ON CELLULARITY IN HOMOMORPHIC IMAGES OF BOOLEAN ALGEBRAS

J. Donald Monk and Peter Nyikos*

Abstract

$c_{HR}A = \{(\mu, \nu) : |A/I| = \nu \geq \omega$ and $c(A/I) = \mu$ for some ideal I of $A\}$ for A an infinite Boolean algebra. Special cases of the main results are: (1) If $(\omega_1, \omega_2) \in c_{HR}A$ and $(\omega, \omega_2) \notin c_{HR}A$, then $(\omega_1, \omega_1) \in c_{HR}A$. (2) There is a model with a BA A such that $c_{HR}A = \{(\omega, \omega), (\omega_1, \omega_1), (\omega, \omega_2), (\omega_2, \omega_2)\}$. (3) Under GCH, there is a BA A such that $c_{HR}A = \{(\omega, \omega_1), (\omega_1, \omega_1), (\omega_1, \omega_2), (\omega_2, \omega_2)\}$. (4) If $cA \geq \omega_2$ and $(\omega, \omega_2) \in c_{SR}A$, then $(\omega_1, \omega_2) \in c_{SR}A$ for the notion c_{SR} analogous to c_{HR}.

For any infinite Boolean algebra A, let $c_{HR}A = \{(\mu, \nu) : |A/I| = \nu \geq \omega$ and $c(A/I) = \mu$ for some ideal I of $A\}$. Here for any Boolean algebra A, cA is the cellularity of A, which is defined to be the supremum of the cardinalities of families of pairwise disjoint elements of A. We call c_{HR} the homomorphic cellularity relation of A. In topological terms, we are dealing with compact zero-dimensional Hausdorff spaces X, with

$c_{HR}X = \{(\mu, \nu) : \text{there is an infinite closed subspace } Y \text{ of } X$ with weight ν and cellularity $\mu\}$.

* Research of second author partially supported by NSF Grant DMS-9209711

Mathematics Subject Classification: 06E05, 03E35, 54A25
It is natural to try to characterize these relations in cardinal number terms. This appears to be a difficult task, but one can give various properties of the relations. We mention some known facts; see Monk [6] for references and more details.

(1) (Shapirovskii, Shelah) If \((\lambda, (2^\kappa)^+) \in c_{HR}A\) for some \(\lambda \leq \kappa\), then \((\omega, (2^\kappa)^+) \in c_{HR}A\).

(2) (Koszmider) If \((\kappa^+, \lambda^+) \in c_{HR}A\), \(\kappa^+\) is not inaccessible, and \(\kappa^+ < \text{cf}|A|\), then there is a \(\kappa'' \geq \kappa^+\) such that \((\kappa'', |A|) \in c_{HR}A\).

(3) (Todorcević) Assuming \(V = L\), for each infinite \(\kappa\) there is a BA \(A\) such that \(c_{HR}A = \{(\lambda, \lambda) : \omega \leq \lambda \leq \kappa\} \cup \{(\kappa, \kappa^+)\}\).

(4) (Malyhin, Shapirovskii) Under MA, if \(|A| < 2^\omega\), then \(A\) has a countable homomorphic image (implying obvious things about \(c_{HR}A\)).

(5) (Koszmider) There is a model with BA's \(A, B, C, D\) having respective homomorphic cellularity relations \(\{\omega, \omega_1\}\), \(\{\omega, \omega_2\}, \{(\omega, \omega_2), (\omega_1, \omega_2)\}\), \(\{\omega, \omega_1), (\omega_1, \omega_1)\}\).

In this paper we give some more properties of these relations.

(6) If \((\omega_1, \omega_2) \in c_{HR}A\) and \((\omega, \omega_2) \notin c_{HR}A\), then \((\omega_1, \omega_1) \in c_{HR}A\). This was mentioned without proof in Monk [6]. We prove a generalization of this to higher cardinalities.

(7) There is a model with a BA \(A\) such that \(c_{HR}A = \{(\omega, \omega), (\omega_1, \omega_1), (\omega, \omega_2), (\omega_2, \omega_2)\}\). This was also mentioned without proof in Monk [6]. The model is a standard one used to adjoin a big maximal almost disjoint family of sets of integers, and we give the construction of that model, and a property it has that is crucial for this application, in a general form.

(8) Under CH, there is a BA \(A\) such that \(c_{HR}A = \{(\omega, \omega_1), (\omega_1, \omega_1), (\omega_2, \omega_2)\}\). This solves problem 8(i) of Monk [6] positively. This BA is the algebra of countable and cocountable subsets of \(\omega_2\), and we describe \(c_{HR}\) for algebras \(\langle |\kappa|^{\leq \rho}\rangle\) in general, in ZFC.
(9) Under GCH, there is a BA A such that $c_{Hr}A = \{(\omega, \omega_1), (\omega_1, \omega_1), (\omega_1, \omega_2), (\omega_2, \omega_2)\}$. This solves problem 8(i) of Monk [6] positively. The BA is obtained from one of the previous algebras by adjoining a family of almost disjoint sets.

There is an analogous notion for subalgebras: $c_{Sr}A = \{(\mu, \nu) : A$ has a subalgebra of size $\nu \geq \omega$ and cellularity $\mu\}$. Concerning this notion we give one result, a special case of which is

(10) If $cA \geq \omega_2$ and $(\omega, \omega_2) \in c_{Sr}A$, then $(\omega_1, \omega_2) \in c_{Sr}A$. This solves problem 4 of Monk [6] negatively.

Results about the relations $c_{Hr}A$ and $c_{Sr}A$ are described thoroughly in Monk [6]. In particular, the situation for algebras of size at most ω_2 is thoroughly discussed. After the results in the present paper, there remain six natural open problems, which can be concisely described as follows:

(1) Can one prove in ZFC that there is a BA A such that $c_{Hr}A = \{(\omega, \omega), (\omega, \omega_1), (\omega_1, \omega_1), (\omega_1, \omega_2)\}$? It is consistent that such a BA exists.

(2) Can one prove in ZFC that there is a BA A such that $c_{Hr}A = \{(\omega, \omega), (\omega, \omega_1), (\omega_1, \omega_1), (\omega_1, \omega_2), (\omega_2, \omega_2)\}$? Again it is consistent that such a BA exists.

(3) Is it consistent that there is a BA A such that $c_{Hr}A = \{(\omega, \omega_1), (\omega_1, \omega_1), (\omega_1, \omega_2)\}$? It is consistent that no such BA exists.

(4) Is it consistent that there is a BA A such that $c_{Hr}A = \{(\omega, \omega_1), (\omega_1, \omega_1), (\omega, \omega_2), (\omega_2, \omega_2)\}$? It is consistent that no such BA exists.

(5) Can one prove in ZFC that there is a BA A such that $c_{Sr}A = \{(\omega, \omega), (\omega, \omega_1), (\omega_1, \omega_1), (\omega_1, \omega_2)\}$? It is consistent that such a BA exists.

(6) Can one prove in ZFC that there is a BA A such that $c_{Sr}A = \{(\omega, \omega), (\omega, \omega_1), (\omega_1, \omega_1), (\omega_1, \omega_2), (\omega_2, \omega_2)\}$?
It is consistent that such a BA exists.

Notation. For set theory, we follow Kunen [5], with the following changes and additions. If $f : A \to B$ and $X \subseteq A$, then the f-image of X is denoted by $f[X]$. A family of sets \mathcal{A} is *almost disjoint* if $|X \cap Y| < |X|, |Y|$ for any two distinct $X, Y \in \mathcal{A}$; it is *μ-almost disjoint* or *μ-ad* if the intersection of any two distinct members has size less than μ. A subset X of a set A is called *co-κ* if $|A \setminus X| < \kappa$.

For any topological space X, the collection of all closed and open subsets of X is denoted by $\text{clop}X$.

