

Maximal Irredundance and Maximal Ideal Independence in Boolean Algebras Author(s): J. Donald Monk Source: *The Journal of Symbolic Logic*, Vol. 73, No. 1 (Mar., 2008), pp. 261-275 Published by: <u>Association for Symbolic Logic</u> Stable URL: <u>http://www.jstor.org/stable/27588629</u> Accessed: 26/09/2013 08:56

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Association for Symbolic Logic is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Symbolic Logic.

http://www.jstor.org

MAXIMAL IRREDUNDANCE AND MAXIMAL IDEAL INDEPENDENCE IN BOOLEAN ALGEBRAS

J. DONALD MONK

Introduction. Recall that a subset X of an algebra A is *irredundant* iff $x \notin \langle X \setminus \{x\} \rangle$ for all $x \in X$, where $\langle X \setminus \{x\} \rangle$ is the subalgebra generated by $X \setminus \{x\}$. By Zorn's lemma there is always a maximal irredundant set in an algebra. This gives rise to a natural cardinal function $\operatorname{Irr}_{mm}(A) = \min\{|X|: X \text{ is a maximal irredundant subset of } A\}$. The first half of this article is devoted to proving that there is an atomless Boolean algebra A of size 2^{ω} for which $\operatorname{Irr}_{mm}(A) = \omega$.

A subset X of a BA A is *ideal independent* iff $x \notin \langle X \setminus \{x\} \rangle^{id}$ for all $x \in X$, where $\langle X \setminus \{x\} \rangle^{id}$ is the ideal generated by $X \setminus \{x\}$. Again, by Zorn's lemma there is always a maximal ideal independent subset of any Boolean algebra. We then consider two associated functions. A spectrum function

 $s_{\text{spect}}(A) = \{ |X| : X \text{ is a maximal ideal independent subset of } A \}$

and the least element of this set, $s_{mm}(A)$. We show that many sets of infinite cardinals can appear as $s_{spect}(A)$. The relationship of s_{mm} to similar "continuum cardinals" is investigated. It is shown that it is relatively consistent that $s_{mm}(\mathfrak{P}(\omega)/fin) < 2^{\omega}$.

We use the letter s here because of the relationship of ideal independence with the well-known cardinal invariant spread; see Monk [5]. Namely, $\sup\{|X|: X \text{ is ideal} independent in A\}$ is the same as the spread of the Stone space Ult(A); the spread of a topological space X is the supremum of cardinalities of discrete subspaces.

NOTATION. Our set-theoretical notation is standard, with some possible exceptions, as follows. limord is the class of all limit ordinals, and reg is the class of all regular cardinals. If α and β are ordinals, then $[\alpha, \beta]_{card}$ is the collection of all cardinals κ such that $\alpha \leq \kappa \leq \beta$; similarly $[\alpha, \beta]_{reg}$ for the collection of all regular cardinals in this interval; and similarly for other intervals (half open, rays, etc.).

We follow Koppelberg [2] for Boolean algebraic notation, and Monk [5] for more specialized notation concerning cardinal functions on BAs. $Fr(\kappa)$ is the free BA on κ generators. \overline{A} is the completion of A. In several places we use the following construction. Let $\langle A_i : i \in I \rangle$ be a system of BAs, with I infinite. The *weak product* $\prod_{i \in I}^{w} A_i$ consists of all members x of the full product such that one of the two sets

$$\{i \in I : x_i \neq 0\}$$
 or $\{i \in I : x_i \neq 1\}$

Received February 3, 2007.

© 2008. Association for Symbolic Logic 0022-4812/08/7301-0012/\$2.50 is finite; the corresponding set is then called the *support* of x, and is denoted by supp(x); x is called *of type* I or II respectively.

If L is a linear order, then Intalg(L) is the interval algebra over L (perhaps after adjoining a first element to L).

For some results concerning s_{mm} we assume known the definitions of some other "continuum cardinals"; see Monk [6].

§1. Irredundance. The background for consideration of $\operatorname{Irr}_{mm}(A)$ is provided by the easy result of McKenzie, given as Proposition 4.23 in Koppelberg [2], that $\langle X \rangle$ is dense in A for any maximal irredundant subset X of A. Thus we have

THEOREM 1.1. $\pi(A) \leq \operatorname{Irr}_{mm}(A)$.

Here $\pi(A)$ is the smallest size of a dense subset of A.

PROPOSITION 1.2. For any infinite cardinal κ , if A is a subalgebra of $\mathfrak{P}(\kappa)$ containing $\operatorname{Intalg}(\kappa)$, then $\operatorname{Irr}_{mm}(A) = \kappa$.

PROOF. \geq holds by Theorem 1.1, so we just need to exhibit a maximal irredundant set of size κ . Let

$$X = \{ [0, \alpha) \colon 0 < \alpha < \kappa \}.$$

we claim that X is as desired. In fact, it is well-known and easy to see that X is irredundant.

Now suppose that $a \in A \setminus \langle X \rangle$; we want to show that $X \cup \{a\}$ is redundant. We may assume that $a \neq \emptyset, \kappa$. If $0 \notin a$, let α be the least member of a. Then $[0, \alpha + 1) \setminus a = [0, \alpha)$, so that $[0, \alpha) \in \langle (X \cup \{a\}) \setminus \{[0, \alpha)\} \rangle$. If $0 \in a$, let α be the least member of $\kappa \setminus a$. Then $[0, \alpha + 1) \cap a = [0, \alpha)$, leading to the same conclusion.

Thus we have examples of atomic BAs A such that $Irr_{mm}(A) = \pi(A) < Irr(A)$. (Irr(A) is the supremum of cardinalities of irredundant subsets of A.)

THEOREM 1.3. There is an atomless BA A such that $\operatorname{Irr}_{mm}(A) = \omega = \pi(A) < 2^{\omega} = |A|$.

PROOF. We construct A as a subalgebra of $\overline{\operatorname{Fr}(\omega)}$. Let $\langle x_i : i \in \omega \rangle$ be a system of free generators of $\operatorname{Fr}(\omega)$. Now we make some definitions, working in $\overline{\operatorname{Fr}(\omega)}$ (recall here that for any element x of a BA, x^1 is x and x^0 is -x):

$$N = \{ \varepsilon \in {}^{<\omega} 2 \colon \operatorname{dmn}(\varepsilon) > 0 \text{ and } \varepsilon (\operatorname{dmn}(\varepsilon) - 1) = 1 \},\$$

$$M = \{ \varepsilon \in N \colon \forall m < \operatorname{dmn}(\varepsilon) - 1(\varepsilon(m) = 0) \},\$$

$$y_{\varepsilon} = \prod_{i < \operatorname{dmn}(\varepsilon)} x_i^{\varepsilon(i)} \quad \text{for each } \varepsilon \in {}^{<\omega} 2,\$$

$$A = \left\langle \operatorname{Fr}(\omega) \cup \left\{ \sum_{\varepsilon \in P} y_{\varepsilon} \colon P \subseteq M \right\} \right\rangle,\$$

$$z_m = \sum \{ y_{\varepsilon} \colon \varepsilon \in M, \operatorname{dmn}(\varepsilon) \le m \} \quad \text{for each } m \in \omega \setminus 1 \$$

$$X = \{ y_{\varepsilon} \colon \varepsilon \in N \setminus M \} \cup \{ z_m \colon m \in \omega \setminus 1 \}.$$

Thus N is the set of all nonempty finite sequences of 0's and 1's that have 1 as their last entry, and M is the set of all members of N which are 0 except for that last entry. Clearly for any $\varepsilon, \delta \in {}^{<\omega}2$, either ε and δ are comparable under inclusion, and

This content downloaded from 128.138.73.68 on Thu, 26 Sep 2013 08:56:47 AM All use subject to JSTOR Terms and Conditions

262

then y_{ε} and y_{δ} are comparable, or ε and δ are incomparable, and then $y_{\varepsilon} \cdot y_{\delta} = 0$. In particular, $\langle y_{\varepsilon} : \varepsilon \in M \rangle$ is a system of pairwise disjoint elements, and hence $|A| = 2^{\omega}$. Since $Fr(\omega)$ is a dense subalgebra of A, it follows that A is atomless. We claim that X is a maximal irredundant subset of A, which will complete the proof. We prove this in several steps.

