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The Journal of Symbolic Logic 
Volume 73. Number 1. March 2008 

MAXIMAL IRREDUNDANCE AND MAXIMAL IDEAL 
INDEPENDENCE IN BOOLEAN ALGEBRAS 

J. DONALD MONK 

Introduction. Recall that a subset X of an algebra A is irredundant iff x ^ 
(Z\{x}) for all x e X, where (X\{x}) is the subalgebra generated by X\{x}. 

By Zorn's lemma there is always a maximal irredundant set in an algebra. This 

gives rise to a natural cardinal function Irrmm^) 
= 

min{|X| : X is a maximal irre 
dundant subset of A}. The first half of this article is devoted to proving that there 
is an atomless Boolean algebra A of size 2 for which lvvmm(A) 

= co. 
A subset X of a BA A is ideal independent iff x ? (X\{x})ld for all x e X, where 

(X\{x})ld is the ideal generated by X\{x}. Again, by Zorn's lemma there is always 
a maximal ideal independent subset of any Boolean algebra. We then consider two 
associated functions. A spectrum function 

SspectM) 
= 

{|^| X is a maximal ideal independent subset of A} 

and the least element of this set, sram(A). We show that many sets of infinite cardinals 
can appear as sspectG4). The relationship of s^ to similar "continuum cardinals" 
is investigated. It is shown that it is relatively consistent that smm(^3((X>)/fin) < 2 . 

We use the letter s here because of the relationship of ideal independence with the 
well-known cardinal invariant spread; see Monk [5]. Namely, sup{|Z| : X is ideal 

independent in A} is the same as the spread of the Stone space U\t(A)', the spread 
of a topological space X is the supremum of cardinalities of discrete subspaces. 

Notation. Our set-theoretical notation is standard, with some possible excep 
tions, as follows, limord is the class of all limit ordinals, and reg is the class of 
all regular cardinals. If a and ? are ordinals, then [a, ?]caxd is the collection of all 
cardinals k such that a < k < ?\ similarly [a, ?]rQg for the collection of all regular 
cardinals in this interval; and similarly for other intervals (half open, rays, etc.). 
We follow Koppelberg [2] for Boolean algebraic notation, and Monk [5] for more 

specialized notation concerning cardinal functions on BAs. Ft(k) is the free BA 
on k generators. A is the completion of A. In several places we use the following 
construction. Let (A? : i G /) be a system of BAs, with / infinite. The weak product 

YlJeI At consists of all members x of the full product such that one of the two sets 

{iel:xi^0} or {iel'.Xi^l} 
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262 J. DONALD MONK 

is finite; the corresponding set is then called the support of x, and is denoted by 
supp(x); x is called of type I or II respectively. 

If L is a linear order, then Intalg(L) is the interval algebra over L (perhaps after 

adjoining a first element to L). 
For some results concerning Smm we assume known the definitions of some other 

"continuum cardinals"; see Monk [6]. 

?1. Irredundance. The background for consideration of Irrmm(A) is provided by 
the easy result of McKenzie, given as Proposition 4.23 in Koppelberg [2], that (X) 
is dense in A for any maximal irredundant subset X of A. Thus we have 

Theorem 1.1. n(A) < Irrmm^). 
Here n(A) is the smallest size of a dense subset of A. 

Proposition 1.2. For any infinite cardinal k, if A is a subalgebra of^?(K) containing 
Intalg(K), then Irrmm(A) 

= k. 

Proof. > holds by Theorem 1.1, so we just need to exhibit a maximal irredundant 
set of size k. Let 

X = 
{[0,a): 0<a< k}. 

we claim that X is as desired. In fact, it is well-known and easy to see that X is 
irredundant. 

Now suppose that a G A\(X); we want to show that X U {a} is redundant. 
We may assume that a ^ 0, k. If 0 ? a, let a be the least member of a. Then 

[0,a + l)\fl 
- 

[0,a), so that [0, a) G ((X U {a})\{[0,a)}). If 0 G a, let a 
be the least member of K,\a. Then [0, a + 1) n a = 

[0, a), leading to the same 
conclusion. H 

Thus we have examples of atomic BAs A such that Irrmm(A) = n(A) < Irr(^4). 
(In (A) is the supremum of cardinalities of irredundant subsets of A.) 
Theorem 1.3. There is an atomless BA A such that Irrmm(A) 

? co = n(A) < 
2 = 

\A\. 
Proof. We construct A as a subalgebra of Fr(co). Let (x? : i G co) be a system of 

free generators of Fr(ctf). Now we make some definitions, working in Fr (co) (recall 
here that for any element x of a BA, xl is x and x? is -x): 

N = 
{e e <co2: dmn(e) > 0 ands(dmn(e) 

- 
1) = 1}, 

M = {e G N: Vm < dmn(e) 
- 

\(e(m) = 0)}, 

y?= "[i xi{i) for each 6 G <w2, 
z'<dmn(e) 

A = 
(Fr(co)u{j2ye'P^M}), eeP 

zm = ^{je 
: s ? M, dmn(e) < m) for each m G co\\, 

X = 
{y? : e G N\M} U{zm:m G ?>\1}. 