For Boolean algebras we follow Koppelberg [4]. If I is an ideal in a BA A and $x \in I$, then $[x]_I$ is the equivalence class of x under the equivalence relation determined by I. The subalgebra of A generated by X is denoted by $\langle X \rangle_A$, or simply $\langle X \rangle$ if A is clear. The free algebra on κ free generators is denoted by $\text{Fr} \kappa$. The algebra of finite and cofinite subsets of a cardinal κ is denoted by $\text{Finco} \kappa$. The completion of an algebra A is denoted by \bar{A}. We need a slight generalization of a result of Juhász and Shelah [2]; their result corresponds to successor λ in Theorem 2.

Let $<$ be a binary relation on a set X, and let τ and μ be infinite cardinal numbers. For any subset a of X and any $x \in X$, let $\text{Pred}_a x = \{y \in a : y < x\}$. We say that $<$ is *$(< \tau)$-full* if for every $a \in [X]^{< \tau}$ there is an $x \in X$ such that $a = \text{Pred}_a x$. And we say that $<$ is *μ-local* if for every $x \in X$ we have $|\text{Pred}_X x| \leq \mu$.

Lemma 1. Let $<$ be a binary relation on an infinite cardinal ρ that is both $(< \tau)$-full and μ-local. Then for every $\sigma < \tau$ and every almost disjoint family $\mathcal{A} \subseteq [\rho]^{\sigma}$ we have $|\mathcal{A}| \leq \rho \cdot \mu^{< \tau}$.

Proof. Since $<$ is $(< \tau)$-full, for every $a \in \mathcal{A}$ there is a $\xi_a < \rho$ such that $a = \text{Pred}_a \xi_a$. Thus $a \in [\text{Pred}_\rho \xi_a]^{< \tau}$. So $\mathcal{A} \subseteq \bigcup_{\xi < \rho} [\text{Pred}_\rho \xi]^{< \tau}$, and the latter has size at most $\rho \cdot \mu^{< \tau}$. \qed

Theorem 2. Suppose that κ and λ are infinite cardinals, $\lambda \leq$
Let f be a homomorphism from $\langle [\kappa]^{< \lambda} \rangle_{\mathcal{P} \kappa}$ onto an infinite BA B. Then $|B| < 2^{< \lambda}$ or $|B|^{< \lambda} = |B|$.

Proof. Let $\rho = |B|$ and $C = f([\kappa]^{< \lambda})$. Thus $|C| = \rho$ too. Suppose that $2^{< \lambda} \leq \rho$.

(1) \leq_B restricted to C is $< \lambda$-full.

For, suppose that $a \subseteq C$ and $|a| < \lambda$. Then there is an $x \in [\kappa]^{< \lambda}$ such that $a = f[x]$. Since λ is regular, also $b \overset{\text{def}}{=} \bigcup x \in [\kappa]^{< \lambda}$, so $f(b) \in C$. Now $a \subseteq \text{Pred}_C f(b)$. For, if $u \in a$, say $u = f(c)$ with $c \in x$. Then $c \subseteq b$, so $f(c) \leq f(b)$. Hence $a = \{ y \in a : y \leq f(b) \}$, and (1) follows.

(2) \leq_B restricted to C is $2^{< \lambda}$-local.

In fact, suppose that $c \in C$; say $c = f(x)$ with $x \in [\kappa]^{< \lambda}$. If $b \in C$ and $b \leq c$, say $b = f(y)$ with $y \in [\kappa]^{< \lambda}$. Then $f(y \cap x) = f(y) \cap f(x) = b$. Thus $b \in f[\mathcal{P}x]$; and $|\mathcal{P}x| \leq 2^{< \lambda}$, as desired in (2).

Now by lemma 1 we have

(3) For every $\tau < \lambda$, and every almost disjoint $\mathcal{A} \subseteq [\rho]^\tau$ we have $|\mathcal{A}| \leq \rho \cdot (2^{< \lambda})^{< \lambda} = \rho$.

Now we are ready to show that $\rho^{< \lambda} = \rho$. For, suppose that $\rho^{< \lambda} > \rho$. Since $\lambda \leq \rho$, it follows that $\rho^\tau > \rho$ for some $\tau < \lambda$; let τ be minimum with this property. Then by a well-known argument, there is an almost disjoint $\mathcal{A} \subseteq [\rho]^\tau$ of size ρ^τ. This contradicts (3). \square

Lemma 3. Suppose that κ and λ are cardinals, $\omega \leq \lambda \leq \kappa^+$, λ regular. Let $A = \langle [\kappa]^{< \lambda} \rangle_{\mathcal{P} \kappa}$. Let I be an ideal on A, and assume that $|A/I| > 2^{< \lambda}$. Then

(i) $\forall a \in I(|a| < \lambda)$.

(ii) Suppose that $\mathcal{A} \subseteq A$, $\forall a \in \mathcal{A}(|a| < \lambda)$, $\langle [a]_I : a \in \mathcal{A} \rangle$ is pairwise disjoint, and \mathcal{A} is maximal with these properties. Then $\sum_{a \in \mathcal{A}} [a]_I = 1$.

(iii) Continuing (ii), $|A/I| \leq |\bigcup \mathcal{A}|^{< \lambda}$.

(iv) \(|A/I| \leq c(A/I)^{<\lambda}\).
(v) \(2^{<\lambda} < c(A/I)\).

Proof. For (i), suppose that \(a \in I\) and \(|-a| < \lambda\). Then the mapping \(x \mapsto [x]_I\) for \(x \subseteq -a\) is a homomorphism from \(\mathcal{P}(-a)\) onto \(A/I\). But \(|\mathcal{P}(-a)| \leq 2^{<\lambda}\), contradicting \(|A/I| > 2^{<\lambda}\).

For (ii), suppose not: say \([b]_I = [\emptyset]_I\), while \([b]_I \cdot [a]_I = [\emptyset]_I\) for all \(a \in \mathcal{A}\). Then for all \(c \in [b]^{<\lambda}\) we have \([c]_I = 0\). Hence \(|b| \geq \lambda\), so \(|-b| < \lambda\). So \([c]_I = [c \setminus b]_I\) for all \(c \in [\kappa]^{<\lambda}\). Hence \([c]_I : c \in [\kappa]^{<\lambda}\} = \{[c]_I : c \in [-b]^{<\lambda}\} \) has size at most \(\mu^{<\lambda}\), where \(\mu = |-b|\). And \(\mu < \lambda\), so \(\mu^{<\lambda} \leq 2^{<\lambda}\). Hence \(|A/I| \leq 2^{<\lambda}\), contradiction.

For (iii), note that if \(b \in [\kappa \setminus \mathcal{A}]^{<\lambda}\), then \(b \in I\) by the maximality of \(\mathcal{A}\). So

\[
\{[b]_I : b \in A, |b| < \lambda\} = \{[b \cap \mathcal{A}]_I : |b| < \lambda\},
\]
so (iii) holds.

For (iv), note that if \(c(A/I) < \lambda\), then \(|\mathcal{A}| < \lambda\) by regularity of \(\lambda\), and so \(|\mathcal{A}|^{<\lambda} \leq 2^{<\lambda}\), and (iii) gives a contradiction. So \(\lambda \leq c(A/I)\). Hence \(|\mathcal{A}| \leq c(A/I)\). Then (iii) yields (iv).

