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Abstract A rower in a Boolean algebra (BA) is a strictly increasing sequence, of
regular order type, of elements of the algebra different from 1 but with sum 1. A
pseudo-tree is a partially ordered set 7 such that theset T [ t={se T:s <t} is
linearly ordered for every r € T. If that set is well-ordered, then 7 is a tree. For any
pseudo-tree 7', the BA Treealg(7) is the algebra of subsets of 7" generated by all of
thesets T 1t = {s € T : t < s}. The main theorem of this note is a characterization in
tree terms of when Treealg(7) has a tower of order type « (given in advance).
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For background on these notions see Monk [7, 8], Koppelberg and Monk [4], and
Heindorf [2]. For general notation and reference see Koppelberg [3], Kunen [5],
and Monk [6]. Pseudo-trees generalize both linearly ordered sets and trees. A BA is
isomorphic to a pseudo-tree algebra iff it is isomorphic to a subalgebra of an interval
algebras. Towers exist in any atomless BA, and the author has considered this case in
several articles. There is a tree algebra with no towers. Perhaps the easiest example
of such is the tree 7 that has a single root r, and w, immediate successors of the root,
with no other elements. For this 7, Treealg(7') is isomorphic to the BA of finite and
cofinite subsets of ), and it is easy to see that this algebra has no towers. It is also
true that there are linear orders whose associated interval algebras have no towers.
These are somewhat harder to construct, so we give the details. The construction
depends on the following characterization of existence of towers in interval algebras,
which is a slight generalization of a result in Monk [7].
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Theorem 1 Suppose that L is an infinite linear order with first element 0, and « is a
regular cardinal. Then the following conditions are equivalent.

(i) Intalg(L) has a tower of order type k.
(i) One of the following holds:

(a) Thereisac € L and a strictly decreasing sequence (a, : a < k) of elements
of (c, 00) coinitial with c.

(b) There is a ¢ € LU {00} and a strictly increasing sequence {(a, : o < k) of
elements of [0, ¢) cofinal in c.

(c) There exist a strictly increasing sequence (b, : a < k) of elements of L and a
strictly decreasing sequence (c, : @ < k) of elements of L such thatb, < cg
foralla, B < k, and there is no element d € L such thatb, < d < cg for all
o, B < k.

Proof (i))=(i): Assume (ii)(a). Then ([0,c)U[a,,00):a < k) is a tower in
Intalg(L).
Assume (ii)(b). Then ([0, a,) U [c,00) : § < k) is a tower in Intalg(L).
Assume (ii)(c). Then ([0, b,) U [c,, 00) : @ < k) is a tower in Intalg(L).
(1)=(ii): Let (a, : @ < k) be a tower in Intalg(L). Write
a, =[bg.c‘(’,)u...u[b°’ 1) »

my,—1°

where 0 <bg <cg<---<bp | <¢, | <oc. Clearly bj > bl if @ < B <k. If
each b{} # 0, then clearly 0 is the g.1.b. of (b§ : @ < «), and (ii)(a) holds with ¢ = 0.
Hence we may assume that b% =0 for all @ < «. Clearly & <cf) if @ < < k. If
sup, ., ¢; = oc, then (ii)(b) holds for oc and some subsequence of (c{} : @ < k). So we

may assume that sup, _, ¢j # oc. We now consider several cases.

Case 1 There is an & < k such that ¢/, = cg for all 8 € [a, k). Clearly then there is a
subsequence of (b : @ < «) which gives (ii)(a).

Case 2 There is no « as in Case 1, but sup,, _, ¢j exists. This gives (ii)(b).

Case 3 There is no « as in Case 1, but sup, _, ¢j does not exist. Clearly then there is
a subsequence of (b{ : « < «) which gives (ii)(c). o

Using this theorem, we give an example of an infinite linear order whose interval
algebra does not have any towers. The construction depends on some more-or-less
standard notation, which we now introduce.

