ハL

Maximal Irredundance and Maximal Ideal Independence in Boolean Algebras Author(s): J. Donald Monk
Source: The Journal of Symbolic Logic, Vol. 73, No. 1 (Mar., 2008), pp. 261-275
Published by: Association for Symbolic Logic
Stable URL: http://www.jstor.org/stable/27588629
Accessed: 26/09/2013 08:56

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Association for Symbolic Logic is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Symbolic Logic.

MAXIMAL IRREDUNDANCE AND MAXIMAL IDEAL INDEPENDENCE IN BOOLEAN ALGEBRAS

J. DONALD MONK

Introduction. Recall that a subset X of an algebra A is irredundant iff $x \notin$ $\langle X \backslash\{x\}\rangle$ for all $x \in X$, where $\langle X \backslash\{x\}\rangle$ is the subalgebra generated by $X \backslash\{x\}$. By Zorn's lemma there is always a maximal irredundant set in an algebra. This gives rise to a natural cardinal function $\operatorname{Irr}_{\mathrm{mm}}(A)=\min \{|X|: X$ is a maximal irredundant subset of $A\}$. The first half of this article is devoted to proving that there is an atomless Boolean algebra A of size 2^{ω} for which $\operatorname{Irr}_{\mathrm{mm}}(A)=\omega$.

A subset X of a BA A is ideal independent iff $x \notin\langle X \backslash\{x\}\rangle^{\text {id }}$ for all $x \in X$, where $\langle X \backslash\{x\}\rangle^{\text {id }}$ is the ideal generated by $X \backslash\{x\}$. Again, by Zorn's lemma there is always a maximal ideal independent subset of any Boolean algebra. We then consider two associated functions. A spectrum function

$$
\mathrm{s}_{\text {spect }}(A)=\{|X|: X \text { is a maximal ideal independent subset of } A\}
$$

and the least element of this set, $\mathrm{s}_{\mathrm{mm}}(A)$. We show that many sets of infinite cardinals can appear as $\mathrm{s}_{\text {spect }}(A)$. The relationship of s_{mm} to similar "continuum cardinals" is investigated. It is shown that it is relatively consistent that $\mathrm{s}_{\mathrm{mm}}(\mathfrak{P}(\omega) / \mathrm{fin})<2^{\omega}$.

We use the letter s here because of the relationship of ideal independence with the well-known cardinal invariant spread; see Monk [5]. Namely, $\sup \{|X|: X$ is ideal independent in $A\}$ is the same as the spread of the Stone space $\operatorname{Ult}(A)$; the spread of a topological space X is the supremum of cardinalities of discrete subspaces.

Notation. Our set-theoretical notation is standard, with some possible exceptions, as follows. limord is the class of all limit ordinals, and reg is the class of all regular cardinals. If α and β are ordinals, then $[\alpha, \beta]_{\text {card }}$ is the collection of all cardinals κ such that $\alpha \leq \kappa \leq \beta$; similarly $[\alpha, \beta]_{\text {reg }}$ for the collection of all regular cardinals in this interval; and similarly for other intervals (half open, rays, etc.).

We follow Koppelberg [2] for Boolean algebraic notation, and Monk [5] for more specialized notation concerning cardinal functions on $\operatorname{BAs} . \operatorname{Fr}(\kappa)$ is the free BA on κ generators. \bar{A} is the completion of A. In several places we use the following construction. Let $\left\langle A_{i}: i \in I\right\rangle$ be a system of BAs, with I infinite. The weak product $\prod_{i \in I}^{\mathrm{w}} A_{i}$ consists of all members x of the full product such that one of the two sets

$$
\left\{i \in I: x_{i} \neq 0\right\} \quad \text { or } \quad\left\{i \in I: x_{i} \neq 1\right\}
$$

Received February 3, 2007.
is finite; the corresponding set is then called the support of x, and is denoted by $\operatorname{supp}(x) ; x$ is called of type I or II respectively.
If L is a linear order, then $\operatorname{Intalg}(L)$ is the interval algebra over L (perhaps after adjoining a first element to L).

For some results concerning s_{mm} we assume known the definitions of some other "continuum cardinals"; see Monk [6].
§1. Irredundance. The background for consideration of $\operatorname{Irr}_{\mathrm{mm}}(A)$ is provided by the easy result of McKenzie, given as Proposition 4.23 in Koppelberg [2], that $\langle X\rangle$ is dense in A for any maximal irredundant subset X of A. Thus we have

Theorem 1.1. $\pi(A) \leq \operatorname{Irr}_{\mathrm{mm}}(A)$.
Here $\pi(A)$ is the smallest size of a dense subset of A.
Proposition 1.2. For any infinite cardinal κ, if A is a subalgebra of $\mathfrak{P}(\kappa)$ containing $\operatorname{Intalg}(\kappa)$, then $\operatorname{Irr}_{\mathrm{mm}}(A)=\kappa$.
Proof. \geq holds by Theorem 1.1, so we just need to exhibit a maximal irredundant set of size κ. Let

$$
X=\{[0, \alpha): 0<\alpha<\kappa\} .
$$

we claim that X is as desired. In fact, it is well-known and easy to see that X is irredundant.

Now suppose that $a \in A \backslash\langle X\rangle$; we want to show that $X \cup\{a\}$ is redundant. We may assume that $a \neq \emptyset, \kappa$. If $0 \notin a$, let α be the least member of a. Then $[0, \alpha+1) \backslash a=[0, \alpha)$, so that $[0, \alpha) \in\langle(X \cup\{a\}) \backslash\{[0, \alpha)\}\rangle$. If $0 \in a$, let α be the least member of $\kappa \backslash a$. Then $[0, \alpha+1) \cap a=[0, \alpha)$, leading to the same conclusion.
Thus we have examples of atomic BAs A such that $\operatorname{Irr}_{\mathrm{mm}}(A)=\pi(A)<\operatorname{Irr}(A)$. ($\operatorname{Irr}(A)$ is the supremum of cardinalities of irredundant subsets of A.)

Theorem 1.3. There is an atomless BA A such that $\operatorname{Irr}_{\mathrm{mm}}(A)=\omega=\pi(A)<$ $2^{\omega}=|A|$.

Proof. We construct A as a subalgebra of $\overline{\operatorname{Fr}(\omega)}$. Let $\left\langle x_{i}: i \in \omega\right\rangle$ be a system of free generators of $\operatorname{Fr}(\omega)$. Now we make some definitions, working in $\overline{\operatorname{Fr}(\omega)}$ (recall here that for any element x of a BA, x^{1} is x and x^{0} is $-x$):

$$
\begin{aligned}
N & =\left\{\varepsilon \in^{<\omega} 2: \operatorname{dmn}(\varepsilon)>0 \text { and } \varepsilon(\operatorname{dmn}(\varepsilon)-1)=1\right\}, \\
M & =\{\varepsilon \in N: \forall m<\operatorname{dmn}(\varepsilon)-1(\varepsilon(m)=0)\}, \\
y_{\varepsilon} & =\prod_{i<\operatorname{dmn}(\varepsilon)} x_{i}^{\varepsilon(i)} \text { for each } \varepsilon \in^{<\omega} 2, \\
A & =\left\langle\operatorname{Fr}(\omega) \cup\left\{\sum_{\varepsilon \in P} y_{\varepsilon}: P \subseteq M\right\}\right\rangle, \\
z_{m} & =\sum_{\{ }\left\{y_{\varepsilon}: \varepsilon \in M, \operatorname{dmn}(\varepsilon) \leq m\right\} \quad \text { for each } m \in \omega \backslash 1, \\
X & =\left\{y_{\varepsilon}: \varepsilon \in N \backslash M\right\} \cup\left\{z_{m}: m \in \omega \backslash 1\right\} .
\end{aligned}
$$

Thus N is the set of all nonempty finite sequences of 0 's and 1 's that have 1 as their last entry, and M is the set of all members of N which are 0 except for that last entry. Clearly for any $\varepsilon, \delta \in{ }^{<\omega} 2$, either ε and δ are comparable under inclusion, and
then y_{ε} and y_{δ} are comparable, or ε and δ are incomparable, and then $y_{\varepsilon} \cdot y_{\delta}=0$. In particular, $\left\langle y_{\varepsilon}: \varepsilon \in M\right\rangle$ is a system of pairwise disjoint elements, and hence $|A|=2^{\omega}$. Since $\operatorname{Fr}(\omega)$ is a dense subalgebra of A, it follows that A is atomless. We claim that X is a maximal irredundant subset of A, which will complete the proof. We prove this in several steps.
(1) $\langle X\rangle=\operatorname{Fr}(\omega)$.

