µ]κ be cofinal in

([µ]κ,⊆) and of size cf([µ]κ,⊆). It suffices to show that {f−1
γ [X ] : γ ∈ [µ, µ+), X ∈ E} is

cofinal in ([µ+]κ,⊆). So, take any Y ∈ [µ+]κ. Choose γ ∈ [µ, µ+) such that Y ⊆ γ. Then
fγ [Y ] ∈ [µ]κ, so we can choose X ∈ E such that fγ[Y ] ⊆ X . Then Y ⊆ f−1

γ [X ], as desired.

(vi): Clearly cf([ℵ0]
ℵ0 ,⊆) = 1. By induction it is clear from (v) that cf([ℵm]ℵ0) ≤ ℵm.

For m > 0 equality must hold, since if X ⊆ [ℵm]ℵ0 and |X | < ℵm, then
⋃

X < ℵm, and
no denumerable subset of ℵm\

⋃

X is contained in a member of X .
(vii): Clear.
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