(1)
$$\langle X \rangle = \operatorname{Fr}(\omega)$$
.

In fact, clearly $X \subseteq Fr(\omega)$, so \subseteq holds. For the other inclusion, note first that if $\varepsilon \in M$, with domain *m*, then $y_{\varepsilon} = z_m \cdot -z_{m-1}$ if m > 1, and $y_{\varepsilon} = z_1$ if m = 1; hence $y_{\varepsilon} \in \langle X \rangle$ for every $\varepsilon \in N$. Now for any $n \in \omega$ we have

$$1 = \sum_{\varepsilon \in {}^n 2} \prod_{i < n} x_i^{\varepsilon(i)}, \text{ and hence } x_n = \sum_{\varepsilon \in {}^n 2} \prod_{i < n} (x_i^{\varepsilon(i)} \cdot x_n) = \sum_{\varepsilon \in {}^n 2 \cap N} y_{\varepsilon} \in \langle X \rangle.$$

This proves (1).

(2) $\sum_{\varepsilon \in M} y_{\varepsilon} = 1.$

To prove this, it suffices to show that for any $\delta \in {}^{<\omega}2$ there is an $\varepsilon \in M$ such that $y_{\delta} \cdot y_{\varepsilon} \neq 0$. If $\delta(i) = 1$ for some *i*, choose the least such *i* and let ε be the member of *M* with domain i + 1. Then $0 \neq y_{\delta} = y_{\delta} \cdot y_{\varepsilon}$. If $\delta(i) = 0$ for all $i < \text{dmn}(\delta)$, let ε be the member of *M* with domain $\text{dmn}(\delta) + 1$. Then $0 \neq y_{\varepsilon} = y_{\delta} \cdot y_{\varepsilon}$.

- (3) Suppose that F and G are finite subsets of N. Then the following are equivalent:
 - (a) $\prod_{\varepsilon \in F} y_{\varepsilon} \cdot \prod_{\delta \in G} y_{\delta} = 0.$
 - (b) $F \neq \emptyset$, and one of the following holds:
 - (A) There are distinct $\varepsilon_1, \varepsilon_2 \in F$ which are incompatible.
 - (B) $\rho \stackrel{\text{def}}{=} \bigcup F$ is a function, $\rho \in F$, and if $p \ge \dim(\varepsilon)$ for each $\varepsilon \in F \cup G$, then for every $\sigma \in {}^{p}2$, if $\rho \subseteq \sigma$ then there is a $\delta \in G$ such that $\delta \subseteq \sigma$.

To prove (3), first suppose that (a) holds. Suppose that $F = \emptyset$. Let $\varepsilon \in M$ with domain greater than the domains of all y_{δ} for $\delta \in G$. Then $y_{\varepsilon} \cdot y_{\delta} = 0$ for all $\delta \in G$, so that $0 \neq y_{\varepsilon} \leq \prod_{\delta \in G} -y_{\delta}$, contradiction. So $F \neq \emptyset$.

Now suppose that (b)(A) fails. Then ρ as defined is a function, $\rho \in F$, and $\prod_{\varepsilon \in F} y_{\varepsilon} = y_{\rho}$. Thus by (a) we have $y_{\rho} \leq \sum_{\delta \in G} y_{\delta}$. Let p be as in (b)(B), and suppose that $\sigma \in p_2$ and $\rho \subseteq \sigma$, but $\delta \not\subseteq \sigma$ for all $\delta \in G$. Take a homomorphism of $Fr(\omega)$ into 2 which takes each x_i with i < p to $\sigma(i)$. Then y_{ρ} goes to 1, but each $y_{\delta}, \delta \in G$, goes to 0, contradicting the above inequality. So (b)(B) holds.

Conversely, assume (b). Clearly (b)(A) implies (a). Now assume (b)(B), and let p be any integer as indicated there. Then

$$\prod_{\varepsilon \in F} y_{\varepsilon} \cdot \prod_{\delta \in G} -y_{\delta} = y_{\rho} \cdot \prod_{\delta \in G} -y_{\delta}.$$

For every $\sigma \in {}^{p}2$ such that $\rho \subseteq \sigma$ choose $\delta_{\sigma} \in G$ such that $\delta_{\sigma} \subseteq \sigma$. Then

$$y_{\rho} = \sum \{y_{\sigma} \colon \rho \subseteq \sigma \in {}^{p}2\} \le \sum \{y_{\delta_{\sigma}} \colon \rho \subseteq \sigma \in {}^{p}2\},$$

and (a) follows.

(4) If G is a finite subset of N, then $\prod_{\delta \in G} -y_{\delta} \neq 0$.

This is immediate from (3).

J. DONALD MONK

(5) If G is a finite subset of N, $\rho \in N$, and $\prod_{\delta \in G} -y_{\delta} \cdot y_{\rho} = 0$, then $\delta \subseteq \rho$ for some $\delta \in G$; in case $\rho \in M$, we have $\rho \in G$.

Assume the hypothesis of (5). Let p be \geq the domains of all these functions, and let σ extend ρ to a function with domain p by adding 0's. Then by (3) we have $\delta \subseteq \sigma$ for some $\delta \in G$. Since δ ends with 1, we must actually have $\delta \subseteq \rho$. If $\rho \in M$, then ρ has only zeros except for its last entry, and hence $\rho = \delta \in G$.

(6) If ρ ∈ N, m is a positive integer, and y_ρ · z_m ≠ 0, then there is a δ ∈ M with dmn(δ) ≤ m such that δ ⊆ ρ; so y_ρ ≤ z_m.

For, choose $\delta \in M$ with $dmn(\delta) \leq m$ such that $y_{\rho} \cdot y_{\delta} \neq 0$. If $dmn(\rho) < dmn(\delta)$, then $y_{\rho} \cdot y_{\delta} = 0$ since δ has all zero values except for its last one. So $dmn(\delta) \leq dmn(\rho)$, and hence $\delta \subseteq \rho$ since $y_{\delta} \cdot y_{\rho} \neq 0$. So (6) holds.

(7) X is irredundant.

To prove (7), first suppose that $\varepsilon \in N \setminus M$ and $y_{\varepsilon} \in \langle X \setminus \{y_{\varepsilon}\} \rangle$. Then there exist $n \in \omega, F, G \in {}^{n}([N \setminus (M \cup \{\varepsilon\})]^{<\omega})$ and $H, K \in {}^{n}([\omega \setminus 1]^{<\omega})$ such that

$$y_{\varepsilon} = \sum_{i < n} \left(\prod_{\delta \in F_i} y_{\delta} \cdot \prod_{\delta \in G_i} -y_{\delta} \cdot \prod_{m \in H_i} z_m \cdot \prod_{m \in K_i} -z_m \right)$$

where each summand is nonzero, and $|F_i|, |H_i|, |K_i| \leq 1$. Now take any i < n. Then

$$\prod_{\delta \in F_i} y_{\delta} \cdot \prod_{\delta \in G_i} -y_{\delta} \cdot \prod_{m \in H_i} z_m \cdot \prod_{m \in K_i} -z_m \cdot -y_{\varepsilon} = 0.$$
(*)

Hence by (4) we have $F_i \neq \emptyset$ or $H_i \neq \emptyset$.

(8) $F_i \neq \emptyset$.

