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0 Introduction

A partition of a Boolean algebra (BA) is a partition of 1 in it, i.e., a system of nonzero
pairwise disjoint elements with sum 1. With each BA A we associate the cardinal

number
¢mm(A) = min{|X| : X is an infinite partition of A}.

The purpose of this paper is to study this function in the style of work on cardinal
functions on topological spaces and Boolean algebras in general. The function has
been extensively studied for the algebra Pw/fin; see, for example, VAN DOUWEN (2].
The function is also briefly discussed for Boolean algebras in general in MoNK [4];
there the main concern was what happens to the function under algebraic operations.
This material is not needed here, and will not be repeated. We are interested here
in the relationship of this function to other ones, and in particular also for special
classes of Boolean algebras. We will assume an acquaintance with Boolean algebras,
and the notation of the Handbook of Boolean Algebras [3] will be used. The notation
of MoNK (4] will also be used, but it will be recalled here at the appropriate place;
some theorems in that book will be used also. Three main theorems are proved:
(1) There is a rigid tree algebra with cmm arbitrarily large (generalizing a construction
of BRENNER); (2) There exists an interval algebra A such that Depth(A) < cmm(A);
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(3) There is a mono-rigid interval algebra with cpm arbitrarily large (adapting a
construction of TODORCEVIC). Here Depth(A), the depth of A, is the supremum
of cardinalities of subsets of A well-ordered by the Boolean ordering. An algebra is
mono-rigid if it has no one-one endomorphism except the identity.

1 The general case

Of course we always have ¢qmm(A) < ¢(A), the latter being the supremum of cardinal-
ities of disjoint subsets of A (the cellularity of A). The difference can be arbitrarily
large, as is seen by the interval algebra on a cardinal. The following comments take
care of the relationships of ¢mm with the main 21 functions in MoNk [4].

The inequality x(A) < cmm(A) is possible, where x(A) is the character of A; the
character of an ultrafilter F of A is the smallest cardinality of a filter-generating subset
of F, and the character of A itself is the supremum of the characters of its ultrafilters.
An example with the indicated inequality is clear from the text following (4, 3.26],
and the discussion of the Aleksandroff duplicate in [4, Chapter 14]. Let Aut(A) be
the collection of all automorphisms of A. Then ¢mm(A) < |Aut(A)| in A = B x C,
where A is a countable BA and B is an uncountable finite-cofinite algebra.

A rigid BA shows that |Aut(A)| < cmm(A) is possible. Together with the above
results, this shows that for BA's in general the only relationship between c¢nm and
the main functions of MONK [4] is ¢mm < ¢ and inequalities implied by this.

It is natural, though to ask whether one can have a rigid BA with cpm arbitrarily
large. A modification of BRENNERS’s rigid tree algebra (described in [3]) works for
this purpose, as we shall see.

Let T be a tree. If C is an initial chain of T, an immediate successor of C is an
element t € T such that s <t forall s € C, whileif u < t, then u < s for some s € C.
We let SC be the set of all immediate successors of C. In case C = {t}, we write St
instead of SC. We use ht T for the height of a tree T'. If T is a tree and t € T we let
Tit={s€t:t <s}.

Lemma 1. Suppose that T is a tree with a single root, A is an infinite cardinal,
and the following conditions hold:

(1) ISt|> A forallt e T;
(11) |SC| > A for every bounded nonempty initial chain C of T';
(iii) cf(htT) > w;.
Then Treealg T has no infinite partition of size < A.

Proof. Suppose that P is an infinite partition of size < A\. We may assume that
each element p € P has the form

p=(T1t,)\U,er,(TT1s),
where T, is a finite subset of (T'Tt,) \ {t,}. Note that t, # ¢, for p # g.
(1) If p€ P and s € Tp, then there is a ¢ € P such that t, = 5.
Suppose that (1) fails. Then

(1a) fto'r :vtery ¢ € P such that (T'1s) N g # 0 there is a unique t; € Ss such that
¢ Sty
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For, say s < u € ¢. Thus #,,t; < u, 50 t, is comparable with ¢,. If ty < tp, then
t, € pNy, a contradiction. So t, < t, and (1a) holds. Since |P| < A, by (i) choose
v € Ss such that v # t; for all ¢ € P such that (T'1s) Ng # 0. But there isa g € P
such that (TTv)Ng# 0, and then (T'1s)Ng # 0 and ¢} = v, a contradiction. So (1)
holds.
Let r be the root of T'.
(2) Thereis a p € P such thatt, =r and [, # 0.
Suppose that t, # r for all p € P. For each p € P let t, € Sr be such that t, < t,.
By (i) choose v € Sr such that v # t;, for allp € P. Then (Ttv)Np=0forallpe P,
a contradiction. It follows that t, = r for some p € P. Clearly I', # @ for such a p.
Let A={pe P:T, #0}.
(3) A is infinite.
For, suppose that A is finite. If p € A and s € T, choose g,, € P such that te,. =8,
by (1). Then

