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PROBLEMS IN THE SET THEORY
OF BOOLEAN ALGEBRAS
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In this survey article we state some open problems and give appropriate background
in the set-theoretic aspect of Boolean algebras. These are a selection of problems from a
forthcoming book of the author which is a greatly expanded version of Monk ({90]. The
problems mentioned are among the most interesting in that book, in the author’s opinion.
Some of them may be quite easy, but others are known to be difficult. We assume only a
modest familiarity with the notions of Boolean algebras, and hope that even non-experts
in this field can follow the exposition. We give the basic definitions to establish notation,
and to recall notions that the reader may have forgotten. But we do not give elementary
examples to go along with the basic notions, in order to be able to concentrate on the
problems.

A Boolean algebra (BA) is an abstract structure of the form (4, +,-,—,0,1) subject
to some simple equational axioms. It is not useful to write these down, since one of the
first things one learns about BA’s is that each BA is isomorphic to a field of sets, i.e., a
structure (4,U, N, \,®,U) where A is a collection of subsets of U closed under the indicated
operations. The abstract equational definition is useful mainly in that, because of it, one can
make common algebraic operations on BA’s like products, homomorphisms, free products
(co-products, categorically), etc. and stay in the class of BA’s. The Handbook of Boolean
Algebras listed in the references is what we recommend in order to learn about BA’s, or
recall facts; volume I is the most essential thing for this. In any BA one can define a partial
order < by setting z < y iff z + y = y. The generalizations of + and - to finite sets are
denoted by 3~ and [] respectively. Under <, z+y and z-y are the least upper and greatest
lower bounds of = and y respectively. So one can discuss infinitary Y and [] also; 3_ X,
when it exists, is by definition the least upper bound of X, and [[ X the greatest lower
bound. If both of these always exist, the BA is called complete. Given a BA A and two
subsets X and Y of A, we say that X is dense in Y if for every nonzero y € Y there is a
nonzero x € X such that x < y. Every BA A has a completion, which is a complete BA
which includes A, in which A is dense. If L is a linear ordering with smallest element 0,
we can form a natural BA, called the interval algebra of L, by taking all subsets of L of the
form

(@0, bo) U ey, b1)U...Ulam—1,bm-1),
where ag < by <a; <b; <-- < am_y <bp_; <o0.

An ultrafilter on a BA A is a subset F of A with the following properties:
(i)1€eF.
(i)o¢g F.



180 J. D. MONK

(iii) f z,y € F, thenz-y € F.
(ivyIifz€ Fand z <y, theny € F.
(v) For any element a € A, eithera€ F or —a € F.

Ultrafilters play a central role in the study of BA’s. In particular, the set UltA of all
ultrafilters on A can be given a topology making this set into a compact space with special
properties; this is the Stone space of A, and there is a categorical duality between BA’s and
the corresponding class of spaces.

An atom in a BA A is a nonzero element a € A such that there are no nonzero elements
< a. A BA A is atomic if for every nonzero element b € A there is an atom a < b. If
a is an atom, then {z € A : a < z} is an ultrafilter of a rather trivial sort; it is called a
principal ultrafilter. Other ultrafilters, which always exist in infinite BA’s by Zorn’s lemma,
are called non-principal.

There is an interesting special class of atomic BA’s. A BA A is superatomic if not only
A but also every homomorphic image and subalgebra of 4 is atomic. Surprisingly, there
are many such algebras. The simplest of them are the finite-cofinite algebras on infinite
sets. There is a more complicated characterization of them which is useful, and brings out
another way in which they are specially simple. We construct a transfinite sequence of
ideals of A as follows. Let Iy = {0}. Having constructed I, (o an ordinal number), let
I,+1 be the ideal of A generated by all a € A such that either a/I, = 0 or a/I, is an
atom of A/I,. For A a limit ordinal, let I = |J,., Ia. Now it is not hard to prove that
A is superatomic iff the first & such that I, = I, is a successor ordinal 8 + 1, and A/
is finite. Here is another fact which shows how simple superatomic BA's are, on the face
of it. If F is a principal ultrafilter on A/I,, generated as above by an atom a/I,, then
{zx€A:a/ly <z/I,}is an ultrafilter on A. And every ultrafilter on A is obtained from a
principal ultrafilter on some A/, in this fashion.