A gap in a linear order L is a pair (A, B) of nonempty subsets of L such that
L =AUB,Vae AVb € B(a < b), A has no largest element, and B has no smallest
element. The lower character of such a gap is the least cardinality of a subset of A
cofinal in A, and similarly for upper character; these are both regular cardinals. The
character of (M, N) is the pair of these characters.

Example 2 There is an infinite linear order L such that Intalg(L) does not have a
tower.
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Proof We start out with a dense linear order M such that every point of M has
character (w,, @), the gaps of M have characters (o, ;) or (w;, ®), M has no first or
last element, and M has cofinality and coinitiality w,. The existence of M follows from
a theorem in Hausdorff [1]. We replace each element of M by »* + w, put » to the left
of the result, and w* to the right. For definiteness let @ and b be one-one functions
with domain o such that rng(a) Nrng(h) = ¥ and (rng(a) Urng(h)) N (M x Z) = (.
Let

L =rng(a) Urng(h) U (M x Z),

and form,n € w, p,q € Z,and ¢, d € M define

a,, < a, iff m < n;
bn<b, iff n<m;
ay < (¢, p);

(c,p) <(c,q) iff p<gq;
(c,p) < (d,q)iff ¢<d, whenc#d;
ay < by

(c, P) < bm-

Clearly this gives a linear order, and the elements do not have infinite characters.
Thus it suffices by the preceding theorem to show that the characters of the gaps of
L are (w, w)) or (w, w).

Suppose that (A, B) is a gap in L. Then there are these possibilities:

Case 1l A = {a, : n € w}. Then the character of (A, B) is (w, w)).

Case 2 There is a ¢ € M such that A = {x € L : x < (¢, m) for every m € Z}. Then
the character of (A, B) is (v, w).

Case 3 Thereisace Msuchthat A={xe L:x < (d,m) foreveryd > c¢ and every
m € Z). Then the character of (A, B) is (w, ).

Case 4 There is a gap (C, D) in M such that A = {(¢c,m) : c e C, m € Z} Urng(a).
Then the character of (A, B) is the same as the character of (C, D), and thusis (w, w;)
or (wy, w).

Case5 A=|{xe L:x < b, forall m € w}. Then the character of (A, B) is (v, w).
u}

Now we turn to trees and pseudo-trees. The main result of this note depends upon
the following well-known fact.

Lemma 3 Suppose that « is an uncountable regular cardinal and T is a tree of height
k with each level finite. Then T has a branch of order type k.
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Proof Assume the hypotheses. Give each Lev,(7) the discrete topology, and con-
sider the product space [],_, Lev, (7). Itis compact. For each finite nonempty F C «
let

o <K

Cp= ife l_[Leva(T) Vo, B e Fla <= fla)< f(B)]}.
Each such set is closed. For if f ¢ Cp, then there exist «, 8 € F such that o < g
and f(a) £ f(B). The set U & {ge [, Leva(T) : gl@) = f(a) and g(B) = f(ﬁ)}
is then an open neighborhood of f which is disjoint from Cp.

Each Cj is nonempty. For let « be the largest member of F, choose a € Lev, (7).,
and for each g € Fwith 8 <« let f(B) be the unique member of Levy(7) which is <
a. Extend fin any way to a member of [],_,_Lev, (7). Then f € Cp.

If F is a nonempty finite set of nonempty finite subsets of «, then (¢ Cy is
nonempty, since C| j¢ is a subset of each of them.

Hence by compactness, the intersection of all sets Cr is nonempty. O

Now we turn to the main theorem. Since for any pseudo-tree 7 there is another
pseudo-tree § with a minimum element such that Treealg(7) = Treealg(S), we
restrict ourselves to pseudo-trees with a minimum element.

Theorem 4 Let k be a regular cardinal and let T be a pseudo-tree with a minimum
element. Then the following conditions are equivalent.

(i) Treealg(T) has a tower (a, : « < k).