In fact, clearly $X \subseteq \operatorname{Fr}(\omega)$, so \subseteq holds. For the other inclusion, note first that if $\varepsilon \in M$, with domain m, then $y_{\varepsilon}=z_{m} \cdot-z_{m-1}$ if $m>1$, and $y_{\varepsilon}=z_{1}$ if $m=1$; hence $y_{\varepsilon} \in\langle X\rangle$ for every $\varepsilon \in N$. Now for any $n \in \omega$ we have

$$
1=\sum_{\varepsilon \in^{n} 2} \prod_{i<n} x_{i}^{\varepsilon(i)}, \quad \text { and hence } \quad x_{n}=\sum_{\varepsilon \in{ }^{n} 2} \prod_{i<n}\left(x_{i}^{\varepsilon(i)} \cdot x_{n}\right)=\sum_{\varepsilon \in^{n} 2 \cap N} y_{\varepsilon} \in\langle X\rangle .
$$

This proves (1).
(2) $\sum_{\varepsilon \in M} y_{\varepsilon}=1$.

To prove this, it suffices to show that for any $\delta \in{ }^{<\omega} 2$ there is an $\varepsilon \in M$ such that $y_{\delta} \cdot y_{\varepsilon} \neq 0$. If $\delta(i)=1$ for some i, choose the least such i and let ε be the member of M with domain $i+1$. Then $0 \neq y_{\delta}=y_{\delta} \cdot y_{\varepsilon}$. If $\delta(i)=0$ for all $i<\operatorname{dmn}(\delta)$, let ε be the member of M with domain $\operatorname{dmn}(\delta)+1$. Then $0 \neq y_{\varepsilon}=y_{\delta} \cdot y_{\varepsilon}$.
(3) Suppose that F and G are finite subsets of N. Then the following are equivalent:
(a) $\prod_{\varepsilon \in F} y_{\varepsilon} \cdot \prod_{\delta \in G}-y_{\delta}=0$.
(b) $F \neq \emptyset$, and one of the following holds:
(A) There are distinct $\varepsilon_{1}, \varepsilon_{2} \in F$ which are incompatible.
(B) $\rho \stackrel{\text { def }}{=} \cup F$ is a function, $\rho \in F$, and if $p \geq \operatorname{dmn}(\varepsilon)$ for each $\varepsilon \in F \cup G$, then for every $\sigma \in^{p} 2$, if $\rho \subseteq \sigma$ then there is a $\delta \in G$ such that $\delta \subseteq \sigma$.
To prove (3), first suppose that (a) holds. Suppose that $F=\emptyset$. Let $\varepsilon \in M$ with domain greater than the domains of all y_{δ} for $\delta \in G$. Then $y_{\varepsilon} \cdot y_{\delta}=0$ for all $\delta \in G$, so that $0 \neq y_{\varepsilon} \leq \prod_{\delta \in G}-y_{\delta}$, contradiction. So $F \neq \emptyset$.

Now suppose that (b)(A) fails. Then ρ as defined is a function, $\rho \in F$, and $\prod_{\varepsilon \in F} y_{\varepsilon}=y_{\rho}$. Thus by (a) we have $y_{\rho} \leq \sum_{\delta \in G} y_{\delta}$. Let p be as in (b)(B), and suppose that $\sigma \in{ }^{p} 2$ and $\rho \subseteq \sigma$, but $\delta \nsubseteq \sigma$ for all $\delta \in G$. Take a homomorphism of $\operatorname{Fr}(\omega)$ into 2 which takes each x_{i} with $i<p$ to $\sigma(i)$. Then y_{ρ} goes to 1 , but each $y_{\delta}, \delta \in G$, goes to 0 , contradicting the above inequality. So (b)(B) holds.
Conversely, assume (b). Clearly (b)(A) implies (a). Now assume (b)(B), and let p be any integer as indicated there. Then

$$
\prod_{\varepsilon \in F} y_{\varepsilon} \cdot \prod_{\delta \in G}-y_{\delta}=y_{\rho} \cdot \prod_{\delta \in G}-y_{\delta}
$$

For every $\sigma \in{ }^{p} 2$ such that $\rho \subseteq \sigma$ choose $\delta_{\sigma} \in G$ such that $\delta_{\sigma} \subseteq \sigma$. Then

$$
y_{\rho}=\sum\left\{y_{\sigma}: \rho \subseteq \sigma \in^{p} 2\right\} \leq \sum\left\{y_{\delta_{\sigma}}: \rho \subseteq \sigma \in{ }^{p} 2\right\},
$$

and (a) follows.
(4) If G is a finite subset of N, then $\prod_{\delta \in G}-y_{\delta} \neq 0$.

This is immediate from (3).
(5) If G is a finite subset of $N, \rho \in N$, and $\prod_{\delta \in G}-y_{\delta} \cdot y_{\rho}=0$, then $\delta \subseteq \rho$ for some $\delta \in G$; in case $\rho \in M$, we have $\rho \in G$.
Assume the hypothesis of (5). Let p be \geq the domains of all these functions, and let σ extend ρ to a function with domain p by adding 0 's. Then by (3) we have $\delta \subseteq \sigma$ for some $\delta \in G$. Since δ ends with 1, we must actually have $\delta \subseteq \rho$. If $\rho \in M$, then ρ has only zeros except for its last entry, and hence $\rho=\delta \in G$.
(6) If $\rho \in N, m$ is a positive integer, and $y_{\rho} \cdot z_{m} \neq 0$, then there is a $\delta \in M$ with $\operatorname{dmn}(\delta) \leq m$ such that $\delta \subseteq \rho$; so $y_{\rho} \leq z_{m}$.
For, choose $\delta \in M$ with $\operatorname{dmn}(\delta) \leq m$ such that $y_{\rho} \cdot y_{\delta} \neq 0$. If $\operatorname{dmn}(\rho)<\operatorname{dmn}(\delta)$, then $y_{\rho} \cdot y_{\delta}=0$ since δ has all zero values except for its last one. So $\operatorname{dmn}(\delta) \leq$ $\operatorname{dmn}(\rho)$, and hence $\delta \subseteq \rho$ since $y_{\delta} \cdot y_{\rho} \neq 0$. So (6) holds.
(7) X is irredundant.

To prove (7), first suppose that $\varepsilon \in N \backslash M$ and $y_{\varepsilon} \in\left\langle X \backslash\left\{y_{\varepsilon}\right\}\right\rangle$. Then there exist $n \in \omega, F, G \in{ }^{n}\left([N \backslash(M \cup\{\varepsilon\})]^{<\omega}\right)$ and $H, K \in{ }^{n}\left([\omega \backslash 1]^{<\omega}\right)$ such that

$$
y_{\varepsilon}=\sum_{i<n}\left(\prod_{\delta \in F_{i}} y_{\delta} \cdot \prod_{\delta \in G_{i}}-y_{\delta} \cdot \prod_{m \in H_{i}} z_{m} \cdot \prod_{m \in K_{i}}-z_{m}\right),
$$

where each summand is nonzero, and $\left|F_{i}\right|,\left|H_{i}\right|,\left|K_{i}\right| \leq 1$. Now take any $i<n$. Then

$$
\begin{equation*}
\prod_{\delta \in F_{i}} y_{\delta} \cdot \prod_{\delta \in G_{i}}-y_{\delta} \cdot \prod_{m \in H_{i}} z_{m} \cdot \prod_{m \in K_{i}}-z_{m} \cdot-y_{\varepsilon}=0 \tag{*}
\end{equation*}
$$

Hence by (4) we have $F_{i} \neq \emptyset$ or $H_{i} \neq \emptyset$.
(8) $F_{i} \neq \emptyset$.

For, suppose that $F_{i}=\emptyset$. Then by the above remark, $H_{i} \neq \emptyset$. It follows that there is a $\rho \in M$ such that

$$
\prod_{\delta \in G_{i}}-y_{\delta} \cdot y_{\rho} \cdot \prod_{m \in K_{i}}-z_{m} \neq 0 \text { while } \prod_{\delta \in G_{i}}-y_{\delta} \cdot y_{\rho} \cdot \prod_{m \in K_{i}}-z_{m} \cdot-y_{\varepsilon}=0 .
$$

Hence by (5) we have $\rho=\varepsilon$, contradicting $\varepsilon \notin M$. So (8) holds.
Henceforth we assume that $F_{i}=\left\{\rho_{i}\right\}$.
(9) If $H_{i}=\{m\}$, then $y_{p_{i}} \leq z_{m}$.