Finally, (v) follows from (iv) and the hypothesis. \(\square\)

Theorem 4. Suppose that \(\omega < \rho < \kappa\). Let \(A = \langle [\kappa]^{<\rho} \rangle_{\mathcal{A}}\). Then \(c_{\mathcal{H}}(A) = S \cup T \cup U\), where

\[
S = \{ (\mu, \nu) : \omega \leq \mu \leq \nu \leq 2^\rho, \nu^\omega = \nu \};
T = \{ (\mu, \mu^\rho) : 2^\rho < \mu \leq \kappa \};
U = \{ (\mu, \kappa^\rho) : 2^\rho < \mu, \mu^\rho = \kappa^\rho, \kappa < \mu \}.
\]

Proof. First suppose that \((\mu, \nu) \in S\). The mapping \(a \mapsto a \cap \rho\) gives a homomorphism of \(A\) onto \(\mathcal{P}\rho\). Since \(\mathcal{P}\rho\) has an independent subset of size \(2^\rho\), there is a homomorphism of \(\mathcal{P}\rho\) onto an algebra \(B\) such that \(\text{Fr}v \leq B \leq \text{Fr}v\). Since \(\nu^\omega = \nu\), we have \(|B| = \nu\). Now there is a homomorphism of \(B\) onto an
algebra \(C \) such that \(\text{Fr} \nu \times \text{Fin} \mu \leq C \leq \text{Fr} \nu \times \text{Fin} \mu \). Thus \(|C| = \nu \) and \(c(C) = \mu \), so \((\mu, \nu) \in c_{\text{HR}}(A)\).

Second, suppose that \(2^\mu < \mu \leq \kappa \). The mapping \(a \mapsto a \cap \mu \) gives a homomorphism of \(A \) onto \(([\mu]^{\leq \rho}) \), which has size \(\mu^\rho \) and cellularity \(\mu \). So \((\mu, \mu^\rho) \in c_{\text{HR}}(A)\).

Third, suppose that \(2^\rho < \mu = \kappa^\rho \), and \(\kappa < \mu \). Note that \(2^\rho < \kappa \), for if \(\kappa \leq 2^\rho \) then \(\kappa^\rho \leq 2^\rho \leq \kappa^\rho \), so \(\kappa^\rho = 2^\rho < \mu \leq \mu^\rho = \kappa^\rho \), contradiction. Now let \(\nu \) be minimum such that \(\kappa \leq \nu^\rho \).

Since \(2^\rho < \kappa \) and \(\kappa < \kappa^\rho \), it follows from Jech [1], Theorem 19, that \(\text{cf} \nu \leq \rho < \nu \) and \(\kappa^\rho = \nu^{\text{cf} \nu} \). Now if \(\sigma < \text{cf} \nu \), then \(\nu^\sigma \leq \kappa \), for

\[
\nu^\sigma = [\sigma \nu] = \bigcup_{\delta < \nu} [\sigma \delta] \leq \sum_{\delta < \nu} |\delta| \leq \kappa.
\]

Hence \(\bigcup_{\sigma < \text{cf} \nu} \sigma \nu \leq \kappa \), so there is an \(A \subseteq [\kappa]^{\text{cf} \nu} \) which is \(\text{cf} \nu \)-ad and of size \(\nu^{\text{cf} \nu} = \kappa^\rho \). Let \(I = [\kappa]^{< \text{cf} \nu} \). Then \(\langle [a]_I : a \in A \rangle \) is isomorphic to \(\text{Fin} \mu \). By the Sikorski extension theorem we get a homomorphism \(h \) of \(A \) onto \(\text{Fin} \mu \). Thus \(c(B) = \mu \), and by Theorem 2, \(|B|^\rho = |B| \).

Since \(\kappa < \mu \leq |B| \), it follows that \(\kappa^\rho \leq |B|^\rho = |B| \leq \kappa^\rho \). So \(|B| = \kappa^\rho \). Thus \((\mu, \kappa^\rho) \in c_{\text{HR}}(A)\).

Finally, suppose conversely that \((\mu, \nu) \in c_{\text{HR}}(A)\). Since \(A \) is \(\sigma \)-complete, it is well-known that \(\nu^\omega = \nu \). So if \(\nu \leq 2^\rho \), then \((\mu, \nu) \in S \). Suppose that \(2^\rho < \nu \). By Theorem 2 \(\nu^\rho = \nu \), and by Lemma 3, \(2^\rho < \mu \) and \(\nu \leq \mu^\rho \). Hence \(\mu^\rho \leq \nu^\rho \leq \mu^\rho \), so \(\nu = \nu^\rho = \mu^\rho \). If \(\mu \leq \kappa \), then \((\mu, \nu) \in T \). Suppose that \(\kappa < \mu \).

Then \(\kappa^\rho \leq \mu^\rho = \nu \leq \kappa^\rho \), so \(\nu = \kappa^\rho \) and \((\mu, \nu) \in U \).

Theorem 4 provides a positive solution of Problem 8(i) of Monk [6]. Namely, assume CH and let \(\kappa = \omega_2 \) and \(\rho = \omega \) in the theorem. Thus with \(A = ([\omega_2]^{\leq \omega}) \mathcal{G}_{\omega_2} \), under CH we have

\[
c_{\text{HR}}A = \{ (\omega, \omega), (\omega_1, \omega_1), (\omega_2, \omega_2) \}.
\]

Under GCH, there is a simpler description of \(([\kappa]^{\leq \rho}) \mathcal{G}_{\kappa} \):
Corollary 5. (GCH) Suppose that $\omega \leq \rho \leq \kappa$. Let $A = \langle [\kappa]^{<\rho} \rangle$. Then

$$c_{HR}A = \{ (\mu, \nu) : \omega \leq \mu \leq \nu \leq \rho^+ , cf \nu > \omega \}$$

$$\cup \{ (\mu, \mu) : \rho^+ < \mu , \rho < cf \mu , \mu \leq \kappa \}$$

$$\cup \{ (\mu, \mu^+) : \rho^+ < \mu , cf \mu \leq \rho , \mu \leq \kappa \}$$

$$\cup \{ (\kappa^+, \kappa^+) : cf \kappa \leq \rho < \kappa \}.$$

It is natural to also consider the algebra $A = \langle [\kappa]^{<\lambda} \rangle$ for λ limit. For λ singular the situation is unclear. Note that if $cf \lambda = \omega$, it is possible that A has a countable homomorphic image. For example, let $\kappa = \lambda = \aleph_\omega$. For each $n \in \omega$ let F_n be an ultrafilter on the Boolean algebra $\mathcal{P}(\aleph_n)$ such that $X \in F_n$ for every $X \subseteq \aleph_n$ for which $|\aleph_n \setminus X| < \aleph_n$. Define $f(a) = \{ n \in \omega : a \cap \aleph_n \in F_n \}$ for every $a \in A$. It is easy to see that f is a homomorphism from A onto $\text{Fin}_\mathcal{C}$.

For λ regular limit (meaning that it is weakly inaccessible), we can give a complete description of the cellularity homomorphism relation. For this we need another lemma. This lemma is proved like Lemma 3.

Lemma 6. Suppose that κ and λ are cardinals, λ is weakly inaccessible, $2^\mu < 2^{<\lambda}$ for all $\mu < \lambda$, and $\lambda \leq \kappa$. Let $A = \langle [\kappa]^{<\lambda} \rangle$. Let I be an ideal on A, and assume that $|A/I| = 2^{<\lambda}$. Then

(i) $\forall a \in I (|a| < \lambda)$.

(ii) Suppose that $\mathcal{A} \subseteq A$, $\forall a \in \mathcal{A} (|a| < \lambda)$, $\langle [a]_I : a \in \mathcal{A} \rangle$ is pairwise disjoint, and \mathcal{A} is maximal with these properties. Then $\sum_{a \in \mathcal{A}} [a]_I = 1$.

(iii) Continuing (ii), $|A/I| \leq [\bigcup \mathcal{A}]^{<\lambda}$.

(iv) $c(A/I) \geq \lambda$.