Thus N is the set of all nonempty finite sequences of 0's and l's that have 1 as their 
last entry, and M is the set of all members of TV which are 0 except for that last 

entry. Clearly for any e, ? G <co2, either e and? are comparable under inclusion, and 
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MAXIMAL IRREDUNDANCE AND IDEAL INDEPENDENCE 263 

then y? and y? are comparable, or e and ? are incomparable, and then y? y? 
? 0. 

In particular, (y? : e G M) is a system of pairwise disjoint elements, and hence 

| A | 
= 2 . Since Fr(co) is a dense subalgebra of A, it follows that ,4 is atomless. We 

claim that X is a maximal irredundant subset of A, which will complete the proof. 
We prove this in several steps. 

(1) (X) = Fr(co). 
In fact, clearly X ? Fv(co), so ? holds. For the other inclusion, note first that if 
e G M, with domain m, then y? 

= zm ?zm-\ if m > 1, and y? 
= z\ if m = 

1; 

hence j^ G (X) for every e e N. Now for any ? G co we have 

1 = 
EIIX"(0' and hence x? = ^ TJU^ x?) = E * <*>. 

?G"2 z'<? ?G"2 *'<n een2DN 

This proves (1). 

(2) ??6MJe 
= l. 

To prove this, it suffices to show that for any ? G <co2 there is an e G M such that 

y ? ye ̂  0. If ?(i) = 1 for some i, choose the least such i and let e be the member 
of M with domain i + 1. Then 0 ̂  y? = ys y?. \??(i) = 0 for all i < dmn(<S), let 
e be the member of M with domain dmn(?) + 1. Then 0 ̂  y? ? y s y?. 

(3) Suppose that F and G are finite subsets of N. Then the following are equiva 
lent: 

(b) F t? 0, and one of the following holds: 

(A) There are distinct e\,S2 ^ F which are incompatible. 

(B) p = (J i7 is a function, p e F, and if /? > dmnfe) for each e G F U G, 
then for every o G p2, if /? ? a then there is a <S G G such that ? ? a. 

To prove (3), first suppose that (a) holds. Suppose that F = 0. Let e G M with 
domain greater than the domains of all y? for ? G G. Then j? y? = 0 for all? G G, 
so that 0 7^ >>e < n?eG 

? 
ys> contradiction. So F ^ 0. 

Now suppose that (b)(A) fails. Then p as defined is a function, p e F, and 

ILgf ̂  
= ->V Thus by (a) we have yp - ^seo ys- Let P be as in (b)(B), and 

suppose that o G p2 and p ? a, but ? $? a for all ? G G. Take a homomorphism of 

Fr(co) into 2 which takes each xf with i < p to o(i). Then j^ goes to 1, but each 

ys,? G G, goes to 0, contradicting the above inequality. So (b)(B) holds. 

Conversely, assume (b). Clearly (b)(A) implies (a). Now assume (b)(B), and let 

p be any integer as indicated there. Then 

n^ n-y? 
= 

yp-n-y?. 
eeF ?eG ?eG 

For every o G p2 such that p ? o choose ?G G G such that ?a ? g. Then 

yp = Y.{y?'-p ^?^P2)< X>?. 
: /> ? * e ^2}, 

and (a) follows. 

(4) If G is a finite subset of N, then Y\?eG -ys ^ 0. 

This is immediate from (3). 
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264 J. DONALD MONK 

(5) If G is a finite subset of N, p G N, and YlSeG -ys yP 
= 0, then ? ? p for 

some ? G G; in case /? G M, we have p e G. 

Assume the hypothesis of (5). Let p be > the domains of all these functions, and let 
a extend p to a function with domain /> by adding 0's. Then by (3) we have ? ? o 
for some ? G G. Since ? ends with 1, we must actually have ? ? p. If /? g M, then 

/? has only zeros except for its last entry, and hence p = ? e G. 

(6) If p G TV, m is a positive integer, and yp zm ̂  0, then there is a ?> G M with 

dmn(?) < m such that? ? p; so j^ < zm. 

For, choose ?gM with dmn(?) < m such that yp 
> 
ys ^ 0. If dmn(/?) < dmn(?), 

then yp y? = 0 since <5 has all zero values except for its last one. So dmn(<S) < 

dmn(/?), and hence S ? p since j? yp ̂  0. So (6) holds. 

(7) X is irredundant. 

To prove (7), first suppose that e G N\M and y? G (X\{j?}). Then there exist 

neco,F,G G W([7V\(M U {e})]<?;) and //, ^ G w([co\l]<(y) such that 

y*=s ( n y* n -^ nZw n z-) z'<? ?Gi7, SeGi meHi meKi 

where each summand is nonzero, and \F?\, \H?\, \K?\ < 1. Now take any i < n. 
Then 

n y* n ~y? y? Zm n ~zm * ~^=?- w 

Hence by (4) we have F{ ^ 0 or H{ ? 0. 
(8) Ff ̂  0. 