This follows from (6). Because of (9), we may assume that $H_{i}=\emptyset$.
(10) $\varepsilon \subset \rho_{i}$.

In fact, we now have

$$
y_{\rho_{i}} \cdot \prod_{\delta \in G_{i}}-y_{\delta} \cdot \prod_{m \in K_{i}}-z_{m} \neq 0=y_{\rho_{i}} \cdot \prod_{\delta \in G_{i}}-y_{\delta} \cdot \prod_{m \in K_{i}}-z_{m} \cdot-y_{\varepsilon}
$$

so the desired conclusion follows by (5) and the assumption that $\rho_{i} \neq \varepsilon$.
Now we can finish the proof of the first possibility in (7) as follows. We have

$$
y_{\varepsilon}=\sum_{i<n}\left(y_{\rho_{i}} \cdot \prod_{\delta \in G_{i}}-y_{\delta} \cdot \prod_{m \in K_{i}}-z_{m}\right) \leq \sum_{i<n} y_{\rho_{i}} \leq y_{\varepsilon},
$$

so $y_{\varepsilon}=\sum_{i<n} y_{\rho_{i}}$. Now $\varepsilon \subset \rho_{i}$ for each i by (10). So if we take a homomorphism of $\operatorname{Fr}(\omega)$ into 2 which maps each x_{i} with $i<\operatorname{dmn}(\varepsilon)$ to $\varepsilon(i)$ and otherwise takes the value 0 , the above equality becomes $1=0$, contradiction.

Now suppose that $q \in \omega \backslash 1$ and $z_{q} \in\left\langle X \backslash\left\{z_{q}\right\}\right\rangle$. Then there exist $n \in \omega$, $F, G \in{ }^{n}\left([N \backslash M]^{<\omega}\right)$, and $H, K \in{ }^{n}\left([\omega \backslash\{q\}]^{<\omega}\right)$ such that

$$
z_{q}=\sum_{i<n}\left(\prod_{\delta \in F_{i}} y_{\delta} \cdot \prod_{\delta \in G_{i}}-y_{\delta} \cdot \prod_{m \in H_{i}} z_{m} \cdot \prod_{m \in K_{i}}-z_{m}\right),
$$

where each summand is nonzero, and $\left|F_{i}\right|,\left|H_{i}\right|,\left|K_{i}\right| \leq 1$. Note by (4) that $F_{i} \neq \emptyset$ or $H_{i} \neq \emptyset$. If $F_{i}=\emptyset$, let $H_{i}=\left\{m_{i}\right\}$, and if $F_{i} \neq \emptyset$, let $F_{i}=\left\{\rho_{i}\right\}$.

Now take any $i<n$. Then

$$
\begin{equation*}
\prod_{\delta \in F_{i}} y_{\delta} \cdot \prod_{\delta \in G_{i}}-y_{\delta} \cdot \prod_{m \in H_{i}} z_{m} \cdot \prod_{m \in K_{i}}-z_{m} \cdot-z_{q}=0 . \tag{**}
\end{equation*}
$$

(11) If $F_{i}=\emptyset=K_{i}$, then $m_{i}<q$.

For, if $\rho \in M$ and $\operatorname{dmn}(\rho)=m_{i}$, then $\rho \notin G_{i}$; hence from

$$
\prod_{\delta \in G_{i}}-y_{\delta} \cdot y_{\rho} \cdot-z_{q}=0
$$

we get by (5) that $m_{i} \leq q$; so $m_{i}<q$.
(12) If $F_{i}=\emptyset$ and $K_{i}=\{r\}$, then $m_{i}<q$.

For, since the $i^{\text {th }}$ summand is nonzero, we have $r<m_{i}$. Hence the argument for (11) works.
(13) If $F_{i} \neq \emptyset$, then we may assume that $H_{i}=\emptyset$.

This is clear from (6).
(14) If $F_{i}=\left\{\rho_{i}\right\}$ and $H_{i}=\emptyset$, then ρ_{i} is a proper extension of some $\tau \in M$ such that $\operatorname{dmn}(\tau) \leq q$, and $y_{p_{i}}<z_{q}$.
For, we have

$$
y_{\rho_{i}} \cdot \prod_{\delta \in G_{i}}-y_{\delta} \cdot \prod_{m \in K_{i}}-z_{m} \cdot-z_{q}=0 .
$$

By (5) we get a $\tau \in M$ with $\operatorname{dmn}(\tau) \leq q$ such that $\tau \subseteq \rho_{i}$. Since $\rho_{i} \notin M$, we have $\tau \subset \rho_{i}$. So $y_{p_{i}}<y_{\tau} \leq z_{q}$, as desired.
Now we can finish the proof of (7) in our second case. Let $R=\left\{i<n: F_{i}=\emptyset\right\}$. Then

$$
\begin{aligned}
z_{q}= & \sum_{i \in R}\left(\prod_{\delta \in G_{i}}-y_{\delta} \cdot z_{m_{i}} \cdot \prod_{r \in K_{i}}-z_{r}\right) \\
& +\sum_{i \in n \backslash R}\left(y_{p_{i}} \cdot \prod_{\delta \in G_{i}}-y_{\delta} \cdot \prod_{m \in H_{i}} z_{m} \cdot \prod_{r \in K_{i}}-z_{r}\right) \\
\leq & \sum_{i \in R} z_{m_{i}}+\sum_{i \in n \backslash R} y_{\rho_{i}} \\
\leq & z_{q} .
\end{aligned}
$$

Hence

$$
z_{q}=\sum_{i \in R} z_{m_{i}}+\sum_{i \in n \backslash R} y_{\rho_{i}} .
$$

Here we have $m_{i}<q$ for all $i \in R$, and each ρ_{i} is a proper extension of some $\sigma \in M$ with $\operatorname{dmn}(\sigma) \leq q$. Now map x_{q-1} to 1 and all other generators to 0 . Then
z_{q} goes to 1 but the right side of the above equation goes to 0 , contradiction. This completes the proof of (7).
(15) If Q is a subset of M and $a \in \operatorname{Fr}(\omega)$, then there is an m such that one of the following conditions holds:
(1) $a \cdot y_{\varepsilon}=y_{\varepsilon}$ for all $\varepsilon \in Q$ such that $\operatorname{dmn}(\varepsilon) \geq m$.
(2) $a \cdot y_{\varepsilon}=0$ for all $\varepsilon \in Q$ such that $\operatorname{dmn}(\varepsilon) \geq m$.

For, write $a=\sum_{\delta \in P} \prod_{i<n} x_{i}^{\delta(i)}$ for some $n \in \omega$ and some $P \subseteq{ }^{n} 2$, and let $m=n+1$. Then (1) holds if the all 0 function is in P, and (2) holds otherwise.
(16) A consists of all elements of the form

$$
\sum_{\varepsilon \in Q} y_{\varepsilon}+a
$$

such that Q is a subset of M and $a \in \operatorname{Fr}(\omega)$.
To prove (6) first note that the set Y of all such elements is clearly a subset of A and contains the set of generators in the definition of A. Clearly Y is closed under + . So it suffices to show that Y is closed under -:

$$
\begin{aligned}
-\left(\sum_{\varepsilon \in Q} y_{\varepsilon}+a\right) & =-a \cdot-\sum_{\varepsilon \in Q} y_{\varepsilon} \\
& =-a \cdot \sum_{\varepsilon \in M \backslash Q} y_{\varepsilon}
\end{aligned}
$$

Now by (15), choose m such that either $-a \cdot y_{\varepsilon}=y_{\varepsilon}$ for all $\varepsilon \in M \backslash Q$ with domain at least m, or $-a \cdot y_{\varepsilon}=0$ for all $\varepsilon \in M \backslash Q$ with domain at least m. Hence in the first case we have

$$
-a \cdot \sum_{\varepsilon \in M \backslash Q} y_{\varepsilon}=\sum_{\varepsilon \in R} y_{\varepsilon}+\left(-a \cdot \sum_{\varepsilon \in M \backslash(Q \cup R)} y_{\varepsilon}\right)
$$

where R is the set of all $\varepsilon \in M \backslash Q$ with domain at least m, and in the second case $-a \cdot \sum_{\varepsilon \in M \backslash Q} y_{\varepsilon}$ is in $\operatorname{Fr}(\omega)$.
(17) X is maximal irredundant in A.