For, suppose that $F_i = \emptyset$. Then by the above remark, $H_i \neq \emptyset$. It follows that there is a $\rho \in M$ such that

$$\prod_{\delta \in G_i} -y_{\delta} \cdot y_{\rho} \cdot \prod_{m \in K_i} -z_m \neq 0 \text{ while } \prod_{\delta \in G_i} -y_{\delta} \cdot y_{\rho} \cdot \prod_{m \in K_i} -z_m \cdot -y_{\varepsilon} = 0.$$

Hence by (5) we have $\rho = \varepsilon$, contradicting $\varepsilon \notin M$. So (8) holds.

Henceforth we assume that $F_i = \{\rho_i\}$.

(9) If $H_i = \{m\}$, then $y_{\rho_i} \le z_m$.

This follows from (6). Because of (9), we may assume that $H_i = \emptyset$.

(10)
$$\varepsilon \subset \rho_i$$
.

In fact, we now have

$$y_{\rho_i} \cdot \prod_{\delta \in G_i} -y_{\delta} \cdot \prod_{m \in K_i} -z_m \neq 0 = y_{\rho_i} \cdot \prod_{\delta \in G_i} -y_{\delta} \cdot \prod_{m \in K_i} -z_m \cdot -y_{\varepsilon},$$

so the desired conclusion follows by (5) and the assumption that $\rho_i \neq \varepsilon$. Now we can finish the proof of the first possibility in (7) as follows. We have

$$y_{\varepsilon} = \sum_{i < n} \left(y_{\rho_i} \cdot \prod_{\delta \in G_i} - y_{\delta} \cdot \prod_{m \in K_i} - z_m \right) \le \sum_{i < n} y_{\rho_i} \le y_{\varepsilon},$$

so $y_{\varepsilon} = \sum_{i < n} y_{\rho_i}$. Now $\varepsilon \subset \rho_i$ for each *i* by (10). So if we take a homomorphism of $Fr(\omega)$ into 2 which maps each x_i with $i < dmn(\varepsilon)$ to $\varepsilon(i)$ and otherwise takes the value 0, the above equality becomes 1 = 0, contradiction.

264

Now suppose that $q \in \omega \setminus 1$ and $z_q \in \langle X \setminus \{z_q\} \rangle$. Then there exist $n \in \omega$, $F, G \in {}^n([N \setminus M]^{<\omega})$, and $H, K \in {}^n([\omega \setminus \{q\}]^{<\omega})$ such that

$$z_q = \sum_{i < n} \left(\prod_{\delta \in F_i} y_{\delta} \cdot \prod_{\delta \in G_i} -y_{\delta} \cdot \prod_{m \in H_i} z_m \cdot \prod_{m \in K_i} -z_m \right)$$

where each summand is nonzero, and $|F_i|, |H_i|, |K_i| \le 1$. Note by (4) that $F_i \ne \emptyset$ or $H_i \ne \emptyset$. If $F_i = \emptyset$, let $H_i = \{m_i\}$, and if $F_i \ne \emptyset$, let $F_i = \{\rho_i\}$.

Now take any i < n. Then

$$\prod_{\delta \in F_i} y_{\delta} \cdot \prod_{\delta \in G_i} -y_{\delta} \cdot \prod_{m \in H_i} z_m \cdot \prod_{m \in K_i} -z_m \cdot -z_q = 0.$$
(**)

(11) If $F_i = \emptyset = K_i$, then $m_i < q$.

For, if $\rho \in M$ and dmn $(\rho) = m_i$, then $\rho \notin G_i$; hence from

$$\prod_{\delta \in G_i} -y_\delta \cdot y_\rho \cdot -z_q = 0$$

we get by (5) that $m_i \leq q$; so $m_i < q$.

(12) If
$$F_i = \emptyset$$
 and $K_i = \{r\}$, then $m_i < q$

For, since the *i*th summand is nonzero, we have $r < m_i$. Hence the argument for (11) works.

(13) If $F_i \neq \emptyset$, then we may assume that $H_i = \emptyset$.

This is clear from (6).

(14) If $F_i = \{\rho_i\}$ and $H_i = \emptyset$, then ρ_i is a proper extension of some $\tau \in M$ such that $dmn(\tau) \leq q$, and $y_{\rho_i} < z_q$.

For, we have

$$y_{\rho_i} \cdot \prod_{\delta \in G_i} -y_{\delta} \cdot \prod_{m \in K_i} -z_m \cdot -z_q = 0.$$

By (5) we get a $\tau \in M$ with dmn $(\tau) \leq q$ such that $\tau \subseteq \rho_i$. Since $\rho_i \notin M$, we have $\tau \subset \rho_i$. So $y_{\rho_i} < y_{\tau} \leq z_q$, as desired.

Now we can finish the proof of (7) in our second case. Let $R = \{i < n : F_i = \emptyset\}$. Then

$$z_{q} = \sum_{i \in R} \left(\prod_{\delta \in G_{i}} -y_{\delta} \cdot z_{m_{i}} \cdot \prod_{r \in K_{i}} -z_{r} \right) \\ + \sum_{i \in n \setminus R} \left(y_{\rho_{i}} \cdot \prod_{\delta \in G_{i}} -y_{\delta} \cdot \prod_{m \in H_{i}} z_{m} \cdot \prod_{r \in K_{i}} -z_{r} \right) \\ \leq \sum_{i \in R} z_{m_{i}} + \sum_{i \in n \setminus R} y_{\rho_{i}} \\ \leq z_{q}.$$

Hence

$$z_q = \sum_{i \in R} z_{m_i} + \sum_{i \in n \setminus R} y_{\rho_i}.$$

Here we have $m_i < q$ for all $i \in R$, and each ρ_i is a proper extension of some $\sigma \in M$ with dmn $(\sigma) \leq q$. Now map x_{q-1} to 1 and all other generators to 0. Then

,

 z_q goes to 1 but the right side of the above equation goes to 0, contradiction. This completes the proof of (7).

- (15) If Q is a subset of M and $a \in Fr(\omega)$, then there is an m such that one of the following conditions holds:
 - (1) $a \cdot y_{\varepsilon} = y_{\varepsilon}$ for all $\varepsilon \in Q$ such that $dmn(\varepsilon) \ge m$.
 - (2) $a \cdot y_{\varepsilon} = 0$ for all $\varepsilon \in Q$ such that $dmn(\varepsilon) \ge m$.

For, write $a = \sum_{\delta \in P} \prod_{i < n} x_i^{\delta(i)}$ for some $n \in \omega$ and some $P \subseteq {}^n 2$, and let m = n+1. Then (1) holds if the all 0 function is in P, and (2) holds otherwise.

(16) A consists of all elements of the form

$$\sum_{\varepsilon \in Q} y_{\varepsilon} + a$$

such that Q is a subset of M and $a \in Fr(\omega)$.

To prove (6) first note that the set Y of all such elements is clearly a subset of A and contains the set of generators in the definition of A. Clearly Y is closed under +. So it suffices to show that Y is closed under -:

$$-\Big(\sum_{arepsilon\in\mathcal{Q}}y_{arepsilon}+a\Big)=-a\cdot-\sum_{arepsilon\in\mathcal{Q}}y_{arepsilon}\ =-a\cdot\sum_{arepsilon\in M\setminus\mathcal{Q}}y_{arepsilon}.$$

Now by (15), choose *m* such that either $-a \cdot y_{\varepsilon} = y_{\varepsilon}$ for all $\varepsilon \in M \setminus Q$ with domain at least *m*, or $-a \cdot y_{\varepsilon} = 0$ for all $\varepsilon \in M \setminus Q$ with domain at least *m*. Hence in the first case we have

$$-a \cdot \sum_{\varepsilon \in M \setminus Q} y_{\varepsilon} = \sum_{\varepsilon \in R} y_{\varepsilon} + \Big(-a \cdot \sum_{\varepsilon \in M \setminus (Q \cup R)} y_{\varepsilon} \Big)$$

where *R* is the set of all $\varepsilon \in M \setminus Q$ with domain at least *m*, and in the second case $-a \cdot \sum_{\varepsilon \in M \setminus Q} y_{\varepsilon}$ is in Fr(ω).