For, suppose that F i =0. Then by the above remark, Ht ^ 0. It follows that there 
is a p G M such that 

n ~^ ' ? n ~zw ̂ ?whiie n ~^ ^ n ~zm ~^=? 
?Go, raG^ SeGi meK, 

Hence by (5) we have p = s, contradicting e ? M. So (8) holds. 
Henceforth we assume that F? = {pi}. 

(9) If Ht = 
{m}, then yPi < zm. 

This follows from (6). Because of (9), we may assume that Hi = 0. 

(10) Ed Pi. 
In fact, we now have 

y Pi u -ys IJ -zm + o = yPi Yl -ys JJ -^ -;>e, 

so the desired conclusion follows by (5) and the assumption that p? ̂  e. 
Now we can finish the proof of the first possibility in (7) as follows. We have 

y* = S {y* Ei "W u ~z"0 
- X^< - ̂ ' 

so Je = Z)/<? y Pi Now ^ c Pi for eacn * by (10). So if we take a homomorphism 
of Fr(co) into 2 which maps each x? with / < dmn(?) to s(i) and otherwise takes 
the value 0, the above equality becomes 1=0, contradiction. 
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MAXIMAL IRREDUNDANCE AND IDEAL INDEPENDENCE 265 

Now suppose that q G co\\ and zq G (X\{zq}). Then there exist n G co, 
F, G G n([N\M]< ), Sind H, K G n 

([co\{q}]< ) suchthat 

zv=y ( n y? ' n -y* ' w zm n ~zm) 
> 

i<n ??Fl SeGt meHi meKi 

where each summand is nonzero, and \Ft\, \Hf\, \Ki\ < 1. Note by (4) that F? ^ 0 
or Hi ^ 0. If Fi = 0, let H? = 

{nu}, and if F? ? 0, let Ft = {pi}. 
Now take any i < n. Then 

nys n ~ys nzm n ~zm *_z^=?- (**) 
?eFi ?eGi meHj m?Kj 

(11) If Ft = 0 - Ki, then m, < g. 

For, if p G M and dmn(/?) 
= m?, then p ? Gil hence from 

n -^ 
' 
yp 

' 
~z?= ? 

seGi 

we get by (5) that ra? < #; so raz < q. 

(12) If F, = 0 and Kt = 
{r}, then mt < q. 

For, since the ith summand is nonzero, we have r < mi. Hence the argument for ( 11 ) 
works. 

(13) If Ft ^ 0, then we may assume that Hi = 0. 

This is clear from (6). 

(14) If Fi = 
{pi} and Hi = 0, then pt is a proper extension of some r G M such 

thatdmn(T) < q, and yPi < zq. 
For, we have 

yPl n -^ n ~zm ' 
~zv=? 

By (5) we get a r G M with dmn(r) < ?7 such that x ? pt. Since /?z ̂ M, we have 
t c pi. So <y/?/. < yT < 

zq, as desired. 

Now we can finish the proof of (7) in our second case. Let R = 
{i < n: Ft = 0}. 

Then 

z?=y ( n ~y? Zm> ' n ~zr) ieR ?eGi reKi 

+ y {ypi n -y* nz n ~zr) 
?e?VR ?eGi meHi reKt 

< YZm^ Y yp> 
i?R i?n\R 

< 
Zq. 

Hence 

Zq = J2zm?+ ^2 ypr 
i?R ien\R 

Here we have mt < q for all / G R, and each pi is a proper extension of some 
a G M with dmn(cr) < g. Now map xq-\ to 1 and all other generators to 0. Then 
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266 J. DONALD MONK 

zq goes to 1 but the right side of the above equation goes to 0, contradiction. This 

completes the proof of (7). 

(15) If ? is a subset of M and a G Fr (co), then there is an m such that one of the 

following conditions holds: 

(1) a y? = y? for all e G ? such that dmn(e) > m. 

(2) a y? = 0 for all e G ? such that dmn(s) > m. 

For, write a = ^2?eP iX<? xi f?r some n G co and some P Cn2, and let m = ft +1. 
Then (1) holds if the all 0 function is in P, and (2) holds otherwise. 

(16) A consists of all elements of the form 

such that ? is a subset of M and a G Fr (co). 
To prove (6) first note that the set Y of all such elements is clearly a subset of A and 
contains the set of generators in the definition of A. Clearly Y is closed under +. 
So it suffices to show that Y is closed under ? : 

= ~a' 
Z y* 
eeM\Q 

Now by (15), choose m such that either ? a y? = je for all e G M\? with domain 
at least m, or -a > 

y? = 0 for all e G M\? with domain at least m. Hence in the 
first case we have 

-a- ]T ye = Y<ye + {-a' Z *) 
eeM\Q eeR eeM\{QUR) 

where i? is the set of all e G M\? with domain at least m, and in the second case 

-a-E.GMX?^isinFrM. 

(17) X is maximal irredundant in A. 

Suppose that d G A\(X). By (16), write 

J = ^ ^ + e, 

where ? is a subset of M and e G Fr(co). Since ?/ ̂ (X) 
= Fr(co), the set ? is 

infinite and co-infinite. Now write e = Y^s^t Ui<m *?(? with T ^ 2- Let ? G 2 

be the constantly 0 function. If C G T7, then y? < e for all e G TV with dmn(e) > m, 
so d G Fr(co) = 

(X), contradiction. Thus ? ? T. It follows that y? e = 0 for all 
e G M such that dmn(e) > m. Hence e ?zm = 0. Choose p > m -f 2 so that ? 
has a member with domain /? but none with domain p + 1. Then 

rf -zm z^+i 
= 
^{^ 

: p G ?, m < dmn(/?) < 77}. 