Proof. Only (iv) requires additional scrutiny. If $c(A/I) < \lambda$, then $|\mathcal{A}| < \lambda$, so by the regularity of λ, $|\bigcup \mathcal{A}| < \lambda$. But then $|[\bigcup \mathcal{A}]^{<\lambda}| = |\mathcal{P}(\bigcup \mathcal{A})| < 2^{<\lambda}$, contradiction. \square
Theorem 7. Suppose that λ is uncountable and weakly inaccessible and $\lambda \leq \kappa$. Let $A = [\kappa]^{<\lambda}$. Define

$$S = \{((\mu, \nu) : \omega \leq \mu \leq \nu < 2^{\lambda}, \nu^\omega = \nu\};$$
$$T = \{((\mu, \mu^{<\lambda}) : 2^{<\lambda} \leq \mu \leq \kappa)\};$$
$$U = \{((\mu, \kappa^{<\lambda}) : 2^{<\lambda} < \mu, \mu^{<\lambda} = \kappa^{<\lambda}, \kappa < \mu)\};$$
$$V = \{((\mu, 2^{<\lambda}) : \omega \leq \mu \leq 2^{<\lambda})\};$$
$$W = \{((\mu, 2^{<\lambda}) : \lambda \leq \mu \leq 2^{<\lambda})\}.$$

Then

(i) If $2^\rho = 2^{<\lambda}$ for some $\rho < \lambda$, then $c_{HR}(A) = S \cup T \cup U \cup V$;
(ii) If $2^\rho < 2^{<\lambda}$ for all $\rho < \lambda$, then $c_{HR}(A) = S \cup T \cup U \cup W$.
(iii) If λ is strongly inaccessible, then $c_{HR}(A) = S \cup T \cup U \cup \{(\lambda, \lambda)\}$.

Proof. The proof that $S \cup T \cup U \subseteq c_{HR}(A) \subseteq S \cup T \cup U \cup V$ is very similar to the proof for Theorem 4. For example, to show that $U \subseteq c_{HR}(A)$, take μ such that $2^{<\lambda} < \mu, \mu^{<\lambda} = \kappa^{<\lambda}$, and $\kappa < \mu$. Then $2^{<\lambda} < \kappa$ by an argument like that in the proof of Theorem 4. Since $\kappa < \mu \leq \kappa^{<\lambda}$, choose ρ so that $\kappa < \kappa^\rho$ and $\rho < \lambda$, and then proceed as before.

Now suppose that $\rho < \lambda$ and $2^\rho = 2^{<\lambda}$. The mapping $a \mapsto a \cap \rho$ gives a homomorphism from A onto $\mathcal{P}\rho$. Then the argument at the beginning of the proof of Theorem 4 shows that $(\mu, 2^{<\lambda}) \in c_{HR}(A)$ for all $\mu \in [\omega, 2^{<\lambda}]$. This proves (i).

Next, suppose that $2^\rho < 2^{<\lambda}$ for all $\rho < \lambda$, and that $\lambda \leq \mu < 2^{<\lambda}$. Then there is a $\rho < \lambda$ such that $\mu < 2^\rho$. Write $\lambda = \Gamma_0 \cup \Gamma_1$, where $\Gamma_0 \cap \Gamma_1 = \emptyset$, $|\Gamma_0| = \lambda$, and $|\Gamma_1| = \rho$. By Theorem 4 there is a homomorphism f of $\mathcal{P}\Gamma_1$ onto an algebra of size 2^ρ and cellularity μ. Let $g(a) = (a \cap \Gamma_0, f(a \cap \Gamma_1))$ for all $a \in A$. The image of g has size $2^{<\lambda}$ and cellularity μ.

To get a homomorphic image of size and cellularity $2^{<\lambda}$ we have to modify this argument. Let M be the set of all infinite cardinals less than λ, and let $(\Gamma_\alpha : \alpha \in M)$ be a partition of λ with $|\Gamma_\alpha| = \alpha$ for all $\alpha \in M$. For each $\alpha \in M$ let f_α be a
homomorphism of $\mathcal{P}\Gamma_\alpha$ onto an algebra of size and cellularity 2^α. Then let $g(a)_\alpha = f_\alpha(a \cap \Gamma_\alpha)$ for all $a \in A$. Then the image of g is as desired.

That no other pairs are in $c_{\mathcal{H}_\alpha}(A)$ follows from Lemma 6. Thus (ii) holds.

(iii) is a clear consequence of (ii).

For the next result we need a standard Boolean algebraic fact:

Proposition 8. Suppose that A is κ-complete, and I is a κ-complete maximal ideal in A. Suppose that $f : I \rightarrow B$ preserves $\langle \kappa \rangle$-joins, $\langle \kappa \rangle$-meets, and 0. Then f extends to a unique κ-complete homomorphism $f^+ : A \rightarrow B$. Moreover, f^+ is one-one iff $\forall x \in I[f(x) = 0 \Rightarrow x = 0]$ and $\forall x \in I[f(x) \neq 1]$.

Proof. The following definition of f^+ is forced upon us:

$$f^+(a) = \begin{cases} f(a) & \text{if } a \in I, \\ -f(-a) & \text{if } a \notin I. \end{cases}$$

Then f^+ preserves $-$, since if $a \in I$, then $f^+(-a) = -f(a) = -f^+(a)$, and if $a \notin I$, then $f^+(-a) = f(-a) = --f^+(a)$.

Now we show that f^+ preserves $\langle \kappa \rangle$-joins. So, let $\sum_{\xi < \alpha} a_\xi$ be given, with $\alpha < \kappa$. If $\forall \xi < \alpha a_\xi \in I$, then

$$f^+ \left(\sum_{\xi < \alpha} a_\xi \right) = f \left(\sum_{\xi < \alpha} a_\xi \right) = \sum_{\xi < \alpha} f(a_\xi) = \sum_{\xi < \alpha} f^+(a_\xi).$$

Now suppose that $\exists \xi < \alpha [a_\xi \notin I]$. Let $\Gamma = \{ \xi < \alpha : a_\xi \notin I \}$.
Then

\[
\sum_{\xi \in \Gamma} a_\xi + \left(\sum_{\xi < \alpha} a_\xi \right) = \sum_{\xi \in \Gamma} a_\xi + \left(- \left(\sum_{\xi \in \Gamma} a_\xi + \sum_{\xi \in \alpha \setminus \Gamma} a_\xi \right) \right) \\
= \sum_{\xi \in \Gamma} a_\xi + \left(- \sum_{\xi \in \Gamma} a_\xi \cdot \sum_{\xi \in \alpha \setminus \Gamma} a_\xi \right) \\
= \sum_{\xi \in \Gamma} a_\xi + \left(- \sum_{\xi \in \alpha \setminus \Gamma} a_\xi \right).
\]

Using this,

\[
\sum_{\xi < \alpha} f^+(a_\xi) + \left(- f^+ \left(\sum_{\xi < \alpha} a_\xi \right) \right) \\
= \sum_{\xi \in \Gamma} f(a_\xi) + \sum_{\xi \in \alpha \setminus \Gamma} - f(-a_\xi) + f \left(- \sum_{\xi < \alpha} a_\xi \right) \\
= f \left(\sum_{\xi \in \Gamma} a_\xi + \left(- \sum_{\xi < \alpha} a_\xi \right) \right) + \sum_{\xi \in \alpha \setminus \Gamma} - f(-a_\xi) \\
= f \left(\sum_{\xi \in \Gamma} a_\xi + \left(- \sum_{\xi \in \alpha \setminus \Gamma} a_\xi \right) \right) + \sum_{\xi \in \alpha \setminus \Gamma} - f(-a_\xi) \\
= f \left(\sum_{\xi \in \Gamma} a_\xi \right) + f \left(- \sum_{\xi \in \alpha \setminus \Gamma} a_\xi \right) + \sum_{\xi \in \alpha \setminus \Gamma} - f(-a_\xi) \\
= f \left(\sum_{\xi \in \Gamma} a_\xi \right) + \prod_{\xi \in \alpha \setminus \Gamma} f(-a_\xi) + \left(- \prod_{\xi \in \alpha \setminus \Gamma} f(-a_\xi) \right) \\
= 1.
\]
And if $\xi \in \Gamma$, then
\[
f^+(a_\xi) \cdot -f^+ \left(\sum_{\eta < \alpha} a_\eta \right) = f(a_\xi) \cdot f \left(-\sum_{\eta < \alpha} a_\eta \right).
\]
\[
= f \left(a_\xi \cdot -\sum_{\eta < \alpha} a_\eta \right)
\]
\[
= f(0) = 0.
\]

If $\xi \in \alpha \setminus \Gamma$, then
\[
f^+(a_\xi) \cdot -f^+ \left(\sum_{\eta < \alpha} a_\eta \right) = -f(-a_\xi) \cdot f \left(-\sum_{\eta < \alpha} a_\eta \right).
\]

Now $a_\xi \leq \sum_{\eta < \alpha} a_\eta$, so $-\sum_{\eta < \alpha} a_\eta \leq -a_\xi$, hence $f \left(-\sum_{\eta < \alpha} a_\eta \right) \leq f(-a_\xi)$, so $-f(-a_\xi) \cdot f \left(-\sum_{\eta < \alpha} a_\eta \right) = 0$. So we have proved that $f^+ \left(\sum_{\xi < \alpha} a_\xi \right) = \sum_{\xi < \alpha} f(a_\xi)$. So f is a κ-homomorphism.