(17) X is maximal irredundant in A.

Suppose that $d \in A \setminus \langle X \rangle$. By (16), write

$$d=\sum_{\varepsilon\in Q}y_{\varepsilon}+e,$$

where Q is a subset of M and $e \in \operatorname{Fr}(\omega)$. Since $d \notin \langle X \rangle = \operatorname{Fr}(\omega)$, the set Q is infinite and co-infinite. Now write $e = \sum_{\delta \in T} \prod_{i < m} x_i^{\delta(i)}$ with $T \subseteq m^2$. Let $\zeta \in m^2$ be the constantly 0 function. If $\zeta \in T$, then $y_{\varepsilon} \leq e$ for all $\varepsilon \in N$ with dmn $(\varepsilon) > m$, so $d \in \operatorname{Fr}(\omega) = \langle X \rangle$, contradiction. Thus $\zeta \notin T$. It follows that $y_{\varepsilon} \cdot e = 0$ for all $\varepsilon \in M$ such that dmn $(\varepsilon) > m$. Hence $e \cdot -z_m = 0$. Choose p > m + 2 so that Q has a member with domain p but none with domain p + 1. Then

$$d \cdot -z_m \cdot z_{p+1} = \sum \{ y_\rho \colon \rho \in Q, m < \operatorname{dmn}(\rho) \le p \}.$$

Hence $d \cdot -z_m \cdot z_{p+1} + z_{p-1} = z_p$. This proves (17).

It is possible that Theorem 1.3 can be generalized. The following problem represents the maximum possible generalization.

PROBLEM 1. Is $Irr_{mm}(A) = \pi(A)$ for every infinite BA? In particular, we do not know whether this is true for the following algebras:

- (i) The completion of the denumerable atomless BA.
- (ii) The interval algebra on \mathbb{R} .

The following minor results are somewhat relevant to this problem.

PROPOSITION 1.4. It is possible to have X denumerable and irredundant, $\langle X \rangle$ dense in A, $|A| = 2^{\omega}$, but X not maximal irredundant.

PROOF. Take $A = \mathfrak{P}(\omega)$ and $X = \{\{m\}: m \in \omega\}$. So X is irredundant and $\langle X \rangle$ is dense in A. Let $E = \{m \in \omega: m \text{ is even}\}$. Clearly $\langle X \rangle = \text{Finco}(\omega)$, and hence $E \notin \langle X \rangle$. So if $X \cup \{E\}$ is redundant, then there exist an $m \in \omega$ and pairwise disjoint $y, z, w \in \langle X \setminus \{\{m\}\}\rangle$ such that $\{m\} = (E \cap y) \cup (z \setminus Y) \cup w$. So $w = \emptyset$. Clearly y is finite with $m \notin y$, or y is cofinite; and similarly for z. So one of y, z is cofinite, and this is clearly impossible.

This example is atomic. An atomless example is as follows. Let $B = Fr(\omega)$ and $X = \{x_n : n \in \omega\}$, where $\langle x_n : n \in \omega \rangle$ is a system of free generators of $Fr(\omega)$. For each $n \in \omega$ let $z_n = x_n \cdot \prod_{m < n} -x_m$, and let $y = \sum_{n \in \omega} z_{2n}$. Clearly $y \notin Fr(\omega)$. Suppose that $X \cup \{y\}$ is redundant. Then there exist $m \in \omega$ and pairwise disjoint $u, v, w \in \langle X \setminus \{x_n\}\rangle$ such that $x_n = y \cdot u + -y \cdot v + w$. Since $w \leq x_n$, it follows that w = 0. Clearly $u, v \neq 1$. Now write

$$u = \sum_{\varepsilon \in M} \prod_{m \in N} x_m^{\varepsilon(m)}$$
 and $v = \sum_{\varepsilon \in P} \prod_{m \in N} x_m^{\varepsilon(m)}$

where N is a finite subset of $X \setminus \{n\}$ and M, P are disjoint subsets of ^N2. Since $x_n \leq u + v$, we must have u + v = 1, and hence $M \cup P = {}^N 2$. Let $\zeta \in {}^N 2$ be the all 0 sequence. By symmetry, say $\zeta \in M$. Let p be an even integer greater than n and each member of N. Then $z_p \leq y \cdot u \leq x_n$, contradiction.

PROPOSITION 1.5. If X is a denumerable maximal irredundant subset of $Fr(\omega)$, then we may assume that $\langle X \rangle = Fr(\omega)$.

PROOF. Since $\langle X \rangle$ is dense in $Fr(\omega)$, it is atomless, and hence is isomorphic to $Fr(\omega)$. Hence there is an automorphism f of $\overline{Fr(\omega)}$ such that $f[\langle X \rangle] = Fr(\omega)$. \dashv Note that $Irr_{mm}(\mathfrak{P}(\omega)/fin) = 2^{\omega}$, since $\pi(\mathfrak{P}(\omega)/fin) = 2^{\omega}$.

§2. Maximal ideal independence. The following proposition gives a method of constructing maximal ideal independent sets.

PROPOSITION 2.1. Suppose A is a BA and that $X \subseteq A$ is ideal independent and X generates a maximal ideal I. Then X is maximal ideal independent.

PROOF. Let $y \in A \setminus X$. If $y \in I$, then $y \leq \sum F$ for some finite $F \subseteq X$. If $-y \in I$, then $-y \leq \sum F$ for some finite $F \subseteq X$, and hence $y + \sum F = 1$.

PROPOSITION 2.2. $s_{\text{spect}}(Fr(\kappa)) = \{\kappa\}.$

PROPOSITION 2.3. $s_{spect}(A) \cup s_{spect}(B) \subseteq s_{spect}(A \times B)$.

PROOF. Let X be maximal ideal-independent in A. Define $Y = \{(x, 1) : x \in X\}$. Clearly Y is ideal-independent in $A \times B$. To show that it is maximal, suppose that $(u, v) \in A \times B$. Then there are two possibilities.

Case 1. There is a finite subset F of X such that $u \leq \sum F$. We may assume that $F \neq \emptyset$. Then $(u, v) \leq \sum_{x \in F} (x, 1)$, as desired.

Case 2. There exist an $x \in X$ and a finite subset F of $X \setminus \{x\}$ such that $x \leq u + \sum F$. Again we may assume that $F \neq \emptyset$. Then $(x, 1) \leq (u, v) + \sum_{y \in F} (y, 1)$, as desired.

Hence the proposition follows by symmetry.

COROLLARY 2.4. If $\langle A_i : i \in I \rangle$ is any system of BAs, then $\bigcup_{i \in I} s_{\text{spect}}(A_i) \subseteq s_{\text{spect}}\left(\prod_{i \in I} A_i\right)$ and also $\bigcup_{i \in I} s_{\text{spect}}(A_i) \subseteq s_{\text{spect}}\left(\prod_{i \in I} A_i\right)$.

