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Abstract

Theorem A. There is a superatomic Boolean algebra B with size and w-character equal to
w1 and countable depth. Theorem B. If B is a superatomic Boolean algebra with w-character
greater than wi, then the m-character and depth of B are the same. Theorem C. If k — (k)5
then every superatomic Boolean algebra with tightness at least k¥ has depth at least «.
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Introduction

We abbreviate “Boolean algebra” by “BA”. A BA B is superatomic if every homomor-
phic image of B is atomic. The depth of a BA B is the supremum of all the cardinals
r such that there is a sequence (bs: a < k) of elements of B with b, < bg for all
a < F < k. If Fis an ultrafilter on a Boolean algebra B, then the m-character of F,
denoted by mxF, is the smallest cardinal x such that there is a subset D of B* (not
necessarily of F') of size « such that D is dense in F'. Here B* = B\ {0}, and D dense
in F' means that for all a € F' there is a b € D such that b < a. The w-character of B
itself, denoted by mx B, is the supremum of 7 F' for F an ultrafilter on B. The tightness
of B 1s the supremum of the cardinals x such that B has a free sequence of length x,
where a sequence (b,: a < k) is a free sequence provided that if I" and A are finite
subsets of k such that &« < @ forall & € I" and 8 € A, then
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The following relations hold between these cardinal functions in general:
depth(B) < tightness(B) and wxB < tightness(B};

the gaps in the inequalities can be arbitrarily large, and there is in general no inequality
between depth and w-character. Moreover, tightness(B) is the supremum of depth(A) for
A a homomorphic image of B and is also the supremum of mxA for A a homomorphic
image of B.

As most readers will be aware, all results about superatomic Boolean algebras are
dual to results about compact scattered spaces. The cardinal invariants of tightness and
m-character are well-known topologically and the Boolean algebraic versions correspond
exactly to the usual topological notions. The depth of a Boolean algebra B obviously
is equal to the supremum of those cardinals « such that the Stone space of B maps
continuously onto the ordinal space x4+ 1. We are not aware of a naming convention for
this topological cardinal invariant, nor do we propose to introduce one. If {z,: «a < k}
is a free sequence in a compact space X, then the depth of the closure of this free
sequence is x. For the sake of consistency it is best to choose to work either completely
algebraically or topologically. Clearly some proofs may benefit from one approach or the
other but on balance the results in this paper are best worked algebraically.

In a version of Monk [5], the following two problems were stated.

Problem 1. Is there a superatomic BA B such that depth(B) < nx(B)?

No example, under any set-theoretic assumptions, was known; Theorems A and B
answer this question fairly completely.

Problem 2. Can the difference between depth(B) and tightness(B) be arbitrarily large?

Theorem C answers this question, but there remains the question of how large the gap
can be. In this connection recall that there is a system (b, @ < wi) of infinite subsets of
w such that b, \ bg is finite and bg \ b, infinite whenever a < 8 < w;. Letting B be the
algebra of subsets of w generated by the b,’s and the singletons, we have a superatomic
BA with tightness w; and depth w. Also, Hechler [1] generalized this by showing that
under Martin’s axiom there is a system (b,: « < 2*) of infinite subsets of w such that
b\ bg 1s finite and bg\ b, infinite whenever o << 3 < 2%. This gives a superatomic BA B
with countable depth and tightness 2“. These results form a background for Theorem C.

Notation. We use standard set-theoretic notation, and for BAs we follow the notation
of {3]. We now set up some notation for superatomic BAs. For any BA A we define the
standard sequence of ideals I on A as follows:

=10y, IZ,={{z:/I}isanaom})’,  I{ = | I2 for X limit,
<A

We usually omit the superscript 4. We let 77} denote the natural homomorphism from
A onto A/I,.
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Recall [3, 17.8] that A is superatomic iff I, = A for some «. It is easy to see that
A is superatomic iff A/I, is finite for some «, and that if « is minimum such that
A/I, is finite, then |A/I,} > 1 (provided, of course, that |A| > 1 to start with). This
least « is denoted by Ag; it is called the firsr invariant of A. Let I4 = I ,. We also
let A% be the number of atoms of A/I4; this is the second invariant of A. Usually we
will arrange things such that this second invariant is 1, so that /4 is a maximal ideal.
For any a € A we let psa be the least « such that a € I, ;. Thus pal = Ay, if
A is nontrivial. Let A" = {a € A: a/I,, is an atom}. Note that if a € A’, then the

set F, & {z € A: pla-x) = pa} is an ultrafilter. Conversely, if F is an ultrafilter,
then FF N A’ # 0, and if we choose a member a € ' A" of smallest rank, then
F={zeA: pla-z)=pa}.

For any BA A, we let AtA denote the collection of all atoms of A.

1. Preliminaries

We now give some elementary facts about superatomic BAs, most of which are needed
later. For some of these results see [2, pp. 363ff].

Lemma 1.1. Suppose that A and B are superatomic and A is a subalgebra of B. Then
ANIB C I for any o

Proof. We proceed by induction on a. The cases a = 0 and « a limit ordinal are easy.
For the successor case we note

(%) If ao/I2, ..., am—1/I2 are atoms, then there exist aj,...,a’, _, € A such that
a;/I2 = al/I2 for all i < m and a{/IB,...,al, ,/IP are nonzero pairwise disjoint
elements. In fact, simply choose ag,...,a _; to be disjoint elements of A such that

a;/I2 = al/I2 for all 1 < mn; the desired conclusion is clear by the induction hypothesis.