(ii) There is a sequence (x, : a < k) of elements of T such that x, < xg whenever
a < B < k, either the sequence is strictly increasing or has a constant value, and
one of the following conditions holds:

(a) (x4 :a < k) is strictly increasing, and there is a finite set F of incomparable
elements of T such that x, < v for every v € F, and Yw € T[Va < k(x, <
w)=3Jve Flv<w)l

(b) There exist countable sets Y, Z and for each y € Y a strictly decreasing
sequence (t,, : « < k) of elements of T, such that Z C T, and the following
conditions hold:

(I) xp <ty foreachy e Yandalla,p < k.
(II) xp < zforeach z € Z and each B < k.
(III)  The members of Z are pairwise incomparable.
(IV) If y and z are distinct members of Y and o, p < k, then t,, and t_g are
incomparable.
(V) IfyeY,a <k,and z € Z, then t,, and z are incomparable.
(VI) Ifk is uncountable, then Y and Z are finite, and Y is nonempty.
(VII) If k is uncountable, then there is a y € Y such that —3v € TV, B <
k[xp < v <ty
(VIII) Ifk is uncountable and xg < v for all B < «, then one of the following
holds:

(A) Thereisaz € Z such that z < v.
(B) Thereisay e Y suchthat v < t,, for all a < k.
(C) Thereexist ye Yand a < k suchthatt,, <v.
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(IX) Ifk is uncountable, xg < v for all B < k, and there is a 'y € Y such that
v <y, foralla < k, thenthereisay € Y suchthatv < t,, forall « < «,
while there is no w such thatv < w < t,, foralla < k.

(X) Ifk =wandY = W, then Z is infinite.

(XI) Ifk = wand F is a finite set of elements of T each greater than each xg
for B < k, then one of the following conditions holds:

(A) Thereisans € Z such thatVx € F(x £ s).
(B) Thereexist ye Yandl € wsuchthatVx € F(x £t,).

(XII) Ifk =w, x5 < w foreach B < k, and F is a finite subset of (T 1+ w)\{w},
then one of the following conditions holds:
(A) Thereisans € Z such that w and s are comparable and Vx € F(x #£
s).
(B) There exist y € Y and | € w such that w and t,; are comparable and
Vx e F(x £ty).

Proof (1)=(ii): Suppose that (a, : @ < «) is a tower in Treealg(7). For each a < «
write a, in full normal form:

ay = Ule.M,, €ar;
ear = (T 1 O\ Usen, (T 1 9):

where M, is a finite subset of 7', N,, is a finite set of pairwise incomparable elements
of (T + D\{t}, exr Ney =Wlort #r,andt ¢ N, fort #r.
We now break the rest of the proof that (i)=(ii) into these cases:

Case 1. There is an element r € T such thatr ¢ a, foralla < k.
Subcase 1.1. k is uncountable.

Subcase 1.2. k = w.

Case 2.¥r € T3a < k[r € a,].

Case 1 There is an element r € T such that r ¢ a, for all @ < k. Let xg = r for all
B <k.

(1) fa <kandr <v € a,,thenthereisare M, suchthatr <t < v.

For, chooset € M, such that v € e,,. Then ¢t < v. Since also r < v, it follows that r and
r are comparable. If t < r, thenr € [t,v] € ¢, C a,, contradiction. Hence r < t, and
(1) holds.

(2) Thereexista <k andte M, withr < 1.

In fact, choose @ < « such that (T tr)Na, #W.Says e (Tt r)Na,. Thenr < se
a,,so by (1), thereisar € M, such thatr < r.

We may assume that actually there is a r € M, such that r < r. For each o < « let
M,={teM, :r<t).

(3) Ifa <p <kandte M, thenthereis ans € My suchthats <.

In fact, the hypothesis implies that € a, € ag. So (3) follows from (1).
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Now for each o < k. let M, be the set of all minimal elements of M,,.
(4) Ifa <p <wandie M, then there is a unique s € M} such thats < 1.