Suppose that $d \in A \backslash\langle X\rangle$. By (16), write

$$
d=\sum_{\varepsilon \in Q} y_{\varepsilon}+e
$$

where Q is a subset of M and $e \in \operatorname{Fr}(\omega)$. Since $d \notin\langle X\rangle=\operatorname{Fr}(\omega)$, the set Q is infinite and co-infinite. Now write $e=\sum_{\delta \in T} \prod_{i<m} x_{i}^{\delta(i)}$ with $T \subseteq{ }^{m} 2$. Let $\zeta \in{ }^{m} 2$ be the constantly 0 function. If $\zeta \in T$, then $y_{\varepsilon} \leq e$ for all $\varepsilon \in N$ with $\operatorname{dmn}(\varepsilon)>m$, so $d \in \operatorname{Fr}(\omega)=\langle X\rangle$, contradiction. Thus $\zeta \notin T$. It follows that $y_{\varepsilon} \cdot e=0$ for all $\varepsilon \in M$ such that $\operatorname{dmn}(\varepsilon)>m$. Hence $e \cdot-z_{m}=0$. Choose $p>m+2$ so that Q has a member with domain p but none with domain $p+1$. Then

$$
d \cdot-z_{m} \cdot z_{p+1}=\sum\left\{y_{\rho}: \rho \in Q, m<\operatorname{dmn}(\rho) \leq p\right\}
$$

Hence $d \cdot-z_{m} \cdot z_{p+1}+z_{p-1}=z_{p}$. This proves (17).

It is possible that Theorem 1.3 can be generalized. The following problem represents the maximum possible generalization.

Problem 1. Is $\operatorname{Irr}_{\mathrm{mm}}(A)=\pi(A)$ for every infinite BA? In particular, we do not know whether this is true for the following algebras:
(i) The completion of the denumerable atomless BA.
(ii) The interval algebra on \mathbb{R}.

The following minor results are somewhat relevant to this problem.
Proposition 1.4. It is possible to have X denumerable and irredundant, $\langle X\rangle$ dense in $A,|A|=2^{\omega}$, but X not maximal irredundant.

Proof. Take $A=\mathfrak{P}(\omega)$ and $X=\{\{m\}: m \in \omega\}$. So X is irredundant and $\langle X\rangle$ is dense in A. Let $E=\{m \in \omega: m$ is even $\}$. Clearly $\langle X\rangle=\operatorname{Finco}(\omega)$, and hence $E \notin\langle X\rangle$. So if $X \cup\{E\}$ is redundant, then there exist an $m \in \omega$ and pairwise disjoint $y, z, w \in\langle X \backslash\{\{m\}\}\rangle$ such that $\{m\}=(E \cap y) \cup(z \backslash Y) \cup w$. So $w=\emptyset$. Clearly y is finite with $m \notin y$, or y is cofinite; and similarly for z. So one of y, z is cofinite, and this is clearly impossible.

This example is atomic. An atomless example is as follows. Let $B=\overline{\operatorname{Fr}(\omega)}$ and $X=\left\{x_{n}: n \in \omega\right\}$, where $\left\langle x_{n}: n \in \omega\right\rangle$ is a system of free generators of $\operatorname{Fr}(\omega)$. For each $n \in \omega$ let $z_{n}=x_{n} \cdot \prod_{m<n}-x_{m}$, and let $y=\sum_{n \in \omega} z_{2 n}$. Clearly $y \notin \operatorname{Fr}(\omega)$. Suppose that $X \cup\{y\}$ is redundant. Then there exist $m \in \omega$ and pairwise disjoint $u, v, w \in\left\langle X \backslash\left\{x_{n}\right\}\right\rangle$ such that $x_{n}=y \cdot u+-y \cdot v+w$. Since $w \leq x_{n}$, it follows that $w=0$. Clearly $u, v \neq 1$. Now write

$$
u=\sum_{\varepsilon \in M} \prod_{m \in N} x_{m}^{\varepsilon(m)} \quad \text { and } \quad v=\sum_{\varepsilon \in P} \prod_{m \in N} x_{m}^{\varepsilon(m)},
$$

where N is a finite subset of $X \backslash\{n\}$ and M, P are disjoint subsets of ${ }^{N} 2$. Since $x_{n} \leq u+v$, we must have $u+v=1$, and hence $M \cup P={ }^{N} 2$. Let $\zeta \in{ }^{N} 2$ be the all 0 sequence. By symmetry, say $\zeta \in M$. Let p be an even integer greater than n and each member of N. Then $z_{p} \leq y \cdot u \leq x_{n}$, contradiction.

Proposition 1.5. If X is a denumerable maximal irredundant subset of $\overline{\operatorname{Fr}(\omega)}$, then we may assume that $\langle X\rangle=\operatorname{Fr}(\omega)$.

Proof. Since $\langle X\rangle$ is dense in $\overline{\operatorname{Fr}(\omega)}$, it is atomless, and hence is isomorphic to $\operatorname{Fr}(\omega)$. Hence there is an automorphism f of $\overline{\operatorname{Fr}(\omega)}$ such that $f[\langle X\rangle]=\operatorname{Fr}(\omega)$. \dashv Note that $\operatorname{Irr}_{\mathrm{mm}}(\mathfrak{P}(\omega) / \mathrm{fin})=2^{\omega}$, since $\pi(\mathfrak{P}(\omega) / \mathrm{fin})=2^{\omega}$.
§2. Maximal ideal independence. The following proposition gives a method of constructing maximal ideal independent sets.

Proposition 2.1. Suppose A is a BA and that $X \subseteq A$ is ideal independent and X generates a maximal ideal I. Then X is maximal ideal independent.

Proof. Let $y \in A \backslash X$. If $y \in I$, then $y \leq \sum F$ for some finite $F \subseteq X$. If $-y \in I$, then $-y \leq \sum F$ for some finite $F \subseteq X$, and hence $y+\sum F=1$.

Proposition 2.2. $\mathrm{s}_{\text {spect }}(\operatorname{Fr}(\kappa))=\{\kappa\}$.
Proposition 2.3. $\mathrm{s}_{\text {spect }}(A) \cup \mathrm{s}_{\text {spect }}(B) \subseteq \mathrm{s}_{\text {spect }}(A \times B)$.

Proof. Let X be maximal ideal-independent in A. Define $Y=\{(x, 1): x \in X\}$. Clearly Y is ideal-independent in $A \times B$. To show that it is maximal, suppose that $(u, v) \in A \times B$. Then there are two possibilities.

Case 1. There is a finite subset F of X such that $u \leq \sum F$. We may assume that $F \neq \emptyset$. Then $(u, v) \leq \sum_{x \in F}(x, 1)$, as desired.

Case 2. There exist an $x \in X$ and a finite subset F of $X \backslash\{x\}$ such that $x \leq$ $u+\sum F$. Again we may assume that $F \neq \emptyset$. Then $(x, 1) \leq(u, v)+\sum_{y \in F}(y, 1)$, as desired.

Hence the proposition follows by symmetry.
Corollary 2.4. If $\left\langle A_{i}: i \in I\right\rangle$ is any system of $B A s$, then $\bigcup_{i \in I} \mathrm{~s}_{\text {spect }}\left(A_{i}\right) \subseteq$ $\mathrm{s}_{\text {spect }}\left(\prod_{i \in I} A_{i}\right)$ and also $\bigcup_{i \in I} \mathrm{~s}_{\text {spect }}\left(A_{i}\right) \subseteq \mathrm{s}_{\text {spect }}\left(\prod_{i \in I}^{\mathrm{w}} A_{i}\right)$.

ThEOREM 2.5. If K is a nonempty finite set of infinite cardinals, then

$$
\mathrm{s}_{\text {spect }}\left(\prod_{\lambda \in K} \operatorname{Fr}(\lambda)\right)=K
$$

PRoof. \supseteq holds by Corollary 2.3. Suppose that $\kappa \in \mathrm{s}_{\text {spect }}\left(\prod_{\lambda \in K} \operatorname{Fr}(\lambda)\right) \backslash K$. Let $L=\{\lambda \in K: \lambda<\kappa\}$ and $M=K \backslash L$. Assume that $L \neq \emptyset$; some obvious changes should be made in the following argument if $L=\emptyset$. Let X be a maximal independent subset of $\prod_{\lambda \in K} \operatorname{Fr}(\lambda)$ of size κ. For each $\lambda \in M$ let u_{λ} be a free generator of $\operatorname{Fr}(\lambda)$ not in the subalgebra generated by $\left\{x_{\lambda}: x \in X\right\}$. Now $\left|\prod_{\lambda \in L} \operatorname{Fr}(\lambda)\right|<\kappa$, so there is a $q \in \prod_{\lambda \in L} \operatorname{Fr}(\lambda)$ such that $X^{\prime} \stackrel{\text { def }}{=}\{x \in X: x \upharpoonright L=q\}$ has size greater than $\max (L)$. Let $f=q \cup\left\langle u_{\lambda}: \lambda \in M\right\rangle$. So $f \in \prod_{\lambda \in K} \operatorname{Fr}(\lambda)$ and $f \notin X$ (since clearly $M \neq \emptyset)$. Hence $X \cup\{f\}$ is ideal-dependent. This gives two possibilities.