(4) T=UpearV Usea, s€r, Ipes

which contradicts P being infinite. To prove (4), suppose that t € T and t ¢ | J ¢ P

By (2) choose u € P so that t, = r. Then u € A, s0 t, < t. Choose p € A such that

t, <t and t, is maximum among all ¢ € A such that t, < t. Since ¢ € p, we have

t € (T'1s) for some s € Tp,. Nowt, , = s, soeither t = s € gy, as desired, or s < t. In

the latter case we have t, < s and hence ¢;, € A by the choice of p. So ¢,, = (T'15s)

and t € gy,, as desired. Thus (3) holds.

(5) Suppose that p€ P and {g € P :t, < t, and Iy # @} is infinite. Then there is a
q € Psuch that t, € T, and {z € P : t, <t and I'; # 0} is infinite.

For, suppose that ¢ € P, t, <1y, and I’y # 0. Since pNg=0,say s €T, and s < t,.

This proves:

{9€eP:t, <tyand Iy #0} C {p} U U,er,{z € P:s<t: and I; # 0},

and (5) follows, using (1).

By (5) and (2) there is a sequence (po, p1,...) of members of P such that t,, = r
and t,,,, €T, foralli <w. Let C = {u:u<p;forsomei<w} ThusC is an
initial chain without last element, of cofinality w, and hence it is bounded by (iii).
Suppose that s € SC. Choose g, € p such that (T'1s)Ng, # 0. Say s < u € g,.
Thus s,t,, < u. Ift;, < s, thent,, <1, for some i < w. Take the smallest such i.
Then i > 0and ty,_, <t, <tp,. Sot,, €pi-1Ng,, and so p;—; =¢,. Now u € p;_,,
t,, <s<wu,and iy, € Ip,_,, a contradiction.

It follows that s < t,, for any s € SC. Hence s ~ g, defines a one-one function
from SC into P, so |P| > A by (iii), a contradiction. u]

Theorem 2. For every infinite cardinal x there is a rigid tree algebra A such
that cym(A) > .

Proof. We may assume that x is regular and uncountable. There clearly is a
tree T having the following properties:

(1) T has a single root.
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(2) T has height w,.

(3) ISt|>xforallteT.

(4) If s and t are distinct members of T, then |Ss| # |St|.

(5) If C is an initial chain of T' of length less than w;, then |SC| > sup{|St|: t € C}.
(6) If s<t, then |Ss| < |St|.

Let A = TreealgT. Now we show

(7) A is rigid.

For, suppose not. Let g be a nonidentity automorphism of A. Then there is a nonzero
a € A such that a N ga = 0. We may assume that a = (7'1 s) for some s € T. Write

g(TT 3) - Uj<m[(T‘ti) \ UuEl‘,-(TT u)],

where T; is a finite subset of (T'1¢;) \ {t;} for each j < m. Clearly

(8) For each j < m, there is a partition of (T Tt;) \ Uyer, (T Tu) which has |S¢;]
elements.

Now we consider two cases.

Case 1. There is a j < m such that [St;| < |Ss|. Then by (8), and because ¢
is an isomorphism, T'1 s has a partition with |S¢;| elements, and this contradicts the
lemma.

Case 2. |Ss| < |St;| for all ; < m. Now T'1s has a partition P of size |Ss|. For
each p € P there is a j < m such that g(p) N (T'1tj) \ Uyer, (T Tu) # 0. Hence there
is a j < m such that {g(p)n(TTt,-)\UuEr,.(T‘[u) : p € P} has |P| nonzero elements,
which form a partition of (T'1t;) \ Uuer,(T Tu). Again, this contradicts the lemma.

Thus (7) holds.
By the lemma, c;ym(A4) > . (]

2 Interval algebras

Suppose that [ is a linear ordering with first element 0. A simple partition of Intalg(l)

is a partition in which every element has the form [a, ). Clearly
¢mm(A) = min{|P|: P is a simple partition of Intalg(I)}.

Let P be a simple partition of Intalg(l). We set

Lp={a€1l:[a,b)€ P for some b € IU {oo}}.

For each ¢ € Lp let ¢c* € IU {00} be such that [¢c,c*) € P. Thus

(%) For any a,b€ I, if a < b, then there is a ¢ € Lp such that ¢ < b and a < c*.

This will be used frequently in what follows.