This is clear from (3).
For each ¢ < « and r € M|, we define a function f,, : k\a — T by defining f,,(8)
to be the s € M} such that s <1, for every f € k\a. Clearly if @ < < y <« then

fur(¥) < fur(B). Let

Y ={(a.t) ;¢ <k, t € M, f, 1snoteventually constant} and
Z ={(a,0):a <k, t € M, fy is eventually constant}.

For (a,t) € Z, let 5,, be the eventual value of f,,.
(5) If(a,0.(B.s) € Z and s, # sp, then s, and s, are incomparable.

For choose y > a, § so that fu(y) =sar and fgs(y) = sps. Then so and sgs both
belong to M7, and so they are incomparable.
We now define

(a,5)=(B.0) iff (a,5), (8.0 €Yand3Iy > a, BYS > y[fus(8) = fu(d)].
Clearly = is an equivalence relation on Y. Clearly

(6) If (o, 5) # (B.0), then ¥y > a, B[ fus(¥) # fa(¥)].

Let C C Y choose one element from each equivalence class. For each («,s) € C let
(Vas(8) : 8 < k) be a strictly increasing sequence of ordinals less than « such that o <
Yas(0) and ( fus(yas(8)) : 8 < k) is strictly decreasing.

(7) If (a,s), (B, 1 are distinct members of C and §,¢ < k, then f, (ys(8)) and
fpi(ypi(e)) are incomparable.

For, let & = max(yus(8), yp:(€)). Suppose that fus(Ves(8)) < fp:(ypi(e)). Then fus(0) <
fas(Vas(8)) < fa(ype(e)) and also fp(0) < fp(ypi(e)), sO fus(P) and fz(0) are com-
parable. Since they are both in M}, they must be equal. But then («,s) = (8. 1),
contradiction.

(8) If(a,s) e Cand (B, 1) € Z,and if § < k, then f,,(8) and s, are incomparable.

This condition is obvious.
Subcase 1.1 « is uncountable.

We may assume that there is a natural number m such that |M))| = m for all« < k.
For any @ < k,let M) be a subset of M, satisfying the following conditions:

(a) Ifte M) then (a,1) € Z.
(b) Ifrand u are distinct elements of M, then s, # Squ-

(c) Ifte M) and (a,1) € Z, then thereisa u € M) such that sy, = Squ.

"

Again we may assume that all of these sets M), have the same size, say n. Now if t €
M, then there is a f; < k such that for £ (k\B) is constant. Letting & = sup;cyy Br
we then see that M = M/ forall y € k\a. Thus we may assume that all sets M’ are

equal.
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©) M| <m.

In fact, suppose that | Mj'|=m. Then My’ = M. It follows that (7"t N\ Uy (T 1 5)
is a nonempty set disjoint from each a,. It is nonempty since r is a member of it. If
uea, N (T 1\ UseM;,"(T t5), by (1) choose r € M,, such thatr <t <u.Sot e M),
and so we can choose s € M/ such thats < . Hence s € M, and this contradicts the
choice of u. So (9) holds.

(10) For the equivalence relation = above, there are at most m — |M)’| equivalence
classes.

For, suppose that |C| > m — |M{'|. Choose y greater than each y,,(0) such that
(a,s) € C for some s. Then {f,s(y):(a,s5) € C}U My is a set of more than m
elements of M'y’. contradiction.

(11) Fa,s) € C-3wVs < k[r < v < fos(Vas(8))].

For, suppose not. For every («,s) € C choose v, such that Vé < «[r < v, <
fus(Vas(8))]. Choose ¢ < k such that

ag N (TTr)\( U T tewv Y (TTw)) # 0,

(@.5)eC weMy

and let « be a member of this set. By (1), choose v € M, such that r < v < u. Then
choose w € M; such that w < v. Now w < v <u, so w ¢ M. Hence (¢, w) €Y.
Choose (a,s) € C such that (¢, w) = (@, s). Choose ¥ > ¢, @ such that f,,(}) =
fus(¥). Then

Vgs = fas()’as(l//)) = fy:w()’us(]//)) =w=u,
contradiction. Thus (11) holds.