Case 1. There is a finite $F \subseteq X$ such that $f \leq \sum F$. It follows that $\left(\sum F\right)_{\lambda}=1$ for all $\lambda \in M$. Choose $g \in X^{\prime} \backslash F$. Then $g \leq \sum F$, contradiction.

Case 2. There exist a finite $F \subseteq X$ and a $g \in X \backslash F$ such that $g \leq f+\sum F$. For any $\lambda \in M$ we have $g_{\lambda} \cdot-u_{\lambda} \cdot-\left(\sum F\right)_{\lambda}=0$, and hence $g_{\lambda} \cdot-\left(\sum F\right)_{\lambda}=0$. Choose $h \in X^{\prime} \backslash(F \cup\{g\})$. Then $g \leq h+\sum F$, contradiction.
The following simple proposition shows that there is an obstruction to using weak products in order to extend Theorem 2.5 to the infinite case.

Proposition 2.6. If $\left\langle A_{i}: i \in I\right\rangle$ is a system of BAs, with I infinite, then

$$
|I| \in \mathrm{s}_{\text {spect }}\left(\prod_{i \in I}^{\mathrm{w}} A_{i}\right)
$$

Proof. For each $i \in I$ let f^{i} be the member of $\prod_{i \in I}^{\mathrm{w}} A_{i}$ which takes the value 1 at i and the value 0 at all other places. Clearly $\left\{f^{i}: i \in I\right\}$ is maximal idealindependent.

Proposition 2.7. Suppose that K is an infinite set of infinite cardinals such that $|K| \leq \min (K)$. Then there is a $B A A$ such that $K \subseteq \mathrm{~s}_{\text {spect }}(A)$ and $\mathrm{s}_{\text {spect }}(A) \cap \mathrm{reg} \subseteq K$.

Proof. Let $\mu=\min (K)$, let λ map μ onto K, and let $A=\prod_{\alpha<\mu}^{\mathrm{w}} \operatorname{Fr}\left(\lambda_{\alpha}\right)$. We claim that A is as desired.

The first inclusion in the proposition holds by Proposition 2.3. Now suppose that $\kappa \in\left(\mathrm{s}_{\text {spect }}(A) \cap \mathrm{reg}\right) \backslash K$. Let X be maximal ideal-independent of size κ. Let
$L=\left\{\alpha<\mu: \kappa<\lambda_{\alpha}\right\}$, and let $M=\mu \backslash L$. For each $\alpha \in L$ let u_{α} be a free generator of $\operatorname{Fr}\left(\lambda_{\alpha}\right)$ not in $\left\langle\left\{x_{\alpha}: x \in X\right\}\right\rangle$.
(1) $M \neq \emptyset$.

For, suppose that $M=\emptyset$. Then $\kappa<\lambda_{\alpha}$ for each $\alpha<\mu$, and so $\kappa<\min (K)=\mu$.
(2) Some $x \in X$ has type II.

For, suppose not. Now $\bigcup_{x \in X} \operatorname{supp}(x)$ has size less than $\min (K)=\mu$, so we can choose $\alpha<\mu$ not in this union. Let y take the value u_{α} at α and 0 elsewhere. Clearly $y \notin X$ and $X \cup\{y\}$ is still ideal-independent, contradiction. So (2) holds.

We take x as in (2). Now let $y_{\alpha}=u_{\alpha}$ for all $i \in \operatorname{supp}(x)$, and $y_{\alpha}=0$ otherwise. Then $y \notin X$, so $X \cup\{y\}$ is ideal-dependent.

Case 1. $y \leq \sum F$ for some finite $F \subseteq X$. We may assume that $x \in F$. Now for $\alpha \in \operatorname{supp}(x)$ we have $u_{\alpha} \leq\left(\sum F\right)_{\alpha}$, and hence $\left(\sum F\right)_{\alpha}=1$. Since $x \in F$, it follows that $\sum F=1$, contradiction.

Case 2. There exist a finite $F \subseteq X$ and a $g \in X \backslash F$ such that $g \leq y+\sum F$. It follows easily that $g \leq \sum F$, contradiction.
This proves (1).
In particular, $\kappa>\mu$. Since κ is regular, it follows that there is a $G \in[\mu]^{<\omega}$ such that $X^{\prime} \stackrel{\text { def }}{=}\{x \in X: \operatorname{supp}(x)=G\}$ has size κ. Now $\left|\prod_{\alpha \in G \cap M} \operatorname{Fr}\left(\lambda_{\alpha}\right)\right|<\kappa$, so there is a $q \in \prod_{\alpha \in G \cap M} \operatorname{Fr}\left(\lambda_{\alpha}\right)$ such that $Y \stackrel{\text { def }}{=}\left\{x \in X^{\prime}: x \upharpoonright(G \cap M)=q\right\}$ has size κ. Note also that $G \cap L \neq \emptyset$, as otherwise $G=G \cap M$ and hence $\left|X^{\prime}\right|<\kappa$, contradiction. Let $Y^{\prime}=\{y \in Y: y$ has type I$\}$ and $Y^{\prime \prime}=Y \backslash Y^{\prime}$. Now define

$$
y_{\alpha}= \begin{cases}u_{\alpha} & \text { if } i \in G \cap L, \\ q_{\alpha} & \text { if } i \in G \cap M, \\ 0 & \text { otherwise },\end{cases}
$$

Since $G \cap L \neq \emptyset$, we have $y \notin X$. So $X \cup\{y\}$ is ideal-dependent. This gives two cases.

Case 1. There is a finite $F \subseteq X$ such that $y \leq \sum F$. Then $\left(\sum F\right) \upharpoonright(G \cap L)=1$. If $\left|Y^{\prime}\right|=\kappa$, choose $g \in Y^{\prime}$ such that $g \notin F$. Then $g \leq \sum F$, contradiction. If $\left|Y^{\prime \prime}\right|=\kappa$, choose distinct $g, h \in Y^{\prime \prime} \backslash F$. Then $g \leq \sum F+h$, contradiction.

Case 2. There exist a finite $F \subseteq X$ and a $g \in X \backslash F$ such that $g \leq y+\sum F$. Then $g \upharpoonright(G \cap L) \leq\left(\sum F\right) \upharpoonright(G \cap L)$ and also $g \upharpoonright(\mu \backslash G) \leq\left(\sum F\right) \upharpoonright(\mu \backslash G)$. Choose $h \in Y \backslash(F \cup\{g\})$. Then $g \leq h+\sum F$, contradiction.

Corollary 2.8. If K is an infinite set of regular cardinals and $|K| \leq \min (K)$, then there is a BA A such that s spect $(A) \cap r e g=K$.

Problem 2. Is the assumption $|K| \leq \min (K)$ in Theorem 2.7 necessary?
Problem 3. How can Theorem 2.7 be extended to singular cardinals in K ?
We now concentrate on s_{mm}. From 2.3 we have the following problem.
Problem 4. Is $\mathrm{s}_{\mathrm{mm}}(A \times B)=\min \left(\mathrm{s}_{\mathrm{mm}}(A), \mathrm{s}_{\mathrm{mm}}(B)\right)$?
The first part of the proof of Theorem 2 of McKenzie, Monk [4] shows that we cannot have atomless A, B such that $\mathrm{s}_{\mathrm{mm}}(A \times B)=\omega<\min \left(\mathrm{s}_{\mathrm{mm}}(A), \mathrm{s}_{\mathrm{mm}}(B)\right)$, giving a partial solution of this problem.

By Corollary 2.4 and Proposition 2.6 we have:
Corollary 2.9. (i) $\mathrm{s}_{\mathrm{mm}}\left(\prod_{i \in I} A_{i} \leq \min _{i \in I} \mathrm{~s}_{\mathrm{mm}}\left(A_{i}\right)\right.$.
(ii) For I infinite, $\mathrm{s}_{\mathrm{mm}} \prod_{i \in I}^{\mathrm{w}}\left(A_{i}\right) \leq \min \left(|I|, \min _{i \in I} \mathrm{~s}_{\mathrm{mm}}\left(A_{i}\right)\right)$.