Now suppose that a € AN IfH. Then a/IP is the sum of a finite number, say m,
of atoms of B/I2. Now if € A and z/I? < a/IZ, then by the induction hypothesis,
z/IZ < a/IB. Hence by (x) it follows that a/I is the sum of at most m atoms,
completing the inductive proof. [

Corollary 1.2. If A and B are superatomic and A is a subalgebra of B, then A4 < Ap.
If A\s = Ap, then AMA L \B.

Proof. The first part is direct from Lemma 1.1. For the second part, use (*) in the proof
of Lemma 1.1. O

We leave the proof of the following simple but useful lemma to the reader:

Lemma 1.3. If A and B are BA’s and f is a homomorphism from A onto B, then any
atom of A is either mapped to 0 or to an atom under f.
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Lemma 1.4, Suppose that B is a superatomic BA and J is an ideal in B. Then for any
a and any a € 12 we have (a/J) € 157 Also, there is a homomorphism g from B/I5
onto (B/J)/If 7 such that g(a/1B) = (a/J)/If/Jfor any a € B.

Proof. The second assertion follows from the first for any . We prove the first assertion
by induction on a. Again, the cases & = 0 and « limit are clear. Suppose that o € ID, |.
Say that bo/IZ2,... b5 /17 arc atoms and a/If = b/IB + --- + b,,_|/IE. Then
al\{bg + -+ + by,_y) € 1B, and so by the inductive hypothesis,

((a/ Ao/ T + 4 by /1)) € 1577,

Also, Lemma 1.3 says that each (b,;/J)/If/J is either 0 or an atom. So (a/J) € Ifj[lj,

as desired. O

Corollary 1.5. Suppose that B is a superatomic BA and J is an ideal in B. Then
Apss < Ap, and if Agyy = Ap, then X, ; < Xp. O

The following lemma 1s well known, and can be easily proved by induction on «:

Lemma 1.6. Let A be any BA, a € A, and let a be any ordinal. Then the following
conditions hold:
() IA1e = IAN (AT a);
(i) (n219)~ [AU(A T @)/ L)) = (x2) 7 [AUA/L)| N (A T a).
(iify There is an isomorphism g from AJI, onto (A | a)/I, x (A ] —a)/I, such that
for any x € A,

g(ndz) = (wd1(z - a), 7l ~(z - —a)).
Note that from this lemma it follows that paa = A4;4.

Corollary 1.7. Let A and B be superatomic BAs.
(1) If A4 < Ap, then Aaxp = Ap and /\ixB = )\25.
(i) If Aa = Ap, then Aaxp = Aa and Xy, g = Ny + A5

Corollary 1.8. Ifa < b, then paa < pab.

It is also necessary to discuss the situation with weak products. Here we give a more
complete proof, and we do things in somewhat more generality than is needed below.

Lemma 1.9. Let B = [{).; Ai. Choose o minimum such thar {i € I I2 £ A} is
finite. Assume that § < «. Then
() IF = {be B: Vi I{b; € I5%)}.
(i) Ifb e Ié3, then {i € [. b; # 0} is finite.
(iii) B/IF =1, Ai/I} via

b/IE v (bj/1%: i€ ).
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Proof. We prove all three statements simultaneously by induction on 3. They are all
obvious if 3 = 0. Suppose now that they hold for 3; we prove them for 3 + 1, where
B+ 1 < o. First we show (i) for 8 + 1. Suppose that b € IF, . Say

b/IF < IF 4+ -+ IR

with each ck/Iff an atom. Fix £ < m. By (ii1) for g, (cf/féh: i € I) is an atom
of [T}, Ai/Ij;". Hence there is an i(k} € I such that cff(k)/I;“k’ is an atom of
A /15, while /17 = 0 for all j # i(k). Hence & € 172, for all j € I.

j
Now b-—c®- .- -—¢™"' € IZ, and so by the induction hypothesis

(be =" oo =) e M7 foralljel.

It follows easily that b; € 57, for all j € I.

Conversely, suppose that b; € Ilﬁl for all ¢ € I. Now if b, = 1, then I[’;jrl = A;.
Hence, since 8+1 < «, we have that F' &f {i € I: b; # 0} is finite. For each i € F write
bi/Igl" =2 cco. ¢/ I, each c/Ig" an atom, although perhaps G; = 0. Fix ¢ € G;. Let
dei = ¢, d.j = 0 for j # 4. Then (dc/Igj: j € I is an atom of H;VEJA:,-/IA’, and so
by (iii), d./If is an atom of Bg. Now

bi/Ig =D e/ Ig* = 3 (de)i/ Ty = ( > dc) 1

ceq; ceG; ceF; t
< (XS a) i
JEF c€Gy i

Hence by (ii1),

b/IE <Y Y de/If,

JEF cEG,

and so b € Igﬂ. This proves (i) for 4+ 1.

To prove (iii), note that the given mapping is well-defined and one-one by (i): it is
clearly onto and preserves the operations. Condition (ii) follows from (i).

The case of @ limit, but still less than «, is even easier. O

Lemma 1.10. Let B = [[\; Ai. Choose a minimum such that H = [i € I' I # A4;}
is finite. Then
(i) IB = {be B: Vi e I(b; € I”) and {i € I b, # O} is finite}.
(i) B/la =2 % [1;cpy Ai/Ia via the map b/12 — (up, (b;/I2: i € 1)), where
{1 if {t € I: b; # 1} is finite,
Uy =

O otherwise.