(12) Ifr < v, then one of the following holds:

(a) Thereisans € M such thats < v.
(b) Thereisan («,s) € Csuchthat v < f,(ys(8)) forall § < k.
(c) There exist (o,s) € C and é§ < « such that f,(y,s(8)) < v.

For, suppose that r < v and (a) fails. Choose @ < « such that

aaﬂ((TTv)\U(TTS))#V’-

S€ .M(',"

Say that u is in this set. By (1), choose x € M, such that x < u. Choose x' € M/, such
that x’ < x. We claim that f,, is not eventually constant. For, suppose it is, with
value s taken on eventually. Then s € M{’, and s < x" < x < u, contradiction. Thus
the claim holds, and (e, x') € Y. Choose (B,s) € C such that («, x') = (8,s). Then
choose y such that f,(8) = f4,(8) forall § = y. Thus for any § > y we have

Fos(Vps(8) = far(yps(®) <X <x <u.

Since also v < u, it follows that fg(ys(8)) and v are comparable. If fz(y4(8)) < v
for some 6 < «, this gives (c). If v < fp,(yps(8)) forall § < «, we get (b).
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(13) Ifr < v and there is an (¢, 5) € C such that v < f,(y,(8)) for all § < k, then
there is a (8,1) € C such that v < fg(y(8)) for all § < «, while there is no w
such that v < w < fg,(ys(8)) for all § < «.

Suppose that (13) fails, and let
D ={(a,5) € C:V8 < k[v < fas(Vas(5))]}.

Since (13) fails, for each (a,s) € D there is a wys such that V§ < k[v < wes <
fas(Vas(8))]. Also, let E = {x € M’ : v < x}. Choose @ < « such that

aaﬂ(TTv)\( U (TTwa:)UU(TTx))

(a.5)eD xe E

is nonempty, and let u be a member of this set. By arguments above, one of the
following holds:

(a) There is an x € M’ such that x < u. Since also v < u, it follows that x and v
are comparable. If v < x, then x € E, giving a contradiction. If x < v, (8) is
contradicted.

(b) Thereexistan («,s) € Cand § < « such that fo;(yes(8)) < u. Again, fu(Vas(8))
and v are comparable. If f,,(y.s(8)) < v, the hypothesis of (13) is contradicted.
So v < fus(Vas(8)), and in fact this is true for all § < . So («,s) € D, and again
we have a contradiction. So (13) holds.

Subcase 1.2 k = w

Clearly

(14) Y and Z are countable.
(15) IfY =@, then Z is infinite.

For, suppose that Y = ¢ but Z is finite. Choose i € w such that
an(T1r\ |J (T1s) #0.
(jseZ

Say u is a member of this set. By (1), choose r € M; such thatr <t <u. Sot € M,.
Letr € M with¢ <t Then (i,f) € Z ands;y <1 <t < u, contradiction.

(16) IfY isfinite and nonempty, and Z is finite, then 3(i, ) € Y-JwWl € o[r < v <
fivie()].

For, assume otherwise. So for each (i,¢) € Y choose v; such that V/ € w[r < v, <
fi(yi(1)). Choose i € w such that

aiﬁ(TT")\(U (Tt v)U U (TTSjs)) # 0.

(i.HeY (js)eZ

Let w be a member of this set, and by (1) choose r € M; such that r < ¢ < w. Thus
te M. Choose ' € M/ such that t' < 1. Now there are two possibilities.

(a) (i, f)e Z.Thens;, <t <t < w, contradiction.
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(b) (i,f)eY.Say (i,t') = (j,s) € C. Thenforsome [, vy < fi(l) = fir() =¥ <t <
w, contradiction.

So (16) holds.