Theorem 2.10. There is a BA A such that $\mathrm{s}_{\mathrm{mm}}(A)=\omega<\mathfrak{u}(A)$.
Proof. Let $A={ }^{\omega} \operatorname{Fr}\left(\omega_{1}\right)$. So $\mathrm{s}_{\mathrm{mm}}(A)=\omega$ by Corollary 2.9. By Proposition 9(iii) of Monk [6] we have $\mathfrak{u}(A) \geq \kappa$, where κ is the smallest cardinality of a subset of $\mathfrak{P}(\omega)$ which generates a nonprincipal ultrafilter on $\mathfrak{P}(\omega)$. So it suffices to assume that $\left\{x_{i}: i \in \omega\right\}$ is a collection of subsets of ω which generates a nonprincipal ultrafilter D on $\mathfrak{P}(\omega)$, and get a contradiction. If X is an infinite, co-infinite subset of ω, then either X or $\omega \backslash X$ is in D. It follows that not all x_{i} are cofinite. We may assume that x_{0} is not cofinite. Now each intersection $\bigcap_{j \leq i} x_{j}$ is not cofinite, so we can choose distinct

$$
m_{i}, n_{i} \in \omega \backslash\left(\bigcap_{j \leq i} x_{j} \cup\left\{m_{j}, n_{j}: j<i\right\}\right)
$$

Let $y=\left\{m_{i}: i<\omega\right\}$. Then clearly $y, \omega \backslash y \notin D$, contradiction.
Proposition 2.11. $\mathrm{s}_{\mathrm{mm}}(\operatorname{Finco}(\kappa))=\kappa$ for every infinite cardinal κ.
Proof. Since $\{\{\alpha\}: \alpha<\kappa\}$ is clearly maximal ideal independent, we just need to get a contradiction upon assuming that X is maximal ideal independent with $\omega \leq|X|<\kappa$. If all members of X are finite, then it is clearly not maximal. So there is a member of X of the form $\kappa \backslash F$ with $F \subseteq \kappa$ finite. Suppose that there are infinitely many finite members of X. Then there are two distinct finite members G, H of X such that $F \cap G=F \cap H$. Then $G \subseteq(X \backslash F) \cup H$, contradicting maximality of X. Thus X has only finitely many finite members. Hence it has infinitely many cofinite members. Let $\mathfrak{A}=\left\{G \in[\kappa]^{<\omega}: \kappa \backslash G \in X\right\}$. Among the finite intersections of members of \mathfrak{A} there is a minimal one; call it Y, and say $Y=\bigcap \mathfrak{B}$ with \mathfrak{B} a finite subset of \mathfrak{A}. Take any member $G \in \mathfrak{A} \backslash \mathfrak{B}$. Then $\cap \mathfrak{B} \subseteq G$, hence $X \backslash G \subseteq \bigcup_{H \in \mathfrak{B}}(X \backslash H)$, contradicting X ideal independent.

Proposition 2.12. $\mathfrak{r}(A) \leq \mathrm{s}_{\mathrm{mm}}(A)$ for any $B A A$.
Proof. Suppose that X is maximal ideal-independent. Let

$$
Y=X \cup\left\{-\sum F: F \in[X]^{<\omega}\right\} \cup\left\{b \cdot-\sum F: b \notin F, F \cup\{b\} \in[X]^{<\omega}\right\} .
$$

Clearly the members of Y are nonzero. We claim that Y is weakly dense in A. For, suppose that $a \in A \backslash X$. Then $X \cup\{a\}$ is no longer ideal independent, so we have two cases.

Case 1. $a \leq \sum F$ for some $F \in[X]^{<\omega}$. Then $-\sum F \leq-a$, as desired.
Case 2. There exist a finite subset F of X and a $b \in X \backslash F$ such that $b \leq \sum F+a$. Then $b \cdot-\sum F \leq a$, as desired.

Theorem 2.13. There is a BA A such that $\mathfrak{u}(A)<\mathrm{s}_{\mathrm{mm}}(A)$.
Proof. We modify the proof of Lemma 21 of Monk [6]. The construction depends upon the following step:
(1) Suppose that B is a BA, $\left\langle a_{\alpha}: \alpha<\omega_{1}\right\rangle$ is a strictly decreasing sequence of elements of B generating an ultrafilter F, and $\left\langle b_{\alpha}: \alpha<\mu\right\rangle$ is a sequence of distinct elements of B with $\omega \leq \mu \leq \omega_{1}$ such that $\left\{b_{\alpha}: \alpha<\mu\right\}$ is ideal independent. Then
there is an extension C of B such that $\left\langle a_{\alpha}: \alpha<\omega_{1}\right\rangle$ still generates an ultrafilter in C, while $\left\{b_{\alpha}: \alpha<\mu\right\}$ is not maximal ideal independent in C.

To prove (1), let $B(x)$ be a free extension of B. For each $\beta<\omega_{1}$ let

$$
I_{\beta}=\left\langle\left\{b_{\alpha} \cdot x: \alpha<\mu\right\} \cup\left\{a_{\beta} \cdot x\right\}\right\rangle^{\mathrm{id}} .
$$

Clearly $B \cap I_{\beta}=\{0\}$ for all $\beta<\omega_{1}$.
(2) There is an $\beta<\omega_{1}$ such that $x \notin I_{\beta}$.

To prove (2) we consider two cases.
Case 1. There is an $\alpha<\mu$ such that $b_{\alpha} \in F$. Say $a_{\beta} \leq b_{\alpha}$. Suppose that $x \in I_{\beta}$. Then we can write

$$
\begin{equation*}
x \leq b_{\alpha_{0}} \cdot x+\cdots+b_{\alpha_{m-1}} \cdot x+a_{\beta} \cdot x \tag{3}
\end{equation*}
$$

Choose $\gamma<\mu$ such that $\gamma \neq \alpha_{0}, \ldots, \alpha_{m-1}, \alpha$. Mapping x to b_{γ} and pointwise fixing A yields $b_{\gamma} \leq b_{\alpha_{0}}+\cdots+b_{\alpha_{m-1}}+b_{\alpha}$, contradicting ideal independence.

Case 2. $-b_{\alpha} \in F$ for all $\alpha<\mu$. For each $\alpha<\mu$ choose $\gamma_{\alpha}<\omega_{1}$ such that $a_{\gamma_{\alpha}} \leq-b_{\alpha}$.

Subcase 2.1. $\left\{\gamma_{\alpha}: \alpha<\mu\right\}$ is bounded in ω_{1}, say by β. Thus $a_{\beta} \leq-b_{\alpha}$ for all $\alpha<\mu$. If $x \in I_{\beta}$, then we obtain (3) again. Choose $\alpha<\mu$ with $\alpha \neq \alpha_{0}, \ldots, \alpha_{m-1}$. Mapping x to b_{α} and pointwise fixing A we obtain $b_{\alpha} \leq b_{\alpha_{0}}+\cdots+b_{\alpha_{m-1}}$, again contradicting ideal independence.

Subcase 2.2. $\left\{\gamma_{\alpha}: \alpha<\mu\right\}$ is unbounded in ω_{1}. Then there is a strictly increasing sequence $\left\langle\alpha_{\xi}: \xi<\omega_{1}\right\rangle$ of countable ordinals such that $\left\langle\gamma_{\alpha_{\xi}}: \xi<\omega_{1}\right\rangle$ is strictly increasing. Let

$$
\Xi_{\beta}=\left\{\gamma<\mu: a_{\beta} \cdot b_{\gamma}=0\right\}
$$

for all $\beta<\omega_{1}$. So $\beta<\delta<\omega_{1}$ implies that $\boldsymbol{\Xi}_{\beta} \subseteq \boldsymbol{\Xi}_{\delta}$. Now $\alpha_{\xi} \in \boldsymbol{\Xi}_{\gamma_{\alpha_{\xi}}}$ for all $\xi<\omega_{1}$. Hence $\Xi_{\gamma_{\alpha_{\omega}}}$ is infinite. Let $\beta=\gamma_{\alpha_{\omega}}$, and suppose that $x \in I_{\beta}$. Then we obtain (3) again. Choose $\gamma \in \Xi_{\beta} \backslash\left\{\alpha_{0}, \ldots, \alpha_{m-1}\right\}$. Then mapping x to b_{γ} and fixing A pointwise again contradicts ideal independence.