Proof. To prove (i), we take two cases.
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Case 1: « is a successor ordinal 3 + 1. Here we continue the first part of the proof
of Lemma 4, which gives that b; € I4i for all i € I. Since {i € I: Ig" # A} is
infinite, {j € I: c;? # 0} is finite for all & < m. Also, by Lemma 4(ii) for the element
b-—c? oo o —cmlof Ig", the set {i € I: (b-—c® -+ - —c™7); # 0} is finite.
It follows that {i € I: b; # O} is also finite. The second part of the proof of Lemma 4
gives the converse inclusion.

Case 2: o is a limit ordinal. If b € I7, then b € I§ for some 8 < a, and so by
Lemma 4(i),(ii), b satisfies the desired condition. The converse is similar. This proves (i).

For (ii), first we check that the given mapping is well-defined. Suppose that b/I2 =
d/IB. Thus bAd € I3, so by (i), all entries on the right side are the same. Condition (i)
also yields that the mapping is one-one. For ontoness, suppose that (¢, (d;/I2: i € H))
is given. Let b; = d; for all i € H, and b; = ¢ for all i ¢ H; this is the required
preimage. O

Lemma 1.11. Suppose that A is a subalgebra of B, both superatomic, and for all a € 14
and all ordinals 3, a/Ig1 is an atom iff a/Ié13 is an atom. Then
(1) For all a € I, and all ordinals (3, a € Iﬁ iffa € Ig.
(1) paa = ppa forall a € 14.
(iii) Aa < Ag.

Proof. We prove (i) by induction on 3. The case 8 = 0 is trivial. Assume that it 1s true
for 3. Suppose that a € 4. First suppose that a € Ig‘H. We may assume that a ¢ 14,
and hence paa = 3 < A4. Say

a/l'f;1 < C()/Ig +"'+Cm—l/1§1

with each ck/IE1 an atom. Now pacir = 3, so ¢, € 14. Hence by assumption, ck/Ig is an
atom. Also, a-—cp- - - -€m—1 € I#, so by the inductive hypothesis, a- —cg- -+ -Cp—1 €
If. Hence a € If, ).

Conversely, suppose that a ¢ I, ;. Thus 8+ 1 < paa. Let {c/I5: k < w) be a
system of distinct atoms < a/Iél. Since 3 < A4, each ¢g is in [4. So by assumption,
ck/Ig is an atom for each k¥ < w. If k,l < w and k 5 [, then cxA\¢; € I‘é‘, and hence
by the inductive hypothesis cyAc; € Ig. For each k < w, ¢ /14 < a/Ifg“, and hence
Ck+—a € I[;'; the inductive hypothesis implies that c; - —a € Ig. All of this shows that

¢ I3
@F a1

The case of imit 3 is easy, so (1) has been proved.

(ii) follows easily: Let a € [I4, say v = paa. Thus a € Ifﬂ \I,f. So by (1),

€ I:?+1 \If. Thus paa = ppa.

For (iii), suppose that Agp < A4. Let (ck/IfB: k < w) be a system of distinct atoms.
Then by assumption, each ck/IfB is an atom. For distinct k,] < w we have ¢ /\¢; € IfB,
and so by (i), also ¢y Ay € IfB. This is impossible. O

Lemma 1.12. Suppose that (B,: « < A) is a strictly increasing continuous sequence
of infinite superatomic BAs, A a limit ordinal. Assume that )\ZBQ =1 forall o < )\ and:
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(*) For all 8, all ¥ < 8 < A and all a € Ip,, (a/I3" is an atom iff a/IZ* is an
atom). Then the following conditions hold, where C = U-y <x By:

(i) For each 3 <sup, ., Ap, we have Ig = {Ig’: 8 < Ag, }

(iiy Forall 3, all y <A andalla < Ip, a/Ig“’ is an atom iff a/Ig is an atom.

(iii) )\C = Sup,),<)‘ ’\Bw‘

(iv) Ic = U, 1B,

(v) C is superatomic.

(vi) AL =1

Proof. We prove (i) and (i1) simultaneously by induction on 3. First suppose that 3 = 0.
Then (i) is obvious. For (ii), suppose that a € Ip_, and first suppose that a is an atom of
B.. Then a # 0. Suppose that 0 < b < a in C. Say b € Bjs, where vy < § < A. But by
(%), a is an atom of Bj, contradiction. Conversely, if a is an atom of C, it is obviously
an atom of B,.

Now we assume (i) and (11) for 8 and prove them for 3+ 1. First we take (i). Suppose
that 8 + 1 < sup., . Ap,. Suppose that a € I§, . Say

/1§ < bo/I§ + -+ + b1 /1§,
where bo/Ig, e ,bm_l/lg are atoms. Say a,bg,...,bm—1 € By, vy < A and 8+ 1 <
Ag.,. Then by (i1) for 3, each bi/Ig” is an atom. Now a - —by- -+ - —by, 1 € IS, so by
(i) for B, (*), and Lemma 1.11, we may assume that @ - —by - --- - —=bp 1 € Ig". This
shows that @ € 1 511. The converse part of (i) is proved similarly.

For (ii), suppose that a € Ig_; and first suppose that a// 5;1 is an atom. Thus pp_a =
B+1<Ap,.Ifac Igﬂ, then (i) for 5+ 1 plus (*) gives a contradiction. So a ¢ Ig+1.

Suppose that l:r/Ig+l < a/IgH. Thus by (i) for 4+ 1 we have b- —a € Igjl for some 4,

and we may assume that v < 4 and a,b € Bs. By (%), a/Il‘?jl 1s an atom, so we have two

cases: (1) b & Igil; then by (i) for G+ 1,b € IBCH; 2)a-—-be Igjl; thena-—b € Ig_H.