Free caliber. A collection X of elements of a BA is independent if for all disjoint finite
subsets Y and Z of X we have [[ .y 2-[],cz —= # 0. This is clearly related to the notion
of independence in measure theory. If X is independent and generates A, then A is a free
BA on X, in the usual categorical sense. Naturally, the notion of a free BA and this related
notion of independence have been intensively studied. For example, it is known that if A
is an infinite complete BA, then A has an independent subset of size |A[; but A is never
itself free. Now let k be an infinite cardinal. A BA A is said to have free caliber k provided
that x < |A| and for every subset X of size k there is an independent subset ¥ of X of
size k. We give some background on this notion from Monk [83] and state some problems.
It is easy to see that if A+ < |[],c; 4i| and AT} = ), then [],.; Ai has free caliber A* iff
every A; of size at least A" has free caliber A*. If k < 21! and there is a linear order of
power 2!l with a dense subset of size |I|, then [I;c; Ai does not have free caliber « (all A;
non-trivial). If A is the product of the finite-cofinite algebra on 2, and the free algebra on
(J,)* free generators, then A has caliber (3,,)* but “A does not. Here is a related simple
open problem.

Problem 1. For each n € w let A, be the free BA on 1, free generators. Does [[, ., 4n
have free caliber (3J,,)* 7

Although a complete BA always has an independent subset of the size of the BA, the free
caliber is a stronger requirement. We give two problems concerning this.
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Problem 2. Let A be a free BA on J. 4, free generators, and let B be the completion
of A. Does B have free caliber J, 417

Problem 3. Is there for every infinite cardinal k a complete BA A of size 2% such that
for every infinite cardinal A\, A does not have free caliber A?

In this connection we mention that if L is a linear order of size 2* with a dense subset of
size k, and A4 is the completion of the interval algebra on L, then |A| = 2* and A satisfies
the conclusion of Problem 3.

Problems 1-3 have not been worked on much, and may be easy.

Chain conditions. A BA A satisfies the k-chain condition if every set of pairwise
disjoint elements of A is of size less than k. There is a related cardinal function, cellularity,
on BA’s. The cellularity of A, denoted by cA, is the supremum of the cardinalities of
pairwise disjoint subsets of A. Chain conditions and cellularity have been studied a lot.
There are several open problems. One which is probably a little harder than the problems
above is as follows.

Problem 4. Is it consistent with ZFC that there is a BA A of size R, with the following
properties?

(i) cB = X for every homomorphic image B of A of size Rs.

(ii) A has no countable homomorphic image.

(iit) A has a homomorphic image B of size R; with cellularity X;.
(iv) A has a homomorphic image B of size R; with cellularity Wo.

The most relevant result to this problem is in Koppelberg [77): if MA (Martin’s axiom)
and 2¥ > ws,, then every BA of size w; has a countable homomorphic image. That is why
Problem 4 asks for consistency, not provability in ZFC.

Depth and subalgebras. The depth of a BA A, DepthA, is
sup{|X| : X is a subset of A well-ordered by <}.

We state a problem about this function which is motivated by a fact about cellularity.
Shelah [80] proved that if x and A are infinite regular cardinals and Vu < A(u<* < A),
and if A is a BA of size at least A satisfying the k-chain condition, then A has free caliber
A. The corollary of this of most interest to us is that if x is infinite, (2)* < |4|, and A
satisfies the x*-chain condition, then 4 has an independent subset of size (2*)*. Now any
free BA has cellularity w. It follows that if A has size (2%)* and cellularity &, then A has
a subalgebra of size (2°)% with cellularity w. We wonder if the analogous result for depth
holds:

Problem 5. Is there an infinite cardinal k and a BA A of size (2°)% such that DepthA =
K, while A has no subalgebra of size (2%)t with depth w?

We feel that this problem is not very hard.