Concerning the final statement, the direction \Rightarrow is clear. Now suppose the indicated condition holds, and $f^+(a) = 0$. If $a \in I$, then $f(a) = f^+(a) = 0$, so $a = 0$. If $a \notin I$, then $f^+(a) = -f(-a) = 0$, so $f(-a) = 1$ and $-a \in I$, contradiction. \square

Lemma 9. Suppose that $\kappa < \lambda$, κ is regular, $\mathcal{A} \subseteq [\kappa]^\kappa$ is almost disjoint, and $|\mathcal{A}| = \lambda$. Let A be the κ-complete subalgebra of \mathcal{P}_κ generated by $\mathcal{A} \cup \{\{\xi\} : \xi < \kappa\}$. Then $A/[\kappa]^{<\kappa} \cong ([\lambda]^{<\kappa})^{\mathcal{A}_\lambda}$.

Proof. Let $(X_\alpha : \alpha < \lambda)$ be a one-one enumeration of \mathcal{A}. Set $I = [\kappa]^{<\kappa}$. For each $\Gamma \in [\lambda]^{<\kappa}$ let $f(\Gamma) = [\bigcup_{\alpha \in \Gamma} X_\alpha]$. Clearly f preserves $(< \kappa)$-joins, and $f(0) = 0$. It also preserves $(< \kappa)$-meets. For, suppose that $\Gamma_\alpha \in [\lambda]^{<\kappa}$ for all $\alpha < \gamma$, where $\gamma < \kappa$. Let $\Delta = \bigcup_{\alpha < \gamma} \Gamma_\alpha$. So $|\Delta| < \kappa$ since κ is regular. Let
ON CELLULARITY IN HOMORPHIC IMAGES OF...

	353

P be the set of all nonconstant $g \in \prod_{\alpha<\gamma} \Gamma_{\alpha}$. Then

$$\bigcap_{\alpha<\gamma} \bigcup_{\xi \in \Gamma_{\alpha}} X_{\xi} = \bigcup_{g \in \prod_{\alpha<\gamma} \Gamma_{\alpha}} \bigcap_{\alpha<\gamma} X_{g(\alpha)}$$

$$= \bigcup_{\xi \in \cap_{\alpha<\gamma} \Gamma_{\alpha}} \bigcup_{g \in P} \bigcap_{\alpha<\gamma} X_{g(\alpha)}.$$

Now

$$\bigcup_{g \in P} \bigcap_{\alpha<\gamma} X_{g(\alpha)} \subseteq \bigcup_{\{X_{\alpha} \cap X_{\beta} : \alpha, \beta \in \Delta, \alpha \neq \beta\}},$$

and the latter set has size less than κ. This shows that f preserves ($<\kappa$)-meets.

Hence by Proposition 8, f extends to a κ-homomorphism from $\langle [\lambda]^{<\kappa}\rangle_{\mathcal{P}_{\lambda}}$ into A/I. By the same proposition it is clear that f is one-one. Since $f[[\lambda]^{<\kappa}]$ generates A/I as a κ-complete algebra, f maps onto A/I. \Box

Theorem 10. (GCH) Let $\mathcal{A} \subseteq [\kappa^+]^{\kappa^+}$ be κ^+-ad, with $|\mathcal{A}| = \kappa^{++}$. Let A be the κ^+-complete subalgebra of \mathcal{P}_{κ^+} generated by $\mathcal{A} \cup \{\{\alpha\} : \alpha < \kappa^+\}$. Then

$$c_{H_{\mathcal{A}}} A = \{(\mu, \nu) : \omega \leq \mu \leq \nu \leq \kappa^+, c_{f\nu} > \omega\} \cup \{(\kappa^+, \kappa^{++}), (\kappa^{++}, \kappa^{++})\}.$$

Proof. Let $\langle X_{\alpha} : \alpha < \kappa^{++}\rangle$ be a one-one enumeration of \mathcal{A}. Let $I = [\kappa^+]^{\leq \kappa}$. Then by Lemma 9,

(1) $A/I \cong \langle [\kappa^{++}]^{\leq \kappa}\rangle_{\mathcal{P}_{\kappa^{++}}}.$

Hence by Corollary 5, $c_{H_{\mathcal{A}}} A$ contains the set of the theorem. Suppose that $(\mu, \nu) \in c_{H_{\mathcal{A}}} A$, with (μ, ν) not in the indicated set. Then $\nu = \kappa^{++}$ and $\mu \leq \kappa$. So A has an independent subset \mathcal{F} of size κ^{++}. Since $|I| = \kappa^+$, we may assume that the members of \mathcal{F} are pairwise inequivalent modulo I, each nonzero modulo I. By the proof of (1), for each $a \in \mathcal{F}$ we can choose a $\Gamma_{\alpha} \in [\kappa^{++}]^\kappa$ such that $[a]_I = \bigcup_{\alpha \in \Gamma_{\alpha}} X_{\alpha}$. Then
there is a $\Delta \in [\mathcal{P}]^{++}$ such that $\langle \Gamma_a : a \in \Delta \rangle$ is a Δ-system. Let a, b, c be distinct members of Δ. Then $|a \cdot b \cdot -c| = 0$, i.e., $|a \cdot b \cdot -c| \leq \kappa$. Hence

$$\langle a \cdot b \cdot -c \cdot d : d \in \Delta \setminus \{a, b, c\} \rangle$$

is a system of κ^{++} independent subsets of $a \cdot b \cdot -c$, which contradicts GCH. \qed

Taking $\kappa = \omega$ in this theorem we get, under GCH, a BA A such that

$$c_{HR} A = \{ (\omega, \omega_1), (\omega_1, \omega_1), (\omega_1, \omega_2), (\omega_2, \omega_2) \}.$$

This solves Problem 8(iii) of Monk [6] positively.

For the next result we need a fact about one of the standard ways of forcing a large mad family. This fact was observed by Richard Laver, and we thank him for allowing us to include the proof of the fact here.

Theorem 11. In a model of ZFC+GCH, suppose that κ and λ are infinite cardinals, κ regular, $\kappa < \lambda$. Then there is an extension preserving cofinalities and cardinalities in which there is a system $\langle A_\alpha : \alpha < \lambda \rangle$ of almost disjoint members of $[\kappa]^\kappa$ with the following property:

(*) if $X \in [\kappa]^\kappa$ and $|X \cap A_\alpha| = \kappa$ for κ many $\alpha < \lambda$, then $|X \cap A_\alpha| = \kappa$ for $\text{co-}\kappa^+$ many $\alpha < \lambda$.

Proof. Let \mathbb{P} be the set of all functions f such that there exist an $F \in [\lambda]^{<\kappa}$ and a $\nu < \kappa$ such that $f : F \times \nu \to 2$. For $f \in \mathbb{P}$ we let F_f and ν_f be the F, ν mentioned, with $F_f = 0 = \nu_f$ if $f = 0$. We write $f \leq g$ iff $g \subseteq f$ and for any distinct $\alpha, \beta \in F_g$ and any $\iota \in \nu_f \setminus \nu_g$, $f(\alpha, \iota) = 0$ or $f(\beta, \iota) = 0$. Clearly

(1) (\mathbb{P}, \leq) is κ-closed and satisfies the κ^+-chain condition. Consequently, forcing with (\mathbb{P}, \leq) preserves cofinalities and cardinals.
(2) For any $\alpha < \lambda$, the set $\{f \in \mathcal{P} : \alpha \in F_f\}$ is dense.