Note also that if x is an infinite cardinal and I is a x-saturated linear order (in the
model-theoretic sense), then cqm(Intalg(l)) > x. Also recall that I is x-saturated iff
for all subsets A, B € [I]<* with A < B there is a ¢ € I such that A < c < B. Here,
of course, A < B means that a < b for all a € A and b € B; similarly for A < ¢ < B.
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If F is an ultrafilter on a BA A, the w-character of F is the smallest size of a
subset D of A\ {0} such that for all z € F there is an a € D such that a < z; it is
denoted by wx(F). Then

7x(A) = sup{rx(F) : F is an ultrafilter on A}.

A description of the w-character of interval algebras can be found in [4, p. 161]. From
this it follows that for A = Intalg(x), x an infinite cardinal, we have 7x(A) = x. But
¢mm(A) = w, as is seen by the simple partition {{0}, {1},.. ., [w,00)}. This inequality
is important in seeing the place of ¢mm among the 21 functions of MoONK [4].
Another interesting cardinal function on Boolean algebras is defined as follows:

Xint(A) = inf{x(F) : F is an ultrafilter on A}.

Proposition 3. For every interval algebra A, xinr(A4) < cmm(A4) .

Proof. Suppose that A = Intalg(]), and P is a simple partition of A. For each
terminal segment M of I with 0 ¢ M, let xp M be the left character of M, i.e., the
cofinality of I\ M, and let xp M be the right character of M, i.e., the coinitiality of
M if M # 0. The terminal segments of I not having 0 as a member are in one-one
correspondence with the ultrafilters on A, by [3]. By [4, p. 188], the character of the
ultrafilter with associated terminal segment M is the maximum of « and A, where
k= xLM and A* = xgM.

Now we define cg,¢1,... € Lp. Fix any co € Lp. Then we define

N ifch € Lp,
fm+1 = | undefined otherwise.

Case 1. ¢y is defined for all m € w.

Subcase 1.1. The ¢,,’s are cofinal in . Then the empty terminal segment has
character (w*,1) and the desired conclusion is clear.

Subcase 1.2. The ¢,,’s are not cofinal in I. Let

M={z€l:cm<zforallmeuw}

Then the terminal segment M has left character w. Assume that the right character of
M is *, x infinite. We define a sequence {d, : a < x) of distinct elements of Lp; this
will prove the Proposition in this subcase. Let (e, : @ < k) be a strictly decreasing
sequence of elements of  coinitial in M. Choose dp € Lp so that dp < ep and ¢, < dj;
this is possible by (*) above. Now clearly df € M. Hence also dg € M. Suppose now
that we have defined d, for all & < f3, all members of M. There is an eg with es < d,
for all @ < B. Choose ds € Lp so that ds < ep and ep41 < dj. As above, dg € M.

Case 2. There is an m such that ¢,, is defined but ¢m4; is undefined.

Subcase 2.1. ¢}, < co. Let M = {z € I : ¢}, < z}. This is a terminal segment
with left character 1. One can assume that the right character is infinite and proceed
as in Subcase 1.2.

Subcase 2.2. ¢} = co. We now define dy = ¢ and

d _fu ifu€ Lp and ut = dp,
m+1 = 1 undefined otherwise.
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Since Lp is infinite, d, is defined for all m € w. Let
M = {z :dm < z for some m € w}.

Then M is a terminal segment with right character w. Assuming that the left character
is infinite, one can proceed as in Subcase 1.2. ()

Our next result settles a natural question concerning the place of ¢, in a diagram
of the cardinal functions for interval algebras.

Theorem 4. There is an interval algebra A such that Depth(A) < cmm(A).

Proof. Let I = {f € “*2: 3a[f(a) = 1 A (VB > a)(f(B) = 0)]}, lexicograph-
ically ordered. For properties of this order, see COMFORT and NEGREPONTIS (1] or
ROSENSTEIN [6]. A gap in I is an ordered pair (A, B) such that AUB =1, A< B,
A has no largest element, and B has no smallest element. For every gap G of char-
acter type (w;,w;), we introduce new elements ggo < gg1 at that gap, forming an
order J. More explicitly,

J =1 U {960,961 : G is a gap of character type (w;,w7)},

and for z,y € I, gaps G = (A, B), H = (C,D), G # H of this type, and € = 0,1,
6 = 0,1 we define

z<y iff z<yinl;
T < gGe iff z€A;
gge < T iff ze€ B,
9Go < g9G1,

gce < gus ffi ACC.

(1) If z < yin J, and the ordered pair (z,y) is not of the form (9o, 961), then there
isan f€ Isuchthat z < f < y.

This is clear if z,y € I. Suppose that z = gg,, with G = (A, B), and y € I. Then
y € B. Choose z € B with z < y. Then z < z < y, as desired. Suppose that y = g,
and ¢ € I, G = (A, B). Then z € A and the conclusion is clear. Finally, suppose
that z = g, and y = gys, with G = (A, B) and H = (C, D). Then A C C. Choose
z€ C\ A. Then z < z < y, as desired. So (1) holds.