So, a/I§+] is an atom. For the converse, suppose that a/IgH is an atom. If ¢ € T2}

B+1
then a € IE_H by (i) for B + 1, contradiction. Suppose that b/Igjl < a/I[‘?;]. Thus

b-—a€lyy . sob-—aclf, . 1fbelIf,  thenbe IF for some §. Then b e I},
by Lemma 1.11. The rest of the proof goes similarly.

The case of limit 3 is treated similarly. So (i) and (i1) hold.

Next, let o = sup_,_, Ap,. We show that I C I$ forall v < X Leta € Ip, . Say
pB,a = 3 < Ap,. Write a/If*’ = co/Ig“’ 4. - +cm_1/15'f with each ck/Ig" an atom.
Then (ii), each ck/Ig is an atom. Moreover, aA(cp+ -+ ¢m—) € 57 so by (i), this
element is in I§ too. This shows that a € I, ; hence a € IT, as desired.

Now to prove (iii), note that Ag, < Ag for all v < A, by (ii) and Lemma 1.6. Thus
« < A¢. Suppose that a < Ag. Let a/lg be an atom. Say a € B.,. By the preceding
paragraph we have a ¢ Ipy. So —a € Ig , and hence by the previous paragraph again,

pc(—a) < a. It follows then from the product lemma that pc1 = «, contradiction. So
(111) holds.
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For (iv), we have already shown 2. Now suppose that a € Io. Thus pca < A, so
we can choose v < A such that ¢ € B, and pca < Ap,. If —a € Ig_ , then by (ii)
and Lemma 1.11 we would get pc(—a) = pp,(—a) < Ap,, hence pcl < Ap, by the
product lemma, contradiction. Thus a € I . This proves (iv).

By (iv), I is a maximal ideal. So (v) and (vi) follow. O

Lemma 1.13. Suppose that A and B are BAs, and I and J are maximal ideals of A
and B respectively. Suppose that f.1 — J, and for any a,b € I, f(a-b) = fa- fb,
fla+b) = fa+ fb, and f(a-—b) = fa- — fb. Furthermore, suppose that fa = 0 only
if a = 0. Then f can be extended to an isomorphism from A into B.

Proof. Define, for any a € A,
fa ifael,

—f(~a) ifa¢l.

We check that f preserves -: suppose that a,b € A.

ffa=

Case 1: a,be I. Then f(a-b) = f(a-b) = fa- fb= fta- f*h
Case 2: a € I,b¢ I. Then

fra b)=fla-b) = fla-—(-b))
— fa-—f(~b)=f*a- f*b.

Case 3: a ¢ I, b € I. Symmetric to Case 2.

Case 4:a,b¢ I. Then alsoa-b ¢ I. So

fHa-t)==f(~(a-b) = —f((~a) + (~b))
=~ (f(-a) + f(=)) = =f(=a) - = f(=b) = fTa- f*b.

Next, if a € I, then f*(—a) = —f(—(—a)) = —fa = —f*a; and if a ¢ I, then
fH(—a) = f(—a) = —(=f(—a)) = —fTa. So f* is a homomorphism from A into B.

Suppose that fta = 0. If a € I, then f*a = fa and hence a = 0 by hypothesis. If
a ¢ I, then fta = —f{—a), hence f(—a) = I, contradiction. O

The following result is not needed in what follows, but it may help the intuition on
these problems.

Proposition 1.14. If B is a superatomic BA, then tightness(B) < Ap.

Proof. Since A does not go up in homomorphic images (Corollary 1.5), it suffices to
show that depth(B) < Ap. But then since A does not go up when passing to a subalgebra
(Corollary 1.2), it suffices to note that the interval algebra A on a cardinal « is such that
Ap =K. O



A. Dow, J.D. Monk / Topology and its Applications 75 (1997) 183-199 191
We conclude this section with examples, given in the following proposition.

Proposition 1.15. For each infinite cardinal k there is a superatomic BA B such that
Ap = |B| = k and tightness{B) = w.

Proof. Recall that the tightness of a weak product is the supremum of the tightnesses of
all the factors (see [4]). So the following simple construction 1s what is desired:

A = finite-cofinite algebra on w;
An+1 = weak product of w copies of A,;

A = weak product of all A,, o < A, for A limit. 0

2. Depth and 7-character

Lemma 2.1. Suppose that B is a countable superatomic BA with Ap infinite and \% = 1.
Assume that 0 # A C B and

(Vb € Ig)(Vn € w) [{a € A: pla-—b) < n} is finite].

Then B is a subalgebra of a countable superatomic BA C with the following properties:
(i) If b c Ig then b/IéB Is an atom iff b/IEC is an atom, for all £.
(ii) There is a ¢ € C such that p(b- —c¢) < pgb forall b € Ig.
(i) Forall b€ Ic and all n € w, the set {a € A: pea - —b) < n} is finite.
(iv) The function b — b - c is an isomorphism from B onto C | c.
(v) ACZAB+1andA%::1.

Proof. Let {b,: 0 < n < w} enumerate Ip, and {a,: n < w} enumerate A. Suppose
we have defined b}, < by, for each k < n. Now Zkgn br € Ip, so by the hypothesis, the

set
A, def {aEA: p(a-~Zbk) <n}U{a0,...,an}

k<n

is finite; say A,, = {co,...,cm}. Foreach & < m, if p(cg - b, - — Y ien ) 2 w, choose
bE < cpbp-— 30, biso thatw > pb% > n; otherwise simply let b% = ¢y, -by-— > e b
Finally, let &, = )_, ,, bs. Thus the foltowing conditions hold:

(1) by < by - = e b

(2) pbl, < w.