A density problem. There are three cardinal functions connected with density. The
algebraic density of a BA A is the smallest cardinality of a subset of A which is dense in
A; this cardinal is denoted by mA (because it comes from a topological notion traditionally
denoted by =). If X is dense in A, then it is easy to see that every element of A is a sum of
elements of X; so |A| < 2/%I. Thus |A| < 274 for any BA A. For any infinite cardinal x and
any cardinal A with k < A < 2" there is a BA A such that 74 = x and |A| = A\. Another
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density notion is obtained by modifying this one as follows. Let F' be an ultrafilter on a BA
A. The m-character of F, denoted by nwxF, is the smallest cardinality of a subset D of A
which is dense in F. Note that it is not required that D C F'; adding this requirement leads
to the notion of the character of the ultrafilter, which we discuss later. Now the m-character
of A itself is sup{wxF : F is an ultrafilter on A}; we denote it by mxA. This notion may
seem to be rather special, but it occurs a lot in the theory of BA’s, and is important in
set-theoretic topology. It is actually quite different from n. For example, for any infinite
cardinal k, the finite-cofinite algebra on x has w-character w and algebraic density «.

It is a rather deep result of Bozeman [91] that, under GCH, if A is complete then
mA = wxA. We do not know whether this holds in ZFC:

Problem 6. Is it true in ZFC that 7 A = wxA for every complete BA A?

This problem may be hard. One can reformulate it in terms of another density notion of a
topological character. Namely, the topological density of A is the smallest cardinality of a
dense subspace of UltA; it is denoted by dA4. An easy result connecting these three density
notions is that dA - 7xA = wA. Thus an equivalent formulation of Problem 6 is whether
one can prove in ZFC that dA < mxA for every complete BA A.

Tightness and superatomic algebras. The tightness of a BA A, denoted by tA, is
sup{DepthB : B is a homomorphic image of A}.
There are several equivalent definitions of this notion. For example, also
tA = sup{mxB : B is a homomorphic image of A}.

And there is a purely topological definition (actually the standard one, from which the name
is derived), and one involving “free sequences”. We mention two problems about tightness
and superatomic BA’s. One concerns how large the gap between DepthA and tA can be for
A superatomic. A theorem of Dow, Monk [94] is that if k — (k)5“, then every superatomic
Boolean algebra with tightness at least x* has depth at least 5. The hypothesis £ — (k)5
is one of the partition relations that implies that x is an inaccessible cardinal. This result
shows that the gap between DepthA and t A cannot be arbitrarily large. A somewhat small
gap can be obtained like this. Let {a, : @ < w;) be a sequence of infinite subsets of w such
that @ < § < w; implies that a,\as is finite and ag\a, is infinite; it is an exercise in some
set theory books to show that such a sequence exists. Let A be the BA of subsets of w
generated by the singletons and all of these sets a,. Then DepthA = w while tA = w;. The
following problem seems to be open.

Problem 7. Is there a superatomic BA A such that tA = (2¥)* while Depthd = w?

Our opinion here is that this problem is not trivial, but not extremely hard either.

The other problem we want to mention about tightness involves the number of auto-
morphisms of a superatomic BA. It is easy to see that any infinite superatomic BA has
at least 2 automorphisms. One way to see this is to look at an atom a/I;. One can
permute arbitrarily all of the atoms below a and fix all other atoms; this map can be ex-
tended to an automorphism of the algebra. So the question arises to find a superatomic BA
with a relatively small group of automorphisms. Unlike BA’s in general, where there are
even rigid algebras (ones with no non-trivial automorphisms), we see that here there are in
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general many of them. The first natural question is to find a superatomic BA with fewer
automorphisms than elements. This was done by M. Rubin in 1992/1993, using diamond,;
the algebra has size 2! and only w; automorphisms. Note also that there are at least as
many automorphisms as atoms, since a finite permutation of atoms can be extended to
an automorphism. There are superatomic BA’s with tightness greater than the number of
atoms—-see, for example, the algebra above with depth less than tightness. So here is the
next obvious problem along these lines:

Problem 8. Is there a superatomic BA A such that the number of automorphisms of A
15 less than tA? :

This problem has not been worked on much.

Irredundance. A subset X of a BA A is irredundant provided that for all z € X, z is
not in the subalgebra of A generated by X\{z}. The irredundance of a BA A is

IrrA = sup{|X| : X is an irredundant subset of A}.