Hence ?/ ?zm z^+i + z/?_i 
= 

zp. This proves (17). H 
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MAXIMAL IRREDUNDANCE AND IDEAL INDEPENDENCE 267 

It is possible that Theorem 1.3 can be generalized. The following problem represents 
the maximum possible generalization. 

Problem 1. Is Irrmm^) 
= 

n(A) for every infinite BA1 In particular, we do not 
know whether this is true for the following algebras: 

(i) The completion of the denumerable atomless BA. 

(ii) The interval algebra on R. 

The following minor results are somewhat relevant to this problem. 

Proposition 1.4. It is possible to have X denumerable and irredundant, (X) dense 
in A, \A\ 

= 2 , but X not maximal irredundant. 

Proof. Take A = ??(co) and X = 
{{m} : m G co}. So X is irredundant and (X) 

is dense in A. Let E = 
{m G co: m is even}. Clearly (X) 

= 
Finco(co), and hence 

E ? (X). So if X U {E} is redundant, then there exist an m G co and pairwise 
disjoint y,z,w G (X\{{m}}) such that {m} = (E n y) U (z\Y) Uw. So w = 0. 
Clearly y is finite with m ? y, or y is cofinite; and similarly for z. So one of y, z is 
cofinite, and this is clearly impossible. 

This example is atomic. An atomless example is as follows. Let B = 
Fr(co) and 

X = 
{xn : n G co}, where (xn : n G co) is a system of free generators of Fr(co). For 

each n G co let zn = xn \[m<n -xm, and let y = Y,ne z2?- Clearly y ? Fv(co). 
Suppose that X U {y} is redundant. Then there exist m G co and pairwise disjoint 
u,v,w G (X\{xn}) such that xn = y -u + ?y -v + w. Since w < xn, it follows that 
w = 0. Clearly w, i; 7^ 1. Now write 

?=e n*?w) and ?=En<w 
eeMmeN eeP mEN 

where JV is a finite subset of X\{n} and M, P are disjoint subsets of N2. Since 
xn <u + v,wq must have w + v = 1, and hence M U P = N2. Let ( G ̂ 2 be the all 
0 sequence. By symmetry, say ( G M. Let /? be an even integer greater than n and 
each member of N. Then zp < y u < xn, contradiction. H 

Proposition 1.5. IfX is a denumerable maximal irredundant subset ofFr(co), then 
we may assume that (X) 

? 
Fr(co). 

Proof. Since (X) is dense in Fr (co), it is atomless, and hence is isomorphic to 
Fr (co). Hence there is an automorphism / of Fr(co) such that f[(X)] 

= 
Fr(co). H 

Note that Irrmm(^(o;)/fin) 
= 2 , since 7i(^?(co)/nn) 

= 2 . 

?2. Maximal ideal independence. The following proposition gives a method of 

constructing maximal ideal independent sets. 

Proposition 2.1. Suppose A is a BA and that X ? A is ideal independent and X 

generates a maximal ideal I. Then X is maximal ideal independent. 

Proof. Let y G A\X. If y G /, then y < ]T F for some finite F C X. If -y G /, 
then ?y < J2 F f?r some finite F ? X, and hence y + J2 F 

? 1 ~l 

Proposition 2.2. sspect(Fr(?)) 
= 
W 

Proposition 2.3. sspectU) U sspect(?) Q sspectU x B). 
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268 J. DONALD MONK 

Proof. Let X be maximal ideal-independent in A. Define Y = 
{(x, 1) : x G X}. 

Clearly Y is ideal-independent in A x B. To show that it is maximal, suppose that 

(u, v) G A x B. Then there are two possibilities. 
Case 1. There is a finite subset F of X such that u <^F. We may assume that 

F ^ 0. Then (u,v) < 
J2xeF(x, 1), as desired. 

Case 2. There exist an x G X and a finite subset F of X\{x} such that x < 
U + J2F- Again we may assume that F ^ 0. Then (x,l) < (u,v) JrYyeF(y, 1), as 

desired. 

Hence the proposition follows by symmetry. H 

Corollary 2.4. If (Aj-. i G /) is any system of BAs, then \JieI sspect04?) ? 

sspect ( Uiei ?i) 
andalso \JieI sspectUi) ? sspect ( FOg/ ̂"J 

Theorem 2.5. 7/"i? ?s a nonempty finite set of infinite cardinals, then 

aspect ( n w?) 
= K. 

xeK 

Proof. D holds by Corollary 2.3. Suppose that k g sspect ( YlxeK FfU) ) Y^- Let 

L ? 
{X G K: X < k} and M = 

K\L. Assume that 1^8; some obvious changes 
should be made in the following argument if L = 0. Let X be a maximal independent 
subset of YlxeK FfU) ?f size K- For eacn A G M let w? be a free generator of Fr(2) 
not in the subalgebra generated by {x? : x G X}. Now | ?agl FrU)| < ^> so there 

is a g G ?AGL^rU) 
sucn tnat ̂' = 

{x ? ^: x ? ̂ = 
#} nas s^ze grater than 

max(L). Let f = q U (u^: X e M). So / G Yl?eK Fr (A) and f fi X (since clearly 
M 7^ 0). Hence X U {/} is ideal-dependent. This gives two possibilities. 