Thus we have now established (2), and we take β as indicated there.
Let $C=B(x) / I_{\beta}$. We denote members of C by $[u]$ with $u \in B(x)$. Clearly $\left\langle a_{\alpha}: \alpha<\omega_{1}\right\rangle$ still generates an ultrafilter in C. We claim that $\left\{\left[b_{\alpha}\right]: \alpha<\mu\right\} \cup\{[x]\}$ is ideal independent, so that $\left\{\left[b_{\alpha}\right]: \alpha<\mu\right\}$ is not maximal ideal independent in C. In fact, obviously $[x]$ is not in the ideal generated by $\left\{\left[b_{\alpha}\right]: \alpha<\mu\right\}$. Suppose that $\alpha<\mu, F \in[\mu \backslash\{\alpha\}]^{<\omega}$, and $\left[b_{\alpha}\right] \leq[x]+\sum_{\gamma \in F}\left[b_{\gamma}\right]$. Then we can write

$$
b_{\alpha} \cdot-x \cdot \prod_{\gamma \in F}-b_{\gamma} \leq b_{\alpha_{0}} \cdot x+\cdots+b_{\alpha_{m-1}} \cdot x+a_{\beta} \cdot x
$$

Mapping x to 0 and fixing A pointwise, we then get $b_{\alpha} \cdot \prod_{\gamma \in F}-b_{\gamma}=0$, contradicting the ideal independence of $\left\{b_{\alpha}: \alpha<\mu\right\}$.

This proves (1).
Now the construction of A proceeds from the step (1) as follows. Define A_{α} for $\alpha<\omega_{2}$ by induction. Let $A_{0}=\operatorname{Intalg}\left(\omega_{1}\right)$, and $a_{\alpha}=[\alpha, \infty)$ for each $\alpha<\omega_{1}$. If A_{α} has been defined so that $\left\langle a_{\alpha}: \alpha<\omega_{1}\right\rangle$ generates an ultrafilter in A_{α}, apply (1) many times to get an extension $A_{\alpha+1}$ in which $\left\langle a_{\alpha}: \alpha<\omega_{1}\right\rangle$ still generates an ultrafilter, while every infinite ideal independent subset of A_{α} fails to be maximal in $A_{\alpha+1}$. For α limit $\leq \omega_{2}$ let $A_{\alpha}=\bigcup_{\beta<\alpha} A_{\beta}$. Clearly $A_{\omega_{2}}$ is as desired.

Proposition 2.14. If $s_{\mathrm{mm}}(A)=\omega$, then $\mathfrak{a}(A)=\omega$.
Proof. Let $X=\left\{x_{i}: i<\omega\right\}$ be maximal ideal independent. For each $i<\omega$ let $a_{i}=x_{i} \cdot \prod_{j<i}-x_{j}$. Then $\sum_{i<\omega} a_{i}=\sum_{i<\omega} x_{i}=1$. Thus $\left\langle a_{i}: i<\omega\right\rangle$ is a partition of unity.
Lemma 2.15. Suppose that $\operatorname{Fr}\left(\omega_{1}\right)$ is a subalgebra of A such that $I \stackrel{\text { def }}{=}\left\langle\left\{x_{\alpha}: \xi<\right.\right.$ $\left.\omega_{1}\right\rangle_{A}^{\text {id }}$ is a maximal ideal of A, where $\left\langle x_{\alpha}: \alpha<\omega_{1}\right\rangle$ is a system of free generators of $\operatorname{Fr}\left(\omega_{1}\right)$. Also suppose that $X \stackrel{\text { def }}{=}\left\{x_{\alpha}: \alpha<\omega_{1}\right\}$ is maximal ideal independent in A. Suppose that Y is an infinite partition of unity in A, with $|Y| \leq \omega_{1}$.

Then A has an extension B such that X is still maximal ideal independent in B, $\left\langle\left\{x_{\alpha}: \xi<\omega_{1}\right\rangle_{B}^{\text {id }}\right.$ is a maximal ideal of B, and Y is not a partition of unity in B.
Proof. The main part of the proof is in establishing the following claim.
Claim. There is a $b \in X$ such that $b \not \leq \sum F$ for all $F \in[Y]^{<\omega}$.
We suppose that the claim does not hold. Thus
(1) For every $b \in X$ there is a finite $F_{b} \subseteq Y$ such that $b \leq \sum F_{b}$.

Then
(2) $y \in I$ for all $y \in Y$.

For, suppose that $y \in Y$ and $-y \in I$. Thus there is a finite $G \subseteq X$ such that $-y \leq \sum G$. Then $1=y+\sum G=y+\sum_{b \in G} F_{b}$, contradiction. So (2) holds.

Thus for every $y \in I$ we can choose a finite $G_{y} \subseteq X$ such that $y \leq G_{y}$.
Now if $|Y|<\omega_{1}$, choose x_{α} not in the support of any element of $\bigcup_{y \in Y} G_{y}$. Now $x_{\alpha} \leq \sum F_{x_{\alpha}} \leq \sum_{y \in F_{x_{\alpha}}} G_{y}$, contradiction. Thus $|Y|=\omega_{1}$.

Let $\Gamma \in\left[\omega_{1}\right]^{\omega_{1}}$ be such that $\left\langle F_{x_{\alpha}}: \alpha \in \Gamma\right\rangle$ is a Δ-system, say with kernel H. Then if α and β are distinct elements of Γ we have

$$
\begin{equation*}
x_{\alpha} \cdot x_{\beta} \leq\left(\sum F_{x_{\alpha}}\right) \cdot\left(\sum F_{x_{\beta}}\right) \leq \sum_{y \in H} G_{y} . \tag{3}
\end{equation*}
$$

Choose distinct $\alpha, \beta \in \Gamma$ so that $x_{\alpha}, x_{\beta} \notin \bigcup_{y \in G} G_{y}$. Then (3) gives a contradiction. This proves the claim.
Choose $b \in X$ in accordance with the claim. Let $A(x)$ be a free extension of A, and let J be the ideal of $A(x)$ generated by

$$
\{y \cdot x: y \in Y\} \cup\{x \cdot-b\} .
$$

Clearly $A \cap J=\{0\}$. If $x \in J$, then we can write

$$
x \leq y_{1} \cdot x+\cdots+y_{m} \cdot x+x \cdot-b .
$$

Mapping x to 1 yields $b \leq y_{1}+\cdots+y_{m}$, contradicting the choice of b.
Thus $A(x) / J$ is as desired.
Theorem 2.16. There is a BA A such that $\mathrm{s}_{\mathrm{mm}}(A)=\omega_{1}$ and $\mathfrak{a}(A)=\omega_{2}$.
Proof. This is obtained by an obvious iteration from Lemma 2.15.
Some further facts about s_{mm} are as follows.

1. For $A=\operatorname{Fr}(\kappa)$ with κ an uncountable cardinal, we have $\mathfrak{a}(A)=\operatorname{length}_{\operatorname{mm}}(A)=$ $\mathfrak{s}(A)=\omega<\kappa=\mathrm{s}_{\mathrm{mm}}(A)$. (This is easy to see.)
2. In the algebra B of example 17 of Monk [6] one has $\mathrm{s}_{\mathrm{mm}}(B)=\omega<\kappa=\mathfrak{s}(B)$.
3. In the algebra B of example 20 of Monk [6] one has $\mathrm{s}_{\mathrm{mm}}(B) \leq \kappa<\mathfrak{t}(B)$, and also $\mathfrak{r}(B)=\mathfrak{i}(B)=\omega$.
4. C. Bruns has shown that $\mathfrak{p} \leq \mathrm{s}_{\mathrm{mm}}$. (Unpublished)
5. Recall that under MA one has $\mathfrak{r}(\mathfrak{P}(\omega) / \mathrm{fin})=2^{\omega}$; see Blass [1]. Hence the same is true of s_{mm}.
These examples leave only one question concerning the relationship of s_{mm} to the cardinals of Monk [6]:

Problem 5. Is there an atomless BA A such that $\mathrm{s}_{\mathrm{mm}}(A)<\mathfrak{i}(A)$?
Now we show that it is consistent to have $\mathrm{s}_{\mathrm{mm}}(\mathfrak{P}(\omega) / \mathrm{fin})$ less than 2^{ω}. The argument is a modification of exercises (A12), (A13) in chapter VIII of Kunen [3]; the essential argument is given in the following lemma.