This is a universal algebraic notion. Most commonly considered BA’s have irredundance
|Al. In fact, the only BA’s A known which have IrrA < |A| have been constructed using
additional axioms of set theory, or using forcing; see Monk [90] for a survey. Todorgevi¢
also showed that it is consistent that every uncountable BA has uncountable irredundance.
The following problem is probably difficult:

Problem 9. Can one construct in ZFC a BA A such that IrrA < |A|?
A very simple problem about irredundance which is probably easy is as follows:

Problem 10. Is Irr(A x B) = max{Irr4,IrrB}?

Here A x B is the cartesian product of 4 and B: the collection of all ordered pairs (a,b)
with @ € A and & € B, with coordinatewise operations. Since Irr4 is “usually” the same
as |Al|, a counterexample for the statement of Problem 10 might be hard to construct. In
algebras A of Kunen and of Todoréevié constructed in Monk [90] with IrrA < |A|, one has
Irr{A x A) = Irrd (= w).

S and L problems. Topologists have extensively studied the problem of existence of
two related special kinds of spaces, called S-spaces and L-spaces. An S-space is a regular
Hausdorff space which is hereditarily separable (each subspace separable) but not hereditar-
ily Lindelof. An L-space is a regular Hausdorff space which is hereditarily Lindel6f by not
hereditarily separable. There are five cardinal functions on BA’s related to these notions:
d, defined above, and the following new functions:

Character. For any ultrafilter F on a BA A, let xF, the character of F, be the smallest
cardinality of a subset of F which generates it. The character of the BA itself is

xA = sup{xF : F is an ultrafilter on A}.
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Hereditary Lindelof degree. The topological definition of this function is clear, but alge-
braically an equivalent definition is as follows:

hLA = sup{« : there is an ideal not generated by < k elements}.

Hereditary density. Again, you can imagine what the topological form of this cardinal
function is. An algebraic definition is:

hdA = sup{#B : B is a homomorphic image of 4}.
Spread. An equivalent definition of this function is
sA = sup{|X|: X is an ideal-independent subset of A4},

where a subset X of A is ideal independent if for all distinct z,yo,... ,ym_1 € X we have

zLyo+ .. .Ym-1.
We mention some results, and four problems, concerning these functions; they are related

to the work on S and L spaces mentioned at the outset. Under CH there is a locally compact
topology on R such that the compactification of R under this topology gives a Boolean space
whose BA A of clopen subsets, called the Kunen line BA, is such that sA = w and xA = wy.
It is unknown whether an example with these functions different can be found in ZFC:

Problem 11. Can one find in ZFC a BA A such that sA < xA?

This is equivalent to the problem of finding in ZFC a BA A such that sA < hLA. The
Kunen line BA is also such that hdA < xA. It is also unknown whether this can be done
in ZFC:

Problem 12. Can one find in ZFC a BA A such that hdA < xA?

This is equivalent to finding in ZFC a BA A such that hdA4 < hLA (the generalized S-space

problem).
The interval algebra A on a Suslin line is a BA such that hLA < dA and s4 < hdA.

This gives rise to the following two questions:
Problem 13. Can one find in ZFC a BA A such that hLA < dA?

This is equivalent to the problem of finding in ZFC a BA A such that hLA < hdA (the
generalized L-space problem).

Problem 14. Can one find in ZFC a BA A such that sA < hdA?

This is equivalent to finding in ZFC a BA A such that sA < dA.
We also do not know whether some two of these four problems are equivalent.
Our guess is that all four problems are difficult.

More problems on irredundance. A simple theorem of Heindorf says that IrrA <
s(A @ A), where @ is free product. It may be that equality actually holds here:

Problem 15. Is IrrA =s(A @ A) for every BA A?
Here are two problems concerning irredundance in superatomic algebras:
Problem 16. Is there a superatomic BA A such that sA < IrrA?
Problem 17. Is there a superatomic BA A such that IrrA < IncA?
Here IncA is the supremum of cﬁrdinalities of subsets X of A such that members of X are

pairwise incomparable under the Boolean ordering.
Problems 16-17 may be easy on the basis of what is known about superatomic Boolean

algebras.
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