Case 1. There is a finite F?I such that / < ? F. It follows that (? F)A 
= 1 

for all 2 G M. Choose g e X'\F. Then g < ]T F, contradiction. 
Case 2. There exist a finite F ? X and a g G X\F such that g < f + Yl F. For 

any leMwe have g? ?w;, 
? 

(^ F)? = 0, and hence gA 
? 

(J] F)^ 
= 0. Choose 

h e Xf\(FU{g}). Then g <h + J2F> contradiction. H 

The following simple proposition shows that there is an obstruction to using weak 

products in order to extend Theorem 2.5 to the infinite case. 

Proposition 2.6. If (Ai : i ? I) is a system of BAs, with I infinite, then 

? SSpect :n4 iei 

Proof. For each / g / let fl be the member of YlJei ̂  which takes the value 1 

at i and the value 0 at all other places. Clearly {fl : i G 1} is maximal ideal 

independent. H 

Proposition 2.7. Suppose that K is an infinite set of infinite cardinals such that 

\K\ < min(ir). Then there is a BA A such that K ? sspect(^4) andsSpQCt(A) Dreg ? K. 

Proof. Let p = 
min(K), let X map p onto K, and let A = 

Yia<ju Fr(>U). We 

claim that A is as desired. 
The first inclusion in the proposition holds by Proposition 2.3. Now suppose 

that k G (sspect(^4) H reg)\?\ Let X be maximal ideal-independent of size k. Let 
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MAXIMAL IRREDUNDANCE AND IDEAL INDEPENDENCE 269 

L ? 
{a < p : k < Xa}, and let M = 

p\L. For each a G L let ua be a free generator 
of Fr(/!a) not in ({xa : x G X}). 

(1) M^0. 
For, suppose that M = 0. Then k < ?a for each a < p, and so k; < min(^) = p. 

(2) Some x G X has type II. 

For, suppose not. Now \JxeX supp(x) has size less than min(T^) 
= p, so we can 

choose a < p not in this union. Let y take the value ua at a and 0 elsewhere. 

Clearly y ^ X and X U {y} is still ideal-independent, contradiction. So (2) holds. 
We take x as in (2). Now let ya = ua for all / G supp(x), and ya = 0 otherwise. 

Then y ^ X, so X U {y} is ideal-dependent. 
Case 1. y < J^F for some finite F ? X. We may assume that x e F. Now 

for a G supp(x) we have ua < (Y,F)a, and hence (Y^F)a 
= 1. Since x G F, it 

follows that J] F 
= 1, contradiction. 

Owe 2. There exist a finite F ? X and a g G X\F such that g < y + ? F. It 
follows easily that g < ]T) F, contradiction. 
This proves ( 1 ). 

In particular, k > p. Since k is regular, it follows that there is a G G [p]<co such 

that X' = 
{x G X: supp(x) 

= 
G} has size k. Now | ELeGr-iM^Uc*)! < ^' so 

there is a q G rLeGrwFrUa) such that Y = 
{x G X': x \ (G n M) = 

<?} has 
size ?. Note also that G H L ^ 0, as otherwise G = G n M and hence \X'\ < k, 
contradiction. Let Y' = 

{y G Y: y has type 1} and Y" = 
Y\Yf. Now define 

ya 

ua if i e G r\L, 

qa if / g G n M, 

0 otherwise. 

Since G H L 7^ 0, we have j ^ X. So X U {7} is ideal-dependent. This gives two 
cases. 

Case I. There is a finite F ? X such that y < Y^F. Then(^F) \ (GnL) 
= 1. 

If \Y'\ 
= k, choose g G Y' such that g ? F. Then g < YjF, contradiction. If 

I Y"\ 
= k, choose distinct g, h G Y"\F. Then g <Y,F + h, contradiction. 

Case 2. There exist a finite F ? X and a g G X\F such that g < y + ̂  ^- Then 

g \ (G n L) < (?F) r (G n L) and also g f (AG) < ? ? (/A^). Choose 
A G 7\(F U {g}). Then g < /z + ]T F, contradiction. H 

Corollary 2.8. IfK is an infinite set of regular cardinals and \K\ < min (K), then 
there is a BA A such that sspect(^) H reg ? K. 

Problem 2. Is the assumption \K\ < mm(K) in Theorem 2.7 necessary"! 

Problem 3. How can Theorem 2.7 be extended to singular cardinals in KI 

We now concentrate on Smm. From 2.3 we have the following problem. 

Problem4. Iss^A x5) = 
min(smmU),smm(J5))? 