THEOREM 2.5. If K is a nonempty finite set of infinite cardinals, then

$$s_{\text{spect}}\left(\prod_{\lambda\in K} \operatorname{Fr}(\lambda)\right) = K.$$

PROOF. \supseteq holds by Corollary 2.3. Suppose that $\kappa \in s_{\text{spect}} \left(\prod_{\lambda \in K} \operatorname{Fr}(\lambda) \right) \setminus K$. Let $L = \{\lambda \in K : \lambda < \kappa\}$ and $M = K \setminus L$. Assume that $L \neq \emptyset$; some obvious changes should be made in the following argument if $L = \emptyset$. Let X be a maximal independent subset of $\prod_{\lambda \in K} \operatorname{Fr}(\lambda)$ of size κ . For each $\lambda \in M$ let u_{λ} be a free generator of $\operatorname{Fr}(\lambda)$ not in the subalgebra generated by $\{x_{\lambda} : x \in X\}$. Now $|\prod_{\lambda \in L} \operatorname{Fr}(\lambda)| < \kappa$, so there is a $q \in \prod_{\lambda \in L} \operatorname{Fr}(\lambda)$ such that $X' \stackrel{\text{def}}{=} \{x \in X : x \upharpoonright L = q\}$ has size greater than $\max(L)$. Let $f = q \cup \langle u_{\lambda} : \lambda \in M \rangle$. So $f \in \prod_{\lambda \in K} \operatorname{Fr}(\lambda)$ and $f \notin X$ (since clearly $M \neq \emptyset$). Hence $X \cup \{f\}$ is ideal-dependent. This gives two possibilities.

Case 1. There is a finite $F \subseteq X$ such that $f \leq \sum F$. It follows that $(\sum F)_{\lambda} = 1$ for all $\lambda \in M$. Choose $g \in X' \setminus F$. Then $g \leq \sum F$, contradiction.

Case 2. There exist a finite $F \subseteq X$ and a $g \in X \setminus F$ such that $g \leq f + \sum F$. For any $\lambda \in M$ we have $g_{\lambda} \cdot -u_{\lambda} \cdot -(\sum F)_{\lambda} = 0$, and hence $g_{\lambda} \cdot -(\sum F)_{\lambda} = 0$. Choose $h \in X' \setminus (F \cup \{g\})$. Then $g \leq h + \sum F$, contradiction.

The following simple proposition shows that there is an obstruction to using weak products in order to extend Theorem 2.5 to the infinite case.

PROPOSITION 2.6. If $\langle A_i : i \in I \rangle$ is a system of BAs, with I infinite, then

$$|I| \in \mathbf{s}_{\mathrm{spect}}\left(\prod_{i\in I}^{n}A_{i}\right).$$

w

PROOF. For each $i \in I$ let f^i be the member of $\prod_{i \in I}^w A_i$ which takes the value 1 at i and the value 0 at all other places. Clearly $\{f^i : i \in I\}$ is maximal ideal-independent.

PROPOSITION 2.7. Suppose that K is an infinite set of infinite cardinals such that $|K| \leq \min(K)$. Then there is a BA A such that $K \subseteq s_{\text{spect}}(A)$ and $s_{\text{spect}}(A) \cap \text{reg} \subseteq K$.

PROOF. Let $\mu = \min(K)$, let $\lambda \mod \mu$ onto K, and let $A = \prod_{\alpha < \mu}^{w} \operatorname{Fr}(\lambda_{\alpha})$. We claim that A is as desired.

The first inclusion in the proposition holds by Proposition 2.3. Now suppose that $\kappa \in (s_{\text{spect}}(A) \cap \text{reg}) \setminus K$. Let X be maximal ideal-independent of size κ . Let

 $L = \{ \alpha < \mu : \kappa < \lambda_{\alpha} \}$, and let $M = \mu \setminus L$. For each $\alpha \in L$ let u_{α} be a free generator of $Fr(\lambda_{\alpha})$ not in $\langle \{x_{\alpha} : x \in X\} \rangle$.

(1)
$$M \neq \emptyset$$
.

For, suppose that $M = \emptyset$. Then $\kappa < \lambda_{\alpha}$ for each $\alpha < \mu$, and so $\kappa < \min(K) = \mu$.

(2) Some $x \in X$ has type II.

For, suppose not. Now $\bigcup_{x \in X} \operatorname{supp}(x)$ has size less than $\min(K) = \mu$, so we can choose $\alpha < \mu$ not in this union. Let y take the value u_{α} at α and 0 elsewhere. Clearly $y \notin X$ and $X \cup \{y\}$ is still ideal-independent, contradiction. So (2) holds.

We take x as in (2). Now let $y_{\alpha} = u_{\alpha}$ for all $i \in \text{supp}(x)$, and $y_{\alpha} = 0$ otherwise. Then $y \notin X$, so $X \cup \{y\}$ is ideal-dependent.

Case 1. $y \leq \sum F$ for some finite $F \subseteq X$. We may assume that $x \in F$. Now for $\alpha \in \text{supp}(x)$ we have $u_{\alpha} \leq (\sum F)_{\alpha}$, and hence $(\sum F)_{\alpha} = 1$. Since $x \in F$, it follows that $\sum F = 1$, contradiction.

Case 2. There exist a finite $F \subseteq X$ and a $g \in X \setminus F$ such that $g \leq y + \sum F$. It follows easily that $g \leq \sum F$, contradiction. This proves (1).

In particular, $\kappa > \mu$. Since κ is regular, it follows that there is a $G \in [\mu]^{<\omega}$ such that $X' \stackrel{\text{def}}{=} \{x \in X : \operatorname{supp}(x) = G\}$ has size κ . Now $|\prod_{\alpha \in G \cap M} \operatorname{Fr}(\lambda_{\alpha})| < \kappa$, so there is a $q \in \prod_{\alpha \in G \cap M} \operatorname{Fr}(\lambda_{\alpha})$ such that $Y \stackrel{\text{def}}{=} \{x \in X' : x \upharpoonright (G \cap M) = q\}$ has size κ . Note also that $G \cap L \neq \emptyset$, as otherwise $G = G \cap M$ and hence $|X'| < \kappa$, contradiction. Let $Y' = \{y \in Y : y \text{ has type I}\}$ and $Y'' = Y \setminus Y'$. Now define

$$y_{\alpha} = \begin{cases} u_{\alpha} & \text{if } i \in G \cap L, \\ q_{\alpha} & \text{if } i \in G \cap M, \\ 0 & \text{otherwise.} \end{cases}$$

Since $G \cap L \neq \emptyset$, we have $y \notin X$. So $X \cup \{y\}$ is ideal-dependent. This gives two cases.

Case 1. There is a finite $F \subseteq X$ such that $y \leq \sum F$. Then $(\sum F) \upharpoonright (G \cap L) = 1$. If $|Y'| = \kappa$, choose $g \in Y'$ such that $g \notin F$. Then $g \leq \sum F$, contradiction. If $|Y''| = \kappa$, choose distinct $g, h \in Y'' \setminus F$. Then $g \leq \sum F + h$, contradiction.

Case 2. There exist a finite $F \subseteq X$ and a $g \in X \setminus \overline{F}$ such that $g \leq y + \sum F$. Then $g \upharpoonright (G \cap L) \leq (\sum F) \upharpoonright (G \cap L)$ and also $g \upharpoonright (\mu \setminus G) \leq (\sum F) \upharpoonright (\mu \setminus G)$. Choose $h \in Y \setminus (F \cup \{g\})$. Then $g \leq h + \sum F$, contradiction.

COROLLARY 2.8. If K is an infinite set of regular cardinals and $|K| \le \min(K)$, then there is a BA A such that $s_{spect}(A) \cap reg = K$.

PROBLEM 2. Is the assumption $|K| \le \min(K)$ in Theorem 2.7 necessary?

PROBLEM 3. How can Theorem 2.7 be extended to singular cardinals in K?

We now concentrate on s_{mm} . From 2.3 we have the following problem.

PROBLEM 4. Is $s_{mm}(A \times B) = min(s_{mm}(A), s_{mm}(B))$?

The first part of the proof of Theorem 2 of McKenzie, Monk [4] shows that we cannot have atomless A, B such that $s_{mm}(A \times B) = \omega < \min(s_{mm}(A), s_{mm}(B))$, giving a partial solution of this problem.