(17) Ifr < u then one of the following holds:

(a) Thereisa (i,f) € Z such thats; and u are comparable.
(b) fi() < uforsome (j.s) € Cand!/ € w.
(c) Thereisa(j.s) € Csuchthat u < f;(/) foralll € w.

To prove this, choosei € w and v € a; N (T 1 u). By (1), chooset € M;withr <t <wv.
Sot e M. Choose t' € M} such that ' < r. Again there are two possibilities.

(I) (,f)e Z. Thensyy <t <t <vandu < v,so (a) holds.
(II) (i,f) e Y. Choose (}.s) € C such that (i,r') = (j,s). Then for some /, fj(/) =
fir(l) =t <vand alsou < v, so (b) or (c) holds.

(18) Suppose that F is a finite subset of (7" 1 r)\{r}. Then one of the following
conditions holds:

(a) Thereisan (i, t) € Z such that Vx € F(x £ s;).
(b) There exist (j.s) € Cand/ € wsuch thatVx € F(x £ fj(0)).

For, suppose not. Choose i € w and

uean (Tt r)\U(TTx).

xeF

By (1) we gett € M; withr < t < u. This easily gives a r € M/ with t' <. There are
two possibilities.

(I) (i,f) e Z. Since (a) fails, choose x € F such that x <s;. Then x <s; < u,
contradiction.

(I1) (i, ') e Y. Choose (s,t) € C such that (i,t') = (s, 7). Then for some [ we have
fir () = fi..(). Since (b) fails, choose x € F such that x < f (/). Then x <
fu) = fir(I) < u, contradiction.

(19) Suppose that r < w and F is a finite subset of (7" 1 w)\{w}. Then one of the
following conditions holds:

(a) Thereis an (i, f) € Z such that w and s;, are comparable and Vx € F(x #£
Sit)-

(b) Thereexist (j,5) € Cand!/ € wsuch that fj(/) and w are comparable and
Vxe F(x £ fi().

The proof is similar to that of (18), and will be omitted.
Note that C and {so : t € M’} play the role of ¥ and Z mentioned in the theorem.

Case2 Vr € T3« < k[r € a,). Let r be the minimum element of 7. We may assume
thatr € a, for all& < k. Hencer € M, foralla < k. Note that N, # @, forall ¢ < «.

(20) Ifa < pandt e Ng,, then thereisans € N,, such thats <.

Otherwise Vs € N,,(s £ 1),s0t € ¢, C a, C ag, contradiction.
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For each a < « let P, = {(a,s) : s € N, }. Define (a,s) < (8.1 iff (a,s) € P,,
(B,s) € Pg, a < B, and s < t. This gives an ordinary tree of height x with P, the
set of elements of level «, for each @ < k. Then there is a branch {(«,s,) : @ < k), by
Lemma 1 if « is uncountable, and by Konig’s tree lemma if k = w.

(21) (s, : @ < k) is not eventually constant.

Suppose it is eventually constant with eventual value r. By the initial assumption of
this case, choose @ < « such that t € a,. Take p > o with sy =1. Then t € Ng, Nag,
contradiction.

By (21), let (y(@) : @ < k) be a strictly increasing sequence of ordinals less than
such that (s, ) : @ < k) is strictly increasing.

Now let S ={te T :Va < k[s, < t]}. If there is a finite set V' of incomparable
elements of § such that Vw € $3v € V[v < w], then (ii)(a) holds. So suppose there
is no such set:

(22) There does not exist a finite set V' of incomparable elements of § such that
Yw e S3v e Vv < wl].

In particular, Sis nonempty. Then by the assumption of case 2, thereisana < k such
that a, N § # ¥. Hence we may assume that Vo < k[a, N S # #].

(23) Ifa <k andt € a, NS, then there is a u such thatt € ¢,,, u <t,and u € SN
M,.

For, take any u € M, such that ¢ € ¢,,. Then u <t. Take any > «. since t € S,
also sy < 1. So u and sy are comparable. If u < sg, then sy € [u, 1] € ey, € a, € ap,
contradiction. So sz < u. Since f is arbitrary, u € S, as desired.