(3) For each a € Ay, p(a- b)) 2 min{n,p(a b, - — >, b))}

Let By = Band, forn>01let B, =B/I;. Let C =[] __ B, Letc= {1,0,0,. ).

nw

Thus C' is a countable superatomic BA. Note that Ag, = Ap and Aan = )\25 =1 for all
n € w. Hence from Lemmas 1.9 and 1.10 it follows that

BDAc=dg+ L, AX,=lLad Ioc={z € C: {n<w: z, # 0} is finite}.
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In particular, (v) of the lemma holds. Now for any b € Iy, define fb e [], . Bn by
setting, for any n € w,

b if n =20,
(fb)n = (1)
(b-b;)/]l if n > 0.

Now f maps into I, since for any b € I, if b = by, then (fb), = 0 if n > m.
Clearly f satisfies the conditions of Lemma 1.13. So f extends to an isomorphism from
B into C as in the proof of that lemma. We want to show that this embedding satisfies
the conditions (i)—(iv) of our lemma. Clearly (iv) holds (in the form that b — fb- ¢
defines an isomorphism from B onto C [ ¢).

We now prove three conditions (5)—(7) for any ordinal £. The condition (i) follows
from (5).

(5) b/I¥ is an atom iff fb/IEC is an atom, for any b € I.

(6) b e IP iff fbe I, forany b e Ip.

(7) The mapping b/IF — fb/If is a well-defined isomorphism from B/IF into

c

C/I¢.

We prove these statments by induction on £. First suppose that £ = 0. Then (6) and
(7) are trivial, as is the direction < in (5). For = in (5), note that if b is an atom, then
(b-b)/I) =0 for all n > 0, so that fb is an atom of C.

Now assume the conditions for ¢; we prove them for £ + 1. First we take (6). Let
b € Ig. Suppose that b € IF |. Say

b/Ingao/IéB-F%-am—l/IgB,

where each ak/fg.B 1s an atom. Then b- —ag- -+ - ~a;,—1 € IgB. So by the inductive
hypothesis,
fb-—ag- - —am-1) € IS,

and each fak/Ig is an atom. Hence fb € Igc“. Conversely, if b ¢ I£B+1’ then there are
infinitely many atoms < b/I2, and so by (7) for &, there are infinitely many atoms <
Fb/IE. So (6) holds for £ + 1.

Condition (7) for £ + 1 follows easily from (6), using Lemma 1.13 again. The direction
<= of (5) then follows from (7). For the direction = of (5), suppose that b/IéBH 1S an atom.

By the above lemmas, we need to see that ((b-b] )/ )/Iﬁ"1 =0foralln > 0. For ¢ < w

this is true since Bn/IéBj] is naturally isomorphic to B/Ié‘B+2 via (d/1))/Ie41 — d/I¢4n.

For £ > w it is true since each b, € I¢.
For £ limit, the arguments are similar but simpler. So (5)~(7) hold.
Next we look at condition (ii). If b € I'g, then

fb-—c=(0,b-¥/1,b-b)/I1,...).

Now for each positive integer ¢, b - b has finite rank (since b, does), and its rank is at
most that of b. Hence (b - b})/I; has rank strictly less than that of b. Also recall from
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the above that fb is 0 except for finitely many places. So (ii) follows from the lemma
on rank in products.

Thus it remains only to take care of (ii1). Fix z € I and n < w. Without loss of
generality, z,, = 0 for all m > n. Now Zkgn bi € Ig, so by the hypothesis of the
lemma, there is an M > n such that p(am - = Zkgn bk) > n for all m > M. Now take
any m > M. We claim that p(fa, - —z) 2> n. Now

fam -—z2{0,0,...,0,a, - b, 1/I1,am - by 0/1h, .. ).
Hence it suffices to show

(8) There is a k > n such that p(am - b)) = n.
Assume that there is no k € (n,m) such that p(a, - ;) > n. Then

(9 Vk € [n,m) [,0 (am Cm D i<k bl) > n]
We prove this by induction on k. It is given for & = n. Assume it for k, where n + 1 <
k + 1 < m. Suppose that p{a., - — Y oicka bi) < n. S0 am € Apy1. Hence

p(am.bkﬂ._ Z b¢> gp(am-bg+])<n<p(am-— Z bl),

[<k+1 I<k+1
and hence
P(am-— Z bl) :p(am'_ z bz) > n,
1<k+1 l<k+1

contradiction. So, (9) holds.
In particular, p (am - — ¥,c,, b1) > n. Let k be minimum such that

p(am.*zbl .Zm) >n.
t<m U<k
Obviously k > m. Set ¢; = by - — >, bs forall { < k. Then 3, _ by =3, c for
all © < k+ 1. By the minimality of k it follows that p (am = iem b c;c) > 7. Thus
p(am-—zkkb['bk) > n. Now a,, € Ag, 50

p(@m - b, ) = min {p(am - — Zbl -bk>,k} > n,

<k

as desired. O

The construction for Theorem A. We construct (B,: @ < wi) and (by: a < wi) by
induction so that the following conditions hold, with A, = {b, : v < a} \ {0}:
(As) Bq is an infinite superatomic BA, and )\%a = 1;if & < wy, then B, is countable.
(By) Forall 8 < a, all a € Ig,, and all -, a/Ifﬁ 1s an atom iff a/I}f“ 1S an atom.
(Cy) Forall b€ Ig, and all n € w, the set {a € A, pp,(a-—b) < n} is finite.
(Dy) Either a is not a successor and b, = 0, or « = 3+ 1 for some 3, b, € By, and
PB. ba = )\Bg-
(Ex) AB, =w + a.
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(Fo)If a =03+ 1, then pg,_ (b —b,) < pp.bforall be Ip,.