By Corollary 2.4 and Proposition 2.6 we have:

COROLLARY 2.9. (i) $s_{mm}(\prod_{i \in I} A_i \le \min_{i \in I} s_{mm}(A_i))$.

(ii) For I infinite, $s_{mm} \prod_{i \in I}^{w} (A_i) \leq \min(|I|, \min_{i \in I} s_{mm}(A_i))$.

THEOREM 2.10. There is a BA A such that $s_{mm}(A) = \omega < u(A)$.

PROOF. Let $A = {}^{\omega} \operatorname{Fr}(\omega_1)$. So $\operatorname{smm}(A) = \omega$ by Corollary 2.9. By Proposition 9(iii) of Monk [6] we have $\mathfrak{u}(A) \ge \kappa$, where κ is the smallest cardinality of a subset of $\mathfrak{P}(\omega)$ which generates a nonprincipal ultrafilter on $\mathfrak{P}(\omega)$. So it suffices to assume that $\{x_i : i \in \omega\}$ is a collection of subsets of ω which generates a nonprincipal ultrafilter D on $\mathfrak{P}(\omega)$, and get a contradiction. If X is an infinite, co-infinite subset of ω , then either X or $\omega \setminus X$ is in D. It follows that not all x_i are cofinite. We may assume that x_0 is not cofinite. Now each intersection $\bigcap_{j \le i} x_j$ is not cofinite, so we can choose distinct

$$m_i, n_i \in \omega \setminus \Big(\bigcap_{j \leq i} x_j \cup \{m_j, n_j \colon j < i\} \Big).$$

Let $y = \{m_i : i < \omega\}$. Then clearly $y, \omega \setminus y \notin D$, contradiction.

PROPOSITION 2.11. $s_{mm}(Finco(\kappa)) = \kappa$ for every infinite cardinal κ .

PROOF. Since $\{\{\alpha\}: \alpha < \kappa\}$ is clearly maximal ideal independent, we just need to get a contradiction upon assuming that X is maximal ideal independent with $\omega \leq |X| < \kappa$. If all members of X are finite, then it is clearly not maximal. So there is a member of X of the form $\kappa \setminus F$ with $F \subseteq \kappa$ finite. Suppose that there are infinitely many finite members of X. Then there are two distinct finite members G, H of X such that $F \cap G = F \cap H$. Then $G \subseteq (X \setminus F) \cup H$, contradicting maximality of X. Thus X has only finitely many finite members. Hence it has infinitely many cofinite members. Let $\mathfrak{A} = \{G \in [\kappa]^{<\omega}: \kappa \setminus G \in X\}$. Among the finite intersections of members of \mathfrak{A} there is a minimal one; call it Y, and say $Y = \bigcap \mathfrak{B}$ with \mathfrak{B} a finite subset of \mathfrak{A} . Take any member $G \in \mathfrak{A} \setminus \mathfrak{B}$. Then $\bigcap \mathfrak{B} \subseteq G$, hence $X \setminus G \subseteq \bigcup_{H \in \mathfrak{B}} (X \setminus H)$, contradicting X ideal independent.

PROPOSITION 2.12. $\mathfrak{r}(A) \leq s_{mm}(A)$ for any BA A.

PROOF. Suppose that X is maximal ideal-independent. Let

$$Y = X \cup \{-\sum F : F \in [X]^{<\omega}\} \cup \{b \cdot -\sum F : b \notin F, F \cup \{b\} \in [X]^{<\omega}\}.$$

Clearly the members of Y are nonzero. We claim that Y is weakly dense in A. For, suppose that $a \in A \setminus X$. Then $X \cup \{a\}$ is no longer ideal independent, so we have two cases.

Case 1. $a \leq \sum F$ for some $F \in [X]^{<\omega}$. Then $-\sum F \leq -a$, as desired.

Case 2. There exist a finite subset F of X and a $b \in X \setminus F$ such that $b \leq \sum F + a$. Then $b \cdot -\sum F \leq a$, as desired.

THEOREM 2.13. There is a BA A such that $u(A) < s_{mm}(A)$.

PROOF. We modify the proof of Lemma 21 of Monk [6]. The construction depends upon the following step:

(1) Suppose that *B* is a BA, $\langle a_{\alpha} : \alpha < \omega_1 \rangle$ is a strictly decreasing sequence of elements of *B* generating an ultrafilter *F*, and $\langle b_{\alpha} : \alpha < \mu \rangle$ is a sequence of distinct elements of *B* with $\omega \le \mu \le \omega_1$ such that $\{b_{\alpha} : \alpha < \mu\}$ is ideal independent. Then

$$\dashv$$

there is an extension C of B such that $\langle a_{\alpha} : \alpha < \omega_1 \rangle$ still generates an ultrafilter in C, while $\{b_{\alpha} : \alpha < \mu\}$ is not maximal ideal independent in C.

To prove (1), let B(x) be a free extension of B. For each $\beta < \omega_1$ let

$$I_{\beta} = \langle \{b_{\alpha} \cdot x : \alpha < \mu\} \cup \{a_{\beta} \cdot x\} \rangle^{\mathrm{id}}$$

Clearly $B \cap I_{\beta} = \{0\}$ for all $\beta < \omega_1$.

(2) There is an $\beta < \omega_1$ such that $x \notin I_{\beta}$.

To prove (2) we consider two cases.

Case 1. There is an $\alpha < \mu$ such that $b_{\alpha} \in F$. Say $a_{\beta} \leq b_{\alpha}$. Suppose that $x \in I_{\beta}$. Then we can write

$$x \le b_{\alpha_0} \cdot x + \dots + b_{\alpha_{m-1}} \cdot x + a_{\beta} \cdot x. \tag{3}$$

Choose $\gamma < \mu$ such that $\gamma \neq \alpha_0, \dots, \alpha_{m-1}, \alpha$. Mapping x to b_{γ} and pointwise fixing A yields $b_{\gamma} \leq b_{\alpha_0} + \dots + b_{\alpha_{m-1}} + b_{\alpha}$, contradicting ideal independence.

Case 2. $-b_{\alpha} \in F$ for all $\alpha < \mu$. For each $\alpha < \mu$ choose $\gamma_{\alpha} < \omega_1$ such that $a_{\gamma_{\alpha}} \leq -b_{\alpha}$.

Subcase 2.1. $\{\gamma_{\alpha} : \alpha < \mu\}$ is bounded in ω_1 , say by β . Thus $a_{\beta} \leq -b_{\alpha}$ for all $\alpha < \mu$. If $x \in I_{\beta}$, then we obtain (3) again. Choose $\alpha < \mu$ with $\alpha \neq \alpha_0, \ldots, \alpha_{m-1}$. Mapping x to b_{α} and pointwise fixing A we obtain $b_{\alpha} \leq b_{\alpha_0} + \cdots + b_{\alpha_{m-1}}$, again contradicting ideal independence.

Subcase 2.2. $\{\gamma_{\alpha}: \alpha < \mu\}$ is unbounded in ω_1 . Then there is a strictly increasing sequence $\langle \alpha_{\xi}: \xi < \omega_1 \rangle$ of countable ordinals such that $\langle \gamma_{\alpha_{\xi}}: \xi < \omega_1 \rangle$ is strictly increasing. Let

$$\Xi_{\beta} = \{ \gamma < \mu \colon a_{\beta} \cdot b_{\gamma} = 0 \}$$

for all $\beta < \omega_1$. So $\beta < \delta < \omega_1$ implies that $\Xi_\beta \subseteq \Xi_\delta$. Now $\alpha_\xi \in \Xi_{\gamma_{\alpha_\xi}}$ for all $\xi < \omega_1$. Hence $\Xi_{\gamma_{\alpha_\omega}}$ is infinite. Let $\beta = \gamma_{\alpha_\omega}$, and suppose that $x \in I_\beta$. Then we obtain (3) again. Choose $\gamma \in \Xi_\beta \setminus \{\alpha_0, \dots, \alpha_{m-1}\}$. Then mapping x to b_γ and fixing A pointwise again contradicts ideal independence.