The first part of the proof of Theorem 2 of McKenzie, Monk [4] shows that we 
cannot have atomless A,B such that smm(A x B) = co < min(smm(A), smm(B)), 
giving a partial solution of this problem. 
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By Corollary 2.4 and Proposition 2.6 we have: 

Corollary 2.9. (i) s^n^/ Ai < min/G/ s^U,-). 
(ii) For I infinite, smm U7eAA^ - min(|/|,min?e/ SmmU,-)). 
Theorem 2.10. There is a BA A such that SmmC<4) 

= co < u(A). 
Proof. Let A = Fr(co\). Sos^^) = co by Corollary 2.9. By Proposition 9 (iii) 

of Monk [6] we have u(A) > k, where k is the smallest cardinality of a subset of 

??(co) which generates a nonprincipal ultrafilter on 9?(co). So it suffices to assume 
that {xi; : / G co} is a collection of subsets of co which generates a nonprincipal 
ultrafilter D on ??(co), and get a contradiction. If X is an infinite, co-infinite subset 
of co, then either X or co\X is in D. It follows that not all x? are cofinite. We may 
assume that xo is not cofinite. Now each intersection 

(~)j<i xj ls not cofinite, so we 
can choose distinct 

mi, ni G co\( P| Xj U {mj,nj\ j < i}\. 

Let y = {mi : i < co}. Then clearly y, co\y fi D, contradiction. H 

Proposition 2.11. Smm?Finco?K)) = Kfor every infinite cardinal k. 

Proof. Since {{a} : a < k} is clearly maximal ideal independent, we just need 
to get a contradiction upon assuming that X is maximal ideal independent with 
co < \X\ < k. If all members of X are finite, then it is clearly not maximal. So 
there is a member of X of the form k\F with F ? k finite. Suppose that there are 

infinitely many finite members of X. Then there are two distinct finite members 
G,H of X such that F DG = F nH. Then G ? (X\F) U H, contradicting 
maximality of X. Thus X has only finitely many finite members. Hence it has 

infinitely many cofinite members. Let 51 = {G G [k]<c? : k\G G X}. Among 
the finite intersections of members of 21 there is a minimal one; call it Y, and say 
Y = f| 03 with 03 a finite subset of 21. Take any member G G ?\93. Then f| 03 ? G, 
hence X\G ? \JHe?B (X\H), contradicting Jf ideal independent. H 

Proposition 2.12. x(A) < smm(A)for any BA A. 

Proof. Suppose that X is maximal ideal-independent. Let 

F = XU{-^F:Fg [X]< } U{b-~YJF:bfiF, F U {b} ? [X]< }. 

Clearly the members of Y are nonzero. We claim that Y is weakly dense in A. For, 
suppose that a G A\X. Then X U {a} is no longer ideal independent, so we have 
two cases. 

Case 1. a < ]T F for some F G [X]<a\ Then ? 
J] F < ?a, as desired. 

Gzse 2. There exist a finite subset F of X and ab e X\F such that ?? < ^ F + a. 
Then Z? - X] F < a, as desired. H 

Theorem 2.13. There is a BA A such that u(A) < smm(A). 
Proof. We modify the proof of Lemma 21 of Monk [6]. The construction 

depends upon the following step: 

(1) Suppose that B is a BA, (aa : a < co\) is a strictly decreasing sequence of 
elements of B generating an ultrafilter F, and (ba: a < p) is a sequence of distinct 
elements of B with co < p < co\ such that {ba : a < p} is ideal independent. Then 
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there is an extension C of B such that (aa : a < co\) still generates an ultrafilter 
in C, while {ba : a < p} is not maximal ideal independent in C. 

To prove (1), let B(x) be a free extension of B. For each ? < co\ let 

I? 
= 

({ba x : a < p} U {a? x})ld. 

Clearly B n I? 
= 

{0} for all ? < co{. 

(2) There is an ? < co\ such that x ? I?. 
To prove (2) we consider two cases. 
Case 1. There is an a < p such that ba G F. Say a? < ba. Suppose that x G I?. 

Then we can write 

x < 
bao 

x -\-h ^aw_! 
- x + a? x. (3) 

Choose y < p such that y ̂ ao,...,am-\,a. Mapping x to ?y and pointwise fixing 
A yields ?y < baQ -f + ?Q;w_1 4- ?a, contradicting ideal independence. 

Case 2. ?ba G F for all a < p. For each a < p choose ya < co\ such that 

aYa 
< -ba. 

Subcase 2.1. {ya : a < p} is bounded in a>i, say by ?. Thus a^ < ?ba for all 
a < p. If x G 7^, then we obtain (3) again. Choose a < p with a ^ ao,..., am-\. 

Mapping x to ba and pointwise fixing A we obtain ba < bao + + ?aw_i, again 
contradicting ideal independence. 

Subcase 2.2. {ya: a < p} is unbounded in coi. Then there is a strictly 
increasing sequence (a% : ?; < co\) of countable ordinals such that (yai : ? < co\) is 

strictly increasing. Let 

E? 
= 

{y < p: a? bY 
= 

0} 

for all ? < co\. So ? < ? < co\ implies that E? CE?. Now a? G E?a for ail ? < co\. 
Hence E?aw is infinite. Let ? 