Let By be a countable superatomic BA with Ag, = w and A\; = 1, and set by = 0.
Clearly (Ag)—(Fp) hold.

Now suppose that « is a limit ordinal < w;, and things have been defined for all
B < a so that (Ag)~(Fg) hold. We define B, = (Jz., Bg and b, = 0. Then (4.},
(Ba), and (E4) hold by Lemma 1.12. (D,,) and (F,) are trivial. For (C,), suppose that
beIp, and n € w. Say pp,b =8 < A, Thus b€ IJ7, and 8+ 1 < Ap,. So by
Lemma 1.12, choose v < a such that 5+1 < Ap_ and b € Ig;l. Hence by Lemma 1.11,
pB,b = pp,b= 3. Now by (Cy), {a € A,: pp, (a-—b) <n}is finite. If a € A, and
pp.(a-—b) < m, then a- —b € IB~ Hence a- —b € I2" by Lemmas 1.11 and 1.12,
so pp,(a-—b) = pp,(a-—b). So {a € A,: pp, (a-—b) < n} is finite. Suppose that
v <6 < aand bs # 0. By (Ds), write § = ( + 1 with pp,bs = Ap, = w + . Now

PB.(b-bs) = pp,(b-bs) < ppb=pp,b=03<F+1<Ap, =w+y< w4,

so pp,(b-bs) < w+ (= ppsbs = pp,bs. Hence p(bs - —b) = pp_bs > w. Thus (Cy,)
holds.

Now suppose that Bg and bg have been constructed for all 3 < « so that (Ag)-(Fp)
hold, with a < wj. Let B,y be obtained by Lemma 2.1 from A, and B, with by |
equal to the “c” there. The conditions {A,)}—(F,) are all clear.

Lemma 2.2. Suppose that b € B, NI, with a < 8+ 1 < w). Then b/‘[ﬁ)ﬂ+l <
B
bﬁ+1/Ipbﬁ+l'

Proof. By (Bg1) and Lemma 1.11 we have b € By N Ig,. So by Lemma 2.1(iv),
(&- b5+1)/I£ﬁ+‘ is an atom. Thus the desired conclusion follows, O

Lemma 2.3. Suppose that 3+ 1 < a < w) and a € B,. Then there is a b, € Bgy,
such that b, < bgy1 and for any b € BLHI the following conditions are equivalent:

(1) PBg4 (b-bg+1) = pBay, b and pp, (b-a) = pa,b.

(11) PBay (b ’ ba) = PBgsy, b.

Proof. We proceed by induction on a. For « = 3+ 1, let b, = a - bgy1; the desired
conclusion is clear. Now assume the statement true for o« > 3 + 1, and suppose that
a € Byt1. By Lemma 2.1(iv), choose ¢ € B, such that ¢- bgq1 = a - bg41. Now we
apply the inductive hypothesis to ¢ to obtain an element b, with the indicated properties.
We want to show that b, works for a too. Suppose that b st 41~ First note:

(1) I ppa, (b bas1) = ppg, b then b€ Tp,, and b/Io* < byt /I,

In fact, me_lb = me_](b . bﬁ+1) < ,UBg+|bﬁ+l < /\Bﬁ+1’ sobe IBE-H' By Lemma 2.2,
b/ I < bogr /I, So, (1) holds.
Now suppose that pg,,,(b-bgs1) = pB,,,b and pp,, (b-a) = pp,,,b. Then by (1),

b/I5e*" < (- boyr)/ Iy < o/ Tyt
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Hence b+ —c € If,;"“, sob-—ce€ Ifb" by Lemma 1.11. So pp_(b-c) = pp_b. Hence
PBs.. (b-be) = pB,,, b by the choice of c. The converse is similar.
For « limit, suppose that a € B,. Say a € B, with 8+ 1 < v < «. Applying the
inductive hypothesis easily gives the desired conclusion. O

Let B =DB,,.
Lemma 24. mx(—Ip) =w.

Proof. Suppose that S C B*, S a countable set dense in —I 5. Without loss of generality
each member of S is an atom. Choose A\ < w; such that § C Bj. By (F4+1) we have
x < bayr forall z € S. Now byyy € Ig, so —bay1 € —Ip, and hence there is no z € S
such that x < —b)41, contradiction. O

The proof of Theorem A is completed by the following lemma.
Lemma 2.5. There is no uncountable well-ordered chain in B.

Proof. Suppose that (u,: @ < w) is a strictly increasing chain in B. If pu, == w;, then
(ug - —uq: a < B < wi) is strictly increasing and p(ug - —uq) < wy for all B € [a,w,).
So without loss of generality we may assume that pu, < w; for all o < wy.

(1) There is no 7 < w; such that pu, < 7 for all o < wy.

For, otherwise choose 7 minimum such that there exists a strictly increasing sequence
of elements all of rank less than 7. Then there is a 8 < w; such that pu, = pug for all
a > 3. Then p(ug- —uq) < pug for all & > G. Thus the sequence (ug:—uqy: a < 8 <
w; ) contradicts the choice of 7.

By (1) we may assume that pu, < pug for @ < 8 < w;.

Let {dq: o < w;} enumerate Ig.