In fact, given $g \in \mathcal{P}$, if $\alpha \not\in F_g$, let $F_f = F_g \cup \{\alpha\}$, $\nu_f = \nu_g$, and let f extend g with $f(\alpha, \iota) = 0$ for all $\iota < \nu_g$. Clearly this proves (2).

Now let G be generic for (\mathbb{P}, \leq) over the ground model. We then set, for any $\alpha < \lambda$,

$$\begin{align*}
A_\alpha &= \{\iota < \kappa : \exists g \in G(\alpha \in F_g, \iota < \nu_g, g(\alpha, \iota) = 1)\} \\
\Gamma_\alpha &= \{(\iota, g) : \alpha \in F_g, \iota < \nu_g, g(\alpha, \iota) = 1\}.
\end{align*}$$

Thus $\Gamma_\alpha^G = A_\alpha$.

(3) For each $\alpha < \lambda$, $|A_\alpha| = \kappa$.

In fact, it suffices to show that for any $\mu < \kappa$ the following set is dense:

$$\{g \in \mathcal{P} : \alpha \in F_g \text{ and } \exists \xi \in \kappa \setminus \mu(\xi < \nu_g \text{ and } g(\alpha, \xi) = 1)\}.$$

To prove this, let $f \in \mathcal{P}$. By (2) we may assume that $\alpha \in F_f$. Now let $f \subseteq g$, $F_f = F_g = \max(\nu_f + 1, \mu + 2)$, $\xi = \max(\nu_f, \mu + 1)$, with $g(\beta, \iota) = 0$ if $\nu_f \leq \iota$ and $\beta \neq \alpha$, $g(\alpha, \iota) = 0$ if $\iota \neq \xi$, and $g(\alpha, \xi) = 1$. Clearly $g \in \mathcal{P}$ and $g \leq f$, as desired in (3).

(4) $|A_\alpha \cap A_\beta| < \kappa$ for $\alpha \neq \beta$.

In fact, by (2) choose $g \in G$ such that $\alpha, \beta \in F_g$. Then, we claim, $A_\alpha \cap A_\beta = \{\iota < \nu_g : g(\alpha, \iota) = 1 = g(\beta, \iota)\}$, which will prove (4). Clearly \supseteq holds. Now suppose that $\iota \in A_\alpha \cap A_\beta$. Then there is an $f \in G$ such that $f \leq g$, $\iota < \nu_f$ and $f(\alpha, \iota) = 1 = f(\beta, \iota)$. From the definition of \leq it follows that $\iota < \nu_g$, and hence $f(\alpha, \iota) = g(\alpha, \iota)$ and $f(\beta, \iota) = g(\beta, \iota)$, as desired.

Now suppose that $X \in [\kappa]^\kappa$ and $|X \cap A_\alpha| = \kappa$ for κ many α's. Let τ be a name for X. Choose $p \in G$ so that

(5) $p \vdash \forall H \in [\lambda]^{<\kappa}(\tau \setminus \bigcup_{\alpha \in H} \Gamma_\alpha) = \kappa$.

Now we claim
(6) There is a $C\in [\lambda]^{\le\kappa}$ such that $F_p \subseteq C$ and for all q, μ, H, if $q \in \mathbb{P}$, $F_q \subseteq C$, $q \le p$, $\mu < \kappa$, and $H \in [C]^{<\kappa}$, then there is a $q' \le q$ such that $F_{q'} \subseteq C$ and there is a $\xi \in \kappa \setminus \mu$ such that $q' \forces \xi \in \tau \setminus \bigcup_{\beta \in H} \Gamma_\beta$.

For we construct $\langle C_\alpha : \alpha < \kappa \rangle$ by induction. Let $C_0 = F_p$. For α limit, let $C_\alpha = \bigcup_{\beta < \alpha} C_\beta$. Now suppose that C_α has been constructed, with $|C_\alpha| \le \kappa$. For q, μ, H such that $q \in \mathbb{P}$, $q \le p$, $F_q \subseteq C_\alpha$, $\mu < \kappa$, and $H \in [C_\alpha]^{<\kappa}$, there exist a $q' = q'(q, \mu, H)$ and a $\xi \in \kappa \setminus \mu$ such that $q' \le q$ and $q' \forces \xi \in \tau \setminus \bigcup_{\beta \in H} \Gamma_\beta$. Let

$$C_{\alpha+1} = C_\alpha \cup \bigcup \{F_{q'(q, \mu, H)} : q, \mu, H \text{ as above}\}.$$

Let $C = \bigcup_{\alpha < \kappa} C_\alpha$. Clearly C is as desired in (6).

Now take any $\alpha \in \lambda \setminus C$ and $\mu < \kappa$. We finish the proof by showing

(7) $\{q : q \forces \exists \xi \in \kappa \setminus \mu \langle \xi \in \tau \setminus \Gamma_\alpha \rangle\}$ is dense below p.

To show this, let $r \le p$ be arbitrary. By (2), we may assume that $\alpha \in F_r$. Let $s = \tau \setminus (C \times \nu_r)$. By (6), choose $q' \le s$ and $\xi > \max(\mu, \nu_r)$ such that $F_{q'} \subseteq C$ and $q' \forces \xi \in \tau \setminus \bigcup_{\beta \in F_s} \Gamma_\beta$. Now let $F_q = F_{q'} \cup F_r$, $\nu_q = \max(\nu_{q'}, \xi + 1)$, and for any $\beta \in F_q$ and $i < \nu_q$ let

$$q(\beta, i) = \begin{cases} q'(\beta, i) & \text{if } \beta \in F_{q'} \text{ and } i < \nu_{q'}, \\ r(\beta, i) & \text{if } \beta \in F_r \setminus F_{q'} \text{ and } i < \nu_r, \\ 1 & \text{if } \beta = \alpha \text{ and } i = \xi, \\ 0 & \text{in all other cases.} \end{cases}$$

Clearly $q \in \mathbb{P}$. Since $q(\alpha, \xi) = 1$, we have $q \forces \xi \in \Gamma_\alpha$.

(8) $q \le q'$.

In fact, clearly $q' \subseteq q$. Now suppose that β and γ are distinct members of $F_{q'}$ and $i \in \nu_q \setminus \nu_{q'}$. Then by definition we have $q(\beta, i) = 0$ or $q(\gamma, i) = 0$, as desired; so (8) holds.

So it remains only to prove...
(9) \(q \leq r \).

For this, first note that \(F_r = (F_r \cap C) \cup (F_r \setminus C) \subseteq F_q \). And \(\nu_r \leq \nu_q \leq \nu_q \). Now suppose that \(\beta \in F_r \) and \(\iota < \nu_r \). If \(\beta \in C \), then \(r(\beta, \iota) = s(\beta, \iota) = q'(\beta, \iota) = q(\beta, \iota) \). If \(\beta \notin C \), then directly from the definition, \(q(\beta, \iota) = r(\beta, \iota) \). All of this shows that \(r \subseteq q \).

Now suppose that \(\beta \) and \(\gamma \) are distinct members of \(F_r \) and \(\iota \in \nu_q \setminus \nu_r \). To finish the proof we want to show that \(q(\beta, \iota) = 0 \) or \(q(\gamma, \iota) = 0 \).

Case 1. \(\beta, \gamma \in C \) and \(\iota < \nu_q \). Then \(\beta, \gamma \in C \cap F_r = F_s \subseteq F_q' \), so \(q(\beta, \iota) = q'(\beta, \iota) \) and \(q(\gamma, \iota) = q'(\gamma, \iota) \). Also, \(\iota \in \nu_q \setminus \nu_s \) since \(\nu_s = \nu_r \). So \(q'(\beta, \iota) = 0 \) or \(q'(\gamma, \iota) = 0 \).

