This is an update of Monk [14]; mainly we indicate solutions of some of the problems. We give a question mark for ones which have not been checked.

Problem 7. Does $A \leq_s B$ imply that $\mathfrak{a}(B) \leq \mathfrak{a}(A)$?

This is answered positively by Santos [23]. We give his argument here.

Proposition 1. If A is finite and B is infinite, then $\mathfrak{a}(A \oplus B) = \mathfrak{a}(B)$.

Proof. By 11.6 of Koppelberg [89], $A \oplus B \cong {}^{n}B$, where n is the number of atoms of A. By Proposition 3.36 of Monk [14], $\mathfrak{a}({}^{n}B) = \mathfrak{a}(B)$.

Proposition 2. Let A be an infinite BA and let I be an ideal of A such that A/I is infinite. Suppose that $\mathfrak{a}(A) < \mathfrak{a}(A/I)$. Suppose that $\langle a_{\alpha} : \alpha < \kappa \rangle$ is an infinite partition of A of minimum size.

Then there exist $b \in A^+$ and $E \in [\kappa]^{\kappa}$ such that $\langle a_{\alpha} \cdot b : \alpha \in E \rangle$ is an infinite partition of $A \upharpoonright b$ of minimum size consisting of elements of I.

Proof. Case 1. $\sum_{\alpha < \kappa} [a_{\alpha}]_I = [1]_I$. Note that $\forall \alpha, \beta < \kappa[\alpha \neq \beta \to [a_{\alpha}]_I] \cdot [a_{\beta}]_I = 0$]. Since A/I is infinite and A/I has no infinite partition of size $\leq \kappa$, there is an $F \in [\kappa]^{<\omega}$ such that $\sum_{\alpha \in F} [a_{\alpha}]_I = [1]_I$. Thus $b \stackrel{\text{def}}{=} -\sum_{\alpha \in F} a_{\alpha} \in I$. Hence $\forall \alpha < \kappa[a_{\alpha} \cdot b \in I]$. Let $E = \{\alpha < \kappa : a_{\alpha} \cdot b \neq 0\}$.

(1)
$$\neg \exists E' \in [E]^{<\omega} \left[b = \sum_{\alpha \in E'} (a_{\alpha} \cdot b) \right]$$

For, assume that $E' \in [E]^{<\omega}$ and $b = \sum_{\alpha \in E'} (a_{\alpha} \cdot b)$. Then

$$1 = b + -b = \sum_{\alpha \in E'} (a_{\alpha} \cdot b) + \sum_{\alpha \in F} a_{\alpha} \le \sum_{\alpha \in E' \cup F} a_{\alpha},$$

contradiction. So (1) holds.

$$(2) b = \sum_{\alpha \in E} (a_{\alpha} \cdot b)$$

In fact, otherwise there is a nonzero c < b such that $\forall \alpha \in E[a_{\alpha} \cdot c = 0]$. Hence $\forall \alpha < \kappa[a_{\alpha} \cdot c = 0]$, contradicting $\langle a_{\alpha} : \alpha < \kappa \rangle$ being a partition of A.

By (1) and (2), $\langle a_{\alpha} \cdot b : \alpha \in E \rangle$ is an infinite partition of $A \upharpoonright b$. Suppose that $|E| < \kappa$. Then $\langle a_{\alpha} \cdot b : \alpha \in E \rangle^{\frown} \langle \{b\} \rangle$ is a partition of A of size less than $\mathfrak{a}(A)$, contradiction.

Case 2. $\sum_{\alpha < \kappa} [a_{\alpha}]_I < [1]_I$. Then there is a $b \in A \setminus I$ such that $\forall \alpha < \kappa[[b] \cdot [a_{\alpha}]_I = 0]$. Let $E = \{\alpha < \kappa : a_{\alpha} \cdot b \neq 0\}$.

(3)
$$\forall E' \in [E]^{<\omega} \left[b \neq \sum_{\alpha \in E'} (b \cdot a_{\alpha}) \right].$$

For, if $E' \in [E]^{<\omega}$ and $b = \sum_{\alpha \in E'} (b \cdot a_{\alpha})$, then $b \in I$, contradiction. It follows that $\langle a_{\alpha} \cdot b : \alpha \in E \rangle$ is a partition of $A \upharpoonright b$. As in Case 1, $|E| = \kappa$.