Lemma 2.17. Let M be a c.t.m. of $Z F C$. Suppose that κ is an infinite cardinal and $\left\langle a_{i}: i<\kappa\right\rangle$ is a system of infinite subsets of ω such that $\left\langle\left[a_{i}\right]: i<\kappa\right\rangle$ is ideal independent, where $[x]$ denotes the equivalence class of x modulo the ideal fin of $\mathfrak{P}(\omega)$. Then there is a generic extension $M[G]$ of M using a ccc partial order such that in $M[G]$ there is a $d \subseteq \omega$ with the following two properties:
(i) $\left\langle\left[a_{i}\right]: i<\kappa\right\rangle \sim\langle[\omega \backslash d]\rangle$ is ideal independent.
(ii) If $x \in(\mathfrak{P}(\omega) \cap M) \backslash\left(\left\{a_{i}: i<\kappa\right\} \cup\{\omega \backslash d\}\right)$, then $\left\langle\left[a_{i}\right]: i<\kappa\right\rangle \sim\langle[\omega \backslash d],[x]\rangle$ is not ideal independent.
Proof. Let I be the ideal of $\mathfrak{P}(\omega) /$ fin generated by $\left\{\left[a_{i}\right] \cdot\left[a_{j}\right]: i<j<\kappa\right\}$, and let A be the quotient algebra $(\mathfrak{P}(\omega) /$ fin $) / I$. Let f be the natural homomorphism of $\mathfrak{P}(\omega)$ onto A. Note that $f\left(a_{i}\right) \neq 0$ for all $i<\kappa$, by ideal independence. Let B be the subalgebra of A generated by $\left\{f\left(a_{i}\right): i<\kappa\right\}$. Thus B is an atomic BA with $\left\{f\left(a_{i}\right): i<\kappa\right\}$ its set of atoms. By Sikorski's extension theorem, let $h: \mathfrak{P}(\omega) \rightarrow \bar{B}$ extend f, where \bar{B} is the completion of B.
Let $P=\left\{(b, y): b \in \operatorname{ker}(h)\right.$ and $\left.y \in[\omega]^{<\omega}\right\}$. We define $(b, y) \leq\left(b^{\prime}, y^{\prime}\right)$ iff $b \supseteq b^{\prime}, y \supseteq y^{\prime}$, and $y \cap b^{\prime} \subseteq y^{\prime}$. Clearly this gives a ccc partial order of P. Let G be any P-generic filter over M, and let $d=\bigcup_{(b, y) \in G} y$.
(1) If R is a finite subset of κ and $i \in \kappa \backslash R$, then $a_{i} \cap \bigcap_{j \in R}\left(\omega \backslash a_{j}\right) \cap d$ is infinite. In fact, let R and i be as in the hypothesis of (1). For any natural number n let

$$
E_{n}=\left\{(b, y) \in P: \exists m>n\left[m \in a_{i} \cap \bigcap_{j \in R}\left(\omega \backslash a_{j}\right) \cap y\right]\right\} .
$$

Clearly it suffices to show that each such set E_{n} is dense in P. Suppose that $(b, y) \in P$. Then $\left(a_{i} \cap \bigcap_{j \in R}\left(\omega \backslash a_{j}\right)\right) \backslash b$ is infinite. For, if it is a finite set c, then

$$
a_{i} \subseteq \bigcup_{j \in R} a_{j} \cup b \cup c
$$

and upon applying h we would get $h\left(a_{i}\right) \leq \sum_{j \in R} h\left(a_{j}\right)$, which is clearly impossible. Thus the indicated set is infinite. We can hence choose m in it with $m>n$. Clearly $(b, y \cup\{m\}) \in E_{n}$ and $(b, y \cup\{m\}) \leq(b, y)$, proving (1).
(2) If R is a finite subset of κ, then $\omega \backslash\left(d \cup \bigcup_{i \in R} a_{i}\right)$ is infinite.

In fact, let R be a finite subset of κ. For any natural number n let

$$
F_{n}=\left\{(b, y) \in P: \exists m>n\left[m \in b \backslash\left(y \cup \bigcup_{i \in R} a_{i}\right)\right]\right\} .
$$

We claim that F_{n} is dense in P. For, suppose that $(b, y) \in P$. Then the set $\omega \backslash\left(y \cup \bigcup_{i \in R} a_{i}\right)$ is infinite. For, if it is a finite set c, then we get

$$
\omega=c \cup y \cup \bigcup_{i \in R} a_{i}
$$

and applying h we get $1=\sum_{i \in R} h\left(a_{i}\right)$, which is clearly impossible. Choose $(b, y) \in$ $F_{n} \cap G$, and then choose $m>n$ such that $m \in b \backslash\left(y \cup \bigcup_{i \in R} a_{i}\right)$. We claim that $m \notin d$; by the arbitrariness of n, this will prove (2). Suppose that $m \in d$. Choose $(c, z) \in G$ with $m \in z$. Then choose $(d, w) \in G$ with $(d, w) \leq(b, y),(c, z)$. Thus $m \in w$ since $m \in z$. Also, $m \in b \backslash y$. This contradicts $(d, w) \leq(b, y)$. Hence (2) holds.
(3) $\left\langle\left[a_{i}\right]: i<\kappa\right\rangle-\langle[\omega \backslash d]\rangle$ is ideal independent.

For, suppose not. There are two possibilities.
Case 1. There are a finite subset R of κ and an $i \in \kappa \backslash R$ such that $\left[a_{i}\right] \leq$ $[\omega \backslash d]+\sum_{j \in R}\left[a_{j}\right]$. This contradicts (1).

Case 2. There is a finite subset R of κ such that $[\omega \backslash d] \leq \sum_{i \in R}\left[a_{i}\right]$. This contradicts (2).

Thus (3) holds.
(4) If $b \in \operatorname{ker}(h)$, then $b \cap d$ is finite.

In fact, clearly $\{(c, y) \in P: b \subseteq c\}$ is dense in P, so we can choose $(c, y) \in G$ such that $b \subseteq c$. Then $b \cap d \subseteq y$ (as desired). For, suppose that $m \in b \cap d$. Choose $(e, z) \in G$ such that $m \in z$. Then choose $(r, w) \in G$ such that $(r, w) \leq(e, z),(c, y)$. Then $m \in w \cap c \subseteq y$.
(5) If $x \in(\mathfrak{P}(\omega) \cap M) \backslash\left(\left\{a_{i}: i<\kappa\right\} \cup\{\omega \backslash d\}\right)$, then $\left\langle\left[a_{i}\right]: i<\kappa\right\rangle \smile\langle[\omega \backslash d],[x]\rangle$ is not ideal independent.
To prove this, we consider two cases. First, if $x \in \operatorname{ker}(h)$, then $[x] \leq[\omega \backslash d]$ by (4), as desired. Second, if $x \notin \operatorname{ker}(h)$, choose $i<\kappa$ such that $h\left(a_{i}\right) \leq h(x)$. So $a_{i} \backslash x \in \operatorname{ker}(h)$, and so by (4) we get $\left[a_{i}\right] \leq[x]+[\omega \backslash d]$, as desired.

Theorem 2.18. It is consistent with $2^{\omega}>\omega_{1}$ that $\mathrm{s}_{\mathrm{mm}}(\mathfrak{P}(\omega) / \mathrm{fin})=\omega_{1}$.
Proof. Start with a c.t.m. M of $\mathrm{ZFC}+2^{\omega}>\omega_{1}$. Iterate the construction of Lemma $2.17 \omega_{1}$ times, obtaining a generic filter G over M. Then $M[G]$ is as desired, using Lemma 5.14 of Chapter VIII of Kunen [3].

REFERENCES

[1] A. Blass, Combinatorial cardinal characteristics of the continuum, Handbook of set theory, to appear.
[2] S. Koppelberg, The general theory of Boolean algebras, Handbook on Boolean algebras, vol. 1, North-Holland, 1989.
[3] K. Kunen, Set theory, North Holland, 1980.
[4] R. McKenzie and J. D. Monk, On some small cardinals for Boolean algebras, this Journal, vol. 69 (2004), pp. 674-682.
[5] J. D. Monk, Cardinal invariants on Boolean algebras, Birkhäuser, 1996.
[6] -, Continuum cardinals generalized to Boolean algebras, this Journal, vol. 66 (2001), no. 4, pp. 1928-1958.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF COLORADO, UCB395 BOULDER, CO 80309, USA
E-mail: don.monk@colorado.edu