(24) Va <k[SN M, #7].

This is true by (23), since Vo < «[a, N S # @]
Now for each @ < « let
b, = U Cot-

teSNM,,
Note that each b, is a subset of S. Now
(25) Ifa < pB.thenb, C bg.

For, suppose that u € b,. So also u € a, € ag. Hence by (23), u € eg, for some v €
SN Mﬁ. Soue bﬂ.

(26) Vo < k3B € (a,k)[by C byl

Suppose to the contrary that & < k and V8 € (o, k)[b, = bg]. Let P be the set of
all minimal elements of S N M,. By (22), choose w € S such that Vv € P[v £ w]. By
the assumption of case 2, choose § > « such that w € as. Now by (23) choose x such
thatx < w, w € e5,,and x € SN My = SN M,. Choose y € P such that y < x. Then
y < x < w, contradiction. So (26) holds.

Let (§(o) : @ < k) be astrictly increasing sequence of ordinals less than « such that
(be) : @ < k) is strictly increasing.
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Let 7" be the tree consisting of § together with a new minimum z, with the induced
ordering from 7. Note that b, € Treealg(7") for every « < «, and for all « < «,
2 ¢b,.

(27) (bt @ < k) is a tower in Treealg(7").

To prove this, suppose that

=T tw\ | J(T'tn

xeW

with w € 7", W a finite set of incomparable elements of (7t w)\ {w}. Note that 7" 1
x =T t xforallx € W. We want to find ¢ < « such that cN bg(,) # . Now W C §,
so by (22) choose v € § such that Vx € W[x £ v]. Choose § < « such that v € a;. By
(23), choose y so that v € €5, y <v,and y € SN M;. If w=2z,then yeb;Nc,as
desired. Hence suppose that z < w. So we Sand 7"t w =T 1 w. Hence we can
choose ¢ and p € a, N c. By (23), choose u such that p € e,,,u < p,andu e SN M,.
Hence p € b, N c. Thus (27) holds.
We can now apply Case 1 to finish the proof of (ii).
(i1)=(i): We consider several cases.

Case 1 (ii)(a) holds. For each o < « let

au = [T\(T 1t x)1U [ J(T 1 y).

yeF

Clearly (a, : @ < k) is strictly increasing. To show that it is a tower, it suffices to take
an element b of the form

b=(Ttw\ [ J(T12),

zeW

where W is a finite incomparable family of elements of (7" t w)\{w}, and find ¢ < «
such that a, Nb # W. If x, # w for some &« < «, then w € a, N b. Suppose that x, <
w foralla < k. Then by (ii)(a) choose y € Fsuchthat y < w.Thusbh < ay, as desired.

Case 2 (ii)(a) fails, and « is uncountable. For each o < « let

g =[T\(T 1 x)1U [ J(T 1 1) U (T t v);

yeY veZ

this gives a tower of order type «. In fact, (a, : @ < k) is clearly strictly increasing.
Now take a nonzero element b as above. If x, £ w for some o < «, clearly w € b N
a,. Hence we may assume that x, < w for all @ < k. Suppose that x, = w for all
a < k. By (ii)(b)(VII), choose y € Y such that =3v € TV8, B < k[xg < v < f,5]. Thus
for every z € W we can choose «. < k such that z £1,, . Let f = max(a; : z € W).
Thus forall z e W,z £ 1,5. So 1,5 € b Nag.

Since (x, :a < k) is strictly increasing or constant, the only other alternative
here is that x, < w for all @ < k, so we assume this. If (ii)(b)(VIII)(A) holds, then
b C ap. If (i1)(b)(VIII)(C) holds for y € Y, @ < «, then b C a,. Suppose now that
(ii)(b)(VIII)B) holds. By (ii)(b)(IX)) choose y € Y such that V§ < x[w < 1,5] and
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there is no v such that V6 < k[w < v < f,5]. Then for each z € W there is a §, <«
such that z # 1,5.. Let y =sup,.yd.. ThenVz € W[z £1¢,,].Sot,, € b Na,.
Hence we have shown that {(a, : @ < k) is a tower.