Thus we have now established (2), and we take β as indicated there.

Let $C = B(x)/I_{\beta}$. We denote members of *C* by [u] with $u \in B(x)$. Clearly $\langle a_{\alpha} : \alpha < \omega_1 \rangle$ still generates an ultrafilter in *C*. We claim that $\{[b_{\alpha}] : \alpha < \mu\} \cup \{[x]\}$ is ideal independent, so that $\{[b_{\alpha}] : \alpha < \mu\}$ is not maximal ideal independent in *C*. In fact, obviously [x] is not in the ideal generated by $\{[b_{\alpha}] : \alpha < \mu\}$. Suppose that $\alpha < \mu$, $F \in [\mu \setminus \{\alpha\}]^{<\omega}$, and $[b_{\alpha}] \le [x] + \sum_{\gamma \in F} [b_{\gamma}]$. Then we can write

$$b_{lpha} \cdot -x \cdot \prod_{\gamma \in F} -b_{\gamma} \leq b_{lpha_0} \cdot x + \dots + b_{lpha_{m-1}} \cdot x + a_{eta} \cdot x.$$

Mapping x to 0 and fixing A pointwise, we then get $b_{\alpha} \cdot \prod_{\gamma \in F} -b_{\gamma} = 0$, contradicting the ideal independence of $\{b_{\alpha} : \alpha < \mu\}$.

This proves (1).

Now the construction of A proceeds from the step (1) as follows. Define A_{α} for $\alpha < \omega_2$ by induction. Let $A_0 = \text{Intalg}(\omega_1)$, and $a_{\alpha} = [\alpha, \infty)$ for each $\alpha < \omega_1$. If A_{α} has been defined so that $\langle a_{\alpha} : \alpha < \omega_1 \rangle$ generates an ultrafilter in A_{α} , apply (1) many times to get an extension $A_{\alpha+1}$ in which $\langle a_{\alpha} : \alpha < \omega_1 \rangle$ still generates an ultrafilter, while every infinite ideal independent subset of A_{α} fails to be maximal in $A_{\alpha+1}$. For α limit $\leq \omega_2$ let $A_{\alpha} = \bigcup_{\beta < \alpha} A_{\beta}$. Clearly A_{ω_2} is as desired. \dashv

J. DONALD MONK

PROPOSITION 2.14. If $s_{mm}(A) = \omega$, then $\mathfrak{a}(A) = \omega$.

PROOF. Let $X = \{x_i : i < \omega\}$ be maximal ideal independent. For each $i < \omega$ let $a_i = x_i \cdot \prod_{j < i} -x_j$. Then $\sum_{i < \omega} a_i = \sum_{i < \omega} x_i = 1$. Thus $\langle a_i : i < \omega \rangle$ is a partition of unity.

LEMMA 2.15. Suppose that $\operatorname{Fr}(\omega_1)$ is a subalgebra of A such that $I \stackrel{\text{def}}{=} \langle \{x_\alpha \colon \xi < \omega_1 \rangle_A^{\text{id}} \text{ is a maximal ideal of } A, where \langle x_\alpha \colon \alpha < \omega_1 \rangle \text{ is a system of free generators of } \operatorname{Fr}(\omega_1)$. Also suppose that $X \stackrel{\text{def}}{=} \{x_\alpha \colon \alpha < \omega_1\}$ is maximal ideal independent in A. Suppose that Y is an infinite partition of unity in A, with $|Y| \leq \omega_1$.

Then A has an extension B such that X is still maximal ideal independent in B, $\langle \{x_{\alpha}: \xi < \omega_1 \rangle_B^{id} \text{ is a maximal ideal of } B, \text{ and } Y \text{ is not a partition of unity in } B.$

PROOF. The main part of the proof is in establishing the following claim.

CLAIM. There is a $b \in X$ such that $b \nleq \sum F$ for all $F \in [Y]^{<\omega}$.

We suppose that the claim does not hold. Thus

(1) For every $b \in X$ there is a finite $F_b \subseteq Y$ such that $b \leq \sum F_b$.

Then

(2)
$$y \in I$$
 for all $y \in Y$.

For, suppose that $y \in Y$ and $-y \in I$. Thus there is a finite $G \subseteq X$ such that $-y \leq \sum G$. Then $1 = y + \sum G = y + \sum_{b \in G} F_b$, contradiction. So (2) holds.

Thus for every $y \in I$ we can choose a finite $G_y \subseteq X$ such that $y \leq G_y$.

Now if $|Y| < \omega_1$, choose x_α not in the support of any element of $\bigcup_{y \in Y} G_y$. Now $x_\alpha \le \sum F_{x_\alpha} \le \sum_{y \in F_{x_\alpha}} G_y$, contradiction. Thus $|Y| = \omega_1$.

Let $\Gamma \in [\omega_1]^{\omega_1}$ be such that $\langle F_{x_{\alpha}} : \alpha \in \Gamma \rangle$ is a Δ -system, say with kernel H. Then if α and β are distinct elements of Γ we have

$$x_{\alpha} \cdot x_{\beta} \leq \left(\sum F_{x_{\alpha}}\right) \cdot \left(\sum F_{x_{\beta}}\right) \leq \sum_{y \in H} G_{y}.$$
(3)

Choose distinct $\alpha, \beta \in \Gamma$ so that $x_{\alpha}, x_{\beta} \notin \bigcup_{y \in G} G_y$. Then (3) gives a contradiction. This proves the claim.

Choose $b \in X$ in accordance with the claim. Let A(x) be a free extension of A, and let J be the ideal of A(x) generated by

$$\{y \cdot x \colon y \in Y\} \cup \{x \cdot -b\}.$$

Clearly $A \cap J = \{0\}$. If $x \in J$, then we can write

 $x \leq y_1 \cdot x + \dots + y_m \cdot x + x \cdot -b.$

Mapping x to 1 yields $b \le y_1 + \cdots + y_m$, contradicting the choice of b. Thus A(x)/J is as desired.

THEOREM 2.16. There is a BA A such that $s_{mm}(A) = \omega_1$ and $\mathfrak{a}(A) = \omega_2$.

PROOF. This is obtained by an obvious iteration from Lemma 2.15.

Some further facts about s_{mm} are as follows.

1. For $A = Fr(\kappa)$ with κ an uncountable cardinal, we have $\mathfrak{a}(A) = \text{length}_{mm}(A) = \mathfrak{s}(A) = \omega < \kappa = \mathfrak{s}_{mm}(A)$. (This is easy to see.)

2. In the algebra *B* of example 17 of Monk [6] one has $s_{mm}(B) = \omega < \kappa = \mathfrak{s}(B)$.

272

Η

 \dashv

3. In the algebra *B* of example 20 of Monk [6] one has $s_{mm}(B) \le \kappa < \mathfrak{t}(B)$, and also $\mathfrak{r}(B) = \mathfrak{i}(B) = \omega$.

4. C. Bruns has shown that $p \leq s_{mm}$. (Unpublished)

5. Recall that under MA one has $\mathfrak{r}(\mathfrak{P}(\omega)/\mathrm{fin}) = 2^{\omega}$; see Blass [1]. Hence the same is true of s_{mm} .

These examples leave only one question concerning the relationship of s_{mm} to the cardinals of Monk [6]:

PROBLEM 5. Is there an atomless BA A such that $s_{mm}(A) < i(A)$?

Now we show that it is consistent to have $s_{mm}(\mathfrak{P}(\omega)/fin)$ less than 2^{ω} . The argument is a modification of exercises (A12), (A13) in chapter VIII of Kunen [3]; the essential argument is given in the following lemma.