(2) There is no strictly increasing sequence of elements of I of type ws.

For, suppose that (f* : @ < wj) is such a sequence. If £ < n < wj, then there is a
Xéen < wy such that f€[xen = 7 xen, and fé(xen) =0, f1(xeq) = 1.

(2a) If £ < p < @ <wz, then x¢p < Xen-

In fact, suppose that x¢q < x¢o- Then we have flxen=f" [ Xen = fO [ x¢n and
fe(xen) = fS(xen) =0, f'(xen) = 1, 50 f¢ < f7, a contradiction. So (2a) holds.

By (2a), for every £ < w; there is an a¢ < w; such that for all 8 € [ag,w2) we have
X¢ae = X¢p- Then there is a § < w) such that |{§ < w3 : x¢a, = 0}| = wa. Pick
€ < wy such that x¢a, = 6. Then pick 7 < w; such that £, a¢ < 7 and xpa, = 6.
Pick B < wy with n,a, < § and xnp = 6. Then f€(f) = 0 and f7(6) = 1. But also
f7(6) = 0 and f?(6) = 1, a contradiction. So (2) holds.
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Similarly,
(3) There is no strictly decreasing sequence of elements of I of type wj.

(4) In J there is no chain of type w; or wj.

For, suppose that (z4 : @ < wj) is a strictly increasing sequence of elements of J.
By (1), for each even a choose y, € I such that 2, < ya < Za42. These y,’s are
strictly increasing, contradicting (2). Similarly, there is no sequence of type wj.

The rest of the proof is to take an infinite simple partition P and show that
|P| € w; leads to a contradiction. We define ¢ ~ d iff ¢c,d € Lp and one of the
following holds:

(a) e=d;
(b) ¢ < d, and there is a finite sequence ¢ = eg, €1,...,em = d such that e;4, = e}
for all i < m, each ¢; € Lp;
(c) Like (b), with ¢ and d interchanged.
Clearly “~” is an equivalence relation on Lp, and each equivalence class is countable.
(5) If @ and B are equivalence classes such that a < 3, then there is an equivalence
class v such that a < y < §.
To prove (5) we consider four cases.

Case 1. o has a largest element, ¢, and B has a smallest element, d. Applying
(*) to [c,d), we get e € Lp such that e < d and c < e*. Thusc <ee.

Subcase 1.1. c =e. Then e* < d, since otherwise e = d and a = 8. Applying
(*) to [e*,d), we get v € Lp such that v < d and e* < v*. Soc=¢ < v <dand
a < [v] < B, as desired.

Subcase 1.2. c <e. Then a < [e] < 3, as desired.

Case 2. a has a largest element ¢, but § has no smallest element. Then we can
choose a sequence (d, : n € w) of elements of § which is strictly decreasing. For each
even n € w, by (1) there is an f, € I such that day2 < fn < dn. Then there exist
g,h € I such that ¢ < g < h < f, for each n. Applying (*) to [g,h), we get e € Lp
such that e < h and g < e*. Thusc<e.

Subcase 2.1. ¢ = e. Now et < f, for each n. It follows that there isa k € I
such that et < k < f, for each n. Applying () to [e*, k), we get u € Lp such that
u<kandet <ut.Soc<uanda<[u<p

Subcase 2.2. c<e. Thena < [¢] < .

Case 3. a has no largest element, but 8 has a smallest element, ¢. This is similar
to Case 2.

Case 4. o has no largest element, and S has no smallest element. Then we can
easily find h < k such that @ < h and k < B, h,k € I, by the arguments above.
Applying (*) to [h, k), we get the desired result.

This proves (5).
Now suppose that |P| = Rg. Fix ¢g € Lp. Define
c _ c,",' if C: € Lp,
"+1 7 1 undefined otherwise.
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Case 1. There is an n such that ¢4 is undefined; we take the first such n. So
ct ¢ Lp.
Subcase 1.1. ¢} < oo.

Subcase 1.1.1. ¢ = ggo for some gap G. Applying (*) to [gGo,9G1), we get
e € Lp such that e < gg; and ggo < e*. So e = ¢}, a contradiction.

Subcase 1.1.2. Otherwise, there is a sequence (f, : @ < w;) strictly decreasing
with limit ¢}'. We now define d, € Lp. Suppose that dg has been defined for all
B < a such that ¢} < dg. Choose f, < dj for each 8 < a. Applying (*) to [fy41, f5),
we get d, € Lp such that d, < fy and fy41 < d}. So ¢} < d,. This construction
gives w; elements of Lp, a contradiction.