= yac?, and suppose that x e I?. Then we obtain 

(3) again. Choose y G E?\{ao,... ,am-\}. Then mapping x to ?y and fixing A 

pointwise again contradicts ideal independence. 
Thus we have now established (2), and we take ? as indicated there. 

Let C = 
B(x)/I?. We denote members of C by [u] with u G B(x). Clearly 

(aa : a < co\) still generates an ultrafilter in C. We claim that {[ba] : a < p} U {[x]} 
is ideal independent, so that {[ba] : a < p} is not maximal ideal independent in C. 
In fact, obviously [x] is not in the ideal generated by {[ba] : a < p}. Suppose that 
a < p, F G [p\{a}]<co, and [ba] < [x] + Y^yeF^y]- 

Then we can write 

ba -X 
Y\ ~by <baQ'X-\-h bam_x X + ?? 

' X. 

y?F 

Mapping x to 0 and fixing A pointwise, we then get ba ]J eF ?by 
= 0, contradicting 

the ideal independence of {ba : a < p}. 
This proves (1). 
Now the construction of A proceeds from the step (1) as follows. Define Aa for 

a < 0)2 by induction. Let Ao ? 
lnta\g(co\), and aa = 

[a,oo) for each a < co\. 
If Aa has been defined so that (aa : a < co\) generates an ultrafilter in Aa, apply 
(1) many times to get an extension Aa+\ in which (aa : a < co\) still generates an 

ultrafilter, while every infinite ideal independent subset of Aa fails to be maximal in 

Aa+\. For a limit < a>2 let Aa = 
(j?<a A?. Clearly A 2 is as desired. H 
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Proposition 2.14. Ifsmm(A) 
= co, then a(A) 

= co. 

Proof. Let X ? 
{xz- : / < co} be maximal ideal independent. For each i < co let 

ai = xi ' 
Yij<i ~XJ- Tnen Y^i<co a? = T,i< xir = 1- Tnus (ai : i < co) is a partition 

of unity. H 

Lemma 2.15. Suppose that Fr(coi) is a subalgebra of A such that I = 
({xa : ? < 

co\)? is a maximal ideal of A, where (xa : a < co\) is a system of free generators of 

Fr(coi). Also suppose that X = 
{xa : a < co\} is maximal ideal independent in A. 

Suppose that Y is an infinite partition of unity in A, with \Y\ <co\. 
Then A has an extension B such that X is still maximal ideal independent in B, 

({xa : ?, < co\)l? is a maximal ideal ofB, and Y is not a partition of unity in B. 

Proof. The main part of the proof is in establishing the following claim. 

Claim. There is a b G X such that b ^ ? F for all F G [ Y]<co. 

We suppose that the claim does not hold. Thus 

(1) For every b G X there is a finite F? ? Y such that b <YjFb 
Then 

(2) y G / for all y G Y. 

For, suppose that y G Y and -y ? I. Thus there is a finite G ? X such that 

?y < Y^ G. Then l=j/ + ]TG=>y + ^ZbeG F?, contradiction. So (2) holds. 
Thus for every y G / we can choose a finite Gy ? X such that y < Gy. 
Now if | Y\ < co\, choose xa not in the support of any element of \J e Y Gy. Now 

Xa < J2F*a ^ Yly?Fx Gy, contradiction. Thus \Y\ 
= co\. 

Let r G [coif01 be such that (FXa : a G F) is a A-system, say with kernel H. Then 
if a and ? are distinct elements of F we have 

xa-x?< (5>*.) (EF^) ^ E ?y (3) 

Choose distinct a, ? G T so that xa, x^ ^ U^gg ^- Then (3) gives a contradiction. 
This proves the claim. 
Choose b G X in accordance with the claim. Let ^4(x) be a free extension of A, 

and let / be the ideal of A(x) generated by 

{y -x: y e Y} U {x -b}. 

Clearly AnJ = 
{0}. If x e J, then we can write 

x < y\ 
- x +-h ym x + x ?b. 

Mapping x to 1 yields b < y\ H-Y ym, contradicting the choice of b. 
Thus A(x)/J is as desired. H 

Theorem 2.16. There is a BA A such that smm(yl) = coi and a(A) 
= C02. 

Proof. This is obtained by an obvious iteration from Lemma 2.15. H 

Some further facts about Smm are as follows. 
1. For A = Fr(tt) with k an uncountable cardinal, we have a(A) 

= 
lengthmm(yl) 

= 

s(A) = co < k= Smm04). (This is easy to see.) 
2. In the algebra B of example 17 of Monk [6] one has smm(B) 

= co < k = 5(B). 
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3. In the algebra B of example 20 of Monk [6] one has smm(B) < k < t(B), and 

alsot(?) =i(B) =co. 
4. C. Bruns has shown that p < Smm- (Unpublished) 
5. Recall that under MA one has t(^(co)/fin) 

= 2 ; see Blass [1]. Hence the 
sam?is true of Smm 

These examples leave only one question concerning the relationship of Smm to the 
cardinals of Monk [6]: 

Problem 5. Is there an atomless BA A such that smm(A) < \(A)1 

Now we show that it is consistent to have smm(^P(co)/fin) less than 2 . The 

argument is a modification of exercises (A12), (A13) in chapter VIII of Kunen [3]; 
the essential argument is given in the following lemma. 