LEMMA 2.17. Let M be a c.t.m. of ZFC. Suppose that κ is an infinite cardinal and $\langle a_i : i < \kappa \rangle$ is a system of infinite subsets of ω such that $\langle [a_i] : i < \kappa \rangle$ is ideal independent, where [x] denotes the equivalence class of x modulo the ideal fin of $\mathfrak{P}(\omega)$. Then there is a generic extension M[G] of M using a ccc partial order such that in M[G] there is a $d \subseteq \omega$ with the following two properties:

- (i) $\langle [a_i]: i < \kappa \rangle^{\frown} \langle [\omega \backslash d] \rangle$ is ideal independent.
- (ii) If $x \in (\mathfrak{P}(\omega) \cap M) \setminus (\{a_i : i < \kappa\} \cup \{\omega \setminus d\})$, then $\langle [a_i] : i < \kappa \rangle^{\frown} \langle [\omega \setminus d], [x] \rangle$ is not ideal independent.

PROOF. Let *I* be the ideal of $\mathfrak{P}(\omega)/\text{fin}$ generated by $\{[a_i] \cdot [a_j]: i < j < \kappa\}$, and let *A* be the quotient algebra $(\mathfrak{P}(\omega)/\text{fin})/I$. Let *f* be the natural homomorphism of $\mathfrak{P}(\omega)$ onto *A*. Note that $f(a_i) \neq 0$ for all $i < \kappa$, by ideal independence. Let *B* be the subalgebra of *A* generated by $\{f(a_i): i < \kappa\}$. Thus *B* is an atomic BA with $\{f(a_i): i < \kappa\}$ its set of atoms. By Sikorski's extension theorem, let $h: \mathfrak{P}(\omega) \to \overline{B}$ extend *f*, where \overline{B} is the completion of *B*.

Let $P = \{(b, y) : b \in \ker(h) \text{ and } y \in [\omega]^{<\omega}\}$. We define $(b, y) \leq (b', y')$ iff $b \supseteq b', y \supseteq y'$, and $y \cap b' \subseteq y'$. Clearly this gives a ccc partial order of P. Let G be any P-generic filter over M, and let $d = \bigcup_{(b,y)\in G} y$.

(1) If R is a finite subset of κ and $i \in \kappa \setminus R$, then $a_i \cap \bigcap_{j \in R} (\omega \setminus a_j) \cap d$ is infinite.

In fact, let R and i be as in the hypothesis of (1). For any natural number n let

$$E_n = \Big\{ (b, y) \in P \colon \exists m > n \Big[m \in a_i \cap \bigcap_{j \in R} (\omega \setminus a_j) \cap y \Big] \Big\}.$$

Clearly it suffices to show that each such set E_n is dense in P. Suppose that $(b, y) \in P$. Then $(a_i \cap \bigcap_{i \in R} (\omega \setminus a_i)) \setminus b$ is infinite. For, if it is a finite set c, then

$$a_i \subseteq \bigcup_{j \in R} a_j \cup b \cup c,$$

and upon applying *h* we would get $h(a_i) \leq \sum_{j \in \mathbb{R}} h(a_j)$, which is clearly impossible. Thus the indicated set is infinite. We can hence choose *m* in it with m > n. Clearly $(b, y \cup \{m\}) \in E_n$ and $(b, y \cup \{m\}) \leq (b, y)$, proving (1).

(2) If R is a finite subset of κ , then $\omega \setminus \left(d \cup \bigcup_{i \in R} a_i \right)$ is infinite.

In fact, let R be a finite subset of κ . For any natural number n let

$$F_n = \left\{ (b, y) \in P \colon \exists m > n \left[m \in b \setminus \left(y \cup \bigcup_{i \in R} a_i \right) \right] \right\}$$

We claim that F_n is dense in P. For, suppose that $(b, y) \in P$. Then the set $\omega \setminus (y \cup \bigcup_{i \in R} a_i)$ is infinite. For, if it is a finite set c, then we get

$$\omega = c \cup y \cup \bigcup_{i \in R} a_i,$$

and applying *h* we get $1 = \sum_{i \in R} h(a_i)$, which is clearly impossible. Choose $(b, y) \in F_n \cap G$, and then choose m > n such that $m \in b \setminus (y \cup \bigcup_{i \in R} a_i)$. We claim that $m \notin d$; by the arbitrariness of *n*, this will prove (2). Suppose that $m \in d$. Choose $(c, z) \in G$ with $m \in z$. Then choose $(d, w) \in G$ with $(d, w) \leq (b, y), (c, z)$. Thus $m \in w$ since $m \in z$. Also, $m \in b \setminus y$. This contradicts $(d, w) \leq (b, y)$. Hence (2) holds.

(3) $\langle [a_i]: i < \kappa \rangle^{\frown} \langle [\omega \setminus d] \rangle$ is ideal independent.

For, suppose not. There are two possibilities.

Case 1. There are a finite subset R of κ and an $i \in \kappa \setminus R$ such that $[a_i] \leq [\omega \setminus d] + \sum_{j \in R} [a_j]$. This contradicts (1).

Case 2. There is a finite subset R of κ such that $[\omega \setminus d] \leq \sum_{i \in R} [a_i]$. This contradicts (2).

Thus (3) holds.

(4) If $b \in \text{ker}(h)$, then $b \cap d$ is finite.

In fact, clearly $\{(c, y) \in P : b \subseteq c\}$ is dense in P, so we can choose $(c, y) \in G$ such that $b \subseteq c$. Then $b \cap d \subseteq y$ (as desired). For, suppose that $m \in b \cap d$. Choose $(e, z) \in G$ such that $m \in z$. Then choose $(r, w) \in G$ such that $(r, w) \leq (e, z), (c, y)$. Then $m \in w \cap c \subseteq y$.

(5) If $x \in (\mathfrak{P}(\omega) \cap M) \setminus (\{a_i : i < \kappa\} \cup \{\omega \setminus d\})$, then $\langle [a_i] : i < \kappa \rangle^{\frown} \langle [\omega \setminus d], [x] \rangle$ is not ideal independent.

To prove this, we consider two cases. First, if $x \in \text{ker}(h)$, then $[x] \leq [\omega \setminus d]$ by (4), as desired. Second, if $x \notin \text{ker}(h)$, choose $i < \kappa$ such that $h(a_i) \leq h(x)$. So $a_i \setminus x \in \text{ker}(h)$, and so by (4) we get $[a_i] \leq [x] + [\omega \setminus d]$, as desired.

THEOREM 2.18. It is consistent with $2^{\omega} > \omega_1$ that $s_{mm}(\mathfrak{P}(\omega)/fin) = \omega_1$.

PROOF. Start with a c.t.m. M of ZFC $+ 2^{\omega} > \omega_1$. Iterate the construction of Lemma 2.17 ω_1 times, obtaining a generic filter G over M. Then M[G] is as desired, using Lemma 5.14 of Chapter VIII of Kunen [3].

REFERENCES

[1] A. BLASS, Combinatorial cardinal characteristics of the continuum, Handbook of set theory, to appear.

[2] S. KOPPELBERG, *The general theory of Boolean algebras*, *Handbook on Boolean algebras*, vol. 1, North-Holland, 1989.

[3] K. KUNEN, Set theory, North Holland, 1980.

[4] R. MCKENZIE and J. D. MONK, *On some small cardinals for Boolean algebras*, this JOURNAL, vol. 69 (2004), pp. 674–682.

[5] J. D. MONK, Cardinal invariants on Boolean algebras, Birkhäuser, 1996.

[6] ———, Continuum cardinals generalized to Boolean algebras, this JOURNAL, vol. 66 (2001), no. 4, pp. 1928–1958.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF COLORADO, UCB395 BOULDER, CO 80309, USA *E-mail*: don.monk@colorado.edu