Subcase 1.2. ¢} = co. We define dy = ¢p and

dosr = the a € Lp such that at = d, if there is such a,
"+1 = 1 undefined otherwise.

Subcase 1.2.1. There is an n such that d,4; is undefined; we take the least
such n. Since Lp is infinite, d, # 0.

Subcase 1.2.1.1. dp = gg, for some gap G. Applying (*) to [gco,961), we get
e € Lp such that e < gg; and ggo < e*. So e* = d,, a contradiction.

Subcase 1.2.1.2. Otherwise there is a sequence (f, : @ < w;) of members of |
strictly increasing with limit d,; we can then proceed as in 1.1.2 to get a contradiction.

Subcase 1.2.2. d, is defined for all n. For each even n choose f, € I so that
dpn42 < fan < d. Then choose g,h € I so that g < h < f, for all n. Applying (*)
to {g,h), we get ¢ € Lp such that e < h and g < e*. So [e] < [dp]. Now (5) shows
that there are infinitely many equivalence classes, densely ordered, and therefore
isomorphic to the rationals. Take a gap (A, B) in the ordered set of equivalence
classes of character (w,w"). By the above ideas, we can then find g, h € I such that
g<hand A< g < h< B. Choose r € Lp so that r < h and ¢ < r*. Then
A < [r] < B, a contradiction.

Case 2. ¢, is defined for all n. This case can be treated like 1.2.2.

Thus |Lp| = R;. Then we get a gap (A, B) in the ordered set of equivalence
classes of character (wy,w}), since there is always a symmetric gap by an argument
of HAUSDORFF, and (w,w") is ruled out by the above argument. But this clearly
gives rise to an (wy,w;y) gap G = (C, D) in I, so that for every a € A there is an
f € C such that a < f, and for every f € B there is a ¢ € D such that g < S.
Thus A < ggo < 961 < B. Choose e € Lp such that e < gg; and ggo < e*. Then
C < [e] < D, a contradiction. 0

A rigid interval algebra shows that [Aut(4)| < ¢mm(A) is possible. This completes
the picture for the place of ¢ym among the functions of MONK [4]: only ¢mm < ¢ and
relations implied by it.

We now give a construction of a rigid interval algebra with ¢y arbitrarily large;
this is a modification of a construction of TODORCEVIC [6]. Note that the rigid tree
algebra above is not isomorphic to an interval algebra. For the following results,
let A be an infinite regular cardinal, and set x = (2*)*. Let U be the set of all
a < k such that cf o = A and a cannot be written as 7 + A. Clearly U is stationary
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in . By SOLOVAY’s theorem we can write U = [J, ., Va, where (Vo : @ < &) is a
system of pairwise disjoint stationary subsets of x. For f,g € *x, f < g denotes the
lexicographic order; thus this relation holds if there is an ordinal x;, < A such that
flxsg = 9lxss and f(xyg) < 9(xsy). Now we define (f, : @ € U) such that f, is a
strictly increasing continuous function from A into a with supremum a; the definition
goes by induction. Let ((As,8,) : @ < x) enumerate all pairs (A, ©) of disjoint
subsets of U each of power < A. Now for each a € U, let (A}, ©,) = (Ap,©p), where
B < x is such that a € V3. Thus (A}, ©5) : a € U) enumerates all pairs (A, ©) with
A and © subsets of U of power < ), and each pair is enumerated repeatedly by one of
the stationary sets V3. Suppose that fs has been defined for all # < a with 8,a € S.

Case 1. Forall € A/, and all y € ©), we have f < a, ¥ < @, f5 < f, and for
any 6 < x4,7., f3(6) < a and f,(§) < a. Now we define g € *« by recursion:

9(0) = sup{fs(0) : B€ AL}
for 6 limit,
9(6) = sup, <4 9(¢);
finally,
9(6 +1) = max(sup{fs(6 +1): fa[ (6 +1) = g[ (6 +1)},9(6) + 1).
(We count the sup of the empty set as 0.) Thus g is strictly increasing and continuous.

(1) fsXgforall BeAl,.

For, suppose that § € A, and g < fp. Clearly x;,, is a successor ordinal § + 1; and
this is clearly impossible.

(2) g% fyforallye€®,.

For, suppose that ¥ € ©,, and f, < g. Clearly x,;, is a successor ordinal § + 1. Thus
fr(8+1) < g(6+1) and £, [ (5+1) = g (6+1). Now £,(8) < f,(6+1), 50 g(6) +1 =
fy(6)+1< f,(6+1). Hence there isa f € A, such that fg[(6+1)=g[(6+1) and
fy(6+1) < fg(6 + 1), a contradiction.

(3) g# fyforally€©y.