Theorem 3. If $A \leq_s B$, then $\mathfrak{a}(B) \leq \mathfrak{a}(A)$.

Proof. By Monk [14] Proposition 2.28 let I_0 and I_1 be ideals of A such that $I_0 \cap I_1 = \{0\}$ and $B \cong (A/I_0) \times (A/I_1)$. Wlog $B = (A/I_0) \times (A/I_1)$.

Case 1. One of A/I_0 , A/I_1 is finite; say by symmetry that A/I_0 is finite. By Proposition 1, $\mathfrak{a}(B) = \mathfrak{a}(A/I_1)$, Suppose that $\kappa = \mathfrak{a}(A) < \mathfrak{a}(A/I_1(A))$. Let $\langle a_\alpha : \alpha < \kappa \rangle$ be an infinite partition of A. Choose b and E as in Proposition 2. Since A/I_0 is finite, there exist $\alpha < \beta$ in E such that $b \cdot a_\alpha \equiv_{I_0} b \cdot a_\beta$ while $b \cdot a_\alpha \neq b \cdot a_\beta$. Hence $0 \neq (b \cdot a_\alpha) \triangle (b \cdot a_\beta) \in I_0 \cap I_1$, contradiction.

Case 2. A/I_0 and A/I_1 are both infinite. By Proposition 3.36 of Monk [14] we have $\mathfrak{p}(B) = \min\{\mathfrak{p}(A/I_0), \mathfrak{p}(A/I_1)\}$. Suppose that $\mathfrak{p}(A) < \mathfrak{p}(B)$. Let $\langle a_\alpha : \alpha < \kappa \rangle$ be an infinite partition of A. Let b and E be given by Proposition 2 Then $\langle a_\alpha \cdot b : \alpha \in E \rangle^{\frown} \{-b\}$ is a partition of A, with each $a_\alpha \cdot b \in I_0$. Let $\langle a'_\alpha : \alpha < \lambda \rangle$ be a one-one enumeration of $\{a_\alpha \cdot b : \alpha \in E\} \cup \{-b\}$. Applying Proposition 2 to this partition and I_1 we get b' and E' such that $\langle a'_\alpha \cdot b' : \alpha \in E' \rangle$ is an infinite partition of $A \upharpoonright b'$ of minimum size consisting of elements of I_1 . Thus $\sum_{\alpha \in E'} (a'_\alpha \cdot b') = b'$ and $\sum_{\alpha < \lambda} a'_\alpha = 1$. Choose $\alpha < \lambda$ such that $a'_\alpha = a_\beta \cdot b$ for some β . Then $0 \neq a'_\alpha \cdot b' = a_\alpha \cdot b \cdot b' \in I_0 \cap I_1$, contradiction. \square

Problem 8. Is it true that for all infinite BAs A, B one has

$$\mathfrak{a}(A \oplus B) = \min{\{\mathfrak{a}(A), \mathfrak{a}(B)\}}$$
?

This problem is still open, but there are several partial results concerning it.

?Kurilić [17] showed that $\omega \leq \min\{\mathfrak{a}(A),\mathfrak{a}(B),\mathfrak{p}(A),\mathfrak{p}(B)\leq \mathfrak{a}(A\oplus B)$

However note that Fact 3.3 in that paper is false; a counter example is given by setting each $K_i = \{i\}$.

In Santos [23] the following is shown:

$$? \min \{ \min \{ \mathfrak{a}(A), \mathfrak{a}(B) \}, \max \{ \mathfrak{p}(A), \mathfrak{p}(B) \} \} \leq \mathfrak{a}(A \oplus B).$$

In Santos [25] the following is shown. If A and B are homogeneous BAs, then

?
$$\min\{\mathfrak{a}(A),\mathfrak{a}(B),\max\{\mathfrak{s}(A),\mathfrak{s}(B)\}\} \leq \mathfrak{a}(A \oplus B).$$

?If $\omega_1 \leq \mathfrak{a}(A), \mathfrak{a}(B)$, then

$$\min\{\mathfrak{a}(A,\mathfrak{a}(B),\max\{\mathfrak{b}(A),\mathfrak{b}(B)\}\}\leq \mathfrak{a}(A\oplus B).$$

Problem 37. Does $A \leq_s B$ imply that $tow_{spect}(A) \subseteq tow_{spect}(B)$ or $tow(B) \leq tow(A)$? ?This was answered in part positively by Santos [23].