Lemma 2.17. Let M be a c.t.m. of ZFC. Suppose that k is an infinite cardinal 
and (ai : i < k) is a system of infinite subsets of co such that ([ai]: i < k) is ideal 

independent, where [x] denotes the equivalence class ofx modulo the ideal fin of^?(co). 
Then there is a generic extension M[G] of M using a ccc partial order such that in 

M[G] there is a d ? co with the following two properties'. 

(i) ([ai]: i < k)^([co\d]) is ideal independent. 
(ii) Ifx G ($(co)nM)\({a?: i< k}U {co\d}), then ([a^: i< K)~([co\d], [x]) is 

not ideal independent. 

Proof. Let / be the ideal of <p(co)/fin generated by {[??] [aj] : i < j < k}, and 
let A be the quotient algebra (<p(co)/fin)/7. Let / be the natural homomorphism 
of ??(co) onto A. Note that /(#/) ^ 0 for all / < k, by ideal independence. Let B 
be the subalgebra of A generated by {f(at) : i < k}. Thus B is an atomic BA with 

{f(?i) : i < k} its set of atoms. By Sikorski's extension theorem, let h : V?(co) ?? B 
extend /, where B is the completion of B. 

Let P = 
{(b,y): b G ker(A) and y G [co]<C0}. We define (b,y) < (b',y') iff 

b 5 b', y D y', and y Ob' ? y'. Clearly this gives a ccc partial order of P. Let G 
be any F-generic filter over M, and let d = 

{J^b y^eG y. 

(1) If R is a finite subset of k and i G k\R, then a? n 
f)jeR(co\aj) 

nd is infinite. 

In fact, let R and / be as in the hypothesis of (1). For any natural number n let 

En = {(b,y) 
G P:3m> n m G at H ?](co\aj)ny j. 

Clearly it suffices to show that each such set En is dense in P. Suppose that 

(b,y) G P. Then (at n f]-eR(co\aj))\b is infinite. For, if it is a finite set c, then 

ai ? [J ajUbUc, 
jeR 

and upon applying h we would get h (ai ) < J2jeR 
^ (aj )? which is clearly impossible. 

Thus the indicated set is infinite. We can hence choose m in it with m > n. Clearly 
(b,y U {m}) G En and (b,y U {m}) < (b,y), proving (1). 

(2) If R is a finite subset of k, then co\ I d U \JieR ax \ is infinite. 
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In fact, let R be a finite subset of k. For any natural number n let 

Fn = Ub,y) e P\3m> n me b\(yU (J ?/)]}. 
ieR 

We claim that Fn is dense in P. For, suppose that (b,y) e P. Then the set 

\[y 
^ IJieR Ui ) 

*s mfinite- For, if it is a finite set c, then we get 

co = c u y U Mu?/, 

and applying A we get 1 = J2ieR h(ai)> which is clearly impossible. Choose (b, y) e 

Fn n G, and then choose m > n such that m e b\(y U \JieR a?). We claim that 

m ? d\ by the arbitrariness of?, this will prove (2). Suppose that m G d. Choose 

(c,z) e G with m G z. Then choose (d,w) G G with (d,w) < (b,y),(c,z). Thus 
mew since m e z. Also, m G 6\j>. This contradicts (d,w) < (b,y). Hence (2) 
holds. 

(3) ([ai]: i < K,)~([ \d]) is ideal independent. 

For, suppose not. There are two possibilities. 
Case 1. There are a finite subset R of k and an / G k\R such that \a{\ < 

[ \d] + ^2jeR[cij]' 
This contradicts (1). 

Case 2. There is a finite subset R of k such that [co\?/] < ^zG#[#z]- This 

contradicts (2). 
Thus (3) holds. 

(4) Ifbe ker(A), then b H d is finite. 
In fact, clearly {(c, j) G P : 6 ? c} is dense in P, so we can choose (c, y) e G such 
that b ? c. Then ? n d ? _y (as desired). For, suppose that m e b n d. Choose 

(e, z) e G such that m e z. Then choose (r, w) e G such that (r, w) < (e, z), (c, y). 
Then m G w n c ? y. 

(5) If jc G OP(c?) ?lM)\({fl/: / < ?}u{co\d})s then ([?/]: / < ?>^([co\?/],[x]> 
is not ideal independent. 

To prove this, we consider two cases. First, if x e ker(A), then [x] < [co\d] by (4), 
as desired. Second, if x ? ker(A), choose i < k such that h(at) < h(x). So 

?i\x G ker(A), and so by (4) we get [af] < [x] + [co\<?], as desired. H 

Theorem 2.18. 7? ?s consistent with 2 > co\ that smm(^p(a;)/fin) 
= co\. 

Proof. Start with a c.t.m. M of ZFC + 2 > co\. Iterate the construction of 
Lemma 2.17 co\ times, obtaining a generic filter G over M. Then M [G] is as desired, 

using Lemma 5.14 of Chapter VIII of Kunen [3]. H 
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