Case 2. \(\beta \in C, \iota \geq \nu_q' \). So \(q(\beta, \iota) = 0 \).

Case 3. \(\gamma \in C, \iota \geq \nu_q' \). So \(q(\gamma, \iota) = 0 \).

Case 4. \(\beta \notin C, \nu_r \leq \iota, \beta \neq \alpha \) or \(\iota \neq \xi \). Then \(q(\beta, \iota) = 0 \).

Case 5. \(\gamma \notin C, \nu_r \leq \iota, \gamma \neq \alpha \) or \(\iota \neq \xi \). Then \(q(\gamma, \iota) = 0 \).

Case 6. \(\beta \in C, \iota = \xi, \nu_r \leq \iota < \nu_q \). Then \(q(\beta, \iota) = q'(\beta, \xi) = 0 \) since \(q' \models \xi \notin \Gamma_\beta \).

Case 7. \(\gamma \in C, \iota = \xi, \nu_r \leq \iota < \nu_q \). Then \(q(\gamma, \iota) = q'(\gamma, \xi) = 0 \) since \(q' \models \xi \notin \Gamma_\gamma \).

Case 8. None of the above. So not both of \(\beta, \gamma \) are in \(C \), by Cases 1,2. Suppose one is in \(C \), the other not; say \(\beta \in C, \gamma \notin C \). Since \(\iota \geq \nu_r \), it follows that \(\gamma = \alpha \) and \(\iota = \xi \). Then \(q(\beta, \iota) = 0 \), either because \(\xi < \nu_q \) and \(q' \models \xi \notin \Gamma_\beta \), or because \(\xi \geq \nu_q \) and the definition of \(q \). So, suppose that \(\beta, \gamma \notin C \). Then one of Cases 4,5 must hold, contradiction. \(\square \)

Theorem 12. Let \(\langle A_\alpha : \alpha < \kappa \rangle \) be a system of infinite almost disjoint subsets of \(\omega \) such that \(\kappa > \omega \) and

\((\ast)\) For every infinite subset \(X \) of \(\omega \), if \(\{ \alpha < \kappa : X \cap A_\alpha \} \) is infinite, then it is cocountable.

Let \(A \) be the subalgebra of \(\mathcal{P}\omega \) generated by

\[\{ A_\alpha : \alpha < \kappa \} \cup \{ \{ i \} : i < \omega \} . \]

Then \(\text{c}_{HR} A = \{ (\omega, \kappa) \} \cup \{ (\mu, \mu) : \omega \leq \mu \leq \kappa \} \).
Proof. $A/\text{fin} \cong \text{Fin}_{\kappa}$, so \supset holds. Now suppose that $(\mu, \nu) \in c_{\text{HR}} A$, $\omega \leq \mu < \nu \leq \kappa$, and $(\mu, \nu) \neq (\omega, \kappa)$; we want to get a contradiction. Let I be an ideal of A such that $|A/I| = \nu$ and $c(A/I) = \mu$. Let $b = \{i < \omega : \{i\} \in I\}$.

(1) $\Gamma \overset{\text{def}}{=} \{\alpha < \kappa : A_\alpha \setminus b \text{ is infinite}\}$ is infinite.

For, suppose that Γ is finite. Let ρ be regular, with $\mu < \rho \leq \nu$; we are going to show that A/I has a disjoint family of size ρ, contradiction. Now there is a $\Delta \in [\kappa]^\rho$ such that for all $\alpha \in \Delta$, $A_\alpha/I \neq 0$ and $A_\alpha \setminus b$ is finite, and for all distinct $\alpha, \beta \in \Delta$, $A_\alpha/I \neq A_\beta/I$. Let $\Omega \in [\Delta]^\rho$ be such that $\langle A_\alpha \setminus b : \alpha \in \Omega \rangle$ is a Δ-system, say with kernel K. Now if $\langle A_\alpha \setminus K \rangle/I = 0$, then $A_\alpha/I \leq K/I$, and $\langle A/I \rangle \uparrow (K/I)$ is finite. So wlog, $\langle A_\alpha \setminus K \rangle/I \neq 0$ for all $\alpha \in \Omega$. Now if α, β are distinct members of Ω, then $\langle (A_\alpha \cap A_\beta) \setminus b \rangle/K = 0$, so $\langle (A_\alpha \cap A_\beta) \rangle/K = \langle (A_\alpha \cap A_\beta) \setminus b \rangle/K$. But $A_\alpha \cap A_\beta \setminus b \in I$ since $A_\alpha \cap A_\beta$ is finite, so $\langle (A_\alpha \cap A_\beta) \rangle/K \subseteq I$. Thus $\langle (A_\alpha \setminus K) \rangle/I : \alpha \in \Omega \rangle$ is a system of ρ disjoint elements, contradiction. This proves (1).

So from (*) it follows that Γ is countable. Now the map $\alpha \mapsto A_\alpha \setminus b$ for $\alpha \in \Gamma$ is one-one. For any $x \in A$ let $g(x) = (x/I, x \setminus b)$. This is a homomorphism. If $x \in I$, then $x \setminus b = 0$, and so $g(x) = (0, 0)$. And if $g(x) = (0, 0)$, then $x \in I$. So the image of g is isomorphic to A/I. It follows that $|A/I| = \kappa$. Hence $\omega < \mu$. Let $\langle c_\alpha/I : \alpha < \omega_1 \rangle$ be a system of nonzero pair­wise disjoint elements. Since there are only countably many finite subsets of ω, wlog each c_α is infinite. In fact, we may assume that each c_α has the form

$$A_\beta \cdot -A_{\gamma_1} \cdot \ldots \cdot -A_{\gamma_m} \cdot -F,$$

where F is finite and each $\gamma_i \neq \beta$. This can be written as

$$A_\beta \cdot -(A_\beta \cdot A_{\gamma_1}) \cdot \ldots \cdot -(A_\beta \cdot A_{\gamma_m}) \cdot -F,$$

and each $A_\beta \cdot A_{\gamma_i}$ is finite. So wlog $m = 0$. Thus we may assume that we have a pairwise disjoint system $\langle (A_\alpha \setminus F_\alpha) \rangle/I : \alpha \in \Delta \rangle$ of nonzero elements, each F_α finite, $\Delta \in [\kappa]^{\omega_1}$.
Now we have $A \setminus b$ infinite for all α in a countable subset Δ' of Δ. So $(A \setminus F_\alpha) \setminus b$ is infinite for each $\alpha \in \Delta'$. Now for $\alpha \neq \beta$ the set $A_\alpha \cdot F_\alpha \cdot A_\beta \cdot F_\beta$ is in I and hence is a subset of b. So $(A \setminus F_\alpha) \setminus b : \alpha \in \Delta')$ is a system of ω_1 pairwise disjoint subsets of ω, contradiction. \hfill \Box

Theorem 13. Suppose that $(\kappa^+, \kappa^{++}) \in c_{\text{Hr}}A$ and $(\kappa, \kappa^+) \notin c_{\text{Hr}}A$. Then $(\kappa^+, \kappa^+) \in c_{\text{Hr}}A$.

Proof. We work in the Stone space X of A. We may assume that X has cellularity κ^+ and weight κ^{++}. Take points one apiece from a pairwise disjoint family of κ^+ open sets. If their closure has exactly κ^+ clopen sets, we are done, otherwise the closure has κ^{++} clopen sets, and we may assume without loss of generality that the closure is all of X. Thus X has isolated points $\{x_\alpha : \alpha < \kappa^+\}$, listed without repetitions, and they are dense in X. For all $\alpha \in [\kappa, \kappa^+]$ let $X_\alpha = \text{cl}\{x_\beta : \beta < \alpha\}$. Thus X_α is a Boolean space with κ isolated points, which are dense in X_α. So by the hypothesis of the theorem, $|\text{clop}X_\alpha| \leq \kappa^+$.