Case3 « = w and Y and Z are both infinite. Write Y = {y;:iew}jand Z = {s; : i €
w}. For eachi € w let

a; =[T\(T + x)1U [ J(T t 1, ) U (T 1 5.

Jj=i j=i
Clearly (a; : i € w) is strictly increasing. To show that it is a tower, suppose that b is
as above.
First suppose that w = x; foreach i € w. By (ii)(b)(XI), there are two possibilities.

(a) Thereis ani < w such that Vx € W(x £ s;). Then s; € a; N b.
(b) There exist an i < w and j € w such that Vx € W(x £ ¢,,j). Then t,; € ar N b,
where k = max(i, j).

Second suppose that x; < w for alli € w. By (ii)(b)(XII) there are two possibilities.

(a) There is an i € w such that s; and w are comparable, and Vx € W(x £s,). If
si<w,thenweaNb.If w<s;, thens; ea;Nb.

(b) There exist i < and j € w such that w and ¢, ; are comparable, and Vx
W(x £1t,7). If t,,; <w, then w € apNb, with k= max(i, j). If w <1, ;, then
ty,j € ap N b, with k = max(i, j).

Case 4 k = w, Y isfinite and nonempty and Z infinite, with notation as above, define

a; = [T\(T t x)1U | J(T t ) U J(T 1 5.

yeY j=i
Case S k¥ =w, Y = and Z infinite, with notation as above, define

a; = [T\(T + x)]U| J(T 1 5.

j=i
Case 6 k = w, Y is finite and nonempty and Z finite. Define

a; =[T\(T + x)1U | J(T t 6,0 U J(T 1 9.
yeY seZ
a

Now we specialize this result to trees. Since in a tree there are no infinite decreasing
chains, the set Y in the theorem must be empty, and the conditions (and proof)
simplify to give the following corollary.

Corollary 5 Let T be an infinite tree. Then the following conditions are equivalent:

(i) Treealg(T) has a tower.
(i) One of the following conditions holds:

(a) T has an element with exactly @ immediate successors.
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(b) T has a chain of countable limit length with at most « immediate successors.
(c) For some uncountable regular cardinal k, T has an chain of order type «
with only finitely many immediate successors.

Recall that for any BA A, tpea(A) is the collection of all cardinalities of towers of
A. The following theorem gives a tree construction of a result from Monk [8].

Theorem 6 If K is a nonempty set of regular cardinals, then there is an atomless tree
algebra A such that tpea(A) = K.

Proof Let . be the smallest member of K. Let T, be the tree ““w;. For each un-
countable regular cardinal, let 7, be the tree determined by the following conditions.
T, has a unique root. 7, has height «. Each element of 7, and each initial chain of
T of limit ordinal type has exactly w; immediate successors. Now the tree desired
in the theorem is formed by adjoining a new root beneath the disjoint union of the
following trees: w; copies of T and, for each k € K\{A}, a copy of T,. By the above
theorems, 7 is as desired. O

Although these theorems are fairly definitive, they use unusual trees—trees that have
many elements directly above certain infinite chains. Let us call a tree T limit-normal
iff every initial chain of 7 of limit ordinal length has at most one immediate successor.
Concerning towers in such trees we have the following results.

Corollary 7 Suppose that T is a limit-normal tree with a single root. Then the following
conditions are equivalent:

(i) Treealg(T) has a tower.
(i) Treealg(T) has a tower of order type w.
(iii) T has an element with exactly o immediate successors or T has infinite height.

Corollary 8 Suppose that T is a limit-normal tree with a single root, with Treealg(T)
atomless. Then %o« (Treealg(T)) has the form [w, L),y for some i > w.
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