For, suppose the contrary, ¢ = f,, v € ©,. Then fs < g for all § € A,. Let
§ = supgear (Xsp9 +1). Then g(e +1) = g(e) + 1 for all € € [§,1). Thus 7 has the
form 7 4+ A, contradicting the definition of S. So (3) holds.

Now let 6 = sup{xss, +1:7 € ©4). Let fu[(5+1) = g[(6+1), fa(6+1) =
g(6+1)+1, and let f, be strictly increasing and continuous with supremum «. This
finishes the definition is Case 1.

Case 2. Case 1 fails. Then we let f, be any strictly increasing continuous
function with supremum a.

Lemma 5. Suppose that C is club in x. Suppose that A and © are disjoint
subsets of UNC of size < A, and fg < f, for all B € A and vy € ©. Then there is an
a € UNC such that fg < fo < f for all B € A and v € ©.

Proof. Choose § € U so that
(VB € A)(Vy € ©)(B < 8, y < & and both f5[xy,s, and f, [ xys,s,map into §).
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Say (A,0) = (A¢,O¢), and £ € V,,. The set V, NC N [4, «) is nonempty; let a be any
member of it. Note that (A},0,) = (A,©). Hence Case 1 above applies, and the
desired conclusion follows. (a]

According to Lemma 5, cmm (Intalg(L(U N C)) > A for any club C in «.

Lemma6. If S’ is a stationary subset of U, then in L(S’) there is no set of size
At which is anti-well-ordered.

Proof. Suppose that (g9, : @ < A*) is a strictly decreasing sequence of elements
of L(S").

(1) If§ <n< g < A%, then Xy, < Xgeg.-
In fact, suppose that 7 := X4, < Xgeg,- LThen we have g, [T =g¢[7 =g,[7, and
90(7) = g9¢(7) > gq(7), 80 gy < g,, a contradiction. So (1) holds.

It follows that (V€ < A*)(3a¢ < A*)(VB € [ag, AY)) (Xgea, = Xgess)- Now each
Xg¢ga, 18 less than ), so there is a § < X such that [{§ < A* : xg0,, = 0} = A*.
Hence we can define &p,£;, ... so that Xs¢,90, = 0 and &;,a¢, < €y forall i < w.
Now &i41 € [6e) AY), 50 Xgq,00,,, = 0 S0 9¢,(60) > g¢.,,(f) for all i < w, a contra-
diction. 0

Lemma 7. Suppose that SC U. Let

S={a€S: (K< A){BES:fa=<fs and foléa C fp} is non-stationary}]}.
Then S’ is non-stationary.

Proof. Suppose that S’ is stationary. Choose £ < A and a stationary S"” C S’
such that £, = € for all @ € §”. Next, for @ € S” let h(a) = sup{fa(n) +1:n < €}.
So h is regressive, and so there is an n < x and a stationary S/ C 5" such that
h(a) = n for all @ € §". Next, note that [¢n] < 2* < «. It follows that there is a
stationary S C S" such that f, [£ = fs [€ for all a,B € SV, Because of this, and
the definition of &, for all @ € S' the set {8 € S : fa < fs} is non-stationary; say
that C, is a club disjoint from this set. Now define by recursion

Pa €SN nf<oCﬁ|\{ﬂ€ :£<°}
foralla < k. If £ < & < &, then B, € Cp,, and so by the choice of the C,’s,
fpa < fp,- This contradicts Lemma 6. =]

Lemma 8. Suppose that S C U and S is stationary in k. Then L(S) is not the
unton of fewer than k well-ordered subsets.

Proof. Suppose it is such a union. Then there is a stationary subset S’ of S
such that L(S’) is well-ordered.
(1) fa<pB <y, allin S, then xs,7, < Xfuts-
To prove this, suppose that 7 := x;,s, < X/.s,- Then we have fy[r = fa [T = fy [T,
and f,(7) = fa(7) < fa(7), so fy < fs, a contradiction.

By (1), for every £ € S’ there is an a¢ € S’ such that for all # € §' N [ag, x) we
have Xfelay = Xtes: Since Xfetay < A < k&, it follows that there isa # < A and a

stationary subset S” of S’ such that for all { € S” we have x4, = 0. By Lemma 7,
the set

SV = {a€S":(Vu<A)({B€S": fa<fsand folpC fp} is stationary}
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is also stationary. Pick any a € S, and take a # € S such that f, < fs and
fa[(8 + 1) C fa. This contradicts the above. o

Lemma9. If S is a stationary subset of U, then L(S) has a well-ordered subset
of size At.

Proof. This is clear from Lemma 6 and the partition relation (2*)* — (A*+)}. O

Lemma 10. If S and S’ are subsets of U and L(S) is order-isomorphic to a
subset of L(S’), then S\ S’ is non-stationary.