Case 1. $Y := \bigcup_{\alpha \in [\kappa, \kappa^+)} X_\alpha$ is closed. Then $\bigcup_{\alpha \in [\kappa, \kappa^+)} \text{clop}X_\alpha$ is a network for Y. Hence Y has weight κ^+. Since $\{x_\alpha : \alpha < \kappa^+\}$ is its set of isolated points, and this set is dense in Y, the conclusion of the theorem holds.

Case 2. Y is not closed. Let $g \in \text{cl}Y \setminus Y$. Then $g \notin \text{cl}Z$ for all $Z \in [Y]^s$, so the tightness of Y is at least κ^+. Let $\langle y_\alpha : \alpha < \kappa^+ \rangle$ be a convergent free sequence (by Juhasz, Szentmiklossy [3]). Say it converges to z. Let $Z = \text{cl}\{y_\alpha : \alpha < \kappa^+\}$. Note that each y_α is isolated in Z, and the y_α's are dense in Z. So it suffices to show that Z has weight κ^+. Let $W_\alpha = \text{cl}\{y_\beta : \beta < \alpha\}$ for all $\alpha \in [\kappa, \kappa^+)$. Thus W_α is clopen in Z by freeness. Clearly $\bigcap_{\alpha \in [\kappa, \kappa^+)} (Z \setminus W_\alpha) = \{z\}$. So $\{Z \setminus W_\alpha : \alpha \in [\kappa, \kappa^+)\}$ is a neighborhood basis for z. Now by hypothesis, each W_α has weight at most κ^+; let B_α be a base for W_α with $|B_\alpha| \leq \kappa^+$. Then

$$\bigcup_{\alpha \in [\kappa, \kappa^+)} B_\alpha \cup \{Z \setminus W_\alpha : \alpha < \kappa^+\}$$
is a network for Z, so Z has weight κ^+, as desired.

This proof generalizes to give the following result:

If $\kappa^+ < \nu$, $\text{cof}\nu \neq \kappa^+$, $(\kappa^+, \nu) \in c_{Hr}A$, and $(\kappa, \nu) \notin c_{Hr}A$, then $(\kappa^+, \mu) \in c_{Hr}A$ for some $\mu < \nu$.

Problem. Is it necessary to assume that $\text{cof}\nu \neq \kappa^+$ in the foregoing result? Finally, a result on c_{Sr}:

Theorem 14. For every infinite cardinal κ, and every $BA A$, if $cA \geq \kappa^{++}$ and $(\kappa, \kappa^{++}) \in c_{Sr}A$, then $(\kappa^+, \kappa^{++}) \in c_{Sr}A$.

Proof. Suppose not. Let B be a subalgebra of size κ^{++} with cellularity κ.

1. There is an $a \in A$ such that $B \upharpoonright a$, which by definition is $\{b \cdot a : b \in B\}$, has cellularity κ^{++}.

To see this, let X be pairwise disjoint of size κ^+. Then $\langle B \cup X \rangle$ is of size κ^{++} and has cellularity greater than κ, so its cellularity is κ^{++}; let Y be a pairwise disjoint subset of size κ^{++}. We may assume that each element $y \in Y$ has the form $y = b_y \cdot a_y$ with $b_y \in B$ and $a_y \in \langle X \rangle$. Since $|X| < \kappa^{++}$, we may in fact suppose that each a_y is equal to some element a, as desired in (1).

Choose such an a, and let $X \in [B]^{\kappa^{++}}$ be such that $\langle x \cdot a : x \in X \rangle$ is a system of nonzero pairwise disjoint elements. Let Y be a subset of X of size κ^+, and let

$$C = \langle \{x \cdot a : x \in Y\} \cup \{x \cdot -a : x \in X \setminus Y\}\rangle.$$

Now define $x \equiv y$ iff $x, y \in X \setminus Y$ and $x \cdot -a = y \cdot -a$. Then

2. Every \equiv-class has size at most κ.

For, suppose that $|x/ \equiv| > \kappa$. For any $y \in (x/ \equiv) \setminus \{x\}$ we have

$$y \cdot -x = y \cdot -x \cdot a + y \cdot -x \cdot -a$$

$$= y \cdot a \cdot -(x \cdot a) + x \cdot -x \cdot -a$$

$$= y \cdot a.$$
This means that B has a pairwise disjoint subset of size greater than κ, contradiction. So (2) holds.

From (2) it follows that $|C| = \kappa^{++}$. Thus we must have $cC = \kappa^{++}$. Hence by the argument for (1), there is a $d \in \langle \{x \cdot a : x \in Y\}\rangle$ and a

$$Z \in \langle\langle\{x \cdot -a : x \in X \setminus Y\}\rangle\rangle^{++}$$

such that $\langle z \cdot d : z \in Z \rangle$ is a system of nonzero pairwise disjoint elements. We may assume that each $z \in Z$ has the form

$$x_{z,0} \cdot -a \cdot \ldots \cdot x_{z,m-1} \cdot -a \cdot (-y_{z,0} + a) \cdot \ldots \cdot (-y_{z,n-1} + a),$$

where each $x_{z,i}$ and $y_{z,j}$ is in $X \setminus Y$, and m and n do not depend on z.

Now since $\langle\langle x \cdot a : x \in Y\rangle\rangle$ is isomorphic to $\text{Fin}(\kappa^+)$, there are two cases.

Case 1. $d = \sum_{x \in F} x \cdot a$ for some finite $F \subseteq Y$. Then we may assume that in fact $d = x \cdot a$ for some $x \in Y$. In this case we have $m = 0$, and then each $z \cdot d$ is just equal to d, contradiction.

Case 2. $d = -\sum_{x \in F} (x \cdot a)$ for some finite $F \subseteq Y$. Thus $d = -a + a \cdot -\sum_{x \in F} x$. If $m = 0$, then each $z \cdot d$ is $\geq a \cdot -\sum_{x \in F} x$, so these elements are not disjoint, contradiction. Thus $m > 0$.

Hence $z \cdot d = z$ for each $z \in Z$. For each $z \in Z$ write $e_z = x_{z,0} \cdot \ldots \cdot x_{z,m-1}$ and $c_z = e_z \cdot -y_{z,0} \cdot \ldots \cdot -y_{z,n-1}$. Define $z \equiv w$ iff $z, w \in Z$ and $e_z = e_w$. If $z \neq w$, then

$$c_z \cdot c_w = c_z \cdot c_w \cdot a + c_z \cdot c_w \cdot -a = z \cdot w = 0.$$

Since $c_z \in B$ for each $z \in Z$, it follows that there are at most κ \not\cong-class members. Thus we may assume that all of the e_z's are the same. Thus for any $z \in Z$ we have

$$z = x_0 \cdot \ldots \cdot x_{m-1} \cdot -y_{z,0} \cdot \ldots \cdot -y_{z,n-1} \cdot -a,$$

$$c_z = x_0 \cdot \ldots \cdot x_{m-1} \cdot -y_{z,0} \cdot \ldots \cdot -y_{z,n-1}.$$
Note that $c_z \cdot a = x_0 \cdot \ldots \cdot x_{m-1} \cdot a$. So if $z \neq w$, then
\[
\begin{align*}
 c_z \cdot -c_w &= c_z \cdot -c_w \cdot a + c_z \cdot -c_w \cdot -a \\
 &= c_z \cdot a \cdot -(c_w \cdot a) + c_z \cdot -a \cdot -(c_w \cdot -a) \\
 &= z \cdot -w = z.
\end{align*}
\]
So if we fix $w \in Z$, then $\langle c_z \cdot -c_w : z \in Z \setminus \{w\} \rangle$ is a system of κ^{++} nonzero pairwise disjoint elements of B, a contradiction. \hfill \Box

References

Department of Mathematics, University of Colorado, Boulder

E-mail address: monkd@euclid.Colorado.EDU

Department of Mathematics, University of South Carolina, Columbus