(2) Suppose that C' is a subset of w such that for all A € C the following conditions
hold:

(a) For every a < A there is a 8 < A such that ug - —d, # 0.
(b) Ip, C {dg: B< A} forall o < A
(c) A is a limit ordinal.
(d) If a < A, then u, € B,
Then p(byy1 - ux) = pbrs for each A € C.
To prove this, choose « so that uy € Ig, and A+1 < . By Lemma 2.3 we get ¢ € By,
such that ¢ < by41 and for any b € BY _, the following two conditions are equivalent:
(e) pB,\-H(b ) b)\-H) = pBA+1b and PBa (b ’ u)\) = PB, b.
(f) pr+1(b ) C) = pB)\+1b'
Now we claim

(3) For every b € Ig, there is an « < A such that u, - —b # 0.

For, say b = dg, 8 < A, by (b). Then by (a) choose & < A such that u, - —b # 0,

Write ¢ = y - byyy with y € By. Suppose that pp, ., (bat1 - ¢) # pB,,,bat1. Since
¢ < by, it follows that PBs Y = PByyC < pBAJrlb)\_’_] = AB,, s0 y € Ip,.
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By (3) we get a < A such that uy - —y # 0. Now uy - —y € B, by (d), so
let b be an atom of By which is < us - —y. Then b < by4; by Lemma 2.2, and
b < ug < ux. So by the choice of ¢, pp,, (b-c) = pp,,,b. But b-c = 0, con-
tradiction. Hence pp, ,(ba+1 - €) = pB,, bat1. Let d € By | be such that d/I, ,,
is an atom < (bay) - ¢)/Ipb,,,. Thus pp, . (d-c) = pp,, d. By the equivalence
of (e) and (f) we then get pg bray1 = pp.d = pp.(d - ux) < ppyur. So (2)
holds.

Now let J = {{uq: a < w Pl

(4) There is a b € Ig such that {& < w;: by - —b ¢ J} is countable.
To prove (4), suppose that there is no such b. We define an increasing sequence (A,: a <
wi) of ordinals less than wy. If A has been defined for all 8 < «, then {u: b, -—d, ¢ J}
is not countable, so {u: by, - —do ¢ J} N (supg., Ag,wi) # 0, and hence there is a
Aa > SUPg., Ag such that by, - —do ¢ J.

Now for each o < w; the set

{b)\a . —da} U {—’ULQZ B < wl}

has the fip, and so is included in an ultrafilter F,,. Say F,, is determined by ¢, € B’;
Fo = {z € B: pp{ca -z} = ppea}. Without loss of generality, ¢, < by - —d, for all
o < wy. Now let C be the set of all A < w) such that (2)(a)-(d) hold, along with
(g) ca € B forall o < A.
Note that C # 0 (a club argument). Fix A € C. Say u) € Bs with A+ 1 < ¢ < wy. By
Lemma 2.3 choose ¢ € B4 such that ¢ < byy and for all b € B:\+1 the following are
equivalent:
) pBA+l(b ) b/\-H) - pB,\+1b and PB;s (b ) u)\) = pBab'
(11) PB; (b : C) = PBxi b.
By (2) we have p(bx+1-ux} = pbayi. Choose b € BS\+1 such that b/, is an atom <
(ba+1 - ux)/Ipb,,,- By the equivalence of (i) and (ii) we get /1, < ¢/Ipb,,,- Thus
PBxiC = PByy bar1. Write byy | - —c = d - byy) with d € Ip,. Then, we claim,
(5) (ca/Ipes) - ((brag1 - —d)/Ipc,) =0 forall & < A,
For, suppose not. Now cq4,bxi1,d € Bayy, so choose e € BY_ ;| so that e/, is an
atom < (co/lpe.) - ((bas1 - —d)/Ipe.). Now baji - —d =bagy - ¢, 80 e/Ipe, < ¢fIse,.
Hence by the equivalence of (i) and (ii) we have e/I,., < ux/I .. Butalso e/I,. <
CafIpca € —ur/Ipc,, contradiction. So (5) holds.
By (5) it follows that ¢ /1y, - —d/1pc, = 0 forall a < A Write d = dg with 3 < A.
Thus cg - —dg € I,c,. But cg € —dp, contradiction. So (4) holds.
Fix b as in (4). Now by1+1 £ bif w4+« > pb, since pbyy) = w+ . So we can choose
A < w; such that § & {a < A 0# by --—-be J} is infinite. For each o € S there is a
Ba < w) such that by - —b < ug, . Let pu < w; be greater than 3, for each & € S. Then
{B < A 0< bgand p(bs - —{(b+ u,)) = 0} is infinite. This contradicts (C,), where v
is chosen so that b +u, € Ig, and A <v. O

Now we turn to Theorem B. It follows easily from the following result.



A. Dow, J.D. Monk / Topology and its Applications 75 (1997) 183—199 197

Theorem 2.6. Suppose that & is a regular cardinal greater than w;, and B is a su-
peratomic BA with n1xB = Kk attained (i.e., there is an ultrafilter F' on B such that
wxF = k). Then B has a chain of order type k.

Proof. Let ¢ € B’ have smallest rank such that 7yF, = k. Thus without loss of
generality A; = 1 and if b € B’ and pb < Ap, then mxFy < &. Thus F & {be B: pb=
x} is the only ultrafilter with 7xF = x. Now we construct (bo: a < k) by induction,
all members of F'. Suppose that (b,: a < 3) has been constructed. Then ({bs: o < 3})
is not dense in F, so there is a bg € F such that there is no nonzero element of
{{by: a < (}) below bg. Let C = ({by: « < k}). Then clearly mx(C N F) = k. Thus
we may assume that |B| = k.