Proof. Suppose that Sop = S\ S’ is stationary. Let H be the given isomorphism,
and write H(fa) = fa(a) for all @ € S. Thus A is one-one, so there is a stationary sub-
set Sy of Sp on which h is strictly increasing. For 7 < A let A, = { )T €851}
Thus |A,| = k. Choose 7 minimum such that |[4,| = «.

(1) 7 is not a limit ordinal.
For, suppose that it is. For each ¢ < A define

@ =, v ff o B€S5 and faa)lo = fiap)lo.

Thus “=,” is an equivalence relation on S, and |S1/ =, | = |A¢|, as is seen by the
map [a]z, = fa(a) [0
(2) (Sl/ ET) = {na<r Ug - u e nd<r(sl/ EG)} \ {0}'
This condition is clear, since [a]z, =), ,[a]s, for all a € ;.
Now |51/ =, | < & for all ¢ < 7, 80 | [],<,(S51/ =) < (2*)7 < &, a contradiction.
This proves (1).

Say r=c+ 1. Now

S1 =Ujea {@ € Sy : faaylo =g},

and |Ag| < %, so there is a stationary S; C S) such that fyq) [0 = fa) [ o for
all a, f € S3. Then the function f = fi(a)(c) is an order preserving embedding of
L(S3) into x, contradicting Lemma 8. u}

Lemma 11. Suppose that S,S' C U, neither L(S) nor L(S’) have a smallest
element, and there is an isomorphism of Intalg(L(S)) into Intalg(L(S’)). Then S\ S’
is non-stationary.

Proof. Suppose that Sy = S\ S’ is stationary. Recall from [3] that in the interval
algebras a 0 is adjoined, by our assumption. Let by = [0, f,) for all @ € Sp. Let H
be the given isomorphism into, and for each a € Sy write

H(ba) = [z3,42) U [z}, b)) U ... U [za®)1, g,

where z0 < 10 <zl <yl < --- < y2(®)"! < 0o. There is an n € w and a stationary

Sy € Sp such that n(a) = n for all @ € S,. Now we claim
(1) There is a stationary S C S; such that 20 = zJ for all @, B € S,.

For, there is a stationary S C S; such that either z = 0 for all a € S7, or z% # 0
for all @ € S. The first case gives (1), so suppose that the second case holds. For all
a € S} write 23 = fi(a). Thus h maps S into §’, and S{ NS’ = 0, so h(a) # a for all
a € S}. If h is constant on a stationary subset of S7, this gives (1), so assume that h is
one-one on some stationary subset Sy’ of S}. If a, B € SY and fa < fp, then b, < bg,
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hence H(ba) < H(bp), and so zj < z3; since h is one-one, zj < z3. By Lemma 9
there is a well-ordered subset of L(SY) of size A*, so this gives an anti-well-ordered
subset of L(S’) of size A*, contradicting Lemma 6. Hence (1) holds.

Thus we can write, for any a € S,
H(ba) = [z% Q) U[z5, ¥a) V... U251, 570).
We now claim

(2) There is a stationary subset S3 of Sy such that y3 = yj for all @, 8 € Ss.
To prove this, first note that it cannot be true that n = 1 and there is a stationary
subset S such that y2 = oo for all & in that subset. So we may assume that y3 # oo
for all @ € S;. For each a € S, write 32 = fi(ay- If | is constant on some stationary
subset of S;, this gives (2). So assume that [ is one-one on a stationary subset S5
of S;. If a,8 € 53 and fa < fp, then by < by, and hence fya) < fi(s). This shows
that there is an embedding of L(S%3) into L(S’). This contradicts Lemma 10, since
53\ 8" =53. So (2) holds.

Now it is clear that we can continue this argument, finally reaching a stationary
set on which H(b,) is constant, a contradiction. a

Theorem 12 There is a mono-rigid interval algebra A with coym(A4) 2> A.
(Recall our assumptions on A and «.)

Proof. We apply Lemma 7 to U in place of S and get S’ as indicated. Let
S=U\S" Thus
(1) Foralla € Sandall§ < Atheset {3 € S: fo < fa and fo [€ C fs} is stationary.
Hence
(2) If f,ge€ L(S) and f < g, then {B€ S: f < fs < g} is stationary.
For, let f = fo. By (1), theset {8 € S: fo < fg and fo [(xs.9 + %) C f5} is
stationary. For 8 in this set we have f < fs < g, as desired.

Now suppose that H is a one-one embedding of Intalg(L(S)) into Intalg(L(S)),
and it is not the identity. Then
(3) There is a nonzero element a € Intalg(L(S)) such that a - H(a) = 0.
For, choose z so that z # H(z). If z £ H(z), we cantakea =z - —H(z). If H(z) £ z,
we can take @ = H(z)- —z. So (3) holds.