Problem 38. Are there BAs A, B such that $A \leq_m B$ and tow(B) < tow(A)?

?This was answered positively by Santos [23].

Problem 44. Does $A \leq_s B$ imply that $\mathfrak{p}_{\text{spect}}(A) \subseteq \mathfrak{p}_{\text{spect}}(B)$? ?This was answered in part by Santos [13].

Problem 45. Are there BAs A, B such that $A \leq_m B$ and $\mathfrak{p}(B) < \mathfrak{p}(A)$?

? This was answered positively by Santos [23].

Problem 46. Is it true that for all infinite $BAs\ A, B$ we have $\mathfrak{p}(A \oplus B) = \min\{\mathfrak{p}(A), \mathfrak{p}(B)\}$? This was answered positively by Santos [23]. We give his argument here.

Proposition 4. For all infinite BAs A, B we have $\mathfrak{p}(A \oplus B) = \min{\{\mathfrak{p}(A),\mathfrak{p}(B)\}}$

Proof. \leq is clear. For \geq , assume that $X \subseteq A \oplus B$, $\prod X = 0$, and $\forall F \in [X]^{\leq \omega} [\prod F \neq 0]$, with $|X| = \mathfrak{p}(A \times B) < \min\{\mathfrak{p}(A), \mathfrak{p}(B)\}$. For each $x \in X$ write $x = \sum_{i \in m_x} (a_{ix} \cdot b_{ix})$, with each $a_{ix} \in A$ and each $b_{ix} \in B$. For each $F \in [X]^{\leq \omega}$ let

$$C_F = \left\{ f \in \prod_{x \in X} m_x : \prod_{x \in F} (a_{f(x),x} \cdot b_{f(x)x}) \right\} \neq 0.$$

We claim that each C_F is nonempty. For,

$$0 \neq \prod F = \prod_{x \in F} \sum_{i \in m_x} (a_{ix} \cdot b_{ix}) = \sum_{f \in \prod_{x \in F} m_x} \left(\prod_{x \in F} (a_{f(x)x} \cdot b_{f(x)x}) \right),$$

so there is an $f \in \prod_{x \in F} m_x$ such that $\prod_{x \in F} (a_{f(x)x} \cdot b_{f(x)x}) \neq 0$. Thus any extension of f to a member of $\prod_{x \in X} m_x$ is in C_f . So C_f is nonempty.

Now each C_f is closed in $\prod_{xinX} m_x$. For, suppose that $f \in \prod_{x \in X} m_x \setminus C_F$. Thus $\prod_{x \in F} (a_{f(x)x} \cdot b_{f(x))x}) = 0$. Then f is in the open set $\{g \in \prod_{x \in X} m_x : g \upharpoonright F = f\}$, and this set is disjoint from C_F .

Now let $f \in \bigcap_{F \in [X]^{\leq \omega}} C_F$. Then $\forall F \in [X]^{\leq \omega} (\prod_{x \in F} (a_{f(x)x} \cdot b_{f(x)x})) \neq \emptyset$. Hence $\forall F \in [X]^{\leq \omega} [\prod_{x \in F} a_{f(x)x} \neq 0]$, so $\prod_{x \in X} a_{f((x)x} \neq 0$. Similarly $\prod_{x \in X} b_{f((x)x} \neq 0$. Hence

$$0 \neq \prod_{x \in X} a_{f((x)x} \cdot \prod_{x \in X} b_{f((x)x} \leq \prod X = 0.$$

contradiction. \Box

Problem 48. Is

 $\mathfrak{p}(A) = \min\{|X| : X \text{ is a maximal ramification set in } A\}$?

?This is solved negatively in Santos [23].

Problem 49. Is it consistent that $\mathfrak{p}(\mathscr{P}(\omega)/\text{fin} < \text{tow}(\mathscr{P}(\omega)/\text{fin}?)$

?This is answered positively by Malliaris, Shelah [17].