Now we choose a big 6, and work within H(8), taking elementary substructures,
where H () is supplied with various additional relations for the arguments below, in the
usual fashion. Let (M,: a < &) be an increasing continuous sequence of elementary
submodels of H(#) with the following properties:

(1) B,k € M.

(2) My € Moy,

(3) |My| < k.

(4) BN M, is a subalgebra of B, and B = | J

(5)If J € My and |J| < &, then J C M.
Note that (5) is possible because || J{J: J € M,, |J]| < s} < k.

We claim

(6) For all o < « there is a b € B such that pb < k and p(c- —b) < pc for all
¢ € It N M,. For, It N Ma41 is not dense in {b € B: pb= Ag}, so there isa b & B
such that pb = Ap and no member of I'g N My4y is < b. Suppose that ¢ € I; N M,
and p(c - b) = pc. Then there is a d € B’ such that pd = pc and d/I,. < ¢/I,c. By
elementarity we may assume that d € M,. Now nxFy < k, so there is a set J of
atoms of B such that |J| < x and J is dense in F,;. By elementarity we may assume
that J € My. So by (5), J € My+1. Now p(d - b) = pd, so b € F; and hence there
is a 7 € J such that 7 < b. This 1s a contradiction. Thus (6) holds (with —b in place
of b).

(7) For every a < & there is a b, € BN M, such that pb, < & and p{c- —b,) < pc
for all c € If N M,.

This follows by elementarity from (6).

Let T = {a < k: cfa =w}. Fixae Tand B < a. Foreachn € w let ¢, =
Y k<n ba+k. The ranks of the elements bg - —cy, are decreasing for increasing n, so there
is an ng such that bg < cp,. Now o = U, ., {8 < @ ng = n}, so there is an n such
that S, & {B < a: ng =n} is cofinal in a.

8)b<e, forall be M,.

In fact, fix 8 < « such that b € Bg. Then there are infinitely many members of S,
above (. As in the argument with the ¢,,’s, it follows that there is a finite F C S,, such
that b < >° b,. Since by < ¢, for each v € F', (8) follows.

(B N M,).

<K

yEF
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Let T = {og: € < w}, listed in increasing order. By (8), for each & < « there is a
d¢ € M, such that b < d¢ for all & € M,,. Hence {(d¢: € < &) is strictly increasing,
as desired. O

Corollary 2.7. If B is a superatomic BA and nxB = AV with A\ > w, then B has a
chain of order type \*.

Lemma 2.8. If B is a superatomic BA, wxB is a limif cardinal, and p < 7xB, then B
has a subalgebra C such that nxC = u*.

Proof. et F' be an ultrafilter of B such that mxF > u*. We define the sequence
{ba: o < wxF) as in the first part of the proof of the theorem. Let C = ({b,: o < u*}).
Clearly C is as desired. O

Theorem B now follows. Note, however, that if mx B is a limit cardinal, the proof does
not show that depth B, which is the same as 7y B, is attained.

3. Tightness and depth

We prove a result slightly stronger than Theorem C of the abstract: if k — (x)5* and
B is a BA which has a free sequence of length x, then B has depth k. Recall that & is a
limit cardinal. We may assume that B has tightness exactly «, that the tightness of B [ b
is less than « for all b € /g, and that A}, = 1. Let (b,: a < ) be a free sequence. If bga
has rank Ap, then the sequence (b, - —bg: & > a > () is still a free sequence, and all
elements have rank less than Ap; thus we may assume that each b, has rank less than
Ap. For each nonzero m € w we partition [«]*™*! into two parts, as follows:

F'm={{aaﬁﬂa"'aﬁm—lifﬂ):"',7m~1}: a<60<"'<6m—1<’)/0<"'
< Ym—1 and ba'_bﬁo t s “bﬁm—! 'b’YO e 'b’}'m—[ :O}a
Am={66{ﬂ]2m+li ©¢ I}

By the partition relation k — (x);* we may assume that » is homogeneous.

Now for each & < « we have tightness(B [ b,) < . We apply this to the sequence
(ba - bg: [ a limit ordinal greater than «); this yields finite sets I" and A such that
a < B < v whenever 8 € I' and v € A, with b, - H,BEF —bg - nyeA b, = 0. Filling in
beyond I or A if necessary, we may assume that " and A have the same size (but they
no longer have to consist exclusively of limit ordinals). By the homogeneity we thus
have this equality for any a, I', A in the indicated order, with I" and A of the same size,
say n. From this we show that for any A < & there is a chain of order type A. In fact,
select a disjoint system (F,,: o < A) of members of [A]™ such that max Fi, < min Fp if
a < 3 < A Define

Co = Z bg - Hb)\+i-

BEF, i<n
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If « < 8 and £ € Fy, then b; - HKn bx+i < cg. Hence ¢y < ¢g. Actually ¢, < ¢g. For,
suppose that they are equal. Then

Z bW‘HbAH- I] -bs =0,

veFg i<n BEF,

contradicting the free sequence property. I

Note that the proof of Theorem C does not show that depth B = & is attained.
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Theorem B in the abstract should read as follows:

If B is a superatomic Boolean algebra with-character greater tham, then the
m-character is less than or equal to the depthBof

Also, on page 198, delete the sentence after the sent@heafem B now follows
The authors are indebted to Juan Carlos Martinez for pointing out this error.

Y Pl of original article: 0166-8641(96)00088-0.
* Corresponding author. Email: dowa@mathstat.yorku.ca.

0166-8641/00/$ — see front mattér 2000 Elsevier Science B.V. All rights reserved.
PIl: S0166-8641(00)00054-7