Let ' ={a €S :fo €a}and S = {a € S: fo € H(a)}. By (2), these are
stationary subsets of k. They are disjoint, and there is an embedding of Intalg(L(S"))
into Intalg(L(S")). This contradicts Lemma 11. 0

3 Tree algebras

If T has only one root, and has an element a of level w such that there is no other
element of level w with the same predecessors as a, then cmm(Treealg T') = w. For, let
b, by, ... be the predecessors of a in increasing order, with b the root. The desired
partition is (T'Tbo) \ (T'161), (TTo1)\(T1b2),...,T1a.

By an earlier remark, it is possible to have cmm(A) < 7x(A) for a tree algebra A.
One can have Depth(A) < cmm(A): Fincox.
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Proposition 13. For any tree algebra A, cmm(A) < x(A).

Proof. We use Theorem 14.12 of MONK [4]. Say A = Treealg T, where T has
only one root r. We are assuming that A is infinite, so T is infinite.

Case 1. T has finite height. Then some element ¢ € T has an infinite set X
of immediate successors. Then the following is a partition in A: (T 1r)\(T11)
(omitted if t = r), and T Tz for z € X. By [4, Theorem 14.12], this proves that
¢mm(4) < x(A4).

Case 2. T has infinite height. If T has no infinite chain, then some level is
infinite, and the lowest such level gives at one lower level an element with infinitely
many immediate successors, to which the argument of Case 1 applies. So we may
assume that 7" has an infinite chain. Let C be an initial chain of order type w, and
let X be the set of all immediate successors of C. Let C = {bo, by, ...}, in increasing
order. Then a partition is furnished by (T T o) \ (T 1 81), (T 1)\ (T 1 b2),...,
along with all elements T 1 z for z € X. Again, [4, Theorem 14.12] yields that
cmm(4) < x(A). 0

Note that cmm(A) < |Aut(A)| is possible for a tree algebra: Fincow x Finco x.
A rigid tree algebra shows that |[Aut(A)| < ¢mm(A) is possible, and Theorem 2 shows
that one can have ¢y, arbitrarily large. All of these remarks fix for tree algebras the
place of ¢pmm among the 21 functions of MONK [4]: one has cymm(A) < x(A), and no
other relations except those implied by this.

4 Complete BA’s
For complete BA's A one has ¢mm(A4) = w, so the function is trivial.
5 Superatomic BA’s

The following possibilities for BA’s were mentioned above: ¢mm(A) < Length(A) and
¢mm(A) < 7x(A). For superatomic algebras A the inequality t(A) < cmm(A) is also
possible: Fincox. Here t(A) is the tightness of A, i.e. the supremum of depths of
homomorphic images of A. Thus the diagram for superatomic BA’s is just like for
the general case.

6 Atomic BA’s

The following possibilities for atomic BA’s were mentioned above: x(A) < c¢mm(A)
(with difference necessarily small), ¢mm(A4) < Depth(A), and t(A) < cmm(A4), the
difference big. Also, we have Length(A) < cmm(A) and Ind(A) < cmm(A) for the
algebra A = Fincoxk, and cmm(A) < Ind(A) for A = Px. Thus the diagram for
atomic BA’s is like for the general case.

7 Atomless BA’s

Proposition 14. For atomless algebras the inequality x(A) < ¢mm(A) is possible.

Proof. In fact, let C be as in 25.192 of MONK [4], with 2% < x. We claim that
¢mm(C) = 2%. To see this, suppose on the contrary that (h(bs, Fa,aa) :a@ < A) is a
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system of nonzero pairwise disjoint elements of C with sum 1, where each b, € B,

Fq is a finite subset of I disjoint from ba, aa € [[;¢p, (4i \ {0,1}), and A < 2%; we

want to get a contradiction. Note that |I| = 2*. Then

(1) For all i € I, either there is a < A such that i € b,, or for all a < A, i € b,
and 3-, ¢y ieF, Gaf = L.

For, suppose not: then there is an i € I such that for all a < A, i ¢ b, and

€= achieF, Gal # 1.

Then h(0,{i}, —¢) - h(ba, Fa,a8a) = 0 for all @ < A, a contradiction. So (1) holds.

Let J={i € I:(3a < A)(i € ba)}. There are now two possibilities:

Case 1. |J| > ). For each i € J, choose a; < A such that i € b,;. In our case,
there are distinct i, j € J such that a; = a;, a contradiction.

Case 2. |J| < A. Then [I\J|=2%. Foralli€ I\Jwehave }_, , icp @ai=1,
and so there is an a; < A such that i € F,,. It follows that there is a § < A and an
L € [I\ JJ** such that a; = 8 for all i € L. Then Fj is infinite, a contradiction. O

It follows that the diagram for atomless algebras is like the general diagram.
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