Problem 52. Is $\operatorname{spl}(A \oplus B) = \min \{ \operatorname{spl}(A), \operatorname{spl}(B) \}$?

?This is answered positively by Santos [23].

Problem 70. Are there BAs A, B such that $A \leq_{\sigma} B$ and $\pi(A) > \pi(B)$? ? This is answered negatively by Santos [23].

Problem 71. Are there BAs A, B such that $A \leq_s B$ and $\pi(A) > \pi(B)$? ? This is answered negatively by Santos [23].

Problem 86. Can one have Irr(A) < Irr(B) for $A \leq_s B$ or $A \leq_m (B)$?

This was answered negatively by Santos [23]. We give his argument bere.

Proposition 5. Let A and B be infinite BAs. Suppose that $A \leq_s B$, Then Irr(A) = Irr(B).

Proof. Clearly $irr(A) \leq Irr(B)$. By Proposition 2.29 of Monk [14], there are ideals I_0, I_1 of A such that $I_0 \cap I_1 = \{0\}$ and $B \cong (A/I_0) \times (A/I_1)$. By Theorem 8.4 of Monk [14], $Irr(B) = \max\{Irr(A/I_0), Irr(A/I_1)\}$. Wlog $Irr(B) = Irr(A/I_0)$.

Case 1. $\operatorname{Irr}(A/I_0) = \kappa^+$ for some infinite κ . Let $\langle [a_{\alpha}]_{I_0} : a < \kappa^+ \rangle$ be an irredundant system in A/I_0 . Clearly $\langle a_{\alpha} : a < \kappa^+ \rangle$ is irredundent. Hence $\kappa^+ \leq \operatorname{Irr}(A)$.

Case 2, $\operatorname{Irr}(A/I_0)$ is a limit cardinal. Take any infinite $\kappa^+ < \operatorname{Irr}(A/I_0)$. As in Case 1, $\kappa^+ \leq \operatorname{Irr}(A)$. Hence $\operatorname{irr}(A/I_0) \leq \operatorname{Irr}(A)$.

Thus in any case, $Irr(A/I_0) \leq Irr(A)$.

Problem 90. Is $Irr_{mm}(A) = \pi(A)$ for every infinite BA A?

This is answered consistently negatively by Kunen http://arxiv.org/1307.3533 Page 383. Theorem 11.20 is false.

Problem 126. Is there an atomless BA A such that $s_{mm}(A) < i(A)$?

?This is answered positively consistently by Cancino, J.; Guzman.O.; Miller, A.

Problem 149. What is the exact place of hd^{id}_{mm} among the other cardinal functions? The following result shows that hd^{id}_{mm} is trivial.

Proposition 5. $\forall A[\operatorname{hd}_{mm}^{id}(A) = \omega].$

Proof. Let $\langle b_n : n \in \omega \rangle$ be a partition in \overline{A} . Define

$$I_n = \{ a \in A : \forall m < n[a \cdot b_m = 0] \}$$

Clearly $I_n \supseteq I_p$ if n < p. Suppose that $0 \neq a \in \bigcap_{n \in \omega} I_n$. Choose $n \in \omega$ such that $a \cdot b_n \neq 0$ and choose $c \in A^+$ such that $c \leq a \cdot b_n$. Now $c \in I_{n+1}$, so $c \cdot b_n = 0$, contradiction. Hence $\bigcap_{n \in \omega} I_n = 0$. Hence $\operatorname{hd}_{mm}^{id}(A) = \omega$.

Problem 156. Is $\operatorname{Inc}_{\operatorname{spect}}^{\operatorname{tree}}(\mathscr{P}(\kappa)) = \{\kappa, 2^{\kappa}\}$?

Campero-Arena, G.; Cancino, J; Hrusak, M.; Miranda-Perea, F. E. showed that consistently the answer is negative.

Problem 158. Is it consistent that $\operatorname{Inc}_{mm}(\mathscr{P}(\omega)/\operatorname{fin}) \neq \operatorname{Inc}_{mm}^{\operatorname{tree}}(\mathscr{P}(\omega)/\operatorname{fin})$?

Campero-Arena, G.; Cancino, J; Hrusak, M.; Miranda-Perea, F. E. showed that consistently